Int. J. Inf. Secur. (2018) 17:135-151
https://doi.org/10.1007/s10207-017-0361-5

@ CrossMark

REGULAR CONTRIBUTION

HoneyClirculator: distributing credential honeytoken for
introspection of web-based attack cycle

Mitsuaki Akiyama'! . Takeshi Yagi! - Takeo Hariu! - Youki Kadobayashi?

Published online: 30 January 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract A web user who falsely accesses a compromised
website is usually redirected to an adversary’s website and
is forced to download malware after being exploited. Addi-
tionally, the adversary steals the user’s credentials by using
information-leaking malware. The adversary may also try to
compromise public websites owned by individual users by
impersonating the website administrator using the stolen cre-
dentials. These compromised websites then become landing
sites for drive-by download malware infection. Identifying
malicious websites using crawling techniques requires a large
amount of resources and time. To monitor the web-based
attack cycle for effective detection and prevention, we pro-
pose a monitoring system called HONEYCIRCULATOR based
on a honeytoken, which actively leaks bait credentials and
lures adversaries to our decoy server that behaves like a com-
promised web content management system. To recursively
analyze attack phases on the web-based attack cycle, our
proposed system involves collecting malware, distributing
bait credentials, monitoring fraudulent access, and inspect-
ing compromised web content. It can instantly discover
unknown malicious entities without conducting large-scale
web crawling because of the direct monitoring behind the

B Mitsuaki Akiyama
akiyama.mitsuaki@]lab.ntt.co.jp

Takeshi Yagi
yagi.takeshi @lab.ntt.co.jp

Takeo Hariu
hariu.takeo @lab.ntt.co.jp

Youki Kadobayashi
youki-k @is.naist.jp

I NTT Secure Platform Laboratories, NTT Corporation, 3-9-11
Midori-cho, Musashino-shi, Tokyo, Japan

Nara Institute of Science and Technology, Takayama 8916-5,
Ikoma, Nara, Japan

compromised web content management system. Our pro-
posed system enables continuous and stable monitoring for
about one year. In addition, almost all the malicious websites
we discovered had not been previously registered in public
blacklists.

Keywords Web-based malware - Client honeypot - Malware
sandbox - Honeytokens - Information leakage

1 Introduction

Attacks by Beladen, Gumblar, and Nineball are large-scale
incidents of mass compromises of websites [1]. These types
of compromises are the leading cause of malware infec-
tion on the web. Web content on a compromised website
is injected with code that will redirect web clients unknow-
ingly to a malicious website. The malicious website behind
the compromised website that acts as a landing site contains
exploit code that targets the web browser’s vulnerability. The
web client is automatically infected with malware simply by
accessing the compromised website without user interaction.
If the malware has the functionality of leaking information,
the credentials on a victim host may be unknowingly stolen.
Furthermore, if a victim host stores its own website cre-
dentials, the credentials can also be stolen and leaked to
adversaries. Adversaries can then compromise that website
with the stolen credentials (Fig. 1). In this way, the phases
of an attack cycle, such as exploit, credential collection, and
fraud & abuse, are repeated continuously, further spread-
ing malware infection and compromising more websites. In
this attack cycle, malicious entities, such as specific exploit
codes and exploit websites behind compromised websites,
might change temporarily, and compromised websites might
also become other secondary attack vectors. We believe it is

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-017-0361-5&domain=pdf

136

M. Akiyama et al.

1. Access Web

2. Infect malware QJ

3. Leak credentials

=
Web user / T
Server admin. | Manage

@
[l

Malicious website

Manage

— Adversary

4. Compromise web content

Web server / Web content

Manage
management system

6. Redirect to malicious website

7. Infect malware Q“

Fig. 1 Attack model. Exploit, credential collection, and fraud and
abuse phases represent 1-2, 3, and 4-7, respectively

=

Malicious website

5. Access web

—

|l

Web user

important to comprehensively monitor an adversary’s activ-
ities in this attack cycle to understand the above-mentioned
temporal changes and secondary attack vectors [2].

Much research has been done to find ways of discov-
ering malicious websites in web space [3-6]. The typical
approach is crawling-based malicious website discovery.
This approach, however, requires numerous system and net-
work resources for inspection, so it is a time-consuming
process. Effective methods for discovering suitable seed
URLSs to apply crawling have been proposed recently [7-9].
Although these guided crawling methods can dramatically
reduce the cost of crawling, another problem still remains,
i.e., the need to rapidly discover unknown malicious web-
sites. Moreover, in client-side monitoring (i.e., crawling as
a web browser), it is impossible to understand how adver-
saries use stolen credentials or to understand the activities of
adversaries on compromised servers.

One kind of honeypot is a honeytoken, which is artifi-
cial digital data planted deliberately into a genuine system
resource in order to detect unauthorized attempts to use infor-
mation [10]. In actual deployments, a honeytoken is leaked
to an adversary as a bait credential, such as an account name
or password, in order to monitor malicious usage of actual
Servers or services.

To consistently monitor such web-based attack cycles,
we propose a monitoring system called HONEYCIRCULA-
TOR based on a honeytoken that deliberately leaks bait
credentials and lures adversaries to our decoy server that
behaves like a compromised web content management sys-
tem. Our assumption is that honeytoken-based monitoring
can be used for in-depth tracking of a series of the above-
mentioned attack phases by a specific adversary and can
discover malicious entities (e.g., adversary’s IP addresses,
malicious websites, exploit codes, redirect codes). The con-
tributions of this paper are as follows:

— We established a monitoring system that succeeded in
being continuously compromised by various adversary
infrastructures in a one-year experiment.

@ Springer

— Our proposed system discloses adversaries’ activities
on compromised websites: traffic direction to exploit
websites, web access control to circumvent security
inspection, phishing-based credential exfiltration, and
mail-based drive-by download.

— We verified through a field experiment that the moni-
tored information instantly revealed unknown malicious
IP addresses and domains without needing to conduct
large-scale web crawling when they are used, and most
of the information was not contained in public blacklists.

The remainder of this paper is organized as follows.
Related work is described in Sect. 2, and assumed malware
infection and a preliminary investigation of information-
leaking malware are described in Sect. 3. Our honeytoken-
based monitoring system is explained in Sect. 4, and the
results of experiments conducted to obtain information on
adversaries’ activities in actual web space and an evaluation
of the monitored malicious entities are presented in Sects. 5
and 6, respectively. Discussion and concluding remarks are
given in Sects. 7 and 8, respectively.

2 Related work
2.1 Honeytoken

The first definition of a honeytoken was given by Spitzner
[10]. A honeypot can also be a piece of digital information,
which is a special form of honeypot called a honeytoken. It
can be an office document, e-mail address, database entry,
or login credential that serves as bait to lure adversaries. A
unique advantage of honeytokens is monitoring the flow of
stolen information and its abuse.

HoneyGen [11] is a method for automatically generating
honeytokens that are similar to actual data by extrapolating
the characteristics and properties of actual data items that are
difficult to distinguish from actual data.

There are two types of honeytoken distributions: victim-
trigger and adversary-trigger. Victim-trigger-based leakage
is when a victim intentionally submits honeytokens (e.g., cre-
dentials) to a malicious server such as a phishing site. Mon-
itoring systems of victim-trigger-based honeytoken leakage
have also been developed to detect phishers by submitting
credentials to phishing sites and monitoring their usage [12—
14]. Adversary-trigger-based leakage is when an adversary
or malware intrudes into a victim’s system and steals honey-
tokens. The D3 [15] system automatically generates decoy
documents with credentials and prompts an adversary to
exfiltrate them. BotSwindler [16], which is a hybrid leakage
method, emulates user interaction, e.g., keyboard input, on a
malware sandbox and prompts malware with a trigger condi-
tion of user interaction to leak credentials of actual services

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 137

and monitors the use of stolen credentials on these services
to identify information-leaking malware.

Many monitoring models are basically designed to involve
genuine authoritative services (e.g., credentials of banking,
webmail, and shopping services). Compromised accounts on
other services are beyond the control of the honeytoken sys-
tem; therefore, they potentially exhibit serious ethical and
legal problems. Our proposed system uses adversary-trigger-
based leakage and can precisely track complex attack cycles
without actual victims because all components in our moni-
toring are decoys.

2.2 Collecting and analyzing exploit codes and malware

Glastopf [17] emulates vulnerable web applications and
receives exploit codes targeting them. Canali’s work [18]
focused on the behavior of adversaries after a website has
been compromised and clarified what adversaries do behind
exploits, so the motivation is similar to that of ours. Canali et
al. deploy vulnerable content management systems for mon-
itoring and classifying patterns of adversary behavior. The
attack vector expected with these systems is vulnerability
of web applications. Due to the large amount of flexibility
for adversaries to intrude, it successfully monitored various
types of adversary behavior. In contrast, HONEYCIRCULATOR
is only focused on the intrusion based on stolen credentials,
i.e., masquerade attack. While there is not a large amount of
flexibility for adversaries on our web content management
system (WCMS) honeypot, it is easy to prompt adversaries
to compromise web content leading to drive-by download
exploits. In addition, the most different is recursively ana-
lyzing malicious entities on the web-based attack cycle.

Online sandbox services [19,20] collect and analyze
malicious executables and URLSs submitted by globally dis-
tributed users. ShadowServer [21] analyzes malware (bots)
provided by collaborative organizations to extract command
and control (C&C) servers and continuously tracks botnet
activity via these servers. Kreibich et al. proposed a sandbox
farm called GQ [22] that controls fine-grained C&C com-
munications to maintain safety and allows flexible/precise
containment policies.

3 Assumption and preliminary investigation

Many malicious websites targeting browser vulnerabili-
ties have recently appeared. When a vulnerable web client
accesses such websites, the exploited web client is unknow-
ingly forced to download/install malware without user inter-
action. This type of exploitation is called drive-by download.
Because drive-by downloads are executed in accordance with
legitimate web protocols (i.e., HTTP and HTTPS), port-
blocking- or protocol-anomaly-based detection methods are

not effective countermeasures. Because various Internet ser-
vices have been integrated into the web in the last decade,
the functionality of web browsers has been enhanced by
various plug-in applications. This enrichment of browser
functionality unfortunately results in a situation in which the
vulnerabilities of different software vendors are continuously
exposed, which requires patch management by software ven-
dors to repair such vulnerabilities. However, by the time some
patches have been released, some web browsers will have
already been exploited. For these reasons, i.e., the use of legit-
imate protocols and the patch management problem, drive-by
download is now becoming the main malware infection
vector.

Malicious websites that attempt to perform drive-by
downloads lure general public web clients to their web-
sites using various techniques: with the link-URL of spam
e-mail, search engine optimization, and by compromising
benign websites so they serve as landing sites of backend
malicious websites. This paper focuses on malware infec-
tion that uses drive-by downloads and also lures web clients
to compromised landing websites that redirect them to back-
end malicious sites. When a vulnerable web client accesses a
compromised website, it is redirected to a backend malicious
website containing exploit code, and as a result, is infected
with malware. Moreover, if the infected host has creden-
tials, the malware steals them and sends them to a remote
host owned by an adversary. An adversary can then access
and compromise web content by using the stolen credentials.
Compromised web content that has been injected with redi-
rect code leads other web clients to backend malicious sites.
Thus, this type of malware spreads like a chain reaction.

We first needed to identify what kinds of applications
were being targeted for credential theft in order to design
an analytical environment that would allow credentials to
be stolen. Our preliminary investigation involved analyzing
the internal behavior of malware on an infected system (e.g.,
filesystem and registry access) in order to identify what appli-
cations information-leaking malware targets. We collected
malware executables from a public blacklist (MalwareDo-
mainList [23]) and analyzed them. We confirmed from the
results of malware analysis that various malware executables
attempted to access specific files and registries corresponding
to applications of mail clients, web browsers, file managers,
web authoring tools, instant messaging clients, and file trans-
fer protocol (FTP) clients. These enumerated applications
seem to be potential victims of information leakage.

Particularly, various malware executables simultaneously
accessed files and registries of various FTP clients. Accessed
files and registries store configuration information of certain
applications, including credentials (account name, password,
IP address/fully qualified domain name (FQDN) of server),
which are written in plain text or encoded using a simple
encoding algorithm, e.g., XOR or bit shifts. An adversary can

@ Springer

138

M. Akiyama et al.

Malware-infected host

" - Services /
2. Access with credential Servers

2oepoN

“HWod JIUS “i€ | yromoN

Client
application A
1. Save credential /

Read credential

Client
application B

Client
application C

o
file/reg. of C

t L‘g 4. Leak credential
Malware

Fig. 2 Extracting and leaking credentials on victim host

C Config
file/reg. of A) |file/reg. of B

3. Read credential |

Adversary’s host

S 4

easily decode them if he or she knows what the encoding algo-
rithms client applications use. In addition, when an FTP client
accesses an FTP server, malware executables sniff that com-
munication between them and extract credentials in some
cases. Malware sends the stolen credentials to a remote host
owned by an adversary. How information-leaking malware
extracts and leak credentials on a victim host is illustrated in
Fig. 2. Ithas been reported that incidents of mass compromis-
ing, e.g., Gumblar/Beladen/NineBall introduced in Sect. 1
result from leakages of FTP credential by malware [24].
Although FTP is a simple and conventional service, it is still
widely used for managing files on servers; consequently, FTP
is still a target for masquerade attacks and mass compromises.

In addition, we found evidence of FTP credential leakage
in which there are credentials related to FTP accounts in
plain text or the Base64 encoding format in the payloads
of communication between the malware and remote host.
Over 30 kinds of FTP client applications were potentially
compromised by malware in the preliminary investigation.
Therefore, we believe that FTP clients are the most targeted
applications for credential leakage.

4 Design of monitoring system
4.1 Analytical procedure

The primary aim with HONEYCIRCULATOR is monitoring
an adversary’s behavior at each attack phase, seamlessly
tracking the phases, and clarifying the complex attack cycle.
The analytical procedure was conducted as explained in the
following steps (also shown in Fig. 3) using three key compo-
nents: a web client honeypot, malware sandbox, and WCMS
honeypot. Honeytokens transparently come and go between
our malware sandbox, adversaries, and our WCMS honey-
pot. These components are described briefly and in more
detail later in this section. The analytical procedure, which
is repeatedly executed, is described as follows.

— Collecting malware
Our web client honeypot crawls malicious websites listed
in the latest blacklist and collects the latest malware exe-
cutables. The collected malware executables are sent to
the malware sandbox.

@ Springer

HoneyCirculator Web space
===

o9

Web client
honeypot

1. Collect malware
Malicious websites

2. Distribute bait
credentials o\g@“ “

0“6 | e
¥ N
Adversary’s host

Malware
sandbox

4. Inspect compromised web contem

S - (e—
WCMS & .1——
h 82 5 (_Honevytoken J
oneypot X N 4

Advers\e;fy’s host
(Masquerader)

3. Monitor
compromising

Fig. 3 Overview and analytical procedure of HONEYCIRCULATOR for
monitoring attack cycle based on credential leakage

— Distributing bait credentials
Our malware sandbox analyzes the collected malware
executables. In each analysis, the malware sandbox
randomly generates unique credentials. If an analyzed
malware executable has information-leaking functional-
ity, it exfiltrates information, e.g., credentials, to a remote
adversary.

— Monitoring fraudulent access and compromised web
content
Our WCMS honeypot actually behaves as an FTP server.
It creates a user directory for each account corresponding
to potentially leaked credential and awaits a masquerade
attack with stolen credentials. It stores login, command,
and file histories in each account, while a masquerader
intrudes on it then operates files that are web content.

— Inspecting compromised web content
The web content on our WCMS honeypot, which is com-
promised by a masquerader, is assumed to be injected
with redirect code leading to malicious websites for
drive-by downloads. Our web client honeypot inspects
the web content and collects information on unknown
malicious websites as redirect destinations.

4.2 Building blocks

We designed HONEYCIRCULATOR as an automatic moni-
toring system composed of the three aforementioned com-
ponents: a web client honeypot for collecting malware
executables, a malware sandbox for analyzing malware and
distributing credentials, and a WCMS honeypot for monitor-
ing malicious access. Additionally, a credential honeytoken
acts as a bait credential of a WCMS and chains the above
monitoring components.

4.2.1 Web client honeypot
A web client honeypot is a decoy web browser for detect-

ing web-based malware infection and discovering malicious
websites corresponding to web-based malware infection.

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 139

We use a web client honeypot we previously developed
[25,26] to collect malware executables from the web. Our
web client honeypot has three characteristics: running on a
high-interaction system, tracking malicious websites chained
by redirection, and collecting malware from both drive-by
download and click-download.

There are two types of honeypots, depending on their
interaction with websites: high-interaction using an actual
system [25,27,28] and low-interaction using an emulator
[29,30]. With drive-by download attacks, an exploit code
targeting various types of vulnerabilities is contained in the
web content processed using many client applications (e.g.,
web browser, Acrobat, Java, Flash). Moreover, web con-
tent that includes an exploit code is often obfuscated; the
exploit code appears when a web browser processes the
web content. Therefore, the detection accuracy of a low-
interaction system strongly depends on how faithfully an
emulator simulates client applications. By contrast, high-
interaction web client honeypots use an actual system, so
exploitation is generally successful when a targeted vulner-
ability exists on a system. This type of honeypot can detect
exploitation from anomalous system behavior. A represen-
tative high-interaction detection method involves monitor-
ing filesystem/registry access events and process-creation
events and validating that these events follow predefined
behavior rules [27]. Our web client honeypot is also high-
interaction and installed a vulnerable version of Internet
Explorer and plug-ins such as Flash player, Adobe Reader,
and Java.

Tracking a malware distribution network (MDN) com-
posed of malicious websites is important for identifying the
backend core sites of drive-by download attacks. HoneyMon-
keys [28] can analyze URL redirection based on redirection
of the HTTP protocol, HTML tags, and JavaScript. Our web
client honeypot can precisely track MDNs by analyzing the
redirect relationship of malicious websites and parsing HTTP
query/responses and extracting link URLs from the browser’s
DOM tree.

Another type of web-based malware infection is a click
download, which is when a web user accesses a URL that
points directly to an executable file (e.g., http://example.com/
malware.exe) and clicks on the download dialog. Our web
client honeypot can handle the dialog by emulating a click
event and downloading the executable file. Although click-
downloaded executables are not always malware, our web
client honeypot collects all click-download executables and
labels them as “click download malware,” as described in
Sect. 5.

4.2.2 Malware sandbox

To prompt a malware executable to leak credentials, we need
to run it in an environment with Internet access. An execu-

tion environment for malware analysis is called a malware
sandbox. A malware sandbox is usually managed with no
Internet access in order to block attacks to remote hosts or
networks (e.g., denial of service, scanning, mass-mailing,
remote exploit attacks). However, a bot or download-type
malware communicates with a remote host that is a C&C
server, and information-leaking malware also communicates
with a remote host in order to send stolen credentials. There-
fore, a malware sandbox requires Internet accessibility to
analyze information-leaking malware. As a safeguard, our
malware sandbox [31] provides semi-permeable Internet
accessibility in which it permits only DNS and HTTP com-
munication including C&C communication. It redirects other
communication, which is assumed to be attack activities (e.g.,
SMTP for mass-mailing, TCP139/445 for remote exploits),
to internal fake servers.

Our malware sandbox is composed of a sandbox agent,
which is a victim OS running malware, and GateKeeper,
which controls the malware’s communication. GateKeeper
intercepts communication from a sandbox agent and identi-
fies the layer-4 protocol (i.e., TCP/UDP) and upper layer pro-
tocols and delegates processing to the appropriate FakeDae-
mon, which acts as a proxy server and handles upper layer
protocols (e.g., HTTP-FakeDaemon) in a virtual network in
the sandbox environment. If a certain communication pro-
tocol is permitted, a corresponding FakeDaemon passes that
communication through the Internet. If not permitted, a cor-
responding FakeDaemon responds to the sandbox agent as a
fake response. In our experiment, we set HTTP/IRC/DNS as
the protocols permitted to send outside.

As mentioned in Sect. 3, we analyzed information-leaking
malware as part of our preliminary investigation and discov-
ered that many kinds of FTP client applications were being
targeted. Therefore, we used FTP credentials as honeytokens
on our sandbox. How to set up honeytokens is described
in4.2.3.

4.2.3 Credential honeytoken

A honeytoken deployed by HONEYCIRCULATOR is a bait cre-
dential of a remote FTP server. Therefore, it requires either
the remote server’s IP address or FQDN, or both as well as
an account and password pair. Based on this assumption, a
honeytoken T = (A, P, I, D) is defined as the tuple of A, P,
I, and D, where A is the account name, P is the password,
and I and D are the IP address and FQDN of our aforemen-
tioned WCMS honeypot, respectively. Our malware sandbox
produces a unique honeytoken (7') in each malware analysis.

A honeytoken as a credential should have three properties:
1) be able to be identified by the honeytoken generator, 2) be
difficult to be identified as a bait credential by an adversary,
and 3) be complex enough to be unpredictable for the adver-
sary in order to discriminate a fraudulent access with stolen

@ Springer

http://example.com/malware.exe
http://example.com/malware.exe

140

M. Akiyama et al.

credentials from a fraudulent access based on password brute
force or password list attack. The A and P of the honeytoken
in each analysis are randomly generated alphanumeric strings
based on the above properties. The relationship between a
certain 7" and the analysis has a one-to-one correspondence.

On the sandbox, an account and password pair are gener-
ated as parts of the honeytoken in each analysis; then, they
are stored in a configuration file or registry before running a
malware executable. They are followed the same format and
encoding as those of actual client applications. They are also
simultaneously generated on the sandbox in order to increase
the chance of credential leakage. Based on our preliminary
investigation described in Sect. 3, we selected nine kinds of
client applications frequently targeted by credential leakage.
In addition, after starting analysis, our sandbox generates
FTP communication to a dummy FTP server in considera-
tion of other methods of stealing credentials such as sniffing
communication.

Our system does not require distinguishing to where cre-
dentials are leaked, but it can definitely identify leaked
credentials when they are used by a masquerade attack. To
recognize the relationship between the account name of 7'
and the malware analyzed by the malware sandbox, we can
coordinate the malware sandbox log and WCMS honeypot
log as follows.

4.2.4 WCMS honeypot

Our WCMS honeypot shown in Fig. 4 is a server-type hon-
eypot that acts as a file server of a website in order to capture
compromised web content and monitor an adversary’s activ-
ity on the server. It is assigned a specific domain name
because adversaries access it by using either the server’s IP
address or domain name described in the stolen credentials.

Only an FTP daemon runs on our WCMS honeypot,
and other network services (e.g., web server) are basically
stopped for legal or ethical issues because we reduce the risk
that general public web users may falsely access our com-
promised web content.

Generally, there are two patterns of fraudulent access
attempts: masquerade attack with stolen credentials and

- User A’s home directory

: - Bogus directory

Bogus file
Bogus file

User B’s director
User C’s director

g

E=r

¥

|

| (Honeytoken] ¢

J

2. Collect

: access log
M l

Adversary’s hosts
(Masqueraders)

3. Collect compromised files

Fig. 4 WCMS honeypot for monitoring adversary’s activity on com-
promised web content management system

@ Springer

brute-force attack. In a masquerade attack, login attempts
with stolen credentials are always successful. Although
a brute-force attack requires many login attempts, such
attempts to login to our WCMS honeypot have never been
successful because the username/password pairs are ran-
domly generated as alphanumeric strings (as mentioned in
Sect. 4.2.3), so they are sufficiently complex to thwart such
brute-force attacks. Our WCMS honeypot has no genuine
account; therefore, it can determine that all login attempts are
not legitimate. In addition, based on the list of our generated
honeytoken, it can precisely identify masquerade attacks with
stolen credentials and enumerate masqueraders’ IP addresses
in a timely manner.

To camouflage a genuine system, our WCMS honeypot
prepares bogus web content (e.g., html, php, js files) for
each user directory of the FTP account and permits FTP
users to access their own directory. Our WCMS honeypot
stores FTP login, command, and file histories in each account.
When an original file is changed, our WCMS honeypot pre-
serves the changed file.

When web content is compromised, it must be inspected
by our client honeypot. To be inspected, our WCMS honeypot
temporarily runs a web server that is accessible only inside
the internal network and enables the content to be inspected
only by our client honeypot mentioned in Sect. 4.2.1.

5 Field experiment

Our objective in developing this system was to understand
adversary activity on acompromised server and to effectively
discover malicious websites conducting drive-by download
attacks. By doing so, we can supply the IP addresses of
adversaries trying to compromise the server and also supply
malicious websites to security vendors and other potential
victims in order for them to apply proactive countermea-
sures, such as blacklisting or filtering, before the adversaries
are actually able to use the IP addresses and websites. This
system was evaluated from March 2012 to February 2013. In
this section, we uncover several aspects of malicious activi-
ties based on distinct adversary infrastructures, property and
lifespan of infrastructure, targeted client applications, server-
side behavior, and compromised web content.

5.1 Malware collection

Our experiment involved seed URLSs for crawling in order to
collect malware. In each crawling, we used the latest version
of a public blacklist (MalwareDomainList [23]) containing
about 80,000 URLs. We also used about 150,000 URLs
of personal and commercial websites retrieved from search
engines. Crawling was conducted over two- or three-day
intervals. Our web client honeypot also inspected compro-

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 141

6000 T

Click-download
5000 Drive-by download

Al ——

4000

3000
/
2000 _/-__

1000

Apr2012 Jun2012 Aug2012 Oct2012 Dec2012 Feb 2013

Cumulative number of malware
executables

Fig. 5 Collected malware (unique hashes, collected from March 2012
to February 2013)

mised web content injected with redirect code on our WCMS
honeypot and collected malware from a malicious website as
a redirect destination. It collected malware executables via
drive-by download and click-download (Fig. 5). Specifically,
our client honeypot crawled about 53.4 million input URLs
(5.6 million unique input URLSs) and then collected a total of
5439 malware executables: 1833 by drive-by download and
3614 by click-download (8 were obtained both ways).

As shown in Fig. 5, the number of collected unique exe-
cutables increased as time progressed. This means that our
web client honeypot stably collected unique malware exe-
cutables over the long term. The reasons for this are: (1) seed
URLs (blacklisted URLs and compromised content URLs
on our WCMS honeypot) were updated with each crawling,
resulting in the capture of more executables from new mali-
cious websites and (2) different executables were collected
from known malicious websites; in other words, adversaries
updated the executables they intended to distribute. Collected
malware executables are analyzed by our malware sandbox
within 24 h of collection. Even if our web client honeypot
collected the same malware executables in different crawl-
ing actions, our malware sandbox analyzes them in each case
because collected executables must be active at that time.

5.2 Compromised accounts

Our monitoring procedure can identify leaked credentials
when they are actually used. At the beginning of the malware
collection in March 2012, we established the experimental
settings for our WCMS honeypot, e.g., the IP address assign-
ment and domain name registration. Actual compromising
started on April 5. Figure 6 indicates the time between leak-
age of a credential and first use of it. Adversaries try to access
an account after a certain incubation period. Although 13.2%
(44/332) of leaked accounts was initially accessed within 24
hours, many other accounts took several days to be initially
accessed.

We can identify an adversary’s IP address that controls
information-leaking malware by monitoring accesses from
remote FTP clients to our WCMS honeypot. To discriminate
accesses using leaked credentials or brute-force accesses, we

el

COO0O0O0O00O00
cCOBNWRNION®©
N\

et

.01 0.1 1 10 100
Incubation period (days)

CDF of honeytokens
(compromised accounts)

Fig. 6 Incubation period of website compromising: time between leak-
ing and using credential

10000

ﬂh.) ‘Fraudulem Iogin‘ EVENt m—
Fo) Login IP address -
g 1000 Compromised account
c e
[K‘
>
F 100
8 [
g 10 !
3 r‘
Apr2012 Jun2012 Aug 2012 Oct2012 Dec2012 Feb 2013

Fig. 7 Cumulative number of login events, login IP addresses, and
compromised accounts

extract accesses obtained with a correct account name and
password pair and exclude other false accesses. The cumula-
tive numbers of adversaries’ IP addresses and accounts that
were successfully accessed are shown in Fig. 7. We mon-
itored 332 compromised accounts, 6320 fraudulent login
events, and 722 IP addresses of adversaries.

5.3 Adversary infrastructure

Monitored attacks are not always conducted by a single
adversary, and there must be various attack campaigns
controlled by various adversary infrastructures. From our
WCMS honeypot log, we recognized many-to-many associa-
tions between masquerader’s IP addresses and compromised
accounts, for example, specific masquerader accesses many
accounts and vice versa. We assume that the masquerader
hosts are infected with bot and some adversaries conduct
masquerade attacks using the sets of stolen credentials via the
masquerader hosts. To analyze our large amount of monitored
data and reveal the properties of each adversary infrastruc-
ture, we try to classify the basic components of an adversary
infrastructure, i.e., masquerader’s IP addresses and stolen
credentials, into groups based on the graph structure of their
associations. In this section, we explain the graph partitioning
process to appropriately divide graphs into adversary infras-
tructures.

We defined an adversary’s activity graph as G = (v, e),
where v(G) are the entities of a masquerader’s IP addresses
and compromised accounts (stolen credentials), and e(G) are
their associations. The login history on our WCMS honey-
pot recorded 6320 fraudulent login events including 722 IP
addresses and 332 accounts. With the above simple method,

@ Springer

142

M. Akiyama et al.

14 graphs were produced and the largest graph had 88.4% of
all vertices (639 IP addresses and 293 accounts). In regard to
the largest graph, we assumed that multiple infected hosts (IP
addresses) controlled by different adversaries resulted in the
merging of some subgraphs. In our manual analysis, we con-
firmed that this giant graph had some weak edges bridging
subgraphs. Therefore, our graph partitioning process should
cut weak edges from multiple affiliated hosts in the largest
subgraph against the above-mentioned over-merging prob-
lem. We show the grouping process of adversaries in Fig. 8.

5.3.1 Graph partitioning

Clustering algorithms generally exhibit the following two
problems: they require features which usually depend on
domain-specific heuristics, and they are NP-hard in both the-
ory and in practice where the problem is relaxed to local
optimization [32]. To solve these problems, we adopt spectral
graph partitioning, which is a simple mathematical method
based on basic liner algebra. It is currently a better solution to
solve these problems so that many researchers can use it [33,
34]. The method requires only a feature based on the graph
structure without domain-specific features and can solve the
relaxation of an NP-hard problem [32]. Specifically, spectral
graph partitioning is based on the graph Laplacian and used
for cutting the weak connection (i.e., edges) of a graph. The
graph Laplacian L, which is n x n matrix (n is the number of
vertices), is the difference between the degree matrix D and
the adjacency matrix A of the graph, which is defined as

L=D-A
degree(v;) =]
(i, j)th component of L = { —1 i #jande(i, j) € G
0 otherwise

Note that i or j stands for a node-ID that is uniquely assigned
from 1 to n. Spectral graph partitioning [35,36] is a graph
partitioning method based on eigenvectors of the graph
Laplacian. It focuses on the Fiedler vector, which is the
eigenvector associated with the second smallest eigenvalue
of the graph Laplacian. The Fiedler vector’s Nth component
corresponds to the Nth node (node-ID). This eigenvector is
called the algebraic connectivity of a graph. Clustering nodes
based on Fiedler vector component values stand for cutting
weak connections between vertices (i.e., edges) in a graph.
We made a graph Laplacian of the largest subgraph and calcu-
lated its Fiedler vector. The results shown in Fig. 9 indicate
three obvious levels of values corresponding to nodes. We
used gap cut [36] detecting max |v, — v,41| between the
largest gap in the sorted list of the Fiedler vector’s compo-
nents in order to cut the graph.

The two obviously large gaps were cut in our partitioning
process, and the result of graph partitioning is illustrated in

@ Springer

e
Fraudulent
login history

Partitioning graph and identifying
adversary infrastructures

Fig. 8 Grouping process of adversary infrastructure. Blue circles and
red triangles indicate masquerader’s IP addresses and compromised
FTP accounts, respectively (color figure online)

Making bipartite graph with IP
address and account

Fiedler vector

S6L066S ooo
[eleleolelolole] [efeole]
NOOPRWN_O_2NW

i Components value of Fledler vec(or ‘
0 100 200 300 400 500 600 700 800 900 1000
Nodes (IP address or account) corresponding to Fiedler vector components

Fig. 9 Fiedler vector of graph Laplacian. Fiedler vector component
values are arranged from largest to smallest. Two obviously large gaps
are candidates for partitioning point

@ P address

X A FTP account
N Group A

“
Group C Group E
(yroup H Group J Group L
P X X
Group 1 Group K
Group F e
(rroup G Group M (yroup N (m)up (6] (m)up P

Fig. 10 Partitioned activity graph of adversary. Each graph indicates
an adversary infrastructure. Two edges, depicted as dashed lines in this
figure, are cut in our graph partitioning process

Fig. 10. The largest subgraph was partitioned into three sub-
graphs marked as groups A, B, and D. The set of IP addresses
in the same subgraph is defined as an adversary infrastruc-
ture, and we monitored 16 such adversary infrastructures in
our experiment.

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 143

Table 1 Properties of adversary

infrastructures Adversary # of adversary’s # of compromised # of malware # of fraudulent

infrastructure IP addresses accounts executables login events

Group A 401 273 168 4921

Group B 205 15 15 803

Group C 26 3 3 28

Group D 33 4 4 215

Group E 25 1 1 91

Group F 9 7 6 68

Group G 3 19 18 149

Group H 2 1 1 2

Group I 3 1 1 4

Group J 4 1 1 4

Group K 4 1 1 20

Group L 4 1 1 11

Group M 1 1 1 1

Group N 1 1 1 1

Group O 1 1 1 1

Group P 1 1 1 1

Total 722 331 224 6320
§E§§§§ in February 2013. These groups might have integrated into
%E%E%E the same group if we had monitored them longer. Our server-
%%EEE side monitoring focusing on each infrastructure enables us
%‘E‘Eﬁ’é to clegﬂy understand when a group starts its operations and
%E%E,Eﬁ : when it stops.
Group P FTP login events —— The most remarkable finding is the complementarity of

Apr 2012 Jun 2012 Aug 2012 Oct 2012 Dec 2012 Feb 2013

Fig. 11 Lifespans and activities of adversary infrastructures

5.3.2 Property of adversary infrastructure

There are several types of cardinalities in which a single IP
address accesses many FTP accounts or many IP addresses
access a single FTP account. These clusters indicate the
operational characteristics of each adversary infrastructure.
An adversary collects many credentials and accesses their
accounts via various bots. We assume that an adversary
uses bots and accesses common FTP accounts using their
IP addresses in large clusters. We confirmed that the activi-
ties that each infrastructure carried out to compromise web
content were similar within the infrastructure but differed
between infrastructures.

The properties of the adversary infrastructures are listed in
Table 1, and Fig. 11 shows their lifespans and activities based
on our monitoring. Groups A and B had a particularly large
number of compromised accounts. Groups A, C, D, E, F, and
G continued to operate for some months. Activities of groups
B, 1, J, K, and L stopped for several months. Groups H, M, N,
0, and P started operating at the end of our monitoring period

activity between groups A and B, which are divided using the
previous graph partitioning process. In the period of stopping
group A’s activity, group B starts its operation. After group
B is low in activity, group A restarts its operation. Based
on the tendency of activity, it indicates that a specific adver-
sary conducts three attack campaigns by taking on different
infrastructures. This finding emerges only from focusing on
the timelines of each infrastructure.

5.4 Malware leaking information

We identified malware executables that leaked credentials.
Our malware sandbox stores pairs of malware executables
and generated credentials in each analysis. When a specific
account is accessed, we can find a malware executable corre-
sponding to the honeytoken including that account from the
malware sandbox log. Three hundred and seventy-three out
of 5439 malware executables had obviously accessed honey-
tokens, i.e., our prepared configuration files/registries of FTP
clients, and had sent suspicious HTTP requests outside, and
224 out of them had positively leaked. Therefore, although
6.8% of the collected web-based malware probably leaked
credentials, 4.1% successfully reused them in our assumed
attack cycle. The honeytokens leaked by 2.7% of malware

@ Springer

144

M. Akiyama et al.

Table 2 Information-leaking malware families (total of 224 executa-
bles)

Table 3 Clients targeted by information-leaking malware

A. Clients and targeting malware # of malware executables

Malware family # Targeted clients
A. McAfee Ay 190 (84.82%)
Generic BackDoor.* 81 Ao 179 (79.91%)
PWS-Zbot* 52 A3 190 (84.82%)
BackDoor-FJW !* 51 Ay 190 (84.82%)
Other malware 38 B 27 (12.05%)
Unknown 2 C 27 (12.05%)
B. Kaspersky D 23 (10.26%)
Trojan-PSW.Win32.Tepfer.* 69 E 163 (72.76%)
Trojan-Downloader.Win32.Agent.* 68 F 20 (8.92%)
Trojan.Win32.Bublik.* 14 None 23 (10.26%)
Other malware 49 B. Combination of targeted clients # of malware executables
Unknown 24 # of targeted clients
C. Symantec
W32.Waledac.D* 83 0 23 (10.26%)
Trojan.Gen* 47 ! > 2.23%)
SecShieldFraud* 27 2 2 089%)
Other malware 44 3 1 (0-44%)
Unknown 23 4 35 (15.62%)
5 136 (60.71%)
6 3 (1.33%)
were not reused for certain reasons; for example, our system 2 (0.89%)
was exposed as a decoy. Of the 224 executables, 15 were 3 8 (3.57%)
collected by click-download and 209 by drive-by download. 9 9 (4.01%)

The scanning results of three antivirus applications (McAfee,
Kaspersky, and Symantec) with the latest pattern files are
listed in Table 2. The Zbot and Tepfer families are known
as information stealers such as of banking information and
other credentials. Waledac and Kelihos are associated with
credential theft [37] and were detected as Win32. Waledac
by Symantec. Although some executables categorized as
generic or unknown mean that antivirus applications can-
not explicitly identify their family names, security venders’
nomenclatures of malware are reasonable based on our mon-
itoring results of fraudulent access.

5.5 Credential leakage behavior
5.5.1 Internal behavior on infected host

Our sandbox prepares configuration files/registries of nine
kinds of clients (A—F including four different versions of
A). What kinds of client tend to be stolen credentials and
how many clients malware executables target simultane-
ously are listed in Table 3. Clients of A|—A4 and E are
targeted by about three-quarters or more of information-
leaking malware. Although 23 malware executables did not
access configuration information of clients, 6 malware exe-
cutables out of 23 communicated with remote hosts after
FTP communication generated by our sandbox. Therefore,

@ Springer

at least six executables’ method of leaking credentials seems
to involve sniffing FTP communication. The method of the
rest of the executables (17 executables) is unknown. About
90% of malware simultaneously leaked credentials of var-
ious clients, and about 75% targeted 4 or 5 clients, which
were also Aj—A4 or E.

5.5.2 Leakage communication

After extracting credentials, malware executables must send
them to remote hosts owned by adversaries. In this experi-
ment, malware executables leaking credentials sent HTTP-
GET or -POST requests, both of which include an unreadable
message body that seemed to be encrypted at least once in
each analysis. It seems that stolen credentials were in it.
Although including a message body with a GET request is
not defined as standardization of HTTP, a web server can
actually receive the request and extract it.

5.6 Adversary behavior on compromised server

Adversary behavior after intruding is one of the concerns of
security researchers in understanding their intention. Adver-

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 145

saries can only use FTP commands on our WCMS honeypot
because they log into it as FTP users. We analyzed adversary
behavior, i.e., command sequences on their FTP sessions,
and classified their command sequences into the following
four representative types.

A. File creation An adversary creates a new file. This behav-
ior is defined as only the command; “STOR ' fileA’,”
where fileA is a new file and has never been retrieved
before in a session (i.e., “RETR ‘fileA’” is not exe-
cuted before STOR command).

B. Code injection An adversary injects malicious code into
an existing file. This behavior is defined as “STOR
'fileB’'” and executed after “RETR ‘fileB’” in a
session.

C. Web accessibility confirmation An adversary confirms
that a created file is accessible on the web. This behav-
ior is defined as an adversary uploading (STOR) a test
file and trying to access it on the website (i.e., accessing
“http://ipaddrifilepath,” ipaddr is the IP address of our
WCMS honeypot and filepath is the uploaded file’s path
assumed by an adversary), and the test file is immediately
deleted (DELE) just after the access.

D. Accountvalidity confirmation An adversary confirms that
a stolen credential is valid. This behavior is defined as
logout (e.g., “QUIT” or session terminating) without file
access commands (e.g., RETR, STOR) after login.

Many cases of type A are for building stepping stones on
a compromised server for other attack vectors, and this is
introduced in Sects. 5.7.4 and 5.7.5. Our WCMS honeypot
responds with an error reply to the HTTP request from outside
hosts; therefore, all confirmation attempts of web content
accessibility (type C) are failures. However, in almost all
login sessions, adversaries continue malicious activity, such
as code injection; therefore, we argue that this web content
accessibility confirmation is just their reference information
and does not affect adversary behavior.

The code injection event (type B) constitutes a large major-
ity of sessions. A detailed injected code is discussed in
Sect. 5.7.1. Distribution of the execution time of code injec-
tion is shown in Fig. 12. Much of the execution time of code
injection is extremely short, for example, 78.4% of execution
time of code injection' is shorter than 2's. We also confirmed
that command sequence patterns are not so diverse. Based on
this evidence, many code injection events are automatically
conducted using a certain toolkit.

! We used sessions of adversary group A, which was the most active in
our monitoring, as shown in Fig. 11 and Table 1 and a large majority of
our monitored events.

0 2 4 6 8 10
Execution time of code injection (seconds)

Code injection events (%)

Fig. 12 Distribution of execution time of code injection. Execution
time of code injection Tipjection is defined as Tinjection = Tstor — Tretrs
where T is time of downloading file (RETR command), and Tor
is time of uploading (STOR command) compromised file, which was
retrieved before

5.7 Malicious web content

We classify compromised web content and newly created
web content obtained by our WCMS honeypot into the fol-
lowing categories: traffic redirection, server-side content,
phishing page, and mass-mailing infrastructure. We assume
that the compromised websites are used to achieve certain
objectives of the adversary.

5.7.1 Injected code

Our WCMS honeypot can precisely extract injected code
from compromised web content by using the diff com-
mand. Almost all injected codes are obfuscated JavaScript.
This malicious obfuscated code is decoded on a web browser.
It then automatically conducts redirection, e.g., creating an
iframe tag. In addition, characteristic marker comments for
an adversary, such as <!-c3284d-> or <!-6bleed—>,
are added with obfuscated JavaScript. Adversaries are gener-
ally continuously developing obfuscation algorithms in order
to circumvent detection; therefore, we must capture obfus-
cated codes and understand them in a timely manner. Our
WCMS honeypot can continuously and automatically col-
lect injected malicious codes. These codes must be actual
good samples for supporting the generation of signatures or
algorithms for detecting compromised web content.

5.7.2 Traffic redirection

Injected redirect codes lead to malicious websites prepared
by adversaries; however, almost all of these redirect codes are
obfuscated and unreadable. To disclose malicious websites
behind the redirections, we used the web client honeypot to
decode the obfuscation and access the next websites pointed
to by the redirect codes. We confirmed that the web content
of 305 out of 332 accounts had been injected with redi-
rect codes to outside websites. In addition, the content was
repeatedly injected with different redirect codes as time pro-
gressed. Most redirect destinations were malicious websites

@ Springer

146

M. Akiyama et al.

constructed using an exploit kit* or are hopping websites that
redirect clients to them (Fig. 13). Both groups A and B used
traffic direction/distribution systems (TDSs) as hopping sites.
A TDS is used to direct traffic in order to sell pharmaceutical
products, instigate search engine optimization (SEO) attacks,
redirect users to adult sites, and redirect users to exploit web-
sites for drive-by download-based malware infection [39,40].
Various exploit sites exist in the backend of TDSs. A TDS
has filtering functionality based on client fingerprinting (e.g.,
browser, OS, IP geolocation, time frame, referral, local lan-
guage settings) to block security inspections. The filtering
functionality directs traffic unwanted by the adversary to
popular websites. Adversaries use TDSs to conceal the final
destination (i.e., exploit site). Injected redirect codes include
only the URL of a TDS. By using a web client honeypot,
HONEYCIRCULATOR can successfully obtain information on
the TDS and also the final destinations.

However, there are some legitimate TDS providers, and
not all TDS vendors are controlled by adversaries or sell
their traffic to malicious entities. Two TDSs monitored in our
experiment were obviously being used for drive-by down-
loads. We repeatedly conducted an additional inspection to
extract these malicious websites. Because the TDS used
by group A was composed of a fast-flux service network
(FFSN)3, we discovered a massive number of IP addresses
that seemed to be bot-infected hosts. In contrast, the TDS
used by group B had about 500 FQDNs, which changed as
time progressed.

Many final destinations of redirection are malicious web-
sites constructed using exploit kits. Exploit kits are known to
have certain characteristics (e.g., file name, URL parameter,
redirect chain), so we manually classified the exploit sites
into the following five types: Blackhole, Redkit, Phoenix,
Incognito, and Neosploit.

We confirmed that these adversary infrastructures used
several exploit kits on their own websites. Although the redi-
rect destinations designated by injected redirect code or TDS
are regularly changed, HONEYCIRCULATOR can obtain infor-
mation of newly malicious entities (e.g., obfuscated redirect
code and FQDN/IP address of malicious website) when they
are used. In this way, HONEYCIRCULATOR can immediately
discover unknown malicious entities of specific adversary
infrastructures without large-scale web crawling. However,
we should be attentive when extracting URLs from com-
promised web content, as some redirect codes may be those

2 A toolkit for constructing malicious websites that conduct drive-by
downloads. Various types of exploit kits are traded in the underground
economy [38].

3 An FFSN uses both DNS round robin and short time-to-live (TTL)
for a specific FQDN in order to have multiple IP addresses assigned to
it. It is usually deployed by botnets.

@ Springer

Single-hop redirection Malicious websites hosting

Compromised web contents which perform as landing site exploit code (Exploit site)

Injected redirect | Redirect
code to exploit site
Multi-hop redirection Traffic Direction System (TDS)
Injected redirect Redirect Redirect Y
code to 7DS g
Redirect @
Popular websites

Fig. 13 Two types of monitored traffic redirections to malware
distribution

221
T

L]

for advertisements. That is, not all extracted URLSs are those
associated with drive-by downloads.

5.7.3 Web access control by server-side content

Some masqueraders put . htaccess, which is a configura-
tion file for controlling web access, into their directories of
the compromised web content. This . htaccess is used for
traffic redirection. To circumvent crawling-based inspection,
it checks the referrer of the accessed web client and permits
redirection to malicious websites when the web client has
a certain referrer. We confirmed that the URLs of a portal
website or search engines are described in the referrer check
routine. This means that only web clients from certain portal
sites, search engine sites, or social networking service sites
can be redirected to malicious websites. In other words, a
web client honeypot directly accesses a compromised web-
site, but it is not able to detect malicious websites. It also
uses HTTP-error based redirection by using an ErrorDocu-
ment directive. If .htaccess has an “ ErrorDocument 404
redirect-URL” directive, a user is redirected to the redirect-
URL by an HTTP-302 redirect when he/she falsely accesses
non-existing or error URLs. This technique does not require
injecting a redirect code into original web content; therefore,
it can circumvent being recognized by the legitimate WCMS
administrator. When a web client mistakenly accesses a URL
that is not found, it is redirected to an arbitrary URL, i.e.,
http://example.com/exploit.php in this case.

5.7.4 Phishing page

A newly created file is a phishing page that leaked creden-
tials of AOL, Gmail, Hotmail, and Yahoo accounts. These
pages contain an input form for user names and passwords.
When a victim visiting this page inputs certain credentials
and clicks the submit button, the credentials are sent to the
adversary’s e-mail address, which is embedded in the page.
If we leak these actual services’ credentials, newly compro-
mised accounts on those services become a stepping stone of
a new attack vector. This may result in our monitored attack
cycle evolving to include new attack vectors, and monitoring

http://example.com/exploit.php

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 147

of HONEYCIRCULATOR may be improved. Ensuring security
on each actual service is beyond our control; therefore, a
honeytoken-based monitoring system should cooperate with
each actual service.

5.7.5 Mailing infrastructure

Another newly created file is e-mail-sending web content that
is a CGI script and enables sending of spam/phishing e-mail.
This CGI form allows an adversary to control all aspects of
the message being sent: sender fields (e.g., from, reply-to,
sender name), target addresses, and attachments. While we
experimentally disclosed this web page for a certain period,
the adversary who put the content accessed it and tried to
send e-mail with a malicious hyperlink-URL leading to a
malicious website constructed using the Blackhole exploit
kit. This evidence means that e-mail is an additional way to
distribute malware on our assumed attack cycle. However,
our WCMS honeypot sinkholes all e-mail messages from
itself because general public users would be exposed to mail-
based threats if our WCMS honeypot permits mail sending.
Security researchers should consider the legal and ethical
aspects of security monitoring, as is the case in Sect. 5.7.4.

6 Evaluation

We evaluated our obtained data based on two aspects of
effectiveness: (1) how many unknown malicious entities
HONEYCIRCULATOR discovered and (2) how rapidly they are
discovered.

6.1 Comparison with public blacklists

We compared the information we collected on adversaries
and malicious websites with well-known public blacklists
[23,41-45] (Table. 4). In this comparison, we manually
selected FQDNs and IP addresses obviously recognized as
exploitkits or TDSs from our collected information including
accessed redirect destinations. We also selected masquer-
aders’ IP addresses that had accessed stolen accounts on
our WCMS honeypot. There were only ten overlapping IP
addresses and no overlapping FQDNSs. The results are listed
in Tables 5 and 6. Most of our collected malicious FQDNs
and IP addresses were not listed in other blacklists; the IP
address overlap was only 4.5% (471/10,420), and the FQDN
overlap was also 17.2% (155/900). These six blacklists must
be widely used by security engineers and researchers. They
have a certain level of quality; however, overlaps are quite
small. These results indicate that HONEYCIRCULATOR can
discover unique malicious entities that are not discovered by
other blacklists.

We assume that the reasons the overlaps are so small are
(1) the property of newly identified malicious entities and (2)
the difference in the method of finding malicious entities. The
former case arises from an FFSN and automatically generated
domains. The TDS_A is composed of an FFSN mentioned
in Sect. 5.7.2, which has about ten thousands of IP address.
Generally, IP addresses of an FFSN are temporarily changed,
many of which are bot-infected and are originally normal
client hosts, so they tend not to register blacklists. Almost

Table 4 Public blacklists

Blacklist # of IP addresses # of FQDN5s
MDL: MalwareDomainList 3498 3741

MP: MalwarePatrol 5457 6425

UBL.: UrlBlackList (malware) 208, 801 111,945
MDB: MalwareDomainBlockList 3009 13,212

ZT: ZeuS Tracker 1672 1971

CMX: CleanMX (viruses) 65, 456 (n/a)

These IP addresses and FQDNs were registered in these blacklists from Mar. 2012 to Feb. 2013

Table S Comparison with

public blacklists (IP address Type of info. Collected N MDL N MP N UBL N MDB NnZT N CMX

overlap) Masquerader 722 2 10 3 1 30
TDS_A 9476 11 55 1 2 136
TDS_B 33 0 10 3 0 6
Blackhole 24 15 1 3 5 0 12
Redkit 97 69 3 15 8 2 16
Phoenix 29 0 13 1 2 8
Incognito 18 1 1 1 1 0
Neosploit 19 0 5 1 2 8
Total 10, 420 113 18 102 21 8 209

@ Springer

148

M. Akiyama et al.

Table 6 Comparison with

public blacKlists (FQDN Type of info. Collected N MDL N MP N UBL N MDB NnZT N CMX

overlap) Masquerader (n/a) (n/a) (n/a) (n/a) (n/a) (n/a) (n/a)
TDS A 84 0 31 5 0 (n/a)
TDS B 525 0 19 11 0 (n/a)
Blackhole 127 0 0 0 0 (n/a)
Redkit 82 0 13 9 0 (n/a)
Phoenix 43 0 11 0 0 (n/a)
Incognito 32 0 5 5 0 (n/a)
Neosploit 7 0 11 0 0 (n/a)
Total 900 0 81 30 0 (n/a)

all domain names of TDS_B have both high linguistic ran- 0e

domness and static length (e.g., alphabetical 16 characters); " 28

therefore, they seem to be produced by a domain genera- 8 8:2 »

tion algorithm (DGA). A DGA pseudo-randomly generates 8:‘3‘ B'ack'ii"‘?g"d?ii%?;f’fﬁé";

domain names based on a given particular timestamp, and 04 el S B.a;khs(e%}"}i%ﬁ%%

a DGA-generated domain is used in a short period of time. i 0 500 1000 1500 2000 2500

Their domains also tend not to register blacklists based on
above reasons. The latter cases arise from how conventional
blacklisting methods collect information and what kinds of
category blacklists register. Conventional methods collecting
blacklist entities are known for web crawling, malware sand-
box analysis, spamtrap, anti-malware telemetry, and so on.
Discovered websites conducting drive-by download, C&C
servers, and spam senders are listed in the blacklists. Con-
ventional methods explore widely and shallowly over the
Internet. In contrast, our system continuously tracks certain
attack campaigns on the web-based attack cycle.

The small overlaps indicate we can enhance countermea-
sures by complementally combining the security knowledge
obtained from our system and current blacklists.

6.2 Rapidity of malicious website discovery

We compared malicious websites discovered with our sys-
tem and those of public blacklists. To evaluate the rapidity
of discovery, we used discovery latency Tiaency, Which is
defined as Tlatency = Tdiscover — Tregisters where Tyiscover 1S the
time of domain discovery and Tregister is the time of domain
registration. A shorter discovery latency basically indicates
rapid discovery of a malicious website. Each domain Tgiscover
is described in the blacklists. The Tiegister is obtained from
whois information. Note that it is possible that Tjaency < 0
(Tregister 1s newer than Tgiscover) because Tregister is rewritable
when the owner of a domain changes the domain information.
The distributions of discovery latency are shown in Fig. 14
excluding those of domains that we could not obtain infor-
mation of Tregister from WHOTIS. The results show that our
discovered malicious websites’ domains have considerably
shorter discovery latency than those of blacklisted websites’

@ Springer

Discovery latency (days)

Fig. 14 Discovery latency of discovered malicious domain. We
assumed why Tiaency < 0 in some domains is that expired domain
was registered again and overwritten registration time was later than
discovery time

domains. Our proposed system can instantaneously discover
malicious websites when they are used for an attack.

7 Discussion
7.1 Fidelity of decoy component

One of the main challenges with honeypots and malware
sandbox involves camouflaging, in which they act as victim
hosts. This is necessary so that the honeypot and mal-
ware sandbox can avoid being recognized by anti-analysis
techniques used by adversaries. Adversaries often try to
determine whether a target is an actual victim host or an
analysis system from any unnatural victim behaviors.

We used IP address randomization and high-interaction
systems in our experiment. To act as a victim host, web client
honeypots use an actual OS and applications without any
unnatural behavior such as an incomplete browser emulator,
and our malware sandbox also runs on an actual OS and has
Internet accessibility. Moreover, our network environment
uses different autonomous systems (ASs) in order to ran-
domize IP addresses. It also periodically changes the ASs;
therefore, accesses of the web client honeypot and malware
sandbox are from numerous IP addresses.

Another consideration in camouflaging is IP address
consistency of the infected host. In the components of HON-

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle 149

EYCIRCULATOR, the IP addresses of a host that collects
malware (i.e., web client honeypot) and that of a host that
leaks credentials (i.e., malware sandbox) are different. There-
fore, an adversary can recognize them as security inspection
systems by checking for IP address consistency. However,
in recent years, the role of adversaries planning to spread
malware infection has been subdivided into “distribute mal-
ware” and “control malware” (Pay-Per-Install [46]), and we,
therefore, assume that a specific adversary does not always
validate the consistency of IP addresses, or in other words,
record all client IP addresses in every phase of an attack cycle
(i.e., a host accessing a malicious website, a host download-
ing malware, and an infected host). In a dynamic IP address
network environment, the user’s IP address generally changes
within a short period. Therefore, inconsistency between the
IP address of an exploited host and that of an infected host
is typical. Fortunately, because our experimental results also
indicated that various adversary infrastructures accessed our
monitoring system without suspicion, IP address consistency
is not a serious problem.

If adversaries incur a higher cost, e.g., manual operation,
it is possible to identify our components of HONEYCIRCU-
LATOR, particularly our WCMS honeypot, as a decoy. For
example, credentials from different victims involve a spe-
cific server that owns similar files on each account. Based
on this commonality or similarity of a target server, cautious
adversaries can discern and move away from our system,
and this results in failure of our monitoring. This is the lim-
itation on the practical side, although we can diversify the
domain/IP address of a decoy server and original web con-
tent of our WCMS honeypot if we incur also higher cost.
As mentioned in Sect. 5.6, code injection events seem to be
automatically conducted using a certain toolkit. Adversaries
behind masquerader hosts are compelled to automate the pro-
cesses because they must simultaneously compromise a large
amount of websites with stolen credentials over the Internet.
Generally, manual operation to determine whether a compro-
mised server is a decoy is time-consuming for adversaries.
Fortunately, automated compromising based on an adver-
sary’s dilemma resulted in continuous and stable monitoring
while our WCMS honeypot was not exposed as a decoy in
most cases.

7.2 C&C over-blocking on malware sandbox

In our malware sandbox with semi-permeable Internet acces-
sibility, only a few protocols for C&C communications are
permitted, and other protocols are restricted for blocking
malicious activity such as secondary malware infection. This
type of security-conscious malware sandbox exhibits the
C&C over-blocking problem because of restricted communi-
cations based on the policy. We should take into consideration
the flexible control of C&C communication with safeguard-

ing to improve monitoring. Fortunately, our experimental
results indicated that various C&C communications worked
successfully under our blocking policy. Although there is a
possibility of falsely blocking C&C communications based
on the original protocol, such as P2P, it is said that HTTP-
based C&C communications are used by a large majority
of malware families [47,48]. The C&C communication pro-
tocol must be based on a legitimate protocol; otherwise,
intrusion detection systems will be able to easily detect it
as protocol anomaly. We assume that the tendency of C&C
using a legitimate protocol will continue in the near future.
We believe that our malware sandbox is effective in exfiltrat-
ing bait credentials until the C&C communication protocols
are changed.

7.3 Various methods for information exfiltration

In the proposed system, we preliminarily installed FTP client
applications in the malware sandbox, and the malware sand-
box set randomly generated credentials before analyzing the
malware. Although malware automatically collects creden-
tials and sends them to a remote host, the malware sandbox
fails to actively leak credentials when the malware is trig-
gered by a certain event. For example, a malware sandbox
should launch a web browser to analyze malware that acts
as a browser plug-in. Moreover, a malware sandbox should
generate keystroke events when analyzing keylogger-type
malware. A man-in-the-browser attack (MITB) can also be
used to steal credentials. Through user interaction on the
web browser, an MITB intercepts and manipulates trans-
actions transparently between the web browser and online
services. Our proposed system is limited to automatic infor-
mation leakage without triggering the conditions of malware
behavior such as complicated user interaction. BotSwindler
[16] drives user interaction events based on a predefined sce-
nario for actively leaking credentials.

7.4 Applicability to other applications/services

As mentioned in Sect. 3, the potential victims of informa-
tion leakage are diverse. Our monitoring system can be
applicable to various other applications/services that require
ID/password authentication. A secure FTP (SFTP) only dif-
fers from FTP regarding encrypted communication; thus, it
is the most straightforward application/service as a possible
extension of the proposed monitoring system. In the same
way, secure shell (SSH) is also a good candidate. We should
change only two settings to apply them: preparing corre-
sponding honeytokens (e.g., putting a configuration file of
SFTP or SSH on a malware sandbox), and running the ser-
vices on a WCMS honeypot awaiting masquerade attacks.
However, to apply our monitoring system to public services
(e.g., SNS, Online banking, Online shopping), we must coop-

@ Springer

150

M. Akiyama et al.

erate with each service provider in order to monitor behind
the service.

8 Conclusion

To achieve effective countermeasures to an attack cycle
consisting of drive-by downloads, credential leakage, and
compromised websites, we focused on tracking the usages
of bait credentials leaked by malware and monitoring the
activities of adversaries on a compromised web content
management system. As an alternative to monitoring this
kind of attack, we designed and implemented a monitor-
ing system called HONEYCIRCULATOR that collects malware
executables, actively leaks bait credentials, and lures adver-
saries to our WCMS honeypot. In a one-year experiment,
our proposed system was successfully compromised by var-
ious adversary infrastructures without being recognized as a
decoy, which allowed us to closely monitor adversary activ-
ities. The major advantage of our system is instantaneous
discovery of unknown malicious entities even if they change
redirection methods, malicious domains, exploit kits, and
malware executables as long as they carry out the assumed
attack cycle. In addition, the starting point of our monitor-
ing was based on public blacklists; therefore, our system can
detect new adversary infrastructures. Experimental results
indicated that most of the information we collected was not
contained in public blacklists; therefore, our proposed sys-
tem was able to discover malicious activities in a different
monitoring space from conventional blacklisting systems.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Websense Security Labs. Mass injection—nine-ball compro-
mises more than 40,000 legitimate web sites. http://securitylabs.
websense.com/content/Alerts/3421.aspx (2009)

2. Akiyama, M., Yagi, T., Aoki, K., Hariu, T., Kadobayashi, Y.: Active
credential leakage for observing web-based attack cycle. In: Pro-
ceedings of the 16th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID2013), Springer

3. Moshchuk, A., Bragin, T., Gribble, S.D., Levy, HM.: A crawler-
based study of spyware on the web. In: 13th Annual Network and
Distributed System Security Symposium (NDSS). ISOC (2006)

4. Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your
iFRAME:s point to US. In: Proceedings of the 17th Conference on
Security Symposium. USENIX (2008)

5. Stokes, J.W., Andersen, R., Seifert, C., Chellapilla, K.: WebCop:
locating neighborhoods of malware on the web. In: Proceedings of

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.

23.
24.

25.

26.

the 3rd Usenix Workshop on Large-Scale Exploits and Emergent
Threats (LEET”10). USENIX (2010)

. The Honeynet Project: Know your enemy: malicious web servers.

http://www.honeynet.org/papers/mws/ (2008)

. Akiyama, M., Yagi, T., Itoh, M.: Searching structural neighborhood

of malicious URLs to improve blacklisting. In: Proceedings of the
11th IEEE/IPSJ International Symposium on Application and the
Internet (SAINT)

. Invernizzi, L., Benvenuti, S., Cova, M., Comparetti, PM., Kruegel,

C., Vigna, G.: EvilSeed: a guided approach to finding malicious
web pages. In: 2012 IEEE Symposium on Security and Privacy.
IEEE (2012)

. Zhang, J., Yang, C., Xu, Z., Gu, G.: Poison amplifier: a guided

approach of discovering compromised websites through reversing
search poisoning attacks. In: Proceedings of the 15th International
Conference On Research In Attacks, Intrusions, And Defenses
(RAID 2012). Springer (2012)

Spitzner, L.: Honeytokens: the other honeypot. http://www.
symantec.com/connect/articles/honeytokens-other-honeypot
(2003)

Bercovitch, M., Renford, M., Hasson, L., Shabtai, A., Rokach,
L., Elovici, Y.: HoneyGen: an automated honeytokens generator.
In: Proceedings of 2011 IEEE International Conference on Intelli-
gence and Security Informatics (ISI). IEEE

Birk, D., Gajek, S., Grobert, F., Sadeghi, A.-R.: Phishing phishers
- observing and tracing organized cybercrime. In: Proceedings of
the Second International Conference on Internet Monitoring and
Protection (ICIMP). IARIA (2007)

Li, S., Schmitz, R.: A novel anti-phishing framework based on
honeypots. Proceedings of the 2009 eCrime Researchers Summit
(eCrime), IEEE, Tacoma, Washington, 20-21 Oct 2009

Yue, C., Wang, H.: BogusBiter: a transparent protection against
phishing attacks. ACM Trans. Internet Technol. (TOIT) 10(2), 31
(2010). [Article 6]

Bowen, B.M., Hershkop, S., Keromytis, A.D., Stolfo, S.J.: Baiting
inside attackers using decoy documents. In: 5th International ICST
Conference on Security and Privacy in Communication Networks
(SecureComm?2009). ICST (2009)

Bowen, B.M., Prabhu, P., Kemerlis, V.P., Sidiroglou, S., Keromytis,
A.D., Stolfo, S.J.: BotSwindler: tamper resistant injection of believ-
able decoys in VM-based hosts for crimeware detection. In:
Proceedings of the 13th international conference on Research in
Attacks, Intrusions, and Defenses (RAID 2010). Springer (2010)
Rist, L.: Know your tools: Glastopf. https://honeynet.org/files/
KYT-Glastopf-Final_v1 (2010)

Canali, D., Balzarotti, D.: Behind the scenes of online attacks:
an analysis of exploitation behaviors on the web. In: 20th Annual
Network and Distributed System Security Symposium (NDSS).
ISOC (2013)

Anubis (2014). http://analysis.seclab.tuwien.ac.at/

Malwr: https://malwr.com/

Shadow server : http://www.shadowserver.org/ (2014)

Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxon, V.: GQ:
practical containment for measuring modern malware systems. In:
Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (IMC). ACM (2011)

Malware Domain List: http://malwaredomainlist.com/

Chenette, S.: Fireshark—A Tool to Link the Malicious Web. Black-
hat Europe. Blackhat Europe, London (2010)

Akiyama, M., Aoki, K., Kawakoya, Y., Iwamura, M., Itoh, M.:
Design and implementation of high interaction client honeypot for
drive-by-download attacks. IEICE Trans. Commun. E93-B, 1131-
1139 (2010)

Akiyama, M., Yagi, T., Kadobayashi, Y., Hariu, T., Yamaguchi, S.:
Client honeypot multiplication with high performance and precise
detection. IEICE Trans. Inform. Syst. E98-D, 775-787 (2015)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://securitylabs.websense.com/content/Alerts/3421.aspx
http://securitylabs.websense.com/content/Alerts/3421.aspx
http://www.honeynet.org/papers/mws/
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
http://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://honeynet.org/files/KYT-Glastopf-Final_v1
https://honeynet.org/files/KYT-Glastopf-Final_v1
http://analysis.seclab.tuwien.ac.at/
https://malwr.com/
http://www.shadowserver.org/
http://malwaredomainlist.com/

HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle

151

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Seifert, C., Ramon, S.: Capture—honeypot client (Capture-HPC).
https://projects.honeynet.org/capture-hpc (2008)

Wang, Y.-M., Beck, D., Jiang, X., Roussev, R., Verbowski, C.,
Chen, S., King, S.: Automated web patrol with strider honeymon-
keys: finding web sites that exploit browser vulnerabilities. In:
13th Annual Network and Distributed System Security Sympo-
sium (NDSS). ISOC (2006)

Dell’Aera, A.: Thug: a new low-interaction honeyclient.
(2012) http://www.honeynet.org/sites/default/files/filess/ HPAW
2012-Thug

Nazario, J.: PhoneyC: a virtual client honeypot. In: Proceedings of
the 3rd Usenix Workshop on Large-Scale Exploits and Emergent
Threats (LEET’09). USENIX (2009)

Aoki, K., Yagi, T., Iwamura, M., Itoh, M.: Controlling malware
HTTP communication in dynamic analysis system using search
engine. In: Proceedings of the 3rd International Workshop on
Cyberspace Safety and Security (CSS), (2011)

Chung, F.R.K.: Spectral graph theory. CBMS Regional Conference
Series in Mathematics No. 92 (1997)

Chen, P.-Y., Hero, A.O.: Deep community detection. IEEE Trans.
Sign. Process. 63(21), 5706-5719 (2015)

Newman, M.: Spectral methods for network community detection
and graph partitioning. Phys. Rev. E 88, 042822 (2013)

Newman, M.: Networks: An Introduction. Oxford University Press
Inc, New York (2010)

Spielman, D.A., Teng, S.-H.: Spectral partitioning works: planar
graphs and finite element meshes. In: [EEE Symposium on Foun-
dations of Computer Science. IEEE (1996)

Bureau, P.-M.: Same botnet, same guys, new code: Win32/Kelihos.
(2011)

Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J.,
Levchenko, K., Mavrommatis, P., McCoy, D., Nappa, A., Pit-
sillidis, A., Provos, N., Rafique, M.Z., Rajab, M.A., Rossow,
C., Thomas, K., Paxson, V., Savage, S., Voelker, G.M.: Manu-
facturing compromise: the emergence of exploit-as-a-service. In:
Proceedings of the 19th ACM Conference on Computer and Com-
munication Security. ACM (2012)

39.

40.
41.
4.
43.
44,

45.
46.

47.

48.

Symantec. Web-based malware distribution channels: a look
at traffic redistribution systems. http://www.symantec.com/
connect/blogs/web-based-malware-distribution-channels-
look-traffic-redistribution-systems (2011)

Traffic direction systems as malware distribution tools: http://www.
trendmicro.com/cloud-content/us/pdfs/security-intelligence/
reports/rpt_malware-distribution-tools (2011)

Clean, M.X.: http://support.clean-mx.de/clean-mx/viruses (2014)
DNS-BH 2014. Malware domain blocklist. http:/www.
malwaredomains.com/

Malware Patrol : http://www.malware.com.br/

URLBIackList. http://urlblacklist.com/ (2014)

ZeuS Tracker. https://zeustracker.abuse.ch/ (2014)

Caballero, J., Grier, C., Kreibich, C., Paxson, V.. Measuring
pay-per-install: the commoditization of malware distribution. In:
Proceedings of the 20th USENIX Security Symposium. USENIX
(2011)

Nappa, A., Rafique, M.Z., Caballero, J.: FIRMA: malware clus-
tering and network signature generation with mixed network
behaviors. In: Proceedings of the 16th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID2013).
Springer (2013)

Nelms, T., Perdisci, R., Ahamad, M.: ExecScent: mining for new
C&C domains in live networks with adaptive control protocol
templates. In: Proceedings of the 22nd USENIX Conference on
Security. USENIX (2013)

@ Springer

https://projects.honeynet.org/capture-hpc
http://www.honeynet.org/sites/default/files/files/HPAW2012-Thug
http://www.honeynet.org/sites/default/files/files/HPAW2012-Thug
http://www.symantec.com/connect/blogs/web-based-malware-distribution-channels-look-traffic-redistribution-systems
http://www.symantec.com/connect/blogs/web-based-malware-distribution-channels-look-traffic-redistribution-systems
http://www.symantec.com/connect/blogs/web-based-malware-distribution-channels-look-traffic-redistribution-systems
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_malware-distribution-tools
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_malware-distribution-tools
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt_malware-distribution-tools
http://support.clean-mx.de/clean-mx/viruses
http://www.malwaredomains.com/
http://www.malwaredomains.com/
http://www.malware.com.br/
http://urlblacklist.com/
https://zeustracker.abuse.ch/

	HoneyCirculator: distributing credential honeytoken for introspection of web-based attack cycle
	Abstract
	1 Introduction
	2 Related work
	2.1 Honeytoken
	2.2 Collecting and analyzing exploit codes and malware

	3 Assumption and preliminary investigation
	4 Design of monitoring system
	4.1 Analytical procedure
	4.2 Building blocks
	4.2.1 Web client honeypot
	4.2.2 Malware sandbox
	4.2.3 Credential honeytoken
	4.2.4 WCMS honeypot

	5 Field experiment
	5.1 Malware collection
	5.2 Compromised accounts
	5.3 Adversary infrastructure
	5.3.1 Graph partitioning
	5.3.2 Property of adversary infrastructure

	5.4 Malware leaking information
	5.5 Credential leakage behavior
	5.5.1 Internal behavior on infected host
	5.5.2 Leakage communication

	5.6 Adversary behavior on compromised server
	5.7 Malicious web content
	5.7.1 Injected code
	5.7.2 Traffic redirection
	5.7.3 Web access control by server-side content
	5.7.4 Phishing page
	5.7.5 Mailing infrastructure

	6 Evaluation
	6.1 Comparison with public blacklists
	6.2 Rapidity of malicious website discovery

	7 Discussion
	7.1 Fidelity of decoy component
	7.2 C&C over-blocking on malware sandbox
	7.3 Various methods for information exfiltration
	7.4 Applicability to other applications/services

	8 Conclusion
	References

