
International Journal of Information Security (2022) 21:725–738
https://doi.org/10.1007/s10207-022-00579-6

REGULAR CONTRIBUT ION

MAPAS: a practical deep learning-based android malware detection
system

Jinsung Kim1 · Younghoon Ban1 · Eunbyeol Ko2 · Haehyun Cho2 · Jeong Hyun Yi2

Published online: 9 February 2022
© The Author(s) 2022

Abstract
A lot of malicious applications appears every day, threatening numerous users. Therefore, a surge of studies have been
conducted to protect users from newly emerging malware by using machine learning algorithms. Albeit existing machine
or deep learning-based Android malware detection approaches achieve high accuracy by using a combination of multiple
features, it is not possible to employ them on our mobile devices due to the high cost for using them. In this paper, we propose
MAPAS, a malware detection system, that achieves high accuracy and adaptable usages of computing resources. MAPAS
analyzes behaviors of malicious applications based on API call graphs of them by using convolution neural networks (CNN).
However,MAPAS does not use a classifier model generated by CNN, it only utilizes CNN for discovering common features
of API call graphs of malware. For efficiently detecting malware, MAPAS employs a lightweight classifier that calculates
a similarity between API call graphs used for malicious activities and API call graphs of applications that are going to be
classified. To demonstrate the effectiveness and efficiency ofMAPAS, we implement a prototype and thoroughly evaluate it.
And, we compareMAPAS with a state-of-the-art Android malware detection approach, MaMaDroid. Our evaluation results
demonstrate thatMAPAS can classify applications 145.8% faster and uses memory around ten times lower thanMaMaDroid.
Also, MAPAS achieves higher accuracy (91.27%) than MaMaDroid (84.99%) for detecting unknown malware. In addition,
MAPAS can generally detect any type of malware with high accuracy.

Keywords Malware detection · Deep learning · Deep learning interpretation · API Call graph analysis

1 Introduction

In the fourth quarter of 2019, 35 millions of malware tar-
geting mobile devices appeared [1]. On average, about
15 malicious applications appeared per minute. Due to
the threat, many commercial antivirus products such as

B Jeong Hyun Yi
jhyi@ssu.ac.kr

Jinsung Kim
okokabv@soongsil.ac.kr

Younghoon Ban
byhoon6279@soongsil.ac.kr

Eunbyeol Ko
kongstar159@soongsil.ac.kr

Haehyun Cho
haehyun@ssu.ac.kr

1 School of Software Convergence, Soongsil University, Seoul
06978, Korea

2 School of Software, Soongsil University, Seoul 06978, Korea

Bitdefender, Norton, McAfee, BullGuard, Panda, Kasper-
sky, ESET, Avira, Avast were launched. However, their
critical limitation is that they cannot detect unknown mal-
ware because they rely on signatures of known malicious
applications [66]. Therefore, the research community have
been focusing on developing malware detection approaches
by using a machine learning or deep learning algorithm
with various features for protecting users from emerging
malware [2,5,7,10,12,14–16,18–23,26,27,30–34,36–42,45–
51,54,58,61–64,66,67,70,72–74,76–78,81–90,92]. In partic-
ular, a lot of malware detection approach using deep learning
algorithms were recently introduced [23,30,31,34,38,45,47,
49,51,54,58,77,78,85,88,92].

However, previous deep learning-based malware detec-
tion approaches commonly require very high cost (in terms
of computing resources) for using them because they use a
combination ofmultiple features to achieve the high accuracy
[71]. For example, a classifier model generated by the con-
volutional neural network (CNN) requires enormous amount
of memory for classifying data [44]. Consequently, albeit

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-022-00579-6&domain=pdf
http://orcid.org/0000-0002-5344-5252
http://orcid.org/0000-0002-2720-0593

726 J. Kim et al.

previously proposed deep learning-based malware detection
systems could achieve very high accuracy, it is unlikely to
employ them on our mobile devices of which computing
resources are limited or personal computers. Therefore, it is
of great importance to develop amalware detection approach
that can protect users from newly emerging malware and can
be practically used.

In thiswork,wepropose apracticalmalware detection sys-
tem,MAPAS, that achieves high accuracy against known and
unknown malware as well as adaptable usages of computing
resources. MAPAS learns behaviors of malicious applica-
tions based on API call graphs by using a deep learning
algorithm (CNN).Then, it detectsmalware basedon common
patterns of API call graphs ofmalware. For efficiently detect-
ing malware, MAPAS does not utilize a classifier model
created by CNN but uses a lightweight classifier that cal-
culates a similarity score between API call graphs used for
malicious activities and API call graphs of applications that
are going to be classified by using the Jaccard Similarity
algorithm [3].

To show the effectiveness and efficiency of MAPAS,
we thoroughly evaluate our prototype and compare it with
a state-of-the-art Android malware detection approach,
MaMaDroid [61]. MaMaDroid also utilizes API call graphs
for detecting malware based on their behaviors. Our eval-
uation results demonstrate that MAPAS achieves better
performance in terms of a processing time to classify appli-
cations and MAPAS uses much lower memory than the
previous approach. Specifically, MAPAS classifies applica-
tions 145.8% faster and uses memory around ten times lower
thanMaMaDroid (when it used the random forest algorithm).
In addition,MAPAS achieves higher accuracy (91.27%) than
MaMaDroid (84.99%) for detecting unknown malware (i.e.,
when they classify newer malware released later than ones
in our training dataset).

In summary, this papermakes the following contributions:

– We propose a practical Android malware detection sys-
tem, MAPAS, that find malware based on malicious
behavioral features. To this end, MAPAS learns API
call graphs of malware and detects malware based on
analyzed patterns of API call graphs used for malicious
behaviors. MAPAS employs a deep learning algorithm
not to use a classifier model generated by the algo-
rithm but only to discover common features of malware.
MAPAS performs malware detection with a lightweight
classifier for the efficiency.

– We implement a prototype of MAPAS and thoroughly
evaluate it. Also, we compare MAPAS against MaMa-
Droid to demonstrate the effectiveness and efficiency of
it. Our evaluation results show thatMAPAS achieves bet-
ter performance than MaMaDroid in terms of the usage
of computing resources aswell as the accuracy for detect-

ing newmalware. Also,MAPAS can generally detect any
type of malware with high accuracy.

This paper is organized as follows. We first provide tech-
nical backgrounds in Sect. 2. Section 3 explains the goals of
MAPAS and presents the specific design approach in Sec-
tion 4. We evaluateMAPAS to demonstrate its effectiveness
and efficiency in Sect. 5. Previous studies are discussed in
Sect. 6. Finally, Sect. 7 discusses the conclusion.

We release the source code of our proof-of-concept imple-
mentation at https://github.com/okokabv/MAPAS.

2 Background

In this section, we introduce malware detection methods
and a common limitation of machine/deep learning-based
Android malware detection approaches, the mainstream of
malware detection approaches, that hinders practical uses of
them.

2.1 Detecting androidmalware

Android malware detection approaches can be categorized
into two groups based on analysis methods (i.e., dynamic
analysis and static analysis) used to collect features of
malware: (1) dynamic analysis-based malware detection
approaches and (2) static analysis-based ones.

Dynamic analysis-based malware detection approaches
have an advantage over static analysis-based approaches
in analyzing concrete behaviors of malware [5,12,14,22,26,
27,32,36,67,70,73,74,81,83,87,90]. Also, they have another
advantage of analyzing malware equipped with anti-analysis
mechanisms such as obfuscation. However, typically the
dynamic analysis method consumes a lot of resources and
time because we actually need to execute applications.

On the other hand, static analysis-basedmalware detection
approaches identify features of malware without execut-
ing them, and thus, the cost for analyzing each application
is much lower than dynamic analysis-based approaches
in general [2,7,10,15,16,18–21,23,30,31,34,38,39,42,45–47,
49–51,54,58,63,64,66,72,76–78,82,84–86,88,89,92]. Beca-
use of the advantage of using less computing resources and
high accuracy in static analysis-based malware detection
approaches, most malware detection approaches employ the
static analysis method for extracting malware’s features.

2.2 Typical features used for static analysis-based
malware detection approaches

The first step to develop a malware detection system is to
decide features of malware to distinguish them from benign
applications. Typically, developer-written descriptions, user

123

https://github.com/okokabv/MAPAS

MAPAS: a practical deep learning-based android malware detection system 727

reviews, permissions, opcode and APIs are used as such fea-
tures.

Developer-written descriptions A couple of research work
employed developer-written descriptions on applications as
a key feature for detectingmalware [53,62]. However, detect-
ing malware based on developer-written descriptions is not
reliable because inferring accurate execution behaviors of
applications is unlikely possible.

User reviewsAmongAndroidmalwaredetection approaches,
there were attempts that employ user reviews as an important
feature [33,41]. However, similar to the malware detec-
tion approaches that use developer-written descriptions, the
accuracy is not high enough to be used in a practical man-
ner because user reviews usually do not contain concrete
explanations on applications that can be used for detecting
malware.

Opcode Several previous work showed there are common
patterns of opcode that can be used to classify malicious
applications [16,54,66,85]. They used common patterns of
opcode such as move and invoke of bytecode in malicious
applications.

Permissions There have been many research work for detect-
ing malware based on permissions that applications require
(e.g., a user’s location, phone information, a mobile device’s
network status etc.) [10,19,23,42,46,63,64,76]. These appro-
aches detect malware by using commonly used permissions
such as network permission with users’ location in mali-
cious applications. However, Avdiienko et al. [11] showed
that similar to malware, most benign Android applications
access sensitive information of users and use a lot of permis-
sions that are also typically used in malware. Consequently,
permission-based malware detection approaches could incur
a high false positive rate.

APIsMany approaches attempted to classifymalicious appli-
cations based on APIs used in them [2,18,30,34,37,40,58,
61]. By analyzing APIs used in an applications, we can
understand functionalities that the application provide to
users. For example, if an application uses APIs such as
android.telephony and android.telecom, we can know that
the application would monitor a mobile phone’s network
status and manages phone calls. As such, Android APIs pro-
vides functional information about what an application does.
Therefore, we can infer an application’s behavior by using
APIs used in the application. However, if we only use APIs
as a key feature for identifying malware, we can have high
false positives because analyzing APIs does not provide an
application’s concrete behaviors and there are a lot of com-
mon APIs used in both benign and malicious applications
[11].

2.3 Unpractical machine/deep learning-based
androidmalware detection approaches

Within several years, a surge of studies were proposed to
detect Android malware by employing machine or deep
learning-based approaches, which classifiedmalicious appli-
cation based on features discussed in the previous sec-
tion (Sect. 2.2) [2,5,7,10,12,14–16,18–23,26,27,30–34,36–
42,45–51,54,58,61–64,66,67,70,72–74,76–78,81–90,92].
Among them, recently proposed approaches usually emplo-
yed deep learning algorithms which utilize artificial neural
networks [23,30,31,34,38,45,47,49,51,54,58,77,78,85,88,92].
The notable advantage of deep learning algorithms is that
they can eliminate the need of domain expertise and manual
feature extraction because they learn features of data algo-
rithmically [68]. However, previous approaches commonly
require very high cost (in terms of computing resources and
times) for using their approaches because they use a com-
bination of multiple features to achieve the high accuracy
[71]. Consequently, even though they could achieve the high
accuracy, it is difficult to employ them in a practical manner
due to the high cost for using them.

3 Goal

In this work, our goal is to detect malicious applications effi-
ciently while achieving the high accuracy (1) to reduce the
cost for detecting them and (2) to deal with the increasing
Android malware. To this end, we optimize the Android mal-
ware detection process by using a deep learning algorithm
with a deep learning interpretation approach for extracting
dominant, common features used in malware.

Deep learning-based malware detection approaches sho-
wed the high accuracy but have the disadvantage of using a lot
of computing resources and times (as discussed in Sect. 2.3).
In general, the cost for using a deep learning algorithm (to
construct a classifier model) and even for using the model
to actually classify malware is very expensive because they
used complex features for increasing the accuracy. In this
paper, we use a deep learning algorithm with a deep learning
interpretation approach not for classifying malicious appli-
cations from benign applications, but only for identifying
high-weight features of malware. We, then, build a low-
cost classifier that finds malicious applications based on only
such high-weight features identified by a deep learning algo-
rithm. In this way, we can avoid heuristic feature selection
for detecting malware as well as we can reduce the usage
of computing resources and times for detecting malware
(Fig. 1).

123

728 J. Kim et al.

Taint Analyzer

Benign
Apps

Malicious
Apps

Target
App?

Training
Dataset

Benign
APIs Call

Malicious
APIs Call

Grad CAM
Heatmap
Extractor

CNN
Learner

High
Weight
Feature

Extractor

Word
Vectorizer

API Call Graph
Extractor

Jaccard
Similarity

Comparative
Evaluator

Malware

Fig. 1 Overview of MAPAS

4 Design

In this section, we first overview the proposed system, code-
named MAPAS, (in Sect. 4.1) and demonstrate details of
each step for detecting malware in Sects. 4.2, 4.3 and 4.4.

4.1 Design overview

Malware features used In this work, we attempts to detect
malicious applications based on common patterns of their
API call graphs. With API call graphs, we can find concrete
malicious behaviors of malicious applications [20,50,72].
To be specific, MAPAS analyzes frequently used patterns
of API call graphs which can lead to leakages of sensitive
information (social security numbers, credit card numbers,
passwords, etc.) with a deep learning algorithm. MAPAS,
then, detectsmalware based on the identified patterns ofmali-
cious API call graphs.

The design of MAPAS consists of the following three
steps:

(1) Data Preprocessing As the first step,MAPAS generates
training dataset through extracting API call graphs from
malicious and benign applications. Specifically,MAPAS
obtains API call graphs by conducting the taint analysis
with Flowdroid [9].

(2) Identifying High-weight API Call Graphs In this step,
MAPAS first vectorizes training dataset and performs
deep learning on the dataset by using convolution neu-
ral networks (CNN). After the learning phase finishes,
MAPAS uses the deep learning interpretation approach,
Grad-CAM, to discover high-weightAPI call graphs used
in malicious applications.

(3) Malware Detection In the last step, MAPAS classifies
malware by using the Jaccard algorithm which calculate
the similarity between API call graphs of an application
and the high-weight API call graphs of malicious appli-
cations.

4.2 Data preprocessing for generating training
dataset

MAPAS extracts API call graphs of applications by conduct-
ing taint analysis. Taint analysis is a static analysis method
used to track data flows in an application. Specifically, we use
a taint analysis for analyzing data flows from specific sources
that read sensitive data (e.g., a function reading a password)
to sinks which can transfer data (e.g., a function writing to a
socket) by identifying whether sensitive information can be
leaked or not. Hence, we can find potential sensitive leakages
from an application.

For MAPAS, we chose a static analysis tool based on
evaluation results fromArzt [8] and Qiu et al. [65]. There are
many taint analysis tools such as Flowdroid [9], AppScan
[28], Epicc [60], JoDroid [56], DroidSafe [25] and Aman-
droid [80]. Among them, Arzt [8] and Qiu et al. [65] showed
that overall Flowdroid has the best results in terms of the
accuracy and the runtime performance. Therefore, in this
work, we generates API call graphs based on taint analysis
results from Flowdroid [9]. The detail process for generating
API call graphs with Flowdroid is shown in Fig. 2.

It is worth noting that we exclude applications that have
obfuscated API calls for the taint analysis. MAPAS uses
Flowdroid that cannot extract API call graphs for API hiding
techniques and class encryption techniques among obfus-
cation techniques such as renaming, control flow, string
encryption, API hiding and class encryption [52]. Therefore,
MAPAS has to exclude obfuscated applications that cannot
extract API call graphs from Flowdroid. We leave this limi-
tation as a future work (Fig. 3).

4.3 Deep learning and identifying high-weight API
call graphs frommalware

MAPAS uses a deep learning algorithm (CNN) [44] for the
training dataset. While learning the dataset, the algorithm
finds important features from the collected API call graphs
used in malware and constructs the classification model.
MAPAS, then, discovers the important features by using

123

MAPAS: a practical deep learning-based android malware detection system 729

Fig. 2 Process of extracting API call graphs

Fig. 3 Example of API call graphs extracted from an APK

a deep learning interpretation approach, Grad-CAM [69].
These features will directly be used to detect malicious appli-
cationswith the Jaccard algorithm. (MAPAS does not use the
classifier model generated by CNN.)

Vectorizing API Call Graphs In order to apply deep learn-
ing on API call graphs, which is text-type data, they must
be converted into a vector. To vectorize text-type data, we
can map each word in the data to an integer and create
a vector with mapped integer numbers. Also, we can vec-
torize text-type data by analyzing the correlation between
words known as word2vec [55] and analyzing the correla-
tion between documents known as doc2vec [43]. MAPAS
does not use vectorization methods such as word2vec and
doc2vec but vectorizes API call graphs by simply mapping
each API call graph to an integer number. For detecting mali-

cious applications, API call graphs thatMAPAS needs to find
are specific sequences of function calls from the sources to
the sinks as we discussed in Sect. 4.2. Each of malicious API
call graphs represents a possible case of the sensitive infor-
mation leak. Therefore, to detect malware, MAPAS should
focus on finding the existence of such API call graphs rather
than analyzing relationships between API call graphs.

Learning the dataset: MAPAS analyzes API call graphs
commonly used in malware which can leak the sensitive
information. To this end, MAPAS uses CNN [44] for learn-
ing the vectorized dataset. CNN is an effective deep learning
algorithm for text-type data by using regional information of
the data [35]. Please refer to “Appendix A” for the details on
CNN. By learning the vectorized dataset with CNN,MAPAS
can find common patterns of API call graphs that are fre-
quently used in actual malicious applications. The overall
learning process inMAPAS is illustrated in Fig. 4.

Findinghigh-weight featureswith a deep learning interpreta-
tion approach Deep learning models are a black-box model.
Due to their multilayer and nonlinear structures, their pre-
dictions are not transparent [57]. CNN, also, operates in a
black-box way, we cannot transparently figure out which
API call graphs have high weights (which API call graphs
are important) to detect malware from a classifier model
generated by CNN. Hence, several deep learning interpreta-
tion approacheswere proposed to transparently show specific
data that substantially contributed to constructing a classifier
model generated by a deep learning algorithm [4,29].

To observe high-weight API call graphs analyzed by
CNN, MAPAS employs Grad-CAM [69] that produces
visual explanations from CNN-based models. Please refer
to “Appendix B” for more details on the approach.

As a result of using Grad-CAM, MAPAS found a high-
weight API call graph of which the source is android.
content and the sink is java.net. This call graph can
leak user’s sensitive information over the network.

After discovering high-weight features with Grad-CAM,
MAPAS can classify malicious applications from benign
ones based on such features. Note that MAPAS does not
detect malware with the classifier model generated by CNN
for reducing the cost in terms of the usage of computing
resources. In Sect. 5, we demonstrate the effectiveness and
efficiency ofMAPAS by comparing it to the classifier model
generated by CNN (Fig. 5).

4.4 Malware detection

For detecting malicious applications, MAPAS measures the
similarity between two sets (the high-weight API call graphs
and call graphs extracted from an unclassified application)
by using Jaccard similarity algorithm [3] as shown in Fig. 6.

123

730 J. Kim et al.

0.01 0.06 0.03 -0.01 0.01 -0.05

0.07 0.03 0.03 0.05 -0.06 -0.06

0.09 -0.03 0.03 -0.04 0.02 -0.01

-0.07 0.0.2 0.05 0.02 0.03 0.01

(java.util.zip -> java.text)

(android.support.v7 -> android.renderscript)

(java.nio.charset -> android.support.v7)

(android.app -> java.lang)

Word vector

Vector dimension = m

Word = n

-0.6 0.13 -0.07 0.13 0.02

0.2 -0.2

0.3

 f(1,1) = (0.01 x 1) + (0.06 x 1) +

Filter = p

1 1 1 1 1 1Filter size = q

-1 -1 -1 -1 -1 -1

f(p,1) = (0.09 x -1) + (-0.03 x -1) +

n-q+1

p
Feature

map
= F = f(x,y)

Pool size = r

-0.2 -0.03

0.1

((-0.6) + 0.2) / 2

p

Average
Pooling

= 1/ Z x,y f(x,y)

(n-q+1)/r

0 (benign)

((n-q+1)/r)x p

-0.2

-0.03

0.1

Softmax

FC

Output

Flatten

Sc

1 (malicious)

Fig. 4 Learning process using vectorized API call graphs with CNN

2.54E-08 orgapachehttp -> orgapachehttpparams
1.68E-08 androidcontentres -> javautil

1.67E-08 javalang -> orgxmlpullv1
1.55E-08 javanet -> androidos

1.50E-08 orgapachehttpauth -> javalang
1.49E-08 javasecurity -> javaio

1.48E-08 orgapachehttpconnscheme -> javalang
1.44E-08 javalang -> orgapachehttpconnssl
1.43E-08 androidtelephonycdma -> javalang

1.29E-08 androidcontentres -> androidcontentres

Heat map

-0.6 0.13 -0.07 0.13 0.02

0.2 -0.2

0.3

n-q+1

p

Feature
map

S1 = 0 (benign)

S2 = 1 (malicious)

-0.2

-0.03

0.1

Softmax

FC

Output

Flatten

XGrad CAM =

 =

Fig. 5 A process for finding high-weight features using Grad-CAM

The Jaccard similarity has a value between 0 and 1. If two
sets are exactly equal to each other, the similarity score is
1, and if two sets are totally different, the similarity score
is 0. The expression of Jaccard similarity algorithm is as
follows.

J (A, B) = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| (1)

123

MAPAS: a practical deep learning-based android malware detection system 731

javalang -> javalang
orgapachehttpparams -> orgapachehttp
orgapache -> orgapache
orgapache -> javautilconcurrent
javalang -> orgapachehttpconnssl
androidcontentres -> javautil
javanet -> androidos

androidnetwifi -> androidnetwifi
orgapachehttpconnscheme -> javalang
javaio -> javalang
comgoogle -> comgoogle
javasecurity -> javaio
androidcontent -> androidcontent
androidcontent -> androidapp

Feature API Call GraphUnknown
App?

Flowdroid

org.apache.http.conn.scheme ->
java.lang

java.lang ->
org.apache.http.conn.ssl
java.net -> androi.dos

java.security -> java.io
android.content.res -> java.util

Feature list

Jaccard
Similarity

Malware

M

Fig. 6 Malware classification process of MAPAS

MAPAS considers an application is malware if the sim-
ilarity score is higher than a threshold (0.4303) that we set
based on testing results as in Sect. 5.2.

5 Evaluation

In this section, we evaluate MAPAS to demonstrate its
effectiveness and efficiency. Our evaluation addresses the
following research questions:

RQ 1. How much computing resources does MAPAS use
to detect malware?
In Sect. 5.3, we evaluate the efficiency of the
MAPAS’s malware detection process by comparing
it with the efficiency of a classifier model that is gen-
erated by a deep learning algorithm. In Sect. 5.4, we
also compare the efficiency ofMaMaDroid [61] with
MAPAS.

RQ 2. How accurately can MAPAS detect malware?
In Sect. 5.4, we first evaluate the effectiveness of
MAPAS by measuring the accuracy of malware
detection results.

RQ 3. CanMAPAS detect newly emergingmalicious appli-
cations?
We evaluate the effectiveness of MAPAS against
malicious applications created later than the training
datasets in Sect. 5.4.

5.1 Experimental configuration

Setup We performed our evaluations on a workstation run-
ning Ubuntu 18.04 with a 20-core Intel Xeon Gold 6230
CPU at 2.10 GHz, 128 GB RAM and a NVIDIA GeForce
RTX 2080 GPU.

DatasetsWe first collected the top 10,000 applications from
Google Play Store [24]. We, then, randomly downloaded
10,653 malicious applications released in 2018 and 2019
from VirusShare [75]. In addition, we used 23,039 malicious
applications from Android Malware Dataset (AMD) [79].
Wei et al. classified the AMD into 70 categories [79].

Table 1 shows the number of applications used for our
evaluation. Training dataset is used for generating a classifier
model with CNN. We used Test dataset for evaluating the
effectiveness of MAPAS.

Hyper-parameters In order to minimize the usage of com-
puting resources in the learning phase, MAPAS uses one
layer of the convolution layer and one layer of the pool-
ing layer. Specifically, MAPAS uses the following hyper-
parameters: Embedding layer: 64 dimensions; Convolution
layer: filters = 32, kernel_size = 1, and the rest use default
values; Pooling layer: max pooling; Compile: optimizer =
‘rmsprop’, loss = ‘binary_crossentropy’, batch_size = 500,
epochs = 100. The total number of nodes used in the CNN
model is 1,128,089.

5.2 Finding high-weight features

Training dataset 9000 malicious applications provided by
VirusShare [75] and 9,000 benign applications downloaded
fromGoogle Play Store [6] were used for training a classifier
model with CNN. To this end, we extracted API call graphs
from the 18,000 applications by using Flowdroid [9]. In total,
we obtained 21,690 unique API call graphs and used them
as a training dataset.

Model learning and verificationWe trained a classifiermodel
by using CNN with the training dataset. Next, we verified
the classifier model by employing the k-fold cross-validation
approach. The accuracy of the classifier model measured by
the validation method is 0.9695 on average.

Table 1 Overview of the
datasets used in our experiments

Malicious samples Benign samples

VirusShare [75] AMD [79] Google Play Store [24]

2018 2019

Training dataset 9000 N/A N/A 9000

Test dataset 1000 653 23,039 1000

123

732 J. Kim et al.

Table 2 High-weight API call
graphs discovered by
Grad-CAM

No. Weight score API call graph

1 3.51E−06 android.content.pm − > java.lang

2 3.48E−06 android.text.style − > java.lang

3 3.27E−06 java.security.cert − > java.lang

4 3.22E−06 android.graphics.drawable − > java.lang

5 3.19E−06 java.security − > java.lang

6 3.09E−06 android.webkit − > android.util

7 2.90E−06 android.accounts − > java.lang

8 2.90E−06 android.webkit − > android.widget

9 2.78E−06 org.xmlpull.v1 − > java.lang

...

4312 1.47E−18 com.google.firebase − > javax.xml.parsers

Table 3 Performance evaluation
results of MAPAS and CNN

CPU (%) GPU (MiB) RAM (MB) Time (s) Accuracy (%)

MAPAS 1.0925 None 157.543 21.1799 93.2

CNN 1.5425 10,590 2070.3692 15.9171 83

Finding high-weight Features with Grad-CAM After gen-
erating the classifier model, we used Grad-CAM [69] to
observe high-weight API call graphs. The number ofAPI call
graphs that have a positive weight score is 4312 as shown in
Table 2. Based on these 4312 API call graphs,MAPAS finds
malicious applications.

To pick a threshold, we measured the Jaccard similarity
between the high-weight API call graphs and API call graphs
extracted from malicious applications and benign ones. As
result, the similarity score is 0.561 and 0.2996, respectively.
We used the average value (0.4303) of two scores as a thresh-
old value for detecting malware. In this work, MAPAS can
avoid biased results by using the average value. In other
words,MAPAS avoid false negatives that when the classifier
detections the application is benign when it is actually mal-
ware and false positives that is classifying the application is
malware when it is actually benign by using average score.

5.3 Performance evaluation of MAPAS with the CNN
classifier model

MAPAS uses the Jaccard similarity algorithm as a classifier
to detect malware. We evaluated the performance and the
usage of computing resources of MAPAS’s malware detec-
tion process. Also, we measured the performance and the
usage of computing resources of the classifier model gener-
ated by CNN. For this evaluation, we used 1000 malicious
applications and 1000 benign applications of the test dataset
as shown in Table 1.

Table 3 shows the experimental results. To classify 2000
applications,MAPAS took 21.18 s (1.059 ms on average) on
a single core. The classifier model processed them in 15.92 s

(0.796 ms on average) by using one GPU. It is worth not-
ing that, when we used the classifier model without using
a GPU, we could not finish processing 2000 applications
within 24h. In addition, as in Table 3, the classifier model
used 10,590 MiB of GPU memory and about 2070 MB of
RAM (1214.16% more than MAPAS). We, also, measured
the detection accuracy. The CNN classifier model showed
11% lower detection rate than MAPAS.

5.4 Performance evaluation of MAPAS with
MaMaDroid

We compare the performance of MAPAS to previous work
(MaMaDroid [61]). Similar to MAPAS, MaMaDroid uses
API call graphs of malicious applications to detect them. To
compare the performance, MAPAS and MaMaDroid [61]
created a classifier by using 9000 benign applications and
9000 malicious ones in the training dataset. MaMaDroid
converted API call graphs into Markov chain [59] and cre-
ated a classifier by learning 198,916 features. On the other
hand,MAPAS used unique 21,659 API call graphs for creat-
ing a classifier. By default, MaMaDroid uses random forest
(RF) [13] and k-nearest neighbors (k-NN) [17]. Also, in this
evaluation, we did not use a GPU but only a CPU for both
MaMaDroid and MAPAS.

Performance of the learning process Figure 7 shows the eval-
uation results of learning phases in each system.MaMaDroid
+CNN used about 1214% of RAM more than MAPAS for
the learning phase (MAPAS used 2.26 GB of RAM and
MaMadroid+CNN used 34 GB of RAM). Also, MaMaDroid
+CNN spent 5.45 times as much time as MAPAS did to

123

MAPAS: a practical deep learning-based android malware detection system 733

Fig. 7 Performance evaluation results of the learning process of
MAPAS and MaMaDroid

Fig. 8 Accuracy of classification results of MAPAS and MaMaDroid

finish learning the dataset. However, MaMaDroid+RF and
MapaDroid+k-NN finished the learning phase faster than
MAPAS, even though they used much more memory than
MAPAS.

Performance of the classification process To evaluate the
classification process of MAPAS and MaMaDroid, we
used each system for classifying 2000 applications in the
test dataset. The evaluation results are shown in Figs. 8
and 9. Overall, MaMaDroid using the random forest algo-
rithm (MaMaDroid+RF) showed the best accuracy as in
Fig. 8. MAPAS achieves about 3% lower accuracy than
MaMaDroid+RF. However, MAPAS showed the best per-
formance in terms of the execution time and the lowest
RAM usage as illustrated in Fig. 9. To be specific, MAPAS
can classify applications 76.4% and 145.8% faster than
MaMaDroid+RF andMaMaDroid+k-NN, using much lower
memory (MAPAS usedmemory around ten times lower than
MaMaDroid+RF).

Detecting malware of various categories We evaluated the
effectiveness of MAPAS and MaMaDroid+RF for detect-
ing Android malware in 70 categories defined by Wei et
al. [79]. The measurement results are shown in Table 4.
MAPAS showed about 99% accuracy for 70 malware cat-

Fig. 9 Performance evaluation results of the classification process of
MAPAS and MaMaDroid

egories on average. This result demonstrates that MAPAS
can generally detect any type of malware with high accu-
racy. On the other hand, MaMaDroid detected malware with
69% accuracy on average. Specifically, MaMaDroid showed
high accuracy for detecting malware in categories such as
BankBot, Univert, Utchi, FakeDoc, but it cannot accurately
detect malware in categories such as Bankun, FakePlayer,
FakeUpdates, Leech, Nandrobox, SlemBunk, Smskey and
SmsZombie. Bankun, Fakeplayer are Trojan-type that hides
in the normal flow and abruptly execute [79]. This means
Trojan-type does not affect the current state to the next state
transition. Thus,MaMaDroid cannot detect Trojan-typemal-
ware due to it uses Markov chain which relies on the current
state and next state probability of transitions.

Detecting unknown malware We evaluated the performance
of detecting unknown malicious applications by using
MAPAS andMaMaDroid+RF. To this end,we collectedmal-
ware, released later than applications in the training dataset,
from VirusShare [75]. As in Table 4, MAPAS showed 91%
accuracy for detecting unkown malware, which is 6% higher
than MaMaDroid.

6 Related work

DroidRisk [76] and Dini et al. [19] used permissions as
features of malware for detecting them by using Ana-
lytic Hierarchy Process (AHP). Also, the following work
employed permissions as features of malware but used dif-
ferent learning algorithms. Peng et al. [64] usedNaive Bayes,
Zarni et al. [10], Li et al. [46], FAMOUS [42] and Pehlivan
et al. [63] used tree-based machine learning algorithms to
detect malware. Ganesh et al. [23] used CNN.

Santos et al. [66], TinyDroid [16], McLaughlin el al. [54]
and Deeprefiner [85] classified malware based on their
opcode (bytecode instructions) using various machine learn-
ing algorithms such as SVM, k-NN, decision tree, naive

123

734 J. Kim et al.

Table 4 Accuracy of MAPAS
and MaMaDroid for detecting
malware in 70 categories

Category Accuracy (%) Category Accuracy (%)

MAPAS MaMaDroid+RF MAPAS MaMaDroid+RF

Airpush 99.99 71 FakeUpdates 100 20

AndroRAT 100 84 Finspy 100 100

Andup 100 78 Fjcon 100 100

Aples 100 0 Fobus 100 100

BankBot 92.61 100 Fusob 100 100

Bankun 100 16 GingerMaster 100 73

Boqx 99.53 81 GoldDream 100 81

Boxer 100 0 Gorpo 100 100

Cova 64.71 65 Gumen 100 99

Dowgin 100 97 Jisut 99.79 13

DroidKungFu 99.82 87 Kemoge 100 93

Erop 100 100 Koler 100 81

FakeAngry 100 20 Ksapp 100 83

FakeAV 100 80 Kuguo 100 100

FakeDoc 100 100 Kyview 100 95

FakeInst 98.06 43 Leech 100 26

FakePlayer 100 24 Lnk 100 600

FakeTimer 100 0 Lotoor 94.51 60

Mecor 100 0 SpyBubble 100 50

Minimob 100 75 Stealer 100 100

Mmarketpay 100 93 Steek 100 100

MobileTX 100 0 Svpeng 100 100

Mseg 100 86 Tesbo 100 100

Mtk 100 100 Triada 100 95

Nandrobox 100 42 Univert 100 100

Ogel 100 100 UpdtKiller 100 62

Opfake 100 88 Utchi 100 100

Penetho 100 56 Vidro 100 87

Ramnit 100 12 VikingHorde 85.71 57

Roop 100 100 Vmvol 100 100

RuMMs 100 73 Winge 100 58

SimpleLocker 93.67 70 Youmi 100 93

SlemBunk 100 18 Zitmo 100 46

Smskey 100 43 Ztorg 100 90

SmsZombie 100 0 Average accuracy 98.98 68.63

Spambot 100 80

Bayes, Bayesian networks, multilayer perceptron (MLP) and
long short-term memory models (LSTM).

Droidapiminer [2] detected malware with machine learn-
ing algorithms such as k-NN, Iterative Dichotomiser 3 (ID3),
SVM and C4.5 by using frequently used APIs in malware.
Nix et al. [58] and MalDozer [34] also attempted to detect
malware by usingCNN,LSTM,SVMandNaiveBayes based
on APIs used in malware. Droiddelver [30] detected mal-
ware by analyzing API call blocks of them with deep belief

network (DBN) and restricted Boltzmann machine (RBN)
algorithms.

On the other hand, Yerima et al. [86], Droidmat [82],
Drebin [7], DroidDolphin [84], Chan et al. [15] used complex
features (i.e., using more than two different types of fea-
tures such as Permission,API,Opcode)with variousmachine
learning algorithms. DroidDeepLearner [77], Hou et al. [31],
Li et al. [49], Li et al. [47], Zhang et al. [88], kim et al.
[38] proposed deep learning-based malware detection sys-
tems based on complex features. The above studies showed a

123

MAPAS: a practical deep learning-based android malware detection system 735

high detection rate by detecting malware with features con-
taining various information but require a lot of computing
resources.

The closet related work to this paper is MaMaDroid [61]
that used Markov chain [59] to calculate the probability of
transition from the current state (Sources) to another state
(Sinks) from API call graphs used in malicious applica-
tions. MaMaDroid, then, utilized k-NN and random forest
algorithms to train the Markov chains and to generate a clas-
sifiermodel. Besides, DeepFlow [92] and EveDroid [45] also
used API call graphs for detecting malware. They especially
focused on detecting newly emerging malicious applications
by using a deep learning algorithm.

7 Conclusion

In this paper, we proposedMAPAS, an effective and efficient
malware detection approach. MAPAS analyzes common
features of API call graphs extracted from malicious appli-
cations by using a deep learning algorithm. Then, it detects
malware based on the features with a lightweight classifier
for the efficiency.Our evaluation results showed thatMAPAS
outperforms a state-of-the-art approach,MaMaDroid [61], in
terms of the usage of computing resources and the accuracy
for detecting unknown malware. Also, MAPAS can gener-
ally detect any type of malware with high accuracy.

Funding Thisworkwas supported in part by Institute for Information&
communication Technology Planning & evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2017-0-00168, Automatic Deep
Malware Analysis Technology for Cyber Threat Intelligence). Any
opinions, findings, conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the Republic of Korea Government or any agency thereof.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: CNN

Convolutional neural network (CNN) is an algorithm of arti-
ficial neural networks using convolution arithmetic. The con-
volution arithmetic is operations by extracting the regional
information of the data in the filter (or kernel) is moving. The
filter calculates the convolution while moving the input data
at a set interval. At this time, the interval of the filter moves is
called the stride. The output data of result from convolution
arithmetic is called a feature map. Feature map uses ReLU
among activation functions to extract only positive values.
After that, a new layer is created by the pooling. Pooling is
a method that reducing the size of a feature map and empha-
sizing feature information. As the number of filters increases
in the convolution arithmetic, the number of feature maps
increases. Therefore, as feature maps increase, there is a risk
of many memory use and overfitting due to many features.
As we already expressed, to prevent convolution arithmetic
problems, CNN uses pooling. There are max pooling and
average pooling in pooling. Max pooling reduces the size by
leaving only the largest value among the feature map values.
Average pooling reduces the size by calculating the average
from the feature map values. After that, the extracted out-
put data transform one dimension. The output data of one
dimension is called a fully connected layer (FC). In FC, the
result value is classified using the softmax among activation
functions.

CNN was originally designed for processing images.
However, recently CNN is usually used for the natural lan-
guage processing [35].

Appendix B: CAM

Because a deep learning algorithm operates in a black-box
manner, it is important to interpret values affected the clas-
sification results in a deep learning model. Therefore, in
recent years, many interpretation approaches were proposed
to identify features that have an important influence on clas-
sification results in the deep learning model [4,29]. Class
activation map (CAM) among interpretation approaches is
used to the CNN algorithm [91]. CAM uses global average
pooling (GAP) instead of FC to extract the feature informa-
tion value of CNN. The formula of CAM is as follows.

Lc
CAM(x, y) =

∑

k

wc
k fk(x, y) (B.1)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

736 J. Kim et al.

However, CAM should be used by replacing FC with
GAP.

Grad-CAM Gradient-weighted class activation map (Grad-
CAM) [69] does not use GAP and extract features that affect
the result. Grad-CAM uses the gradient value about the class
of the last convolution layer by backpropagation to calculate
the value of CAM. The formula of Grad-CAM is as follows.

Lc
GradCAM = ReLU

(
∑

k

αc
k fk(x, y)

)
(B.2)

References

1. 2020 McAfee Mobile Threat Report. McAfee Labs (2020)
2. Aafer, Y., Du, W., Yin, H.: Droidapiminer: Mining api-level fea-

tures for robust malware detection in android. In: International
Conference on Security and Privacy in Communication Systems,
pp. 86–103. Springer, Berlin (2013)

3. Accard, P.: The distribution of the flora in the alpine zone. New
Phytol. 11(2), 37–50 (1912)

4. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on
explainable artificial intelligence (XAI). IEEE Access 6, 52138–
52160 (2018)

5. Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B.,
de Geus, P.L.: Identifying android malware using dynamically
obtained features. J. Comput. Virol. Hacking Tech. 11(1), 9–17
(2015)

6. Allix, K., Bissyandé, T.F., Klein, J., Traon, Y.L.: Androzoo: col-
lecting millions of android apps for the research community. In:
2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pp. 468–471. IEEE (2016)

7. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.,
CERT, S.: Drebin: effective and explainable detection of android
malware in your pocket. In: Ndss, vol. 14, pp. 23–26 (2014)

8. Arzt, S.: Static data flow analysis for android applications (2017)
9. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J.,

Traon, Y.L., Octeau, D., McDaniel, P.: Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps. Acm Sigplan Notices 49(6), 259–269 (2014)

10. Aung, Z., Zaw, W.: Permission-based android malware detection.
Int. J. Sci. Technol. Res. 2(3), 228–234 (2013)

11. Avdiienko, V., Kuznetsov, K., Gorla, A., Zeller, A., Arzt, S.,
Rasthofer, S., Bodden, E.:Mining apps for abnormal usage of sensi-
tive data. In: 2015 IEEE/ACM37th IEEE International Conference
on Software Engineering, vol. 1, pp. 426–436. IEEE (2015)

12. Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak,
S.: An android application sandbox system for suspicious software
detection. In: 2010 5th International Conference on Malicious and
Unwanted Software, pp. 55–62. IEEE (2010)

13. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
14. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid:

behavior-based malware detection system for android. In: Pro-
ceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, pp. 15–26 (2011)

15. Chan, P.P., Song, W.-K.: Static detection of android malware by
using permissions andAPI calls. In: 2014 International Conference
on Machine Learning and Cybernetics, vol. 1, pp. 82–87. IEEE
(2014)

16. Chen, T., Mao, Q., Yang, Y., Lv, M., Zhu, J.: Tinydroid: a
lightweight and efficient model for android malware detection and
classification. In: Mobile Information Systems, 2018 (2018)

17. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE
Trans. Inf. Theory 13(1), 21–27 (1967)

18. Desnos, A., Gueguen, G.: Android: from reversing to decompila-
tion. In: Proc. of Black Hat Abu Dhabi, pp. 77–101 (2011)

19. Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., Saracino, A.,
Sgandurra, D.: Risk analysis of android applications: a user-centric
solution. Futur. Gener. Comput. Syst. 80, 505–518 (2018)

20. Fan, M., Liu, J., Luo, X., Chen, K., Chen, T., Tian, Z., Zhang, X.,
Zheng, Q., Liu, T.: Frequent subgraph based familial classification
of android malware. In: 2016 IEEE 27th International Symposium
on Software Reliability Engineering (ISSRE), pp. 24–35. IEEE
(2016)

21. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-
based detection of android malware through static analysis. In:
Proceedings of the 22ndACMSIGSOFT International Symposium
on Foundations of Software Engineering, pp. 576–587 (2014)

22. Ferrante, A., Malek, M., Martinelli, F., Mercaldo, F., Milosevic,
J.: Extinguishing ransomware-a hybrid approach to android ran-
somware detection. In: International Symposium on Foundations
and Practice of Security, pp. 242–258. Springer, Berlin (2017)

23. Ganesh, M., Pednekar, P., Prabhuswamy, P., Nair, D.S., Park, Y.,
Jeon, H.: CNN-based android malware detection. In: 2017 Interna-
tional Conference on Software Security and Assurance (ICSSA),
pp. 60–65. IEEE (2017)

24. Google Play Store. https://play.google.com/store/apps. Accessed
November (2019)

25. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N.,
Rinard, M.C.: Information flow analysis of android applications in
droidsafe. In: NDSS, vol. 15, p. 110 (2015)

26. Ham, Y.J., Lee, H.-W.: Detection of malicious android mobile
applications based on aggregated systemcall events. Int. J. Comput.
Commun. Eng. 3(2), 149 (2014)

27. Ham, Y.J., Moon, D., Lee, H.-W., Lim, J.D., Kim, J.N.: Android
mobile application system call event pattern analysis for determi-
nation ofmalicious attack. Int. J. Secur. Appl. 8(1), 231–246 (2014)

28. HCL AppScan. https://www.hcltechsw.com/appscan/. Accessed
March (2021)

29. Hossain, M.S., Amin, S.U., Alsulaiman, M., Muhammad, G.:
Applying deep learning for epilepsy seizure detection and brain
mapping visualization. ACMTrans.Multimed. Comput. Commun.
Appl. (TOMM) 15(1s), 1–17 (2019)

30. Hou, S., Saas, A., Ye, Y., Chen, L.: Droiddelver: an android mal-
ware detection system using deep belief network based on api
call blocks. In: International Conference on Web-Age Information
Management, pp. 54–66. Springer, Berlin (2016)

31. Hou, S., Saas, A., Chen, L., Ye, Y., Bourlai, T.: Deep neural net-
works for automatic android malware detection. In: Proceedings
of the 2017 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining 2017, pp. 803–810 (2017)

32. Isohara, T., Takemori, K., Kubota, A.: Kernel-based behavior anal-
ysis for android malware detection. In: 2011 Seventh International
Conference on Computational Intelligence and Security, pp. 1011–
1015. IEEE (2011)

33. Jing, Y., Ahn, G.-J., Zhao, Z., Hu, H.: Riskmon: continuous and
automated risk assessment of mobile applications. In: Proceedings
of the 4th ACM Conference on Data and Application Security and
Privacy, pp. 99–110 (2014)

34. Karbab, E.B., Debbabi, M., Derhab, A., Mouheb, D.: Maldozer:
automatic framework for android malware detection using deep
learning. Digit. Investig. 24, S48–S59 (2018)

35. Kim, Y.: Convolutional neural networks for sentence classification.
In: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, October 25–29,
2014, Doha, Qatar, Ameeting of SIGDAT, a Special Interest Group
of the ACL, pp. 1746–1751. ACL (2014)

123

https://play.google.com/store/apps
https://www.hcltechsw.com/appscan/

MAPAS: a practical deep learning-based android malware detection system 737

36. Kim, G., Lee, S., Kim, S.: A novel hybrid intrusion detec-
tion method integrating anomaly detection with misuse detection.
Expert Syst. Appl. 41(4), 1690–1700 (2014)

37. Kim, H., Cho, T., Ahn, G.-J., Yi, J.H.: Risk assessment of mobile
applications based onmachine learnedmalware dataset.Multimed.
Tools Appl. 77(4), 5027–5042 (2018)

38. Kim, T., Kang, B., Rho, M., Sezer, S., Im, E.G.: A multimodal
deep learning method for android malware detection using various
features. IEEE Trans. Inf. Forensics Secur. 14(3), 773–788 (2018)

39. Kim, K., Ko, E., Kim, J., Yi, J.H.: Intelligent malware detection
based on hybrid learning of API and ACG on android. J. Internet
Ser. Inf. Secur. 9(4), 39–48 (2019)

40. Kim, K., Kim, J., Ko, E., Yi, J.H.: Risk assessment scheme for
mobile applications based on tree boosting. IEEEAccess 8, 48503–
48514 (2020)

41. Kong, D., Cen, L., Jin, H.: Autoreb: automatically understanding
the review-to-behavior fidelity in android applications. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 530–541 (2015)

42. Kumar, A., Kuppusamy, K., Aghila, G.: Famous: Forensic analysis
of mobile devices using scoring of application permissions. Futur.
Gener. Comput. Syst. 83, 158–172 (2018)

43. Le, Q., Mikolov, T.: Distributed representations of sentences and
documents. In: International Conference onMachine Learning, pp.
1188–1196. PMLR (2014)

44. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based
learning applied to document recognition. Proc. IEEE 86(11),
2278–2324 (1998)

45. Lei, T., Qin, Z., Wang, Z., Li, Q., Ye, D.: Evedroid: event-aware
androidmalware detection against model degrading for iot devices.
IEEE Internet Things J. 6(4), 6668–6680 (2019)

46. Li, Y., Li, Y., Yan, H., Liu, J.: Deep joint discriminative learning for
vehicle re-identification and retrieval. In: 2017 IEEE International
Conference on ImageProcessing (ICIP), pp. 395–399. IEEE (2017)

47. Li, D., Wang, Z., Xue, Y.: Fine-grained android malware detection
based on deep learning. In: 2018 IEEE Conference on Communi-
cations and Network Security (CNS), pp. 1–2. IEEE (2018)

48. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., Ye, H.: Significant
permission identification for machine-learning-based android mal-
ware detection. IEEE Trans. Ind. Inf. 14(7), 3216–3225 (2018)

49. Li, W., Wang, Z., Cai, J., Cheng, S.: An android malware detec-
tion approach using weight-adjusted deep learning. In: 2018
International Conference on Computing, Networking and Com-
munications (ICNC), pp. 437–441. IEEE (2018)

50. Liu, P., Wang, W., Luo, X., Wang, H., Liu, C.: Nsdroid: efficient
multi-classification of android malware using neighborhood signa-
ture in local function call graphs. Int. J. Inf. Secur. 1–13 (2020)

51. Ma, Z., Ge, H., Liu, Y., Zhao, M., Ma, J.: A combination method
for android malware detection based on control flow graphs and
machine learning algorithms. IEEEAccess 7, 21235–21245 (2019)

52. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth
attacks: an extended insight into the obfuscation effects on android
malware. Comput. Secur. 51, 16–31 (2015)

53. Martín, A., Calleja, A., Menéndez, H.D., Tapiador, J., Camacho,
D.: Adroit: android malware detection using meta-information.
In: 2016 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8. IEEE (2016)

54. McLaughlin, N., del Rincon, J.M., Kang, B., Yerima, S., Miller, P.,
Sezer, S., Safaei, Y., Trickel, E., Zhao, Z., Doupé, A., Ahn, G.J.:
Deep android malware detection. In: Proceedings of the Seventh
ACMonConference onData andApplication Security and Privacy,
pp. 301–308 (2017)

55. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.:
Distributed representations of words and phrases and their com-
positionality. In: Proceedings of the 26th International Conference

on Neural Information Processing Systems, vol. 2, pp. 3111–3119
(2013)

56. Mohr, M., Graf, J., Hecker, M.: Jodroid: Adding android support
to a static information flow control tool. In: Software Engineering
(Workshops), pp. 140–145. Citeseer (2015)

57. Molnar, C.: Interpretable machine learning. Lulu. com (2020)
58. Nix,R., Zhang, J.: Classification of android apps andmalware using

deep neural networks. In: 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 1871–1878. IEEE (2017)

59. Norris, J.R., Norris, J.R., Norris, J.R.:Markov Chains, vol. 2. Cam-
bridge University Press, Cambridge (1998)

60. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J.,
Traon, Y.L.: Effective inter-component communication mapping
in android: an essential step towards holistic security analysis. In:
22nd USENIX Security Symposium (USENIX Security 13), pp.
543–558 (2013)

61. Onwuzurike, L., Mariconti, E., Andriotis, P., Cristofaro, E.D.,
Ross, G., Stringhini, G.:Mamadroid: detecting androidmalware by
building Markov chains of behavioral models (extended version).
ACM Trans. Priv. Secur. (TOPS) 22(2), 1–34 (2019)

62. Pandita, R., Xiao, X., ang, W., Enck, W., Xie, T.: WHYPER:
Towards automating risk assessment of mobile applications. In:
22nd USENIX Security Symposium (USENIX Security 13), pp.
527–542 (2013)

63. Pehlivan, U., Baltaci, N., Acartürk, C., Baykal, N.: The analysis of
feature selection methods and classification algorithms in permis-
sion based android malware detection. In: 2014 IEEE Symposium
on Computational Intelligence in Cyber Security (CICS), pp. 1–8.
IEEE (2014)

64. Peng, W., Huang, L., Jia, J., Ingram, E.: Enhancing the Naive
Bayes spam filter through intelligent text modification detection.
In: 2018 17th IEEE International Conference on Trust, Secu-
rity and Privacy in Computing And Communications/12th IEEE
International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 849–854. IEEE (2018)

65. Qiu, L., Wang, Y., Rubin, J.: Analyzing the analyzers: Flow-
droid/iccta, amandroid, and droidsafe. In: Proceedings of the 27th
ACMSIGSOFT International SymposiumonSoftware Testing and
Analysis, pp. 176–186 (2018)

66. Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.: Opcode
sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 231, 64–82 (2013)

67. Saracino, A., Sgandurra, D., Dini, G.,Martinelli, F.:Madam: effec-
tive and efficient behavior-based android malware detection and
prevention. IEEE Trans. Dependable Secur. Comput. 15(1), 83–97
(2016)

68. Schmidhuber, J.: Deep learning in neural networks: an overview.
Neural Netw. 61, 85–117 (2015)

69. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D.,
Batra, D.: Grad-cam: visual explanations from deep networks via
gradient-based localization. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 618–626 (2017)

70. Shijo, P., Salim, A.: Integrated static and dynamic analysis for mal-
ware detection. Proc. Comput. Sci. 46, 804–811 (2015)

71. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy con-
siderations for deep learning in nlp. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics,
pp. 3645–3650 (2019)

72. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: Den-
droid: a text mining approach to analyzing and classifying code
structures in android malware families. Expert Syst. Appl. 41(4),
1104–1117 (2014)

73. Talha, K.A., Alper, D.I., Aydin, C.: APK auditor: permission-based
android malware detection system. Digit. Investig. 13, 1–14 (2015)

74. Tong, F., Yan, Z.: A hybrid approach of mobile malware detection
in android. J. Parallel Distrib. Comput. 103, 22–31 (2017)

123

738 J. Kim et al.

75. VirusShare. https://virusshare.com/. Accessed November (2019)
76. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security

risk assessment of android permissions and applications. In: IFIP
Annual Conference onData andApplications Security and Privacy,
pp. 226–241. Springer, Berlin (2013)

77. Wang, Z., Cai, J., Cheng, S., Li, W.: Droiddeeplearner: identifying
android malware using deep learning. In: 2016 IEEE 37th Sarnoff
Symposium, pp. 160–165. IEEE (2016)

78. Wang,W., Zhao,M.,Wang, J.: Effective androidmalware detection
with a hybrid model based on deep autoencoder and convolutional
neural network. J.Ambient. Intell. Humaniz. Comput.10(8), 3035–
3043 (2019)

79. Wei, F., Li,Y., Roy, S., Zhou,X.O.W.:Deep ground truth analysis of
current androidmalware. In: InternationalConference onDetection
of Intrusions andMalware, andVulnerabilityAssessment, pp. 252–
276. Springer, Berlin (2017)

80. Wei, F., Roy, S., Ou, X.: Amandroid: a precise and general inter-
component data flow analysis framework for security vetting of
android apps. ACM Trans. Priv. Secur. (TOPS) 21(3), 1–32 (2018)

81. Wook Jang, J., Kang,H.,Woo, J.,Mohaisen,A., Kim,H.K.: Andro-
dumpsys: anti-malware system based on the similarity of malware
creator and malware centric information. Comput. Secur. 58, 125–
138 (2016)

82. Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., Wu, K.-P.: Droid-
mat: android malware detection through manifest and API calls
tracing. In: 2012 Seventh Asia Joint Conference on Information
Security, pp. 62–69. IEEE (2012)

83. Wu, S., Wang, P., Li, X., Zhang, Y.: Effective detection of android
malware based on the usage of data flow APIs and machine learn-
ing. Inf. Softw. Technol. 75, 17–25 (2016)

84. Wu, W.-C., Hung, S.-H.: Droiddolphin: a dynamic android mal-
ware detection framework using big data and machine learning. In:
Proceedings of the 2014 Conference on Research in Adaptive and
Convergent Systems, pp. 247–252 (2014)

85. Xu, K., Li, Y., Deng, R.H., Chen, K.: Deeprefiner: multi-layer
android malware detection system applying deep neural networks.
In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 473–487. IEEE (2018)

86. Yerima, S.Y., Sezer, S.,Muttik, I.:Androidmalware detection using
parallel machine learning classifiers. In: 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Tech-
nologies, pp. 37–42. IEEE (2014)

87. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware char-
acterization and detection using deep learning. Tsinghua Sci.
Technol. 21(1), 114-123 (2016)

88. Zhang, Y., Yang, Y., Wang, X.: A novel android malware detection
approach based on convolutional neural network. In: Proceedings
of the 2nd International Conference on Cryptography, Security and
Privacy, pp. 144–149 (2018)

89. Zhang, H., Luo, S., Zhang, Y., Pan, L.: An efficient android mal-
ware detection system based on method-level behavioral semantic
analysis. IEEE Access 7, 69246–69256 (2019)

90. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my
market: detecting malicious apps in official and alternative android
markets. In NDSS 25, 50–52 (2012)

91. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learn-
ing deep features for discriminative localization. In: Proceedings of
the IEEEConference onComputerVision and PatternRecognition,
pp. 2921–2929 (2016)

92. Zhu, D., Jin, H., ang, Y., Wu, D., Chen, W.: Deepflow: deep
learning-based malware detection by mining android application
for abnormal usage of sensitive data. In: 2017 IEEE Symposium
on computers and Communications (ISCC), pp. 438–443. IEEE
(2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://virusshare.com/

	MAPAS: a practical deep learning-based android malware detection system
	Abstract
	1 Introduction
	2 Background
	2.1 Detecting android malware
	2.2 Typical features used for static analysis-based malware detection approaches
	2.3 Unpractical machine/deep learning-based android malware detection approaches

	3 Goal
	4 Design
	4.1 Design overview
	4.2 Data preprocessing for generating training dataset
	4.3 Deep learning and identifying high-weight API call graphs from malware
	4.4 Malware detection

	5 Evaluation
	5.1 Experimental configuration
	5.2 Finding high-weight features
	5.3 Performance evaluation of MAPAS with the CNN classifier model
	5.4 Performance evaluation of MAPAS with MaMaDroid

	6 Related work
	7 Conclusion
	Appendix A: CNN
	Appendix B: CAM
	References

