
International Journal of Information Security (2022) 21:279–291
https://doi.org/10.1007/s10207-021-00553-8

REGULAR CONTRIBUT ION

Applying NLP techniques to malware detection in a practical
environment

Mamoru Mimura1 · Ryo Ito2

Published online: 6 June 2021
© The Author(s) 2021

Abstract
Executable files still remain popular to compromise the endpoint computers. These executable files are often obfuscated
to avoid anti-virus programs. To examine all suspicious files from the Internet, dynamic analysis requires too much time.
Therefore, a fast filtering method is required. With the recent development of natural language processing (NLP) techniques,
printable strings became more effective to detect malware. The combination of the printable strings and NLP techniques can
be used as a filtering method. In this paper, we apply NLP techniques to malware detection. This paper reveals that printable
strings with NLP techniques are effective for detecting malware in a practical environment. Our dataset consists of more
than 500,000 samples obtained from multiple sources. Our experimental results demonstrate that our method is effective to
not only subspecies of the existing malware, but also new malware. Our method is effective against packed malware and
anti-debugging techniques.

Keywords Malware · Machine learning · Natural language processing

1 Introduction

Targeted attacks are one of the serious threats through the
Internet. The standard payload such as a traditional exe-
cutable file has still been remained popular. According to
a report, executable file is the second of the top malicious
email attachment types [49]. Attackers often use obfuscated
malware to evade anti-virus programs. Pattern matching-
based detection methods such as anti-virus programs barely
detect new malware [28]. To detect new malware, automated
dynamic analysis systems and sandboxes are effective. The
idea is to force any suspicious binary to execute in sandboxes,
and if their behaviors are malicious, then the file is classified
as malware. While dynamic analysis is a powerful method,
it requires too much time to examine all suspicious files
from the Internet. Furthermore, it requires high-performance
servers and their license including commercial OS and appli-
cations. Therefore, a fast filtering method is required.

B Mamoru Mimura
mim@nda.ac.jp

1 National Defense Academy 1-10-20 Hashirimizu, Yokosuka,
Kanagawa, Japan

2 Japan Ground Self-Defense Force 5-1 Honmura-cho,
Ichigaya, Shinjuku-ku, Tokyo, Japan

In order to achieve this, static detection methods with
machine learning techniques can be applicable. These meth-
ods extract features from the malware binary and Portable
Executable (PE) header. While the printable strings are often
analyzed, they were not a decisive element for detection.
With the recent development of natural language processing
(NLP) techniques, the printable strings became more effec-
tive to detect malware [8]. Therefore, the combination of the
printable strings and NLP techniques can be used as a filter-
ing method.

In this paper, we apply NLP techniques to malware detec-
tion. This paper reveals that printable strings with NLP
techniques are effective for detecting malware in a practi-
cal environment. Our time series dataset consists of more
than 500,000 samples obtained from multiple sources. Our
experimental result demonstrates that our method can detect
new malware. Furthermore, our method is effective against
packed malware and anti-debugging techniques. This paper
produces the following contributions.

– Printable strings with NLP techniques are effective for
detecting malware in a practical environment.

– Our method is effective to not only subspecies of the
existing malware, but also new malware.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-021-00553-8&domain=pdf
http://orcid.org/0000-0003-4323-9911

280 M. Mimura, R. Ito

– Ourmethod is effective against packedmalware and anti-
debugging techniques.

The structure of this paper is as follows. Section 2
describes related studies. Section 3 provides the natural lan-
guage processing techniques related to this study. Section 4
describes our NLP-based detection model. Section 5 eval-
uates our model with the dataset. Section 6 discusses the
performance and research ethics. Finally, Section 7 con-
cludes this study.

2 Related work

2.1 Static analysis

Malware detection methods are categorized into dynamic
analysis and static analysis. Our detection model is catego-
rized into static analysis. Hence, this section focuses on the
features used in static analysis.

One of the most common features is byte n-gram features
extracted frommalware binary [47].Abou-Assaleh et al. used
the frequent n-grams to generate signatures from malicious
and benign samples [1]. Kolter et al. used information gain
to extract 500 n-grams features [12,13]. Zhang et al. also
used information gain to select important n-gram features
[55]. Henchiri et al. conducted an exhaustive feature search
on a set of malware samples and strived to obviate over-
fitting [6]. Jacob et al. used bigram distributions to detect
similar malware [9]. Raff et al. applied neural networks to
raw bytes without explicit feature construction [41]. Similar
approaches are extracting features from the opcode n-grams
[3,10,35,57] or program disassembly [7,14,18,44,50].

While many studies focus on the body of malware, several
studies focus on the PE headers. Shafiq et al. proposed a
framework that automatically extracts 189 features from PE
headers [48]. Perdisci et al. used PE headers to distinguish
between packed and non-packed executables [38]. Elovici
et al. used byte n-grams and PE headers to detect malicious
code [4]. Webster et al. demonstrated how the contents of
the PE files can help to detect different versions of malware
[53]. Saxe et al. used a histogram of byte entropy values,
DLL imports, and numerical PE fields with neural networks
[45]. Li et al. extracted top of features from PE headers and
sections with a recurrent neural network (RNN) model [17].
Raff et al. used raw byte sequences obtained from PE headers
with a Long Short-Term Memory (LSTM) network [40].

Other features are also used to detect malware. Schultz et
al. used n-grams, printable strings, and DLL imports with
machine learning techniques for malware detection [46].
Masud et al. used byte n-grams, assembly instructions, and
DLL function calls [20]. Ye et al. used interpretable strings
such as API execution calls and important semantic strings

[54]. Lee et al. focused on the similarity between two files
to identify and classify malware [16]. The similarity is cal-
culated from the extracted printable strings. Mastjik et al.
analyzed string matching methods to identify the same mal-
ware family [19]. Their method used 3 pattern matching
algorithms, Jaro, Lowest Common Subsequence (LCS), and
n-grams. Kolosnjaji et al. proposed a method to classify
malware with neural network that consists of convolutional
and feedforward neural constructs [11]. Their model extracts
feature from the n-grams of instructions, and the headers
of executable files. Aghakhani et al. studied how machine
learning-based on static analysis features operates on packed
samples [2]. They used a balanced datasetwith 37,269 benign
samples and 44,602 malicious samples.

Thus, several studies used the printable strings as fea-
tures. However, the printable strings are not used as the
main method for detection. The combination of the printable
strings and NLP techniques are not evaluated in a practical
environment. This paper pursues the possibility of the print-
able strings as a filtering method.

2.2 NLP-based detection

Our detectionmodel uses someNLP techniques. This section
focuses on the NLP-based detection methods.

Moskovitch et al. used someNLP techniques such as Term
Frequency-Inverse Document Frequency (TF-IDF) to repre-
sent byte n-gram features [35]. Nagano et al. proposed a
method to detect malware with Paragraph Vector [36]. Their
method extracts the features from the DLL Import name,
assembly code, and hex dump.A similar approach is classify-
ingmalware fromAPI sequenceswithTF-IDF andParagraph
Vector [51]. Thismethod requires dynamic analysis to extract
API sequences. Thus, the printable strings are not used as the
main method for detection.

NLP-based detection was applied to detect malicious traf-
fic and other contents. Paragraph Vector was applied to
extract the features of proxy logs [30,32]. This method was
extended to analyze network packets [22,31]. To mitigate
class imbalance problems, the lexical features are adjusted
by extracting frequent words [23,33]. Our method uses this
techniquemitigate class imbalance problems. Somemethods
use a Doc2vec model to detect malicious JavaScript code
[29,37,39]. Other methods use NLP techniques to detect
memory corruptions [52] or malicious VBA macros [24–
27,34].

3 NLP techniques

This section describes some NLP techniques related to this
study. The main topic of NLP techniques is to enable com-
puters to process and analyze large amounts of natural

123

Applying NLP techniques to malware... 281

language data. The documents written in natural language
are separated into words to apply NLP techniques such as
Bag-of-Words. The corpus of words is converted into vec-
tors which can be processed by computers.

3.1 Bag-of-words

Bag-of-Words (BoW) [43] is a fundamental method of docu-
ment classification where the frequency of each word is used
as a feature for training a classifier. This model converts each
word in a document into vectors based on the frequency of
each word. Let d,w, and n be expressed as a document, word
(wi=1,2,3,...), and a frequency of w, respectively. The docu-
ment d can be defined by Eq. (1). For this Eq. (1), next (2)
locks the position of n on d, and omitted the wordw. This d̂ j

(d̂ j=1,2,3,...) is shown as a vector (document-word matrix).
In Eq. (3), let construct the other documents to record the
term frequencies of all the distinct words (other documents
ordered as in Eq. (2)).

d = [(w1, nw1), (w2, nw2), (w3, nw3), ..., (wi , nwi)] (1)

d̂j = (nw1 , nw2 , nw3 , ..., nwi) (2)

|D| =
⎡
⎢⎣
nw1,1 . . .nw1,i

...

nw j,1 . . .nw j,i

⎤
⎥⎦ . (3)

Thus, this model enables to convert documents into vec-
tors. Apparently, this model does not preserve the order of
the words in the original documents. The dimension of con-
verted vectors attains the number of distinct words in the
original documents. To analyze large-scale data, the dimen-
sion should be reduced so that can be analyzed in a practical
time.

3.2 Latent semantic indexing

Latent Semantic Indexing (LSI) analyzes the relevance
between a document group and words included in a docu-
ment. In the LSI model, the vectors with BoW are reduced
by singular value decomposition. Each component of the vec-
tors isweighted. The decomposedmatrix shows the relevance
between the document group and words included in the doc-
ument. In weighting each component of the vector, Term
Frequency-Inverse Document Frequency (TF-IDF) is usu-
ally used. |D| is the total number of documents, {d : d � ti }
is the total document including word i , f requencyi, j is the
appearance frequency of word i in document j . TF-IDF is
defined by Eq. (4).

t fi, j ∗ id fi = f requencyi, j ∗ log
|D|

{d : d � ti } . (4)

TF-IDF weights the vector to perform singular value
decomposition. The components x(i, j) of thematrix X show
the TF-IDF value in the document j of the word i . Let X be
decomposed into orthogonal matricesU and V and diagonal
matrix �, from the theory of linear algebra. In this singu-
lar value decomposition, U is a column orthogonal matrix
and linearly independent with respect to the column vector.
Therefore, U is the basis of the document vector space. The
matrix X product giving the correlation between words and
documents is expressed by the following determinant. Gen-
erally, this matrix U represents a latent meaning.

X =
⎡
⎢⎣
x1,1. . .x1, j
...

. . .
...

xi,1 . . .xi, j

⎤
⎥⎦ = U�V T

=
⎡
⎢⎣
u1,1. . .u1,r

...
. . .

...

ui,1 . . .ui,r

⎤
⎥⎦ ∗

⎡
⎢⎣

σ1,1. . . 0
...

. . .
...

0 . . .σr ,r

⎤
⎥⎦ ∗

⎡
⎢⎣

v1,1. . .v1, j
...

. . .
...

vr ,1. . .vr , j

⎤
⎥⎦ .

In this model, the number of dimension can be determined
arbitrarily. Thus, this model enables to reduce the dimension
so that can be analyzed in a practical time.

3.3 Paragraph vector

To representwordmeaning or context,Word2vecwas created
[21]. Word2vec is shallow neural networks which are trained
to reconstruct linguistic contexts of words. Word2vec takes
as its input a large corpus of documents and produces a vec-
tor space of several hundred dimensions, with each unique
word in the corpus being assigned a corresponding vector in
the space. Word vectors are positioned in the vector space
such that words which share common contexts in the cor-
pus are located in close proximity to one another in the
space. queen = king − man + woman is an example of
operation using each word vector generated by Word2vec.
Word2vec is a method to represent a word with meaning or
context. Paragraph Vector is the extension of Word2vec to
represent a document [15]. Doc2vec is an implementation of
the Paragraph Vector. The only change is replacing a word
into a document ID. Words could have different meanings in
different contexts. Hence, vectors of two documents which
contain the same word in two distinct senses need to account
for this distinction. Thus, this model represents a document
with word meaning or context.

4 NLP-based detectionmodel

This section produces our detection model based on the pre-
vious study [8]. The previous study used an SVM model to
classify samples. The main revised point is adding several

123

282 M. Mimura, R. Ito

Fig. 1 Structure of the NLP-based detection model 4

classifiers. The structure of our detection model is shown in
Fig. 1.

Our detection model consists of language models and
classifiers. One model is selected from these models, respec-
tively. In training phase, the selected language model is
constructed with extracted words frommalicious and benign
samples. The constructed languagemodel extracts the lexical
features. The selected classifier is trainedwith the lexical fea-
tures and labels. In testing phase, the constructed language
model and trained classifier classify unknown executable
files into malicious or benign ones.

4.1 Training

The training procedure is shown in Algorithm 1. Our method
extracts all printable (ASCII) strings from malicious and
benign samples and splits the strings into words, respec-
tively. The frequent words are selected from the words,
respectively. Thenceforth, the selected language model is
constructed from the selected words. Our method uses a
Doc2vec or LSI model to represent the lexical features. The
Doc2vec model is constructed by the corpus of the words.
The LSI model is constructed from the TF-IDF scores of
the words. These words are converted into lexical features
with the selected language model. Thus, the labeled fea-
ture vectors are derived. Thereafter, the selected classifier
is trained with the both labeled feature vectors. The classi-
fiers are Support Vector Machine (SVM), Random Forests
(RF), XGBoost (XGB), Multi-Layer Perceptron (MLP), and
Convolutional Neural Networks (CNN). These classifiers are
popular in the various fields, and have each characteristic.

4.2 Test

The test procedure is shown in Algorithm 2. Our method
extracts printable strings from unknown samples, and splits
the strings intowords. The extractedwords are converted into

Algorithm 1 training
1: /* Extract printable strings */
2: for all malware samples m do
3: mw ← extract printable strings from m
4: end for
5: for all benign samples b do
6: bw ← extract printable strings from b
7: end for
8: imw ← select frequent words from m
9: ibw ← select frequent words from b
10: if Doc2vec then
11: /* Construct a Doc2vec model */
12: construct a Doc2vec model from imw, ibw
13: else
14: /* Construct a LSI model */
15: construct a TF-IDF model from imw, ibw
16: construct a LSI model from the TF-IDF
17: end if
18: /* Convert printable strings into vectors */
19: for all malware samples mw do
20: if Doc2vec then
21: mv ← Doc2vec(mw)
22: else
23: mv ← LSI(mw)
24: end if
25: end for
26: for all benign samples bw do
27: if Doc2vec then
28: bv ← Doc2vec(bw)
29: else
30: bv ← LSI(bw)
31: end if
32: end for
33: /* Train classifiers with the labeled vectors */
34: if SVM then
35: Train SVM(mv, bv)
36: else if RF then
37: Train RF(mv, bv)
38: else if XGB then
39: Train XGB(mv, bv)
40: else if MLP then
41: Train MLP(mv, bv)
42: else
43: Train CNN(mv, bv)
44: end if
45: return

lexical features with the selected language model, which was
constructed in training phase. The trained classifier examines
the feature vectors and predicts the labels.

4.3 Implementation

Our detection model is implemented in Python 2.7. Gensim
[42] provides the LSI and Doc2vec models. Scikit-learn 1

provides the SVM and RF classifiers. The XGB is provided
as a Python package 2. The MLP and CNN are implemented

1 https://scikit-learn.org/.
2 https://xgboost.readthedocs.io/.

123

https://scikit-learn.org/
https://xgboost.readthedocs.io/

Applying NLP techniques to malware... 283

Algorithm 2 test
1: /* Extract printable strings */
2: for all unknown samples u do
3: uw ← extract printable strings from u
4: end for
5: /* Convert printable strings into vectors */
6: for all unknown samples uw do
7: if Doc2vec then
8: uv ← Doc2vec(uw)
9: else
10: uv ← LSI(uw)
11: end if
12: end for
13: /* Predict labels with the trained classifiers */
14: for all unknown vectors uv1 do
15: if SVM then
16: label ← SVM(uv)
17: else if RF then
18: label ← RF(uv)
19: else if XGB then
20: label ← XGB(uv)
21: else if MLP then
22: label ← MLP(uv)
23: else
24: label ← CNN(uv)
25: end if
26: end for
27: return

with chainer 3. The parameters will be optimized in the next
section.

5 Evaluation

5.1 Dataset

To evaluate our detection model, hundred thousands of PE
samples were obtained from multiple sources. One is the
FFRI dataset, which is a part of MWS datasets [5]. This
dataset contains logs collected from the dynamic malware
analysis systemCuckoo sandbox 4 and a static analyzer. This
dataset is written in JSON format, and categorized into 2013
to 2019 based on the obtained year. Each data except 2018
contains printable strings extracted from malware samples.
These data can be used as malicious samples (FFRI 2013–
2017, 2019). Note that this dataset does not contain malware
samples themselves. Printable strings extracted from benign
samples are contained in 2019’s as Cleanware. These benign
data do not contain the time stamps. Hence, we randomly cat-
egorized these data into 3 groups (Clean A, B, and C). Other
samples are obtained from Hybrid Analysis (HA) 5, which is
a popular malware distribution site. Almost ten thousand of

3 https://chainer.org/.
4 https://cuckoosandbox.org/.
5 https://www.hybrid-analysis.com/.

Table 1 The number of each data, unique words, and family name

Class Dataset File Unique words Family

Clean A 10,000 39,390,887 –

benign Clean B 40,000 122,217,004 –

(Cleanware) Clean C 200,000 269,112,345 –

FFRI 2013 2,637 1,317,912 621

FFRI 2014 3,000 5,193,423 671

FFRI 2015 3,000 3,224,583 474

FFRI 2016 8,243 11,443,274 629

Malicious FFRI 2017 6,251 1,534,580 394

FFRI 2019 250,000 320,177,723 3237

HA 2016 5,787 13,352,423 1,063

HA 2017 2,834 8,944,685 181

HA 2018 5,623 15,584,544 243

samples are obtained with our web crawler. These samples
are posted into the VirusTotal 6, and are identified by multi-
ple anti-virus programs.Thereafter, the identified samples are
categorized into 2016 to 2018 based on the first year defined
by Microsoft defender. The printable strings are extracted
from these malware samples (HA 2016–2018). To extract
printable strings from these samples, we use the strings com-
mand on Linux. This command provides each string on one
line. Our method uses these strings as word. Our extraction
method is identical to the FFRI dataset 7. Thus, our dataset
is constructed with the multiple sources.

Table 1 shows the number of each data, unique words, and
family name. Tables 2 and 3 show the top family names.

The unique words indicate the number of distinct words
extracted from thewhole dataset. In the NLP-based detection
method, the number of unique words is important. Because
the classification difficulty and complexity mainly depend
on the number. The family indicates the number of distinct
malware family defined by Microsoft defender. In benign
samples, each dataset contains huge number of uniquewords.
This means these benign samples are well distributed and not
biased. In malicious samples, each dataset contains enough
number of uniquewords andmalware families. This suggests
they contain not only subspecies of the existing malware, but
also new malware. Hence, these samples are well distributed
and not biased.

5.2 Metrics

Several metrics are used to evaluate our detection model.
These metrics are based on the confusion matrix shown in
Table 4.

6 https://www.virustotal.com/.
7 https://github.com/FFRI/ffridataset-scripts.

123

https://chainer.org/
https://cuckoosandbox.org/
https://www.hybrid-analysis.com/
https://www.virustotal.com/
https://github.com/FFRI/ffridataset-scripts

284 M. Mimura, R. Ito

Table 2 Top 5 family names in the FFRI dataset

Dataset No. Family name

1 Trojan:Win32/Bulta!rfn

2 Worm:Win32/Vobfus.GZ

FFRI 2013 3 Worm:Win32/Vobfus.CF

4 Worm:Win32/Vobfus

5 Trojan:Win32/Lethic.B

1 SoftwareBundler:Win32/Ogimant

2 Trojan:Win32/Bulta!rfn

FFRI 2014 3 Backdoor:Win32/Kelihos.F

4 Trojan:Win32/Dacic.A!rfn

5 Worm:MSIL/Mofin.A

1 Trojan:Win32/Dynamer!ac

2 PWS:Win32/Zbot

FFRI 2015 3 Trojan:Win32/Bulta!rfn

4 Trojan:Win32/Bagsu!rfn

5 Trojan:Win32/Miuref.F

1 Trojan:Win32/Dynamer!ac

2 Trojan:Win32/Skeeyah.A!rfn

FFRI 2016 3 TrojanSpy:Win32/Ursnif.HN

4 VirTool:Win32/Injector.FQ

5 Trojan:Win32/Bagsu!rfn

1 Ransom:Win32/Cerber

2 Backdoor:Win32/Fynloski.A

FFRI 2017 3 Ransom:Win32/Cerber!rfn

4 Trojan:Win32/Dynamer!ac

5 Worm:Win32/Pykspa!rfn

1 Trojan:Win32/Occamy.C

2 Trojan:Win32/Tiggre!rfn

FFRI 2019 3 Virus:Win32/Morefi.A

4 Trojan:Win32/Skeeyah.A!rfn

5 Trojan:Win32/Toga!rfn

In this experiment, Accuracy (A), Precision (P), Recall
(R), and F1 score (F) are mainly used. These metrics are
defined as Eqs. (5)–(8).

Accuracy = T P + T N

T P + FP + FN + T N
(5)

Precision = T P

T P + FP
(6)

Recall = T P

T P + FN
(7)

F1 = 2Recall ∗ Precision

Recall + Precision
. (8)

In this experiment, TP indicates predictingmalicious sam-
ples correctly. Since our detection model performs binary
classification, Receiver Operating Characteristics (ROC)
curve and Area under the ROC Curve (AUC) are used. An

Table 3 Top 10 family names in the HA dataset

Dataset No. Family name

1 PUA:Win32/InstallCore

2 Backdoor:MSIL/Bladabindi.B

3 Backdoor:MSIL/Bladabindi

4 Trojan:Win32/Skeeyah.A!bit

5 PUA:Win32/Keygen

HA 2016 6 Trojan:Win32/Skeeyah.A!rfn

7 Backdoor:MSIL/Noancooe.A

8 Backdoor:MSIL/Bladabindi.AJ

9 SoftwareBundler:Win32/Prepscram

10 Trojan:Win32/Fuery.B!cl

1 Trojan:Win32/Tiggre!plock

2 Trojan:Win32/Tiggre!rfn

3 Trojan:Win32/Fuerboos.C!cl

4 Trojan:Win32/Dynamer!rfn

5 Trojan:Win32/Bluteal!rfn

HA 2017 6 Trojan:Win32/Fuerboos.E!cl

7 Trojan:Win32/Bitrep.A

8 Trojan:Win32/Fuerboos.A!cl

9 Ransom:Win32/WannaCrypt.A!rsm

10 Trojan:Win32/MereTam.A

1 Trojan:Win32/Occamy.C

2 PUA:Win32/Presenoker

3 Ransom:Win32/CVE-2017-0147.A

4 Trojan:Win32/Zpevdo.B

5 Trojan:Win32/Zpevdo.A

HA 2018 6 Trojan:Win32/Sonbokli.A!cl

7 Trojan:Win32/CryptInject

8 Trojan:Win32/Casdet!rfn

9 Trojan:Win32/Meterpreter.O

10 Trojan:Win32/Emotet.AC!bit

Table 4 Confusion matrix

Actual
Positive Negative

Predicted Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

ROC curve is a graph showing the performance of a classifi-
cation model at all classification thresholds. AUC measures
the entire two-dimensional area underneath the entire ROC
curve.

5.3 Parameter optimization

To optimize the parameters of our detectionmodel, the Clean
A–B and FFRI 2013–2016 are used. The Clean A and FFRI

123

Applying NLP techniques to malware... 285

Fig. 2 The F1 score for each model

Table 5 The optimized parameters in each language model

Language model Parameter Optimum value

Dimension 400

alpha 0.075

Doc2vec min_count 2

window 1

epoch 20

LSI Dimension 800

2013–2015 are used as the training samples. The remainder
Clean B and FFRI 2016 are used as the test samples.

First, the number of unique words is optimized. To con-
struct a languagemodel, our detectionmodel selects frequent
words from each class. The same number of frequent words
from each class are selected. This process adjusts the lexical
features and enables to mitigate class imbalance problems
[23]. The F1 score for each model is shown in Fig. 2.

In this figure, the vertical axis represents the F1 score,
and the horizontal axis represents the total number of unique
words. In the Doc2vec model, the most optimum number
of the unique words is 500. In the LSI model, the F1 score
gradually rises and achieves the maximum value at 9000.

Thereafter, the other parameters are optimized by grid
search. Grid search is a search technique that has beenwidely
used in many machine learning researches. The optimized
parameters are shown in Tables 5 and 6.

Thus, our detection model uses these parameters in the
remaining experiments.

Table 6 The optimized parameters in each classifier

Classifier Parameter Optimum value

Doc2vec LSI

kernel rbf rbf

SVM C 100 100

gamma 0.01 0.1

RF n_estimators 393 442

n_jobs 14 32

n estimators 998 911

max_depth 11 3

XGB min_child_weight 11 5

subsample 0.5 0.8

colsample_bytree 0.7 0.6

MLP optimizer Adam Adam

epoch 40 40

CNN optimizer Adam Adam

epoch 40 40

Fig. 3 The result of tenfold cross-validation

5.4 Cross-validation

To evaluate the generalization performance, tenfold cross-
validation is performed on the CleanA and FFRI 2013–2015.
Figure 3 shows the result.

The vertical axis represents the Accuracy (A), Precision
(P), Recall (R), or F1 score (F). Overall, each metric per-
formed good accuracy. The LSI model was more effective
than the Doc2vec model. Thus, the generalization perfor-
mance of our detection model was almost perfect.

5.5 Time series analysis

To evaluate the detection rate (recall) for new malware,
the time series is important. The purpose of our method is
detecting unknown malware. In practical use, the test sam-
ples should not contain the earlier samples. To address this
problem, we consider the time series of samples. In this

123

286 M. Mimura, R. Ito

Fig. 4 The result of Doc2vec in the time series analysis

Fig. 5 The result of LSI in the time series analysis

experiment, the Clean A and FFRI 2013–2015 are used as
the training samples. The Clean B, FFRI 2016–2017, and
HA 2016–2018 are used as the test samples. As described
in Table 1, the training samples are selected from the earlier
ones. Moreover, the benign samples account for the majority
of the test samples. This means the test samples are imbal-
anced, which represent more practical environment. Thus,
the combination of each dataset is more challenging than
cross-validation. The results of the time series analysis are
shown in Figs. 4 and 5.

The vertical axis represents the recall. Overall, the recall
gradually decreases as time proceeds. The detection rates in
the FFRI dataset are better than the ones in the HA dataset.
This seems to be because the training samples were obtained
from the same source. Nonetheless, the recall in HA main-
tains almost 0.9. Note that these samples were identified by
VirusTotal and categorized based on the first defined year.
The LSI model was more effective than the Doc2vec model.
In regard to classifiers, the SVM and MLP performed good
accuracy. Thus, our detection model is effective against new
malware. Furthermore, the same technique [23] mitigates
class imbalance problems in executable files.

Tovisualize the relationshipbetween sensitivity and speci-
ficity, the ROC curves of each model with FFRI 2016 are
depicted in Figs. 6 and 7.

Fig. 6 The ROC curve of Doc2vec in the time series analysis

Fig. 7 The ROC curve of LSI in the time series analysis

The vertical axis represents the true positive rate (recall),
and the horizontal axis represents the false positive rate. Our
detection model maintains the practical performances with a
low false positive rate. As we expected, the LSI model was
more effective than the Doc2vec model. The best AUC score
achieves 0.992 with the LSI and SVM model.

The required time for training and test of FFRI 2016 is
shown in Table 7.

This experiment was conducted on the computer with
Windows 10, Core i7-5820K 3.3GHz CPU, 32GB DDR4
memory, and Serial ATA 3 HDD. In regard to training time,
it seems to depend on the classifier. Complicated classifiers
such as CNN require more time for training. The test time
maintains flat regardless of the classifier. The time to classify
a single file is almost 0.1s. This speed seems to be enough to
examine all suspicious files from the Internet.

123

Applying NLP techniques to malware... 287

Table 7 The required time for training and test of FFRI 2016

Classifier SVM MLP CNN RF XGB

model Doc2vec

training 7:07 12:19 27:59 7:02 23:40

test 15:18 15:11 15:19 15:11 15:11

test (s/file) 0.111 0.111 0.111 0.111 0.111

model LSI

training 5:45 13:44 1:41:49 6:06 15:44

test 15:26 15:20 15:36 15:20 15:20

test (s/file) 0.112 0.112 0.114 0.112 0.112

Fig. 8 The average result of the practical experiment

5.6 Practical performance

In practical environment, actual samples are more dis-
tributed. Hence, the experimental samples might not repre-
sent the population appropriately. To mitigate this problem,
a more large-scale dataset has to be used. Moreover, the
training samples should be smaller. To represent actual sam-
ple distribution, the FFRI 2019 and Clean A–C are used.
They contain 500,000 samples. These samples are randomly
divided into 10 groups. One of the groups is used as the train-
ing samples. The rest 9 groups are used as the test samples.
The training and test are repeated 10 times. The average result
of the practical experiment is shown in Fig. 8.

The vertical axis represents the Accuracy (A), Precision
(P), Recall (R), or F1 score (F). Note that the training samples
account for only 10 percent. This means the dataset is highly
imbalanced. The LSI and SVMare the best combination. The
best F1 score achieves 0.934. Thus, our detection model is
effective in practical environment.

Table 8 Detection rate (recall) of the known and unknown malware
(LSI and SVM)

FFRI 2016 FFRI 2017 HA 2016

file DR file DR file DR

Known 6,293 0.990 2,915 0.985 2,838 0.892

Unknown 1,950 0.989 3,336 0.964 2,944 0.967

6 Discussion

6.1 Detecting newmalware

In the time series analysis, our detection model is effec-
tive to new malware on the imbalanced dataset. The new
malware samples are categorized into known malware and
unknown malware. In this study, we assume that known
malware samples are ones previously defined by Microsoft
defender. These samples are new but just subspecies of the
existing malware. We also assume that unknown malware
samples are ones not defined by Microsoft defender at that
time. In this experiment, our detection model was trained by
the samples before 2015. Hence, the newly defined samples
after 2016 are assumed as new malware. The detection rate
of the known and unknown malware is shown in Table 8.

The detection rate of unknown malware is on the same
level with known malware. Thus, our detection model is
effective to not only subspecies of the existing malware, but
also new malware.

6.2 Defeating packedmalware and anti-debugging
techniques

Our detection model uses lexical features extracted from
printable strings. These features include the API or argument
names, which are useful to identify malware. These use-
ful strings, however, are obfuscated in the packed malware.
Several anti-debugging techniques might vary the lexical
features. The test samples of the time series analysis are cate-
gorized into 4 types; packed and unpacked, or anti-debugging
and no anti-debugging by PEiD 8. PEiD detects most com-
mon packers and anti-debugging techniques with more than
470 different signatures in PE files. Since the FFRI dataset
does not contain malware samples, we analyzed the HA
dataset. Table 9 shows the detection rate of each malware
type. Tables 10 and 11 show the top names.

Contrary to expectations, each detection rate is on the
same level. We also analyzed the benign samples. These
samples contain 27,196 packed samples and 77,893 samples
with anti-debugging techniques. Detection rate in each type
is 0.988 to 0.997. Therefore, our method does not seem to

8 https://www.aldeid.com/wiki/PEiD.

123

https://www.aldeid.com/wiki/PEiD

288 M. Mimura, R. Ito

Table 9 Detection rate (recall) of each malware type (LSI and SVM)

HA 2016 HA 2017 HA 2018
file DR file DR file DR

packed 2,771 0.926 1,370 0.866 2,466 0.878

unpacked 3,016 0.931 1,464 0.899 3,157 0.889

anti 1,404 0.912 905 0.899 1,929 0.906

no anti 4,383 0.934 1,929 0.874 3,694 0.871

Table 10 Top 10 PEiD names in the HA dataset

Dataset No. PEiD name

1 Microsoft_Visual_Cpp_v50v60_MFC

2 Borland_Delphi_30_additional

3 Borland_Delphi_30_

4 Borland_Delphi_v40_v50

5 Borland_Delphi_v30

HA 2016 6 Borland_Delphi_DLL

7 Borland_Delphi_40_additional

8 Borland_Delphi_Setup_Module

9 Borland_Delphi_40

10 yodas_Protector_v1033_dllocx

_Ashkbiz_Danehkar_h

1 Microsoft_Visual_Cpp_8

2 VC8_Microsoft_Corporation

3 Microsoft_Visual_Cpp_v50v60_MFC

4 yodas_Protector_v1033_dllocx

_Ashkbiz_Danehkar_h

HA 2017 5 Microsoft_Visual_Studio_NET

6 Microsoft_Visual_Studio_NET_additional

7 NET_executable_

8 NET_executable

9 Microsoft_Visual_Basic_v50

10 Microsoft_Visual_C_Basic_NET

1 Microsoft_Visual_Cpp_v50v60_MFC

2 Borland_Delphi_30_additional

3 Borland_Delphi_30_

4 Borland_Delphi_v40_v50

5 Borland_Delphi_v30

HA 2018 6 Borland_Delphi_40_additional

7 Borland_Delphi_Setup_Module

8 Borland_Delphi_40

9 VC8_Microsoft_Corporation

10 Borland_Delphi_DLL

detect the packer or anti-debugging techniques as malware.
One possible reason for this is the API and argument names
used for obfuscation. In addition, the typical instructions can
be extracted as printable strings. They must be remained for

Table 11 Top 10 anti-debugging names in the HA dataset

Dataset No. Anti-debugging name

1 DebuggerException__SetConsoleCtrl

2 VC8_Microsoft_Corporation

3 DebuggerCheck__QueryInfo

4 Microsoft_Visual_Cpp_8

5 Microsoft_Visual_Cpp_v50v60_MFC

HA 2016 6 ThreadControl__Context

7 Borland_Delphi_30_additional

8 Borland_Delphi_30_

9 Borland_Delphi_v40_v50

10 Borland_Delphi_v30

1 DebuggerException__SetConsoleCtrl

2 VC8_Microsoft_Corporation

3 Microsoft_Visual_Cpp_8_MFC

4 ThreadControl__Context

5 DebuggerCheck__QueryInfo

HA 2017 6 DebuggerCheck__RemoteAPI

7 SEH__vectored

8 Microsoft_Visual_Cpp_v50v60_MFC

9 Microsoft_Visual_Cpp_80_DLL

10 Microsoft_Visual_Studio_NET

1 DebuggerException__SetConsoleCtrl

2 VC8_Microsoft_Corporation

3 Microsoft_Visual_Cpp_8

4 ThreadControl__Context

5 DebuggerCheck__QueryInfo

HA 2018 6 Microsoft_Visual_Cpp_v50v60_MFC

7 DebuggerCheck__RemoteAPI

8 Borland_Delphi_30_additional

9 Borland_Delphi_30_

10 Borland_Delphi_v40_v50

deobfuscation. Thus, our method is effective against packed
malware and anti-debugging techniques.

6.3 Limitation

We are aware that our study may have some limitations.
The first is attributed to our dataset. As described previ-

ously, this study used more than 500,000 samples. Actual
samples, however, might be more distributed. Hence, our
dataset might not represent the population appropriately. As
the matter of fact, we cannot use all actual samples for eval-
uation. To the best of our knowledge, the possible solution is
using large-scale and multiple sources.

The second is lack of detailed analysis. In this study,
we used a simple signature-based packer detector. This pro-
gram has approximately 30 percent of false negatives [38].

123

Applying NLP techniques to malware... 289

We did not identify the packer names of our samples com-
pletely. Hence, our experimental result may not be applicable
to some sophisticated packers, which are not detected by
signature-based packer detectors. We identified our samples
with VirusTotal and Microsoft defender. As reported in a
paper, there is a problem with label changes in VirusTotal
[56]. This can affect the accuracy of our experiment. Further
analysis is required to reveal these issues.

The third is lack of comparison. In this paper, we focused
on the practical performance and did not compare ourmethod
with other related studies. Due to the issues about the dataset
or implementation, it was not feasible to provide fair com-
parison. Further experiments are required to provide fair
comparison.

7 Conclusion

In this paper, we applyNLP techniques tomalware detection.
This paper reveals that printable strings with NLP techniques
are effective for detecting malware in a practical environ-
ment. Our dataset consists of more than 500,000 samples
obtained from multiple sources. The training samples were
selected from the earlier samples. The test samples contain
many benign samples thereby be imbalanced. In the further
experiment, the training samples account for only 10 percent
thereby be highly imbalanced. Thus, our dataset represents
more practical environment. Our experimental result shows
that our detection model is effective to not only subspecies
of the existing malware, but also newmalware. Furthermore,
our detection model is effective against packed malware and
anti-debugging techniques.

Our study clearly has some limitations. Despite this, we
believe our study could be a starting point to evaluate prac-
tical performance. Our method might be applicable to other
architectures. In future work, we analyze the detail of the
samples. A more precise packer detector will improve the
reliability of this study.

Declaration

Conflict of interest The authors declare that they have no conflict of
interest.

Funding This work was supported by JSPS KAKENHI Grant Number
21K11898.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R.: Detection
of newmalicious code using n-grams signatures. In: PST, pp. 193–
196 (2004). http://dev.hil.unb.ca/Texts/PST/pdf/assaleh.pdf

2. Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S.,
Balzarotti, D., Vigna, G., Kruegel, C. When malware is packin’
heat; limits of machine learning classifiers based on static anal-
ysis features Network and Distributed Systems Security (NDSS)
Symposium (2020). https://doi.org/10.14722/ndss.2020.24310

3. Bilar, D.: Opcodes as predictor for malware. IJESDF. Int. J. Elec-
tron. Secur. Digit. Forensics 1(2), 156–168 (2007)

4. Elovici, Y., Shabtai, A., Moskovitch, R., Tahan, G., Glezer, C.:
Applying machine learning techniques for detection of malicious
code in network traffic. In: J. Hertzberg,M. Beetz, R. Englert (eds.)
KI 2007: Advances in Artificial Intelligence, 30th Annual German
Conference on AI, KI 2007, Osnabrück, Germany, September 10-
13, 2007, Proceedings, Lecture Notes in Computer Science, vol.
4667, pp. 44–50. Springer (2007). https://doi.org/10.1007/978-3-
540-74565-5_5

5. Hatada, M., Akiyama, M., Matsuki, T., Kasama, T.: Empowering
anti-malware research in japan by sharing the MWS datasets. JIP
23(5), 579–588 (2015). https://doi.org/10.2197/ipsjjip.23.579

6. Henchiri, O., Japkowicz, N.: A feature selection and evaluation
scheme for computer virus detection. In: ICDM, pp. 891–895.
IEEE Computer Society (2006). http://www.computer.org/csdl/
proceedings/icdm/2006/2701/00/index.html

7. Ismail, I., Marsono, M.N., Nor, S.M.: Detecting worms using data
mining techniques: Learning in the presence of class noise. In:
K. YÃtongnon, A. Dipanda, R. Chbeir (eds.) Sixth International
Conference on Signal-Image Technology and Internet-Based Sys-
tems, SITIS 2010, Kuala Lumpur, Malaysia, December 15-18,
2010, pp. 187–194. IEEE Computer Society (2010). http://www.
computer.org/csdl/proceedings/sitis/2010/4319/00/index.html

8. Ito, R.,Mimura,M.:Detecting unknownmalware from ascii strings
with natural language processing techniques. In: 2019 14th Asia
Joint Conference on Information Security (AsiaJCIS), pp. 1–8
(2019). https://doi.org/10.1109/AsiaJCIS.2019.00-12

9. Jacob, G., Comparetti, P.M., Neugschwandtner, M., Kruegel, C.,
Vigna, G.: A static, packer-agnostic filter to detect similar mal-
ware samples. In: Flegel, U., Markatos, E.P., Robertson, W.K.
(eds.) DIMVA. Lecture Notes in Computer Science, pp. 102–122.
Springer, Berlin (2012)

10. Karim, M.E., Walenstein, A., Lakhotia, A., Parida, L.: Malware
phylogeny generation using permutations of code. J. Comput.
Virol. 1(1–2), 13–23 (2005)

11. Kolosnjaji, B., Eraisha, G., Webster, G.D., Zarras, A., Eckert,
C.: Empowering convolutional networks for malware classifica-
tion and analysis. In: 2017 International Joint Conference on
Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-
19, 2017, pp. 3838–3845 (2017). https://doi.org/10.1109/IJCNN.
2017.7966340

12. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious exe-
cutables in the wild. In: W.K. 0001, R. Kohavi, J. Gehrke,
W. DuMouchel (eds.) Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dev.hil.unb.ca/Texts/PST/pdf/assaleh.pdf
https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.1007/978-3-540-74565-5_5
https://doi.org/10.1007/978-3-540-74565-5_5
https://doi.org/10.2197/ipsjjip.23.579
http://www.computer.org/csdl/proceedings/icdm/2006/2701/00/index.html
http://www.computer.org/csdl/proceedings/icdm/2006/2701/00/index.html
http://www.computer.org/csdl/proceedings/sitis/2010/4319/00/index.html
http://www.computer.org/csdl/proceedings/sitis/2010/4319/00/index.html
https://doi.org/10.1109/AsiaJCIS.2019.00-12
https://doi.org/10.1109/IJCNN.2017.7966340
https://doi.org/10.1109/IJCNN.2017.7966340

290 M. Mimura, R. Ito

ing, Seattle, Washington, USA, August 22-25, 2004, pp. 470–478.
ACM (2004)

13. Kolter, J.Z., Maloof, M.A.: Learning to detect and classify mali-
cious executables in the wild. J. Mach. Learn. Res 7, 2721–2744
(2006)

14. Kong, D., Yan, G.: Discriminant malware distance learning on
structural information for automatedmalware classification. In: I.S.
Dhillon, Y. Koren, R. Ghani, T.E. Senator, P. Bradley, R. Parekh,
J. He, R.L. Grossman, R. Uthurusamy (eds.) The 19th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2013, Chicago, IL, USA, August 11-14,
2013, pp. 1357–1365. ACM (2013). http://dl.acm.org/citation.
cfm?id=2487575

15. Le, Q.V., Mikolov, T.: Distributed representations of sentences and
documents. In: Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China, 21-26 June
2014, pp. 1188–1196 (2014). http://jmlr.org/proceedings/papers/
v32/le14.html

16. Lee, J., Im, C., Jeong, H.: A study of malware detection and classi-
fication by comparing extracted strings. In: Proceedings of the 5th
International Conference on Ubiquitous Information Management
and Communication, ICUIMC 2011, Seoul, Republic of Korea,
February 21 - 23, 2011, p. 75 (2011). https://doi.org/10.1145/
1968613.1968704

17. Li, B., Roundy, K.A., Gates, C.S., Vorobeychik, Y.: Large-
scale identification of malicious singleton files. In: G. Ahn,
A. Pretschner, G. Ghinita (eds.) Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy,
CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, pp.
227–238. ACM (2017). https://doi.org/10.1145/3029806.3029815

18. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast,
generic, and safe unpacking of malware. In: ACSAC, pp. 431–
441. IEEE Computer Society (2007). http://www.computer.org/
csdl/proceedings/acsac/2007/3060/00/index.html

19. Mastjik, F., Varol, C., Varol, A.: Comparison of pattern matching
techniques on identification of same family malware. Int. J. Inf.
Secur. Sci. 4(3), 104–111 (2015)

20. Masud, M., Khan, L., Thuraisingham, B.: A scalable multi-level
feature extraction technique to detect malicious executables. Inf.
Syst. Front. - ISF 10, 33–45 (2008). https://doi.org/10.1007/
s10796-007-9054-3

21. Mikolov, T., Yih, W., Zweig, G.: Linguistic regularities in con-
tinuous space word representations. In: Human Language Tech-
nologies: Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pp.
746–751 (2013). http://aclweb.org/anthology/N/N13/N13-1090.
pdf

22. Mimura, M.: An attempt to read network traffic with doc2vec. J.
Inf. Proces.27, 711–719 (2019). https://doi.org/10.2197/ipsjjip.27.
711

23. Mimura, M.: Adjusting lexical features of actual proxy logs for
intrusion detection. J. Inf. Secur. Appl. 50, 102408 (2020)

24. Mimura, M.: An improved method of detecting macro malware on
an imbalanced dataset. IEEE Access 8, 204709–204717 (2020).
https://doi.org/10.1109/ACCESS.2020.3037330

25. Mimura, M.: Using fake text vectors to improve the sensitivity of
minority class for macro malware detection. J. Inf. Secur. Appl. 54,
102600 (2020)

26. Mimura, M., Miura, H.: Detecting unseen malicious VBA macros
with NLP techniques. JIP 27, 555–563 (2019). https://doi.org/10.
2197/ipsjjip.27.555

27. Mimura, M., Ohminami, T.: Towards efficient detection of mali-
cious vba macros with lsi. In: N. Attrapadung, T. Yagi (eds.)
Advances in Information and Computer Security - 14th Interna-
tional Workshop on Security, IWSEC 2019, Tokyo, Japan, August

28-30, 2019, Proceedings, Lecture Notes in Computer Science, vol.
11689, pp. 168–185. Springer (2019)

28. Mimura, M., Otsubo, Y., Tanaka, H.: Evaluation of a brute forc-
ing tool that extracts the rat from a malicious document file. In:
AsiaJCIS, pp. 147–154. IEEE Computer Society (2016). http://
ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781470

29. Mimura, M., Suga, Y.: Filtering malicious javascript code with
doc2vec on an imbalanced dataset. In: 2019 14thAsia Joint Confer-
ence on InformationSecurity (AsiaJCIS), pp. 24–31 (2019). https://
doi.org/10.1109/AsiaJCIS.2019.000-9

30. Mimura,M., Tanaka, H.: Heavy log reader: Learning the context of
cyber attacks automatically with paragraph vector. In: Information
Systems Security - 13th International Conference, ICISS 2017,
Mumbai, India, December 16-20, 2017, Proceedings, pp. 146–163
(2017). https://doi.org/10.1007/978-3-319-72598-7_9

31. Mimura, M., Tanaka, H.: Reading network packets as a natu-
ral language for intrusion detection. In: Information Security and
Cryptology - ICISC 2017 - 20th International Conference, Seoul,
South Korea, November 29 - December 1, 2017, Revised Selected
Papers, pp. 339–350 (2017). https://doi.org/10.1007/978-3-319-
78556-1_19

32. Mimura,M., Tanaka,H.: Leaving all proxy server logs to paragraph
vector. J. Inf. Process.26, 804–812 (2018). https://doi.org/10.2197/
ipsjjip.26.804

33. Mimura, M., Tanaka, H.: A linguistic approach towards intrusion
detection in actual proxy logs: 20th international conference, icics
2018, lille, france, october 29-31, 2018, proceedings. pp. 708–718
(2018). https://doi.org/10.1007/978-3-030-01950-1_42

34. Miura, H., Mimura, M., Tanaka, H.: Macros finder: Do you
remember loveletter? In: Information Security Practice and Expe-
rience - 14th International Conference, ISPEC 2018, Tokyo, Japan,
September 25-27, 2018, Proceedings, pp. 3–18 (2018). https://doi.
org/10.1007/978-3-319-99807-7_1

35. Moskovitch, R., Stopel, D., Feher, C., Nissim, N., Elovici, Y.:
Unknown malcode detection via text categorization and the imbal-
ance problem. International Conference on Intelligence and Secu-
rity Informatics. In: ISI, pp. 156–161. IEEE (2008). https://doi.org/
10.1109/ISI.2008.4565046

36. Nagano, Y., Uda, R.: Static analysis with paragraph vector for mal-
ware detection. In: IMCOM, p. 80. ACM (2017). http://dl.acm.org/
citation.cfm?id=3022306

37. Ndichu, S., Kim, S., Ozawa, S., Misu, T., Makishima, K.: A
machine learning approach to detection of javascript-based attacks
using ast features and paragraph vectors. Appl. Soft Comput. 84,
105721 (2019)

38. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed executa-
bles for accurate computer virus detection. Pattern Recognit. Lett.
29(14), 1941–1946 (2008). https://doi.org/10.1016/j.patrec.2008.
06.016

39. Phung, N.M., Mimura, M.: Detection of malicious javascript on an
imbalanced dataset. Internet of Things 13, 100357 (2021). https://
doi.org/10.1016/j.iot.2021.100357

40. Raff, E., Sylvester, J., Nicholas, C.: Learning the PE header,
malware detectionwithminimal domain knowledge. In: B.M. Thu-
raisingham, B. Biggio, D.M. Freeman, B. Miller, A. Sinha (eds.)
Proceedings of the 10th ACMWorkshop on Artificial Intelligence
and Security, AISec@CCS 2017, Dallas, TX, USA, Novem-
ber 3, 2017, pp. 121–132. ACM (2017). https://doi.org/10.1145/
3128572.3140442

41. Raff, E., Sylvester, J., Nicholas, C.K.: Learning the pe
header, malware detection with minimal domain knowledge.
CoRR abs/1709.01471 (2017). https://doi.org/10.1145/3128572.
3140442

42. Řehůřek, R., Sojka, P.: Software Framework for Topic Modelling
with Large Corpora. In: Proceedings of the LREC 2010 Workshop

123

http://dl.acm.org/citation.cfm?id=2487575
http://dl.acm.org/citation.cfm?id=2487575
http://jmlr.org/proceedings/papers/v32/le14.html
http://jmlr.org/proceedings/papers/v32/le14.html
https://doi.org/10.1145/1968613.1968704
https://doi.org/10.1145/1968613.1968704
https://doi.org/10.1145/3029806.3029815
http://www.computer.org/csdl/proceedings/acsac/2007/3060/00/index.html
http://www.computer.org/csdl/proceedings/acsac/2007/3060/00/index.html
https://doi.org/10.1007/s10796-007-9054-3
https://doi.org/10.1007/s10796-007-9054-3
http://aclweb.org/anthology/N/N13/N13-1090.pdf
http://aclweb.org/anthology/N/N13/N13-1090.pdf
https://doi.org/10.2197/ipsjjip.27.711
https://doi.org/10.2197/ipsjjip.27.711
https://doi.org/10.1109/ACCESS.2020.3037330
https://doi.org/10.2197/ipsjjip.27.555
https://doi.org/10.2197/ipsjjip.27.555
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781470
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781470
https://doi.org/10.1109/AsiaJCIS.2019.000-9
https://doi.org/10.1109/AsiaJCIS.2019.000-9
https://doi.org/10.1007/978-3-319-72598-7_9
https://doi.org/10.1007/978-3-319-78556-1_19
https://doi.org/10.1007/978-3-319-78556-1_19
https://doi.org/10.2197/ipsjjip.26.804
https://doi.org/10.2197/ipsjjip.26.804
https://doi.org/10.1007/978-3-030-01950-1_42
https://doi.org/10.1007/978-3-319-99807-7_1
https://doi.org/10.1007/978-3-319-99807-7_1
https://doi.org/10.1109/ISI.2008.4565046
https://doi.org/10.1109/ISI.2008.4565046
http://dl.acm.org/citation.cfm?id=3022306
http://dl.acm.org/citation.cfm?id=3022306
https://doi.org/10.1016/j.patrec.2008.06.016
https://doi.org/10.1016/j.patrec.2008.06.016
https://doi.org/10.1016/j.iot.2021.100357
https://doi.org/10.1016/j.iot.2021.100357
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.1145/3128572.3140442
https://doi.org/10.1145/3128572.3140442

Applying NLP techniques to malware... 291

on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Val-
letta, Malta (2010). http://is.muni.cz/publication/884893/en

43. Salton, G.,Wong, A., Yang, C.: A vector spacemodel for automatic
indexing. Commun. ACM 18(11), 613–620 (1975). https://doi.org/
10.1145/361219.361220

44. Sathyanarayan, V.S., Kohli, P., Bruhadeshwar, B.: Signature gener-
ation and detection of malware families. In: Y.M. 0001, W. Susilo,
J. Seberry (eds.) Information Security and Privacy, 13th Aus-
tralasian Conference, ACISP 2008, Wollongong, Australia, July
7-9, 2008, Proceedings, Lecture Notes in Computer Science, vol.
5107, pp. 336–349. Springer (2008)

45. Saxe, J., Berlin, K.: Deep neural network based malware detec-
tion using two dimensional binary program features. In: 10th
International Conference on Malicious and Unwanted Software,
MALWARE 2015, Fajardo, PR, USA, October 20-22, 2015, pp.
11–20. IEEE Computer Society (2015). https://doi.org/10.1109/
MALWARE.2015.7413680

46. Schultz,M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Dataminingmeth-
ods for detection of new malicious executables. In: 2001 IEEE
Symposium on Security and Privacy, Oakland, California, USA
May 14-16, 2001, pp. 38–49. IEEE Computer Society (2001).
https://doi.org/10.1109/SECPRI.2001.924286

47. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of
malicious code by applying machine learning classifiers on static
features: a state-of-the-art survey. Inf. Sec. Techn. Rep. 14(1), 16–
29 (2009)

48. Shafiq, M.Z., Tabish, S.M., Mirza, F., Farooq, M.: Pe-miner:
Mining structural information to detect malicious executables in
realtime. In: E. Kirda, S. Jha, D. Balzarotti (eds.) Recent Advances
in IntrusionDetection, 12th International Symposium, RAID2009,
Saint-Malo, France, September 23-25, 2009. Proceedings, Lec-
ture Notes in Computer Science, vol. 5758, pp. 121–141. Springer
(2009). https://doi.org/10.1007/978-3-642-04342-0_7

49. Symantec: Internet Security Threat Report 24 (2019)
50. Tian, R., Batten, L.M., Versteeg, S.: Function length as a tool for

malware classification. In: MALWARE, pp. 69–76. IEEE Com-
puter Society (2008). http://doi.ieeecomputersociety.org/10.1109/
MALWARE.2008.4690860

51. Tran, T.K., Sato, H.: Nlp-based approaches for malware classifica-
tion from api sequences. In: 2017 21st Asia Pacific Symposium on
Intelligent and Evolutionary Systems (IES), pp. 101–105 (2017).
https://doi.org/10.1109/IESYS.2017.8233569

52. Wang, J., Ma, S., Zhang, Y., Li, J., Ma, Z., Mai, L., Chen, T., Gu,
D.: NLP-EYE: detecting memory corruptions via semantic-aware
memory operation function identification. In: 22nd International
Symposium on Research in Attacks, Intrusions and Defenses,
RAID 2019, Chaoyang District, Beijing, China, September 23-25,
2019., pp. 309–321 (2019). https://www.usenix.org/conference/
raid2019/presentation/wang-0

53. Webster, G.D., Kolosnjaji, B., von Pentz, C., Kirsch, J., Hanif,
Z.D., Zarras, A., Eckert, C.: Finding the needle: A study of the
PE32 rich header and respective malware triage. In: M. Polychron-
akis, M. Meier (eds.) Detection of Intrusions and Malware, and
VulnerabilityAssessment - 14th International Conference, DIMVA
2017, Bonn, Germany, July 6-7, 2017, Proceedings, Lecture Notes
in Computer Science, vol. 10327, pp. 119–138. Springer (2017).
https://doi.org/10.1007/978-3-319-60876-1_6

54. Ye, Y., Chen, L., Wang, D., Li, T., Jiang, Q., Zhao, M.: SBMDS: an
interpretable string based malware detection system using SVM
ensemble with bagging. J Comput Virol 5(4), 283–293 (2009).
https://doi.org/10.1007/s11416-008-0108-y

55. Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious codes
detection based on ensemble learning. In: B.X. 0001, L.T. Yang,
J. Ma, C. MÃ1/4ller-Schloer, Y.H. 0001 (eds.) Autonomic and
Trusted Computing, 4th International Conference, ATC 2007,
Hong Kong, China, July 11-13, 2007, Proceedings, Lecture Notes
in Computer Science, vol. 4610, pp. 468–477. Springer (2007)

56. Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., Wang, G.:
Measuring andmodeling the label dynamics of online anti-malware
engines. In: S. Capkun, F. Roesner (eds.) 29th USENIX Secu-
rity Symposium, USENIX Security 2020, August 12-14, 2020, pp.
2361–2378.USENIXAssociation (2020). https://www.usenix.org/
conference/usenixsecurity20/presentation/zhu

57. Zolotukhin, M., Hamalainen, T.: Detection of zero-day mal-
ware based on the analysis of opcode sequences. In: 2014
IEEE 11th Consumer Communications and Networking Con-
ference (CCNC), pp. 386–391 (2014). https://doi.org/10.1109/
CCNC.2014.6866599

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Mamoru Mimura received his B.E. and M.E. in Engineering from
National Defense Academy of Japan, in 2001 and 2008, respectively.
He received his Ph.D. in Informatics from the Institute of Information
Security in 2011 and M.B.A. from Hosei University in 2014. Dur-
ing 2001–2017, he was a member of the Japan Maritime Self-Defense
Force. During 2011–2013, he was with the National Information Secu-
rity Center. Since 2014, he has been a researcher in the Institute of
Information Security. Since 2015, he has been with the National Cen-
ter of Incident Readiness and Strategy for Cybersecurity. Currently, he
is an Associate Professor in the Dept. of Computer Science, National
Defense Academy of Japan.

Ryo Ito recived his B.E and M.E from National Defense Academy of
Japan in 2013 and 2020 respectively. Currently, he is a member of the
Japan Ground Self Defense Force.

123

http://is.muni.cz/publication/884893/en
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1007/978-3-642-04342-0_7
http://doi.ieeecomputersociety.org/10.1109/MALWARE.2008.4690860
http://doi.ieeecomputersociety.org/10.1109/MALWARE.2008.4690860
https://doi.org/10.1109/IESYS.2017.8233569
https://www.usenix.org/conference/raid2019/presentation/wang-0
https://www.usenix.org/conference/raid2019/presentation/wang-0
https://doi.org/10.1007/978-3-319-60876-1_6
https://doi.org/10.1007/s11416-008-0108-y
https://www.usenix.org/conference/usenixsecurity20/presentation/zhu
https://www.usenix.org/conference/usenixsecurity20/presentation/zhu
https://doi.org/10.1109/CCNC.2014.6866599
https://doi.org/10.1109/CCNC.2014.6866599

	Applying NLP techniques to malware detection in a practical environment
	Abstract
	1 Introduction
	2 Related work
	2.1 Static analysis
	2.2 NLP-based detection

	3 NLP techniques
	3.1 Bag-of-words
	3.2 Latent semantic indexing
	3.3 Paragraph vector

	4 NLP-based detection model
	4.1 Training
	4.2 Test
	4.3 Implementation

	5 Evaluation
	5.1 Dataset
	5.2 Metrics
	5.3 Parameter optimization
	5.4 Cross-validation
	5.5 Time series analysis
	5.6 Practical performance

	6 Discussion
	6.1 Detecting new malware
	6.2 Defeating packed malware and anti-debugging techniques
	6.3 Limitation

	7 Conclusion
	References

