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Abstract
The bulk of Internet interactions is highly redundant and also security sensitive. To reduce communication bandwidth and
provide a desired level of security, a data stream is first compressed to squeeze out redundant bits and then encrypted using
authenticated encryption. This generic solution is very flexible and works well for any pair of (compression, encryption)
algorithms. Its downside, however, is the fact that the two algorithms are designed independently. One would expect that
designing a single algorithm that compresses and encrypts (called compcrypt) should produce benefits in terms of efficiency
and security. The work investigates how to design a compcrypt algorithm using the ANS entropy coding. First, we examine
basic properties of ANS and show that a plain ANS with a hidden encoding table can be broken by statistical attacks. Next,
we study ANS behavior when its states are chosen at random. Our compcrypt algorithm is built using ANS with randomized
state jumps and a sponge MonkeyDuplex encryption. Its security and efficiency are discussed. The design provides 128-
bit security for both confidentiality and integrity/authentication. Our implementation experiments show that our compcrypt
algorithm processes symbols with a rate up to 269 MB/s (with a slight loss of compression rate) 178 MB/s.

Keywords Encryption · Authentication · Integrity · Statistical attacks · Entropy encoding · Compression · Asymmetric
numeral systems · ANS · Keccak

1 Introduction

Shannon in his seminal paper [1] investigates a problem of
data transmission via a noisy and unreliable communication
channel. He has shown that errors during transmission can
be corrected if data are encoded with enough redundancy.
Error correcting codes are developed to provide a carefully
designed redundancy so the original data can be recovered
even if some bits have been corrupted during transmission.
The reverse problem and main focus of theory of entropy cod-
ing is how to remove redundancy from transmitted data. This
is extremely important for growing Internet applications,
where almost all data transmitted are highly redundant (for

B Josef Pieprzyk
josef.pieprzyk@csiro.au

1 Data61, CSIRO, Sydney, Australia

2 Jagiellonian University, Cracow, Poland

3 School of Computing and Mathematics, Charles Sturt
University Port Macquarie, Port Macquarie, Australia

4 Institute of Computer Science, Polish Academy of Sciences,
Warsaw, Poland

instance, photographs, music and video streaming). Com-
pression of data simply saves time and bandwidth. Original
data can be easily recovered by running a decompression
algorithm.

The first entropy coding algorithm applies the well-known
Huffman coding [2]. It offers optimal compression for sym-
bols that follow a probability distribution that are integer
powers of 1/2. It is suboptimal, however, for any probabil-
ity distribution that deviates from it. An interesting analysis
of the code can be found in [3]. The arithmetic/range cod-
ing [4–6] offers a significant improvement as it allows to
compress symbols for an arbitrary probability distribution.
Its main weakness, however, is a heavy computation over-
head. Asymmetric numeral systems (ANS) are relatively a
newcomer that provides both efficient and close to optimal
entropy coding (see [7–9]). Since its invention, ANS has been
adopted widely in the IT industry. It is being used in the
following compressors: Facebook Zstandard, Apple LZFSE,
Google Draco 3D, PIK image, CRAM DNA and Dropbox
DivANS, to name a few most prominent ones. It is recom-
mended by RFC 8478 for MIME and HTTP. ANS is also
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used by the JPEG XL next generation image compression
standard.

The recent Covid-19 pandemic is forcing people to social-
distance themselves by working/interacting via Internet. This
further boosts already accelerating trend for people to turn
to the Internet for entertainment (games and video stream-
ing) and work teleconferencing (via Zoom, Skype, Webex or
Microsoft Teams). Clearly, these events put data compression
and security (confidentiality, authentication and integrity) at
the forefront [10]. A natural solution is to use compression
followed by encryption. A better option is to design a joint
compression and encryption (further called compcrypt). It is
expected that it is possible to exploit the natural properties of
ANS to simplify encryption without compromising security.
A research problem we address in this work is the design of
a compcrypt algorithm such that

cost(compcrypt) � cost(compression) + cost(encryption);
security(compcrypt) = security(encryption);
comp_rate(compcrypt) ≈ comp_rate(compression),

where comp_rate stands for compression rate.
Duda and Niemiec consider a plain ANS as a compcrypt

algorithm in their work [11]. In their solution, a sender
designs ANS by selecting a symbol spread function using
pseudorandom bit generator (PRBG) initialized with a cryp-
tographic key. The symbol spread determines encoding and
decoding tables. The receiver also gets an encrypted final
ANS state that serves as an authentication/integrity tag. The
receiver checks if after decompression, ANS arrives in the
correct state. The compcrypt algorithm holds up well against
ciphertext-only adversaries. It is completely defenceless
against integrity attacks as shown in the work [12]. The work
also proposes three versions of compcrypt with a better secu-
rity level. The versions target low-security devices/sensors
with limited computing resources. They apply as little cryp-
tography as possible. In fact, the only cryptographic tool is
PRBG. An integrity tag is implemented by encrypted final
state that provides 11-bit security for ANS with 2048 states.

Motivation All major teleconferencing vendors (Zoom,
Webex and Microsoft) have already implemented end-to-
end encryption. Likewise, video streaming services (Netflix,
Stan, Foxtel, etc.) routinely apply strong encryption. Encryp-
tion is done for already compressed video/voice bitstreams
using a full AES. This is expensive as it does not exploit
potential benefits flowing from designing a single algorithm
that compresses and encrypts. Compcrypt algorithms pub-
lished so far are appropriate for lightweight applications only.
This paper fills the gap and proposes a 128-bit secure com-
pcrypt that can be easily upgraded to a higher security level
if needed. This is due to the fact that encryption is done using
a sponge structure.

Contribution The work starts from an analysis of a plain
ANS. By plain ANS, we mean ANS without encryption. The
analysis guides our design effort. More precisely, we claim
the following contributions:

• Analysis of a plain ANS compression rate. We exploit
Markov chains to determine precisely probability dis-
tribution of ANS states. As a result, we can calculate
probability distribution of the lengths of binary encod-
ings.

• Statistical attacks on a plain ANS. We show that a
adaptive-statistics adversary is able to apply a divide-
and-conquer algorithm to determine an encoding table
(or equivalently a symbol spread function) much faster
than the exhaustive search.

• Development of ANS variants, where ANS are either
fully randomized (as in [12]) or partially randomized.
We prove that the variants leak no information about the
internal ANS structure. They are used as a basic building
block for our compcrypt algorithm.

• Design of a 128-bit secure compcrypt algorithm. The
algorithm uses a sponge MonkeyDuplex with the
Keccak- f round permutation P . We evaluate its secu-
rity and efficiency. We also propose an extension of the
compcrypt algorithm for infinite streams.

The rest of the paper is structured as follows. Section 2
introduces asymmetric numeral systems. Section 3 inves-
tigates compression rates of ANS and compression losses.
The section also presents a statistical attack against ANS.
Section 4 discusses design principles for a joint compression
and encryption. It examines behavior of a plain ANS when
its states are chosen at random. The section also introduces
the MonkeyDuplex structure, which is used for authenticated
encryption. Section 5 describes our compcrypt algorithm.
Section 6 analyses security of the algorithm. Section 7 com-
pares efficiency of our algorithm with other algorithms for
joint compression and encryption. Section 8 shows how to
adapt our compcrypt algorithm for streaming. Section 9 con-
cludes the work.

In the work, we use notations that are presented in Table 1.

2 Asymmetric numeral systems

The main idea behind ANS is an observation that for any
integer x ∈ N, it is possible to append an encoding of a
symbol s ∈ S that occurs with probability ps , hence carry-
ing lg(1/ps) bits of information (lg ≡ log2). Assuming that
we need lg x bits to represent the integer x , the new integer
x ′ ∈ N that includes the encoding of x and s should con-
tain lg(x ′) ≈ lg x + lg 1/ps bits. In other words, we need to
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Table 1 Notations

A Adversary

b Bitstream frame

CH Challenger

C(x, s) ANS encoding function

C = (c1, . . . , cN ) Ciphertext frame

D(x ′) ANS decoding function

E(xi , si ) = (xi+1, bi ) ANS encoding table

H(S) Symbol source entropy

I = {L, . . . , 2L − 1} Set of ANS states

k(x) = R − �lg(x)� Number of bits read from b

ks(x) = �log2
x
Ls

� Number of bits of encoding

of s when ANS is in state x

K Cryptographic key

L = |I| = 2R Number of ANS states

Ls = Lps Number of states assigned

to s ∈ S

Li = {x |s̄(x) = si } ANS states assigned to si

N Set of natural numbers

ps Probability of symbol s

P Round of Keccak permutation

R Parameter of ANS

〈Rx |x ∈ I〉 Markov chain equations

S Set of symbols

|S| = n Cardinality of S

S = (s1, . . . , s�) Symbol frame

s : I → S Symbol spread function

T 128-bit authentication tag

Table 2 Encoding table for binary symbols with probabilities ps = 1/2

s/x ′ 0 1 2 3 4 5 6 7 8 9 · · ·
s = 0 0 1 2 3 4 · · ·
s = 1 0 1 2 3 4 · · ·

find a suitable reversible encoding function C(x, s) such that
x ′ = C(x, s) ≈ x/ps .

Consider a binary case, when s ∈ {0, 1} and occurs with
the probability ps . ANS uses an encoding functionC(x, s) =
x ′ = 2x + s. A decoding function D(x ′) allows to recover
both x and s as D(x ′) = (x, s) = (�x ′/2�, x ′ (mod 2)).
A standard binary coding C(s, x) for uniform probability
distribution ps = 1/2 is represented by Table 2.

The coding function generates a set of all integers. It splits
into two disjoint subsets I0 = {x ′|x ′ = C(x, s = 0); x ∈ N}
all even integers and I1 = {x ′|x ′ = C(x, s = 1); x ∈ N} all
odd integers. For example, to encode a sequence of symbols
0111 starting from x = 0, we have the following sequence

x = 0
0−→ 0

1−→ 1
1−→ 3

1−→ 7. Decoding is done

Table 3 Encoding table for binary symbols with probabilities p0 = 1/4
and p1 = 3/4

s/x ′ 0 1 2 3 4 5 6 7 8 9 · · ·
s = 0 0 1 2 · · ·
s = 1 0 1 2 3 4 5 6 · · ·

in reverse. This works as for each x ′, there is a unique pair
(x, s) or D(x ′) = (x, s). If starting with x = 1 instead,
decoder could easily determine when to stop.

The binary case can be generalized for an arbitrary prob-
ability distribution ps �= 1/2. This time we need to modify
sets Is ; s ∈ {0, 1}, such that the cardinality of the set Is∩[0, x)
follows closely ps · x or |Is ∩ [0, x)| ≈ ps · x, where
[0, x) := {0, 1, . . . , x − 1} denotes a set of all integers
between 0 and x (including 0). Let us take an example, when
s ∈ {0, 1} with probabilities p0 = 1/4 and p1 = 3/4. Our
encoding function x ′ = C(x, s) is given by Table 3.

Take the same sequence of symbols 0111 and start from

x = 0. The encoding is as follows: x = 0
0−→ 0

1−→ 1
1−→

2
1−→ 3. We can see that this encoding is shorter than for the

encoding considered in the first example.
The approach described above can be extended for an

arbitrary number of symbols, where s ∈ S and |S| ≥ 2.
Sequence of natural numbers N is divided into intervals,
each containing 2R integers, where R is an integer param-
eter. Each interval includes Ls ≈ 2R ps integers/states,
where

∑
s Ls = 2R . Given a symbol s and an interval with

2R integers, whose locations are indexed by integers from
0, . . . , 2R − 1. Then integers/states assigned to s are put in
Ls consecutive locations from [cs, cs+1), where cs is the first
location, cs+1 − 1 is the last location and cs = ∑s−1

i=0 Li .
For example consider blocks of 4 columns (intervals) from
Table 3. For s = 1, each block contains states at locations
[1, 4), where L0 = 1 and L1 = 3. We can construct an
appropriate encoding table that has n = |S| rows and enough
column so you can process a long enough sequence of sym-
bols. Due to an elegant mathematical structure, encoding can
be done using simple calculations. Given a state x ∈ N and
a symbol s ∈ S, then we can calculate C(x, s) as follows:

• Identify a block/interval that contains x . The integer
2R�x/Ls� points to first x ′ of the block.

• Compute an offset (within Ls block locations), which is
(x mod Ls).

• Find cs , which gives the location of first state associated
with s in the block.

• Determine C(x, s) = 2R�x/Ls� + (x mod Ls) + cs

A decoding function D(x ′) = (x, s) can be calculated as
D(x ′) = (

Ls�x ′/2R� + x ′ mod 2R − cs, s
)
, where s is iden-
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tified by checking if cs ≤ x mod 2R ≤ cs+1. For instance,
consider Table 3 and its C(x, s). Finding state x ′ = C(6, 1)

can done directly from the table but also computed as x ′ =
22 · �6/3� + (6 mod 3) + 1 = 9. To decode x ′ = 9, we
first determine s by computing x ′ mod 2R = 1. This is a
first location for s = 1. Knowing that s = 1, we can find
x = 3 · 2 + 1 − 1 = 6.

We have shown that compression operations can be sim-
plified by defining an appropriate interval/block of the length
2R . However, while encoding a sequence of � symbols s ∈ S,
the final state x ′ grows very quickly and lg(x ′) ≈ �H(S),
where H(S) is an entropy of the symbol source. Clearly,
handling very large integers (thousands or millions of bits)
becomes a major efficiency bottleneck. To deal with this,
ANS uses the so-called re-normalization operation. The idea
is to keep a state x within an interval of a fixed length, for
instance x ∈ I = [2α, 22α). If ANS is in the state x and
gets a sequence of symbols so x ′ ≥ 22α , then it outputs bits x ′
(mod 2α) (as partially compressed bits) and reduces the state
x ←− �x ′/2α�. Note that re-normalization is reversible.
Knowing the pair (x ′ (mod 216), �x ′/216�), it is easy to
reconstruct x ′. In practice, ANS applies I = [2048, 4096) for
256 symbols. Using re-normalization allows ANS to achieve
efficient entropy coding and also it can be conveniently rep-
resented as an encoding table - we focus here on this fully
tabled case (called tANS).

The ANS entropy coding includes the following algo-
rithms: initialization, symbol frame coding and binary frame
decoding. They are given below.
Initialization

Input: A set of symbols S, their probability distribution p : S →
[0, 1], ∑

s ps = 1 and a parameter R ∈ N.
Output: Instantiation of coding and decoding functions:

• the encoding functions C(s, x) and ks(x);
• the decoding functions D(x) and k(x).

Steps: Initialization proceeds as follows:

• calculate the number of states L = 2R ;
• determine the set of states I = {L, . . . , 2L − 1};
• for each symbol s ∈ S, compute integer Ls ≈ Lps , where ps

is probability of s;
• define the symbol spread function s : I → S, such that |{x ∈

I : s(x) = s}| = Ls ;
• establish the coding function C(s, y) = x for the integer y ∈

{Ls , . . . , 2Ls −1}, which assigns states x ∈ I according to the
symbol spread function;

• compute the function ks(x) = �lg(x/Ls)� for x ∈ I and s ∈ S.
The function shows the number of output bits generated during
a single encoding step;

• construct the decoding function D(x) = (s, y), which for a
state x ∈ I assigns its unique symbol (given by the symbol
spread function) and the integer y, where Ls ≤ y ≤ 2Ls − 1.
Note that D(x) = C−1(x).

• calculate the function k(x) = R − �lg(x)�, which determines
the number of bits that need to be read out from the bitstream
in a single decoding step.

Symbol Frame Coding

Input: A sequence of symbols (frame) S = (s1, s2, . . . , s�) and an
initial state x = x� ∈ I.

Output: An output bit stream b = (b1|b2| . . . |b�), where |bi | = ksi (xi )
and xi is state in the i-th step.

Steps: For i = �, � − 1, . . . , 2, 1 do
{
s := si ;
k = ks(x) = �lg(x/Ls)�;
bi = x mod 2k ;
x := C(s, �x/2k�);
};
Store the final state x0 = x ;

Binary Frame Decoding

Input: A bitstream frameb and the final state x = x0 ∈ I of the encoder.
Output: Symbol frame S
Steps: while b �= ∅:

{
(s, y) = D(x);
k = k(x) = R − �lg(x)�;
b = MSB(b)k ;
b := LSB(b)|b|−k ;
x := 2k y + b;
}

Note that LSB(b)� and MSB(b)� stand for � least and most
significant bits of b, respectively.

The following instance of ANS is used throughout the
work. Given a symbol source S = {s0, s1, s2}, where p0 =
3
16 , p1 = 8

16 , p2 = 5
16 and the parameter R = 4. The number

of states is L = 2R = 16 and the state set equals I =
{16, 17, . . . , 31}. A symbol spread function s : I → S is
chosen as follows:

s(x) =
⎧
⎨

⎩

s0 if x ∈ {18, 22, 25} = L0

s1 if x ∈ {16, 17, 21, 24, 27, 29, 30, 31} = L1

s2 if x ∈ {19, 20, 23, 26, 28} = L2

where L0 = |{18, 22, 25}| = 3, L1 = |{16, 17, 21, 24,

27, 29, 30, 31}| = 8 and L2 = |{19, 20, 23, 26, 28}| = 5.

The frame encoding table E(xi , si ) = (xi+1, bi )
de f≡ (xi+1

bi

)
is

illustrated in Table 4.

3 Properties of ANS

We investigate properties of a plain ANS. The goal is to iden-
tify potential cryptographic weaknesses but also strengths.
The findings guide a design process of our compcrypt algo-
rithm. In particular,

• we show that compression rate can be precisely calcu-
lated, when ANS states are modeled as a Markov chain.
So we can determine equilibrium statistics of ANS states,
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Table 4 ANS for 16 states (ps0 = 3/16, ps1 = 8/16, ps2 = 5/16)

si/xi 16 17 18 19 20 21 22 23

s0
(22

00

) (22
01

) (22
10

) (22
11

) (25
00

) (25
01

) (25
10

) (25
11

)

s1
(16

0

) (16
1

) (17
0

) (17
1

) (21
0

) (21
1

) (24
0

) (24
1

)

s2
(26

0

) (26
1

) (28
0

) (28
1

) (19
00

) (19
01

) (19
10

) (19
11

)

si/xi 24 25 26 27 28 29 30 31

s0
( 18

000

) ( 18
001

) ( 18
010

) ( 18
011

) ( 18
100

) ( 18
101

) ( 18
110

) ( 18
111

)

s1
(27

0

) (27
1

) (29
0

) (29
1

) (30
0

) (30
1

) (31
0

) (31
1

)

s2
(20

00

) (20
01

) (20
10

) (20
11

) (23
00

) (23
01

) (23
10

) (23
11

)

• the ability to compute probability distribution of ANS
states is important as this allows us to determine quality
of compression for a compcrypt algorithm, where ANS
state statistics follows for instance, uniform distribution,

• there are also security implications, when an adversary
is allowed to manipulate statistics of symbols and try to
determine an ANS encoding table.

3.1 Compression rate of ANS

There is no proof that ANS achieves optimal entropy coding
(symbols are encoded into binary strings with no redun-
dancy). However, experiments show that the ANS entropy
coding is very close to optimal. This sorry state is due to the
complexity of the internal structure of ANS. In particular, the
ANS symbol spread function can be chosen in many differ-
ent ways. The main roadblock for computing the entropy of
output/compressed bits is the difficulty of finding the state
probabilities (we treat ANS as FSM). Typically, given a state
x , it is argued that it occurs with the probability ≈ 1/x (see
[13]). The approximation does not work well for a small
numbers of states and even for larger numbers of states, it
introduces a slight bias. The algorithm given below allows
us to determine the probability distribution of the ANS states
x ∈ {2R, . . . , 2R+1 −1} precisely. Recall that we use a short-
hand I = {2R, . . . , 2R+1 − 1}.
Let us make few observations about Algorithm 1, namely, it
allows

• to evaluate the compression rate of ANS without experi-
ments. This seems to be very crucial for ANS with a very
large number of states (thousands),

• to choose a variant of ANS that provides the best com-
pression rate. If the compression rate is equal to the
symbol source entropy, it is possible to claim the opti-
mal solution.

Example 1 Consider ANS given by Table 4. After running
Algorithm 1, we have got the probabilities as shown below

Algorithm 1: Calculating probabilities of ANS states
Data: ANS represented by its encoding table E for symbols

s ∈ S (rows) and states x ∈ I (columns)
Result: Probabilities P(x), where x ∈ I.
begin

Assume that E describes a stationary Markov chain, where
the probabilities before and after a single compression step
are the same.
for x = 2R, . . . , 2R+1 − 1 do

create a linear relation Rx ≡ P(x) = ∑
y∈I P(y)psy ,

where x = E(sy, y);
Ensemble a system of linear equations 〈Rx |x ∈ I〉 (note that∑

x∈I P(x) = 1).
Solve the system using the Gaussian elimination algorithm.

x 16 17 18 19 20 21 22 23

P(x) 0.08 0.08 0.079 0.081 0.067 0.067 0.06 0.064

x 24 25 26 27 28 29 30 31

P(x) 0.062 0.048 0.05 0.055 0.05 0.052 0.051 0.051

It is easy to compute the average output bit length per sym-
bol, which is 1.478. The symbol entropy is H(S) = 1.477.
Indeed, ANS is very close to the optimal one.

3.2 ANS compression losses

Ideally, ANS is expected to remove all redundancy and pro-
duce an uncorrelated random sequence of bits. In practice,
however, there are circumstances, in which redundancy is
unavoidable. Let us consider a few, which are relevant to our
work.

• A source generates a short burst of symbols that may not
follow the source statistics. A possible solution is to cus-
tomize ANS for the current observed statistics. However,
as a symbol frame is short and gain from compression
low, a good option could be to avoid compression alto-
gether.

• A symbol source statistics differs from the statistics used
to design ANS. This increases redundancy of output bits.

• Any tampering with the internal structure of ANS (such
as state jumps) may introduce extra redundancy.

Let us discuss the last two points. Feeding symbols with prob-
ability distribution P = {p(s)|s ∈ S} to ANS designed for
probability distribution Q = {q(s)|s ∈ S} causes a compres-
sion loss. The Kullback-Leibler relative entropy can be used
to approximate the loss as
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�H =
∑

s∈S
ps lg

ps
qs

≈ 1

ln (4)

∑

s∈S

(ps − qs)2

ps

Unfortunately, this approximation is very rough. The main
reason is that the symbol probability distribution Q changes
the probability distribution of ANS states as the correspond-
ing Markov chain attains a new equilibrium. This fact is
ignored in the approximation given above. To get a precise
evaluation of compression loss, it is necessary first to com-
pute state probabilities for a corresponding Markov chain and
then calculate the average number of output bits per symbol.

Example 2 Let us take ANS given by Table 4 and assume that
symbol source probability is P = {1/4, 1/2, 1/4} instead of
expected Q = {3/16, 1/2, 5/16}. The equilibrium probabil-
ities for ANS states are given below.

x 16 17 18 19 20 21 22 23

P(x) 0.083 0.083 0.105 0.061 0.058 0.058 0.083 0.047

x 24 25 26 27 28 29 30 31

P(x) 0.065 0.061 0.042 0.063 0.042 0.052 0.047 0.047

The average output bit length per symbol is 1.52. The
compression loss is �H ≈ 0.04 bits per symbol. Note
that calculation for the Kullback-Leibler divergence gives
�H = 0.02. This illustrates the point that a change of sym-
bol statistics causes a compression loss that is attributed to
both a “wrong” symbol statistics and a change of ANS state
probability distribution induced by it.

The work [12] proposes an ANS variant, where ANS
states are chosen randomly using a cryptographically strong
pseudorandom bit generator. This means that ANS state prob-
ability distribution is uniform. For ANS from Table 4 with
state jumps, compression loss is �H ≈ 0.03 bits per symbol.
The reader is referred to the papers [12,13] for a detailed dis-
cussion of ANS properties. An important property of ANS
is that compressed bits are concatenated together in a single
continuous stream. The information about how many bits
need to concatenated are kept in the current ANS state. This
forces a potential adversary to make guesses about how to
partition a long stream into varying length substrings corre-
sponding to the processing of individual symbols. As ANS
is, in fact, a finite state machine (FSM) with a finite num-
ber of states, it has a cyclic nature that allows an adversary
to inject/remove output bits without detection (see [12] for
details).

3.3 Statistical attacks against ANS

An interesting ANS property, not investigated in [12], is
its vulnerability to statistical attacks. The property informs
design options for our compcrypt algorithm. We show that
there are no security benefits by making encoding table secret
and controlled by a cryptographic key. In particular, we
demonstrate that ANS with secret encoding table leaks infor-
mation about symbol spread function or alternatively, about
encoding table entries.

Assume that an adversary A has an access to a communi-
cation channel so it can see the binary stream. Additionally,
suppose A knows a symbol source statistics and an algo-
rithm used to construct ANS. This is a typical ciphertext-only
adversary. ANS seems to be immune to it. However, in some
circumstances, A may be more powerful and can interfere
with symbol source statistics. This is to say that we deal with
a adaptive-statistics adversary, who

• Sees an output binary stream and can calculate its length,
• can force symbol source statistics to follow an arbitrary

probability distribution including probabilities, where a
single symbol occurs with probability 1,

• Knows the number of processed symbols,
• is familiar with a design algorithm for ANS (but does not

know its encoding table).

The goal of A is to recover the ANS encoding table or equiv-
alently its symbol spread function. The idea behind the attack
is an observation that we can use Markov chains (see Algo-
rithm 1) to calculate state probabilities and consequently,
compression rate (measured by bits per symbol). The cal-
culated compression rate is used as a litmus test. A trivial
statistical attack is an exhaustive search through all possible
symbol spread functions. Our adversary A is able to identify
the correct instance of ANS by comparing an observed com-
pression rate with a calculated using an appropriate Markov
chain. The complexity of the exhaustive attack is determined
by the number of all ANS instances that need to be tested,
which is

L!
∏

s∈S Ls ! =
(

L

Ls1

)(
L − Ls1

Ls2

)

· · ·
(
L − ∑n−2

i=1 Li

Lsn−1

)

≈ 2LH({Ls/L}) for H({ps})
= −

∑

s

ps lg(ps) (1)

where n = |S| and Ls is the number of states assigned by the
symbol spread function for the symbol s [14].

The exhaustive search attack can be substantially
improved by applying the divide-and-conquer principle.
Note that A can select a symbol source distribution in arbi-
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trary way. The most promising strategy for A seems to
be to choose a pair of symbols with nonzero probabilities
making the others equal to zero. This excludes states asso-
ciated with missing symbols from symbol processing. To
illustrate the point, consider ANS given by Table 4. If A
chooses ps0 = α, ps1 = 0 and ps2 = 1 − α, then states
{16, 17, 21, 24, 26, 27, 29, 30, 31} occur with zero probabil-
ity. Table 4 becomes

si/xi 18 19 20 22 23 25 26 28

s0
(22

10

) (22
11

) (25
00

) (25
10

) (25
11

) ( 18
001

) ( 18
010

) ( 18
100

)

s2
(28

0

) (28
1

) (19
00

) (19
10

) (19
11

) (20
01

) (20
10

) (23
00

)

In other words, the encoding table is “reduced” to two
rows only and other rows play no role in compression (also
columns of inactive states can be removed). We can start
from a pair of symbols with the smallest probabilities as they
involve the smallest number of ANS states. The flowchart
of the attack is given by Algorithm 2. Note that we denote
Li = {x |s̄(x) = si } a subset of states assigned to the symbol
si ∈ S by the symbol spread function s̄(x); i = 1, . . . , n.

Algorithm 2: Divide-and-Conquer Statistical Attack
against ANS
Data: An instance of ANS with a adaptive-statistics adversary

and the symbol source probability distribution S.
Result: Encoding table or symbol spread function used by ANS.
begin

Choose two rows s1 and s2 of encoding table whose symbol
probabilities are the smallest;
Create a reduced encoding table for the pair of symbols;
Run exhaustive search attack for the reduced encoding table;
Store L1 = {x |s̄(x) = s1} and L2 = {x |s̄(x) = s2} ;
for i = 3, . . . , n − 1 do

Run exhaustive search attack for reduced encoding table
for s1 and si ;
Store Li = {x |s̄(x) = si };

Return the symbol spread function s̄(x);

The workload needed to calculate L1 and L2 takes gen-
eration of

( L
Ls1

)(L−Ls1
Ls2

)
variants of (reduced) ANS. The j-th

step in the “for” loop of Algorithm 2 costs
(L−∑ j−1

i=1 Li
Ls j

)
. The

complexity of the algorithm is dominated by

(
L

Ls1

)(
L − Ls1

Ls2

)

+
n−1∑

j=3

(
L − ∑ j−1

i=1 Li

Ls j

)

. (2)

Note a significant complexity reduction of the exhaustive
attack given by Eq. (1) compared to the divide-and-conquer
one described by Eq. (2).

So far we have not discussed the case, where an adversary
A is forcing a single symbol to occur with probability one.
The Markov chain for state probabilities degenerates to few
disjoint cycles that happen with probability 1. IfA can switch
for a moment to a different symbol, then it can reset the
internal state and by repeating the experiment with the same
symbol, it can discover the next cycle. By continuing this
procedure, A can identify all cycles. This knowledge can be
used to

• speed up the divide-and-conquer attack by considering
instances of reduced ANS that contain the identified
cycles only and

• significantly improve probability of guessing the output
bitstream (if A does not have access to it).

4 Compression and encryption

Security-sensitive applications (such as video streaming) can
protect compressed stream by using standard encryption
algorithms such AES [15]. In this case, a simple solution
is to first compress symbols and then encrypt. It, however,
ignores the fact that compression itself provides some degree
of security. To launch an attack, an adversary needs to guess
a split of output binary stream into symbol encodings (with
different lengths). Thus, one would expect that using full-
blown encryption is overkill. In other words, the research
problem in hand is how to weaken encryption (by reducing a
number of rounds for example) so the concatenation of ANS
and a weaken encryption maintains the same security level
while improving efficiency.

A different approach for compression and encryption is
taken by Duda and Niemiec in [11]. Encryption is incorpo-
rated by a secret selection of symbol spread function. The
selection is then communicated to a receiver as an encrypted
decoding table (using a standard AES). For this solution,
compression efficiency is as good as in the original ANS.
Also, security against a ciphertext-only adversary is main-
tained. However, as shown in [12], bitstream is vulnerable to
integrity attacks. Also encryption of decoding tables needs
to be authenticated and time-stamped to protect it against
replay attacks.

4.1 Design principles

The currently published solutions for ANS-based compcrypt
(see [11,12]) suffer from the following weaknesses:

• Integrity of encryption/compression is supported by
sending an encrypted final ANS state. The bitstream
is considered to be authentic if the encrypted final
state equals a final state of the decoder. Even for ANS
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with 2048 = 211 states, this guarantees 11-bit security
only, which is much too low for transmission of highly
sensitive data. This also means that an adversary can
inject/delete arbitrary segments of the bitstream and this
action escapes detection with probability 2−11.

• Related weakness of ANS is its cyclic nature (as shown
in [12]). Cycles can be detected by scanning bitstream
for repetitions of the same pattern. Once such a cycle is
correctly identified, an adversary can remove or inject it
with an arbitrary number of times without detection.

• As shown in Sect. 3.3, ANS is inherently susceptible to
statistical attacks. As the designer of ANS has freedom
to choose a symbol spread function in many ways, this
allows her to end up with a design, whose internal states
occur with a unique probability distribution. As a result,
ANS produces binary encoding with an (almost) unique
probability distribution. The probability distribution can
be seen as a unique fingerprint that allows to identify
the symbol spread function and consequently encoding
table (see Algorithm 2) after observing a long enough
bitstream.

Let us formulate a collection of principles that are going to
guide us during the design of our compcrypt algorithm. Our
compcrypt algorithm should

• be (almost) as efficient as a plain ANS (without encryp-
tion). A slight efficiency loss, however, is inevitable;

• preserve compression rate of a plain ANS. Again, to
guarantee authenticity and integrity of communication,
additional data needs to be appended to bitstream;

• guarantee at least 128-bit security. This security level
applies to chosen-plaintext attacks;

• detect any interference with encrypted bitstream with
probability (1–2−128). This is done by appending a 128-
bit authentication tag.

• be immune against statistical attacks.

4.2 ANS with randomized states

ANS is inherently susceptible to statistical attacks due to
uneven probability distribution of states as P(x) ≈ 1/x . An
adaptive-statistics adversary A can further tamper with the
distribution by modification of symbol probability distribu-
tion. Consequently, A can switch off some states completely
making other states more probable. To mitigate this weak-
ness, we may force states to occur randomly and uniformly.
So instead of a normal state flow

· · · si−1−→ xi−1
si−→ xi

si+1−→ xi+1
si+2−→ · · ·

we select the next state randomly and uniformly using a ran-
dom bit generator (RBG) as shown below

· · · si−1−→ xi−1
si−→ xi ←− xi ⊕ RBG

si+1−→ xi+1
si+2−→ · · ·

where RBG strings need be replicated at the receiver side. Let
us see what is an impact of such state evolution on probability
of guessing an output bit stream when we know its length. In
our discussion, we need the following lemma.

Lemma 1 Given a plain ANS as described in Sect. 2. Then
for a symbol s ∈ S, ANS generates

• either empty-bit or 1-bit encodings and again the encod-
ing table row for the symbol s contains equal number of
zeros and ones if Ls > 2R−1,

• ks-bit encodings and the encoding table row for the
symbol s contains equal number of zeros and ones if
Ls = 2R−ks , i.e., the symbol probability ps = (1/2)ks ,
where ks is a positive integer (natural number),

• either ks-bit or (ks + 1)-bit encodings and the encoding
table row for the symbol s includes multiples of 2ks and
2ks+1 if Ls < 2R−1, where all 2ks and 2ks+1 entries run
through all possible ks-bit or (ks + 1)-bit strings.

The lemma is a slight generalization of the lemma from [12]
and covers all symbols that occur with probabilities that are
natural powers of 1/2. The reader is referred to [12] for a
proof.

Example 3 Consider the ANS instance given by Table 4. The
row for s1 illustrates the case when Ls = 2R−1. All encodings
are 1-bit long and zeros and ones occur equal number of
times. The row for s0 represent a case when Ls < 2R−1.
Encodings are either 2 or 3-bits long. 3-bit encodings run
through all 3-bit string once as the multiplier (2R−ks −Ls) =
24−2 − 3 = 1. 2-bit encodings are repeated twice as their
multiplier (2Ls − 2R−ks ) = 6 − 4 = 2.

4.2.1 ANS with fully randomized states

Corollary 1 Given a plain ANS as described in Sect. 2.
Assume that the ANS algorithm chooses next states uni-
formly at random (i.e., xi ← xi ⊕ RBG). Suppose further
that an adversary A inputs a sequence of � symbols s, i.e.,
(s, s, . . . , s)
︸ ︷︷ ︸

�

and A can observe the length k of the resulting

bitstream (in bits), then probability of guessing the bitstream
by A is 2−k .

Proof Knowing the length k, s and parameters of ANS, A
may first try to guess lengths of encodings (or sizes of encod-
ing windows). For each guess, any single window of the
length ks can take 2ks possible strings as Lemma 1 asserts.
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This scenario occurs consistently for any encoding length
guessing and the conclusion follows. ��
Example 4 Take ANS from Table 4. Our adversary inputs a
two symbols (s0, s0) and knows that ANS has produced a 5-
bit string.A deals with two options, when ANS has generated
first 2-bit encoding followed by 3-bit one or vice versa. For
the first option, A has 22 possibilities for 2-bit encoding and
23 possibilities for 3-bit encoding. For the second option,
the number is the same. Both cases generate all 25 possible
binary strings.

4.2.2 ANS with partially randomized states

An undesired side effect of uniformity of ANS states is a loss
of compression rate. The reader can easily note that smaller
states are producing shorter encodings, while bigger states
– longer ones (see Table 4 as an example). As probability
of an ANS state x can be approximated by ≈ 1/x , a plain
ANS favors smaller states over bigger ones giving a better
compression rate. Let us explore an option, where states are
XOR-ed with a shorter PRBG sequence. Assume that PRBG
produces a sequence of u bits, where u < R. A state x can
be equivalently represented by a pair (�x/2u�, x mod 2u).
During compression, ANS modifies the state according to
the relation given below

x ← (�x/2u�, (x mod 2u
) ⊕ PRBG

)

The new state keeps the same most significant bits, while
the u least significant bits cover all 2u binary strings. This is
illustrated as

x
PRBG←−

⎧
⎪⎨

⎪⎩

(�x/2u�, 0)
...

...

(�x/2u�, 2u − 1)

(3)

Given a symbol s that is being processed. According to
Lemma 1, states produce either ks or (ks +1)-bit long encod-
ings. An encoding is extracted from a state x chosen by PRBG
and contains either ks or (ks + 1) least significant bits. Con-
sider the following two cases.

1. u = ks+1, an encoding is chosen at random from the full
range of 2u = 2ks+1 possibilities. More precisely, if x ∈
{2R, . . . , 2ks+1Ls−1}, then encodings are ks-bit long and
are repeated twice in the collection of states in Eq. (3).
All ks-bit long encodings happen uniformly at random.
For x ∈ {2ks+1Ls, . . . , 2R+1 − 1}, their encodings are
(ks + 1)-bit long and occur ones only in Eq. (3). This
also means that all encodings are equally probable.

2. u = ks , when x ∈ {2R, . . . , 2ks+1Ls − 1}, then all
encodings are possible as they happen exactly once in

the list given in Eq. (3). This no longer true for x ∈
{2ks+1Ls, . . . , 2R+1 − 1}. To see this, note that the num-
ber of all candidate states is 2u = 2ks or in other words ks
bits are random but the (ks+1)-th bit is inherited from the
old state x . Consequently, the bit is fixed for all possible
encodings.

Example 5 Consider our toy ANS from Table 4. Assume that
ANS has reached the state x = 25 and PRBG generate 2-bit
strings (u = 2). Then ANS chooses at random a new state
from the set {24, 25, 26, 27} or

x
PRBG←−

⎧
⎪⎪⎨

⎪⎪⎩

(110, 00)

(110, 01)

(110, 10)

(110, 11)

For a symbol s0, there are four equally probable encodings
(000, 001, 010, 011). The most significant bit is fixed. Other
two are random.

Corollary 2 Assume that an ANS algorithm chooses next
states uniformly at random x ← (�x/2u�, (x mod 2u)
⊕PRBG) that randomly chooses u least significant bits of
the new state. Then

• all encodings are random (chosen by PRBG) if u =
maxs∈S(ks + 1);

• encodings are random for symbols s, for which u ≥ (ks+
1);

• encodings include u random bits for symbols s, for which
u < (ks + 1);

The above discussion leads to the following design hints.

• ANS with uniformly random states does not leak any
information about input symbols. From the A point of
view, ANS generates random sequence of bits (assuming
A cannot break RBG). This means that ANS with RBG
provides a high level of confidentiality. Thus encryption
algorithm does not need to be very strong (a single per-
mutation layer could be enough).

• Compression loss caused by flattening state probabilities
can be mitigated by using shorter PRBG strings. Using
PRBG with u bits, ANS randomly updates a state by
selecting one from 2u consecutive states.

• There is, however, “a sting in the tail”. ANS with RBG
is defenceless against integrity attacks such as deletion
or injection. In other words, we need strong protection
against such attacks.

• Implementation of RBG is crucial. It seems that a sim-
ple linear feedback shift register (LFSR) controlled by a
secret cryptographic key may be enough. In case this is
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not enough, we can apply nonlinear feedback shift regis-
ter (NFSR) or cryptographically strong PRBG.

4.3 MonkeyDuplex

The sponge structure has been applied by Bertoni et al. [16]
in the Keccak cryptographic hashing. The sponge struc-
ture is illustrated in Fig. 1 and consists of concatenation
of a permutation P . The name comes from the fact that
hashing works in two phases: absorption and squeezing.
In the first phase, message blocks are injected block by
block into the bitrate blocks. In the second one, a message
digest is squeezed out from bitrate blocks. Note that the
capacity blocks are left secret throughout hashing process.
The round permutation Keccak−f [b] includes seven mem-
bers, where b determines the number of bits in sponge state
and b ∈ {25, 50, 100, 200, 400, 800, 1600}. There are two
sponge parameters: bitrate r and capacity c, where b = r+c.

Bertoni et al. [17] have introduced a duplex construction,
which provides a framework for authenticated encryption. As
shown in Fig. 1, we use a duplex variant called MonkeyDu-
plex. Consecutive bitrate blocks XOR bitstream blocks bi
producing ciphertext blocks ci . A permutation P is the most
crucial building block of sponge. It is shown in [16] that
security level can be proven under the assumption that the
underlying permutation P does not have any “exploitable”
properties. In our design, we use the well-established and
thoroughly analyzed Keccak−f [1600] permutation. The
permutation is used in the SHA-3 hashing standard and in
authenticated ciphers such as Keyak and Ketje.

Given a fixed state size, a relation between bitrate and
capacity gives a tradeoff between speed and security. A
higher bitrate results in a faster construction but at the
expense of its security and vice versa. MonkeyDuplex allows
efficient encryption, especially, when dealing with a very
long stream of plaintext blocks. The permutation P operates
on the large states of 1600 bits, which boosts efficiency. Note
that only initialization requires a full number of permutation
iterations. A number of iterations between two consecutive
plaintext blocks injections can be reduced. As data compres-
sion handles very long bitstreams, MonkeyDuplex seems to
be a very attractive option.

Encryption security is usually evaluated using different
attacks. Two main ones are chosen-plaintext and integrity
attacks. In a chosen-plaintext attack (CPA), an adversary A
has access to an encryption oracle as a black box. A is able to
choose arbitrary plaintext blocks and can observe ciphertext
blocks generated by the oracle. The goal of A is recovery of
a secret cryptographic key. In an integrity attack, A has the
same access to the oracle but its goal is different. A wishes
to modify observed ciphertext blocks in such a way that they
are accepted on the receiver side.

Fig. 1 Compcrypt based on ANS and sponge, where r = 512 bits,
c = 1088 bits and size of sponge state is b = 1600 bits

5 Compcrypt algorithm

The overall data flow for our proposed compcrypt algorithm
is shown in Fig. 1. The two main components are ANS with
state jumps and a MonkeyDuplex sponge.

5.1 Description of compcrypt

A data flow during encryption is illustrated in Fig. 1. The
algorithm steps are shown in Algorithm 3. Let us discuss its
steps in more detail.

Algorithm 3: Compcrypt Encryption
(h) Data: A symbol frame S = (s1, s2, . . . , s�), a 128-bit secret

key K and a 128-bit random nonce α.
Result: A ciphertext frame C = (c1, c2, . . . , cN ) of compressed

bit stream together with a 128-bit tag T , where ci is a
512-bit long block; i = 1, . . . , N .

begin
(1) Upload the symbol frame and compute symbol
probabilities {ps |s ∈ S};
(2) Initialize a sponge for K‖α by running fstart = P6,
where the number of iterations nstart ≥ � R·�

512 �;
(3) Design ANS instance for the symbol statistics;
(4) Compress S in the reverse order. This creates a bitstream
frame;
(5) Split the bitstream frame into 512-bit blocks
(b1, . . . ,bN ), where the last block is padded to the full
length;
(6) Encrypt the decoding table and the bitstream frame
(b1, . . . ,bN ) into (c1, c2, . . . , cN ) using the sponge;
(7) Generate the 128-bit tag T . First, extract 128-bit string bT
from ANS states when their jumps are controlled by LFSR
only (no symbol compression) and then, create the tag
T = bT ⊕ P(cN )|128, where P(cN )|128 denotes the top 128
bits of the sponge state;
(8) Send the ciphertext frame and the tag T to the receiver.

123



ANS-based compression and encryption with 128-bit security 1061

Step 1 A symbol frame is uploaded into a (LIFO) stack
and its statistics is computed. The probabilities {ps |s ∈ S}
are needed for constructing ANS encoding and decoding
tables.
Step 2 The 1600-bit sponge is initiated by the secret key
K and the nonce α and can include associated data (such
an initial vector, time, sequence number, etc.). The initial
sponge state is translated by fstart . Note that for short
symbol frames, nstart ≥ 6.
Step 3 We assume that ANS is designed for R = 11
so it has 2048 states. A spread symbol function can be
randomly chosen or deterministic. Both encoding and
decoding tables are created.
Step 4 Compression starts from reading out the first sym-
bol s�. It continues until the last symbol s1 is taken from
the stack. After each symbol, an ANS forces a state jump
that is controlled by pseudorandom bits (see Sect. 4.2).
Note that the bits should be used in the reverse order, i.e.,
last generated bits must be used first. The compressed
bitstream includes a final ANS state xF together with
the numbers �, n, where n is the total length of bitstream
frame.
Step 5 The bitstream frame is split into 512-bit blocks
(b1, . . . ,bN ). The last block N can be padded by a string
of constants to the full length.
Step 6 The bitstream frame (b1, . . . ,bN ) is encrypted
into its ciphertext (c1, c2, . . . , cN ) using the sponge. Note
that the sponge applies fstep = P between two consec-
utive blocks.
Step 7 A 128-bit authentication tag T is obtained by
XOR-ing 128 bits of the final state of sponge with 128 bits
least significant bits extracted from ANS states, where
jumps are forced by LFSR.
Step 8 Finally, the ciphertext frame and the tag T are sent
to the receiver side.

At the receiver side, decryption starts from the initial-
ization of the sponge and LFSR. Next, the sponge decrypts
ciphertext frame and verifies validity of the received tag T .

6 Compcrypt security analysis

According to the well-known Kerckhoff’s principle, an
adversary A knows details of the compcrypt algorithm. The
only unknown part is a cryptographic key K . In our adversar-
ial model, we assume that A is a chosen-plaintext adversary.
Table 5 takes a closer look at the adversary ability and its
goals. To avoid trivial attacks that intend to simplify ANS or
even bypass it, we make the following caveat.

Important Caveat: From now on, we assume that
our compcrypt algorithm terminates if symbol
frame statistics does not cover the full range
of 256 bytes. In other words, the algorithm runs
only if ANS is able to build a full-size encoding table.

Table 6 describes the CPA security game. The challenger
CH selects its secret key K and a publicNonce. The adversary
A is free to select a symbol frameS provided the caveat holds.
Upon receiving S, the challenger compresses and encrypts
it into C0. Next, it prepares a fake C1 by randomly selecting
all bits apart from padding bits, which are preserved as in
C0. Note that the lengths of C0 and C1 are the same. The
challenger selects at random b and sends Cb together with
Nonce to the adversary. The adversary wins the game if it
can identify whether the cryptogram Cb corresponds to S or
is random. The theorem given below shows that the adversary
wins the game with a negligible advantage.

Theorem 1 (CPA Security) Given a compcrypt as described
by Algorithm 3 and Fig. 1. Assume that ANS states are con-
trolled by LFSR, whose probability distribution is uniform
and whose cycle is maximum, i.e., 2L − 1, where L is the
number of bits of the LFSR state. We assume that L ≥ 256.
Suppose also that P : {0, 1}r+c → {0, 1}r+c is a sponge
random permutation that is used between two consecutive
bitstream blocks. Then an advantage of the adversary play-
ing the game GCPA is negligible, i.e.,

AdvCPA
A = P(A wins|b = 0) − P(A wins|b = 1)

≤ max (
ε

2
,

γ

2 · 2128 ),

where ε = γ (2d+�R)

2L−1
, γ is the number of key guesses by A,

d is the number bits generated by LFSR per a key guess, �

is the number of symbols in the frame S and R is the ANS
parameter.

Proof According to our assumptions, A has a full control
over a symbol frame (assuming the caveat holds). It can pre-
pare a long frame, which contains bursts of the same symbols
but also can mix them as it wishes. No matter, what is its strat-
egy, Lemma 1 and Corollary 1 assert us that each block bi;
i = 1, . . . , N is random as long as LFSR produces bits with
uniform probability distribution. In other words, the sponge
absorbs bi and squeezes out ci, where

ci = bi ⊕ SP(r)
i−1,

where SP(r)
i−1 are the bitrate bits of the sponge state before

absorption of bi. The block bi masks perfectly the r bits
coming from the sponge (identical to OTP). This is to say
that A has no chance to tell apart ci from a truly random
sequence. However, A knows that CH has applied �R bits
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Table 5 Compcrypt adversarial
model

Attack A’s Knowledge/Ability A’s Goals

Chosen- Symbol statistics {ps : s ∈ S} Winning the game GCPA

Plaintext ANS encoding table: �, n and state xF

Sponge construction: P , fstart , fstep, fF

A can run compcrypt for its chosen symbol

frame (s1, s2, . . . , s�) and observe their

cryptogram blocks (c1, c2, . . . , cN )

Integrity As above + Winning the game GINT

A can tamper with ciphertext blocks

and tag T by injecting/deleting/modifying

their parts

Table 6 Game GCPA
Challenger CH Adversary A

Selects K , Nonce
$← {0, 1}128;

Chooses a symbol frame

Computes statistics ps ; ←− S = (s1, s2, . . . , s�);

Designs ANS for S;

Initializes LFSR and sponge

for K‖Nonce;

For S, computes

C0 = (c1, c2, . . . , cN , T );

Creates a random string

C1 = (c̃1, c̃2, . . . , c̃N , T̃ );

Tosses a coin b
$← {0, 1}

Sends off (Cb, Nonce); −→ Determines b′;
Wins if b′ = b;

of LFSR, where the initial state is (K‖Nonce). It may try
to guess the key. Let a A guess is K ′, then after loading
K ′‖Nonce into LFSR, it can generate d bits. It succeeds if
d bits intersect with the �R bits generated by CH and the
probability of success is 2d+�R

2L−1
. A can repeat its guesses γ

times and its success probability grows up to ε = γ (2d+�R)

2L−1
,

when bits generated by LFSR for the A key guesses do not
intersect. It is reasonable to assume that if A succeeds in its
guessing, then it will be able to identify the bit b and win the
game GCPA.

Let us consider P(A wins|b = 1). In this case, cryp-
tograms and a tag are random. This means that it does not
matter what strategy A chooses, it wins with probability 1/2.
To compute P(A wins|b = 0), observe that A fails with the
probability (1−ε) and succeeds with the probability ε. As for
the previous case, when A fails with its guessing, it wins the
game with the probability 1/2. Otherwise, it wins the game.
This means that P(A wins|b = 0) = 1/2(1 − ε) + 1 · ε =
1/2 + ε/2. The advantage AdvCPA

A = ε/2.

As A knows parameters of the compcrypt, it can evaluate
its chances or more precisely, it can calculate ε. If ε < 1

2128 ,
then a better strategy is to guess the key K . This concludes
our proof. ��

The following comments are relevant to the above proof.

• The first part of the proof applies a variant of the well-
known square-root attack (see [18]), whose complexity
depends on the length L of a LFSR state. It is easy to
see that if L = 128 bits (and there is no Nonce), then
A can find a string of the length d = 264 that intersects
with �R bits after γ = 264 key guesses. However in our
case L = 256 and the attack has a complexity O(2128),
which is comparable to the exhaustive search of the key
space. The attack becomes much less effective than the
exhaustive search of the key space if L > 256. The best
strategy for A in this case is guessing the key.

• Note that even after finding a string that intersects with �R
bits generated by CH , A faces a difficult task to identify
it. The main obstacle is the sponge, which is likely to
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Table 7 Game GINT
Challenger CH Adversary A

Selects K , Nonce
$← {0, 1}128;

Chooses a symbol frame

Computes statistics ps ; ←− S = (s1, s2, . . . , s�);

Designs ANS for S;

Initializes LFSR and sponge

for K‖Nonce;

For S, computes

C = (c1, c2, . . . , cN , T );

Sends C −→
Creates C̃ = (c̃1, c̃2, . . . , c̃N , T̃ )

Recoverssymbol frame S̃ ←− Sends C̃
and tag T ′;

Accepts C̃ if T ′ = T̃

otherwise rejects;

significantly reduce correlation between bits generated
by LFSR and bits of cryptograms.

Table 7 shows our integrity game GI NT . A is allowed
to select a symbol frame S provided the caveat holds.
The challenger calculates a cryptogram C = (c1, c2, . . . ,

cN , T ), where T is an authentication tag. Next CH sends
C to the adversary. A modifies it somehow and gets C̃ =
(c̃1, c̃2, . . . , c̃N , T̃ ). It wins the game if CH accepts C̃. This
happens if CH computes a tag T ′ that matches T̃ .

Theorem 2 (Integrity) Given a compcrypt as described by
Algorithm 3 and Fig. 1 and assumptions as for Theorem 1.
Then the adversaryA wins the game GINT with a negligible
probability or more precisely

AdvINT
A = P(Awins) ≤ 2−r ,

where r is the length of bitrate bits of the Keccak- f sponge.

Proof There are three possible cases.

(1) A adds one or more fake cryptogram blocks. To makeCH
accept, A has to determine bits generated by LFSR. As
we have argued in Theorem 1 this task is more difficult
than guessing the key K if L ≥ 256. This means that A
wins with probability 2−128.

(2) A removes one or more cryptogram blocks. This time A
has to recalculate tag using 24 iterations of Keccak -f
permutation P . Note that the capacity c = 1088 bits soA
needs to guess 1088 bits. Much better strategy is to guess
the key or the tag. In both cases, A wins with probability
2−128.

(3) A keeps the number of cryptogram blocks intact and
slightly modifies bits in the last block cN = (c1,N , . . . ,

c512,N ). To fix our attention, we assume that A flips the
bit c1,N and the other bits are left unchanged. Denote
y = (y1, . . . , y128) as the output of P24 that is used to
derive the tag. Then the tag T = bT ⊕ y. A does not
know bT but is sure that it is fixed. To get a correct tag
T̃ , A has to modify a bit ti of the tag T if and only if

δ = yi (c1,N , . . . , c512,N , x)

⊕yi (c̄1,N , c2,N , . . . , c512,N , x) = 1

for i = 1, . . . 128. There are two possible approaches.
First, A may try to obtain a short expression for yi . A
close look at the Keccak- f permutation [16] reveals
that the degree of P24 is 224 and it involves 1088 binary
unknowns. Even if A finds a short expression for δ, the
design of the Keccak- f permutation P indicates that is
very likely that it produces δ = 1 for half of the possible
21088 cases. In the second approach, A runs experiments
for subset of x vectors to evaluate how many times δ = 1.
Both approaches are much worse than random selection
of the key or the tag.

��
We make the following remarks.

• For the gameGINT, we assume that the challenger knows
the decoding table. This is a realistic as it has produced
the cryptogram. In real applications, however, a receiver
needs to get it from a sender. A typical solution is to inject
it into the sponge just after initialization. This allows the
receiver to obtain an authenticated decoding table.

• The sponge may also include the number � of symbols
in the frame and the number n of compressed bits. This
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makes attacks against integrity more difficult asA cannot
change the length of the cryptogram.

• As recommended by the Keccak designers, we apply 24
iterations of P . It is likely that the number of 24 iterations
of P for tag generation can be reduced without reducing
security. However, this needs a further investigation that
is beyond the scope of this paper.

6.1 Compcrypt resistance against classical attacks

There is a wide range of attacks against encryption algo-
rithms. It includes the linear [19], differential [20], algebraic
[21], cube [22] and rotational [23] cryptanalyses. A distinct
feature of ANS is its variable-length encoding. Before apply-
ing any standard cryptanalytic tool, an adversary A needs
to identify internal variables of compcrypt. According to
Lemma 1, all symbols s are assigned either ks or (ks + 1)-
bit encoding. Thus, for each symbol, A needs to guess the
lengths of their encodings. Note that an ANS state is chosen
uniformly at (pseudo)random after each symbol.

Consider an example, when A wishes to guess a block of
512-bits for ANS described by Table 4. Let a symbol frame
consists of a long sequence of s2. Then A knows that the best
probability of a correct guess is (3/4)256 ≈ 2−106, where all
encodings are 2-bit long.

Note that a correct guess is just a beginning and to apply
any meaningful cryptanalysis, the adversary needs to make
many such guesses. This is to say that to be successful, A
needs to avoid guessing in its cryptanalysis.

The following remarks seem to be relevant.

• Compcrypt is CPA secure and provides integrity assur-
ance provided ANS states occur with uniform probability
and sponge rounds employ the Keccak- f permutation.
In fact, ANS encodings perfectly mask the sponge state.

• According to Corollary 2, we can trade security with com-
pression rate. This can be achieved by selecting a subset
of ANS state bits that are XOR-ed with pseudorandom
bits. However, a compression rate gain seems to be too
small for short symbol frames. But it could be of a sub-
stantial benefit when compcrypt is used for streaming. In
this case, a careful security analysis needs to be done.

• Compcrypt can be also used to authenticate plaintext
like in authenticated encryption with associated data
(AEAD). Our adversarial model makes it very clear that
decoding table can be transmitted un-encrypted. For a
sake of argument, assume that decoding table is commu-
nicated in plain but a compressed bitstream is encrypted
(with a tag T ). The receiver decrypts, recovers the bit-
stream frame and verifies the tag T . Now if an adversary
has replaced an original decoding table with a fake one,
then the receiver reconstructs a wrong symbol frame.

To authenticate decoding table, it must be absorbed into
sponge so any attempt to change it will be detected.

6.2 Selection of sponge parameters

Let us take a closer look at the rationale behind the choice
of a number of iterations nstep of permutations P in a sin-
gle round. We follow the heuristics used for the lightweight
authenticated cipher Ketje [24]. The heuristics is captured by
the following relation:

nunicity =
⌈
b − r

r

⌉

nstep, (4)

where nunicity is the number of iterations (of permutation P),
for which state-recovery attacks fail and b is the size of a
sponge state. The number nunicity is estimated from the best
results achieved for cryptanalysis of the Keccak- f permuta-
tion. A tradeoff between the size of bitrate r and the number
of iterations nstep of P used by the fstep permutation is given
by Eq. (4). In particular, for Keccak- f with a 1600-bit state,
nunicity is estimated to be equal to 6. Assuming r = 512, we

get nstep = 6/
⌈

1600−512
512

⌉
= 2.

The heuristics assumes that every ciphertext leaks r bits
of a sponge state. However, this is not true in the case of
compcrypt. According to Corollaries 1 and 2, ANS binary
encoding are random if state jumps are random. Thus we
argue that r -bit leakage is heavily limited. Due to this extra
randomness introduced by ANS, we can reduce nstep from the
default 2 to 1. This makes the algorithm roughly two times
faster, particularly, for long data streams, where initialization
and authentication overheads are negligible.

7 Efficiency analysis

We have implemented our compcrypt algorithm on differ-
ent platforms, namely PC, Raspberry Pi 3 and 4. Apart from
Keccak , we also take into account two popular ciphers AES
[25] and ChaCha/Poly1305 [26]. Our experiments have been
done for a source that contains 256 symbols, whose prob-
abilities follow a geometric distribution with the parameter
p = 0.5. Symbol frames are 32kB long.

The results of our experiments are shown in Table 8. We
take efficiency of plain ANS as our baseline for compar-
ison. ANS with state jumps (denoted as ANS∗) suffers a
significant efficiency penalty. But uniform state distribution
is essential for our compcrypt security claims. Our compcrypt
ANS∗+Keccak has almost the same efficiency as ANS∗,
which means that encryption comes at a very low cost. As a
benefit the compcrypt claims 128-bit security (for both CPA
and integrity). The price to pay is slightly reduced compres-
sion rate. We have also implemented a version with a full
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Table 8 Comparison of
Algorithms

Algorithm Efficiency MB/s Efficiency Drop 128-bit Comp.
PC RPI3 RPI4 PC RPI3 RPI4 Security Rate Loss

Plain ANS 220 17 60 ✗ 0

ANS∗ 182 15 49 17% 12% 18% ✗ ≈0.5%

ANS∗ + Keccak 178 13 48 19% 24% 20% � ≈0.5%

ANS+Full_Keccak 135 9 27 39% 47% 55% � 0

ANS+AES-NI 152 8 29 31% 53% 52% � 0

ANS+AES 100 8 29 55% 53% 52% � 0

ANS+ChaCha20 95 6 16 57% 65% 73% � 0

The row in bold relates to the solution from Section 5
Notation: ANS∗ – ANS with state jumps

Fig. 2 Streaming with the compcrypt algorithm

Keccak with 12 iterations of P per round. This reduces
efficiency ≈ 20% compared to ANS∗+Keccak for PC and
more for Raspberries. Experiments with AES are quite opti-
mistic for encryption done with hardware support (AES-NI).
Efficiency of ANS+AES drops dramatically when AES is
implemented fully in software (for PC). The last row of
Table 8 shows efficiency of ANS when it is concatenated
by a low complexity cipher such as ChaCha/Poly1305.

The last column describes a compression quality loss. On
the average, a binary stream with 1000 bits (for plain ANS)
becomes 5 bits longer (for ANS∗). A precise loss can be
calculated when the state equilibrium probability distribution
is known. State equilibrium probabilities depend on ANS
symbol spread function and can found using Algorithm 1.
It is an interesting research question about how to design
ANS symbol spread function so the compression loss is the
smallest for its ANS∗ with uniform state distribution.

8 Streaming with compcrypt

Many Internet applications need to compress and encrypt
data streams. They include teleconferencing (such as Zoom,
Webex or Skype) and other As ANS compression and decom-
pression must be processed in reverse orders, it is impossible
to use a single frame. A solution applied in the Zstan-
dard (zstd) suite of compression algorithms (see https://en.
wikipedia.org/wiki/Zstandard) splits a symbol stream into a
sequence of frames. Clearly, it introduces a delay but it can be
made negligible by choosing short frames (tens of kilobytes).

An input to compcrypt consists of a header and symbol
frame. The header determines parameters of the algorithm
and in particular, includes a decoding table, a starting ANS
state, the number of symbols in the frame, the number of bits
in the bitstream frame, the consecutive number of the frame,
an initial vector and perhaps a seed/salt. Figure 2 shows a
data flow when the compcrypt is applied for streaming. Note
that a stream is split into symbol frames and processed in
the natural order. The output of the i-th compcrypt is an
input of the (i + 1)-th compcrypt. Tags allow a receiver to
authenticate frames. In case of a corrupted tag, the receiver
aborts and resets the connection. In case when a connection
reset is not possible, frames are generated independently and
corrupted ciphertext frames are ignored.

Designing compcrypt for streaming is a delicate balanc-
ing act. A selection of short frames reduces transmission
delay but also compromises compression rate as the size of a
header is typically fixed and dominated by the size of decod-
ing table. The list given below describes a few possibilities
for improving streaming with compcrypt.

• Context adaptive entropy coding distributes encoding
tables for typical probability distributions well ahead
of time [27]. When a frame is transmitted, a short
pointer to an appropriate statistics (and decoding table)
is included. Alternatively, for non-stationary statistics,
decoding tables can be periodically updated so a receiver
needs a short correction only.

• An attractive option, for slowly changing symbol statis-
tics, is to remove decoding tables completely from
headers. Parties start from a pre-agreed statistics and then
adjust it depending on statistics of previously transmit-
ted frames. Note that as a receiver is always one frame
behind a sender in its knowledge of symbol statistics,
there is a loss of compression quality. There is an inter-
esting research problem of how to approximate frame
statistics from the past ones.

• Pseudorandomness required for state jump control does
not need to be generated at the initialization stage of com-
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pcrypt. To speed up frame processing, it may be produced
in parallel by a separate sponge, which is created during
the execution of compcrypt for the first frame.

Currently, ANS is used in the standardized JPEG XL image
format and it is intended to be a long-term replacement
for JPEG. The above considerations point at a great ANS
potential as a highly competitive candidate for a future video
streaming compression with a low-cost authenticated encryp-
tion. However, to make any definitive statements, a further
in-depth investigation is necessary.

9 Conclusions and future works

Joint ANS-based compression and encryption with 128-bit
security is the focus of the work. After presenting the ANS
algorithm, we investigate ANS compression rate and present
a simple algorithm that allows the calculation of its com-
pression rate precisely. One of many interesting features of
ANS is its slight variations of compression rate depending on
its symbol spread function (or encoding table). As we have
shown, this gives rise to a statistical attack. The attack is dev-
astating for ANS up to few hundred states and still permits
to extract a part of symbol spread function for ANS with a
thousand states.

We have taken a closer look at ANS with state jumps as
one of the building block for our compcrypt algorithm. If
state jumps are forced by LFSR, then the output bit sequence
is random. The randomness is used by us to reduce the num-
ber of the Keccak- f permutations to a single P . The second
building block is Keccak based the MonkeyDuplex sponge.
It encrypts ANS bitstream frames. Note that decoding table
may also be encrypted for authentication as its confidentiality
does not matter. We claim that our compcrypt provides 128-
bit security in terms of confidentiality of bitstream frame
and authentication/integrity of ciphertext. We have imple-
mented the algorithm and compared it with other ones. Our
compcrypt is almost as fast as ANS with state jumps. This
also means that the Keccak encryption degrades efficiency
slightly only.

Our compcrypt is quite flexible and can be easily adjusted
to the current needs. It can be extended to secure data stream-
ing as shown in the work. If there is a need for a very fast
compcrypt, then a designer can trade state-jump properties
(length of LFSR string or/and frequency of jumps) with the
number of Keccak- f permutations P per round. If a higher
than 128-bit security is required, then our compcrypt can be
re-designed after a careful security consideration. It is worth
mentioning that it is possible to design compcrypt using any
round-reduced cipher (such as a round-reduced AES).
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