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Abstract
We show, through a Linear Algebra approach, that a general deterministic cash-flow
stream admits a given Internal Rate of Return (irr, either constant or time-varying)
if, and only if, it can be replicated by a suitable portfolio of bonds, each with yield to
maturity equal to that same irr. Five particular replicating portfolios are examined,
including and generalizing other representations known from the the literature, which
allow for a unified, irr-based, interpretation of apparently diverse objects. Considering
the amortization of a loan as a particular case, further equivalences are found and lead
to some original consideration.

Keywords Capital budgeting · Internal rate of return · Bond markets · Loan
amortization · Portfolio management

Mathematics Subject Classification C60 · G10 · H80

1 Introduction

The internal rate of return (irr) of any sequence of deterministic cash-flows—which
we call, in full generality, a project—is usually defined as any interest rate which
makes the project “fair”, meaning that, if the cash flows of the project are discounted
according to such a rate, a null overall sum obtains. Its definition is often traced back
to Keynes (1936), who called it marginal efficiency of capital, although (Dorfman
1981) reports that it appeared in the economic debate back since (Fisher 1907) and
even (von Böhm-Bawerk 1889), thus making it one of the most famous and long
established concepts in Financial mathematics.
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Since irrs are root of polynomials, every project usually has several irrs in the
complex field, and it may have more than one real irr, or no real irr at all. It is
nevertheless a long-known result that, when the project under consideration is either
a pure investment or a pure loan (that is, when the cash-flows change sign one single
time, respectively, either from negative to positive or from positive to negative), a
unique real irr exists, which traditionally is given a natural interpretation as either
the yield on the invested capital (for pure investments) or the interest rate due on the
borrowed amount (for pure loans). This allows for associating an easily interpretable
irr to a wide class of projects. Furthermore, the irr comes in the form of a yearly
percentage, which makes it very easy to understand and compare between projects
or with other indices, such as roi/roe, or as the (opportunity) cost of capital. It is
not surprising, thus, that the irr has enjoyed a great and time-standing popularity in
several fields: for instance, Graham and Harvey (2001) find that irr is used by many
firms for valuating investment decision-making, and Gredil et al. (2023) show how it
is used (with other return rates) in private equity.

On the other hand, through the years, a lot of puzzles and flaws of the irr have been
exposed and studied in the literature: see, for instance, Lorie and Savage (1955), Levi
(1957), Hirshleifer (1958), Levi (1964), and Teichroew et al. (1965), or more recently
Jensen and Smith (1984), Castagnoli (1986), and Brealey et al. (2009). A full analysis
of such studies would go far beyond the scope of this paper, but the interested reader
may find quite a thorough review in Magni (2013), who exhibits no less than eighteen
flaws of the irr, in the introduction to Magni (2014), where several debates about the
irr are put into an historical perspective, and inMagni (2016) (and references therein),
which provide an extensive survey of the literature on irr and, in particular, of the
solutions to its flaws. Remarkably, some of the results (most notably (Hazen 2003)
and Magni (2010)) allow for classifying every project either as a “net investment” or
a “net borrowing”, therefore allowing for an unambiguous interpretation of the irr.

What is relevant for the purpose of this paper is that several of the works addressing
the limitations of the irr (see, e.g., Hazen (2003), Hartman and Schafrick (2004),
Magni (2010), Cuthbert (2018), and againMagni (2013), andMagni (2016)) directly or
indirectly employ a “decomposition” technique, consisting of building a suitable set of
bonds or other projects, such that the overall cash-flow stream of the resulting portfolio
coincides with the stream of the original operation: such an object, in Mathematical
Finance, is called a “hedging portfolio”. Such decompositions are often linked to
the irr of the original project, which also in most of the cases coincides with the
yield (either constant or variable) of the bonds or projects that build the hedging
portfolio. The same technique appeared in some works with national relevance in
Italy (in particular, see Cacciafesta (2015), Fersini and Olivieri (2015), and Piacitelli
et al. (2021)), where it was surprisingly used to try both proving and disproving the
presence of “anatocism” (which, according to the Italian law, has a more strict and
proper meaning than simply “compound interest”) in the usual amortization plan of a
loan with constant rate and payments. In every cited paper, the used decompositions
were introduced each as a “stand-alone” result, possibly just citing previous papers
which used the exact same particular decomposition.

The main, and starting, result of the present paper is that all the above decompo-
sitions, and several other ones, are just particular cases of a unique result. Through
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standard Linear Algebra methods, we shall indeed prove that a given interest rate is
an irr for a project if, and only if, the project can be hedged by a portfolio of bonds
whose yields to maturity all equal the given rate itself. This does not depend at all
on the nature of the original project, and therefore is completely independent on the
given irr being a yield or a cost, which can still be investigated with the known meth-
ods from the cited literature: as such, our result can provide a visual interpretation of
the irr to be put alongside the existing ones. Furthermore, we shall investigate the
financial meaning of five particular, and quite natural, decompositions, both in the
general case and in the special case of loans amortization, which will lead to some non
trivial considerations and possibly to adding some new insights. In particular, one of
these decompositions patently emphasizes the known fact that some concepts defined
in independent frameworks, such as the outstanding capital of Peccati (1987), the
outstanding balance of loans amortization, or the investment balance of Hartman and
Schafrick (2004) are actually particular instances of the same concept, i.e., roughly
speaking, the remaining value that the project is worth at a given date, also called
in full generality an investment stream in, e.g., Hazen (2003) and Magni (2010) (see
also Magni (2020), Chapter 1, for a more detailed and comprehensive discussion).
Although our work may not directly affect the way irr can be used as a measure of
profitability or as a choice criterion (which are investigated in the papers cited above),
it will draw several connections who will allow, e.g., to apply to a wider set of objects
some known results (as in some examples we provide).

For the sake of readability, most of the paper will deal with the particular case where
the projects under consideration have equidistant cash flows and the irrs are supposed
to be constant in time. We shall nevertheless explain how these results can be adapted
to hold, unchanged, even in the case of nonconstant time periods and time-varying
yield rates: notably, in such a case, our description will adapt to the model of Magni
(2010) and to the internal financial laws of Peccati (1989), besides of course to loans
with variable rates. Finally, we shall deal with real rates only: although our results work
unchanged with complex irrs, we have found no deeper financial insight coming to
taking them into consideration. Readers interested in complex rates of returnmay refer
to Pierru (2010), Osborne (2010), and Osborne (2014) .

The paper is organized as follows.
In Sect. 2, the notations are set and the main definitions are given. Standard inter-

pretations and considerations about the irr are recalled.
Section 3 contains the main result of the paper. After introducing some additional

notation, which will make easier to handle the concepts under consideration, two
technical lemmas will be stated and proved, namely, that the set of all projects with
a given irr make a linear (sub)space, that the set of all bonds (either traditional or
zero-coupon) with yield to maturity equal to such an irr make a spanning system of
that space and, finally, that some particular choices of bonds form a basis for it. The
main theorem will then follow as an immediate consequence, and some examples will
be given. Some particular portfolios will be examined in detail, namely, portfolios
of “single period bonds” (i.e., bonds with maturity immediately after the issue date),
portfolios of bonds with common issue date at the earliest possible date and variable
maturity, and portfolios of bonds with variable issue date and common maturity at the
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last possible date, where each of the last two may be composed by either zero-coupon
or traditional bonds. Such portfolios make very natural and somewhat significant
choices, but the reader will undoubtedly realize (and it will be recalled) that they are
not the only possible ones, as lots of other combinations (even with general projects
instead of bonds) may be taken under consideration.

The results of Sect. 3 are applied in Sect. 4 to the particular case of a loan amor-
tization. First of all, the general rules of an elementary amortization are introduced,
which build the simplest (and possibly the most used) framework for the amortization
of a loan, here called a meal (Method for Elementary Amortization of Loans). Then,
the five particular decompositions seen in Sect. 3 are applied, and examined to find
some interesting (and sometimes not trivial) economic interpretations. In particular, it
is argued that all loan amortization techniques, even the most exotic ones, can always
be reduced to a mealwith a suitable interest rate (which, not surprisingly, is of course
equal to the irr of the original amortization plan, that is to say, with its so-called
Annual Percentage Rate, or apr).

Finally, Sect. 5 is dedicated to pointing out how the results of the paper apply, with-
out significant changes, to variable interest rates and tomore general sets of maturities.
Moreover, it is shown how our method has interesting links with the decomposition of
the Net Present Value of an operation into yearly contributions as proposed by Peccati
(1987).

2 Notation and classical interpretation

Let n ∈ N. In this paper, any situation when an agent goes through the exchange of
the monetary amounts a0, a1, . . . , an ∈ R (with the usual convention that positive
values represent inflows and negative values represent outflows) at the maturities
t0 < t1 < . . . < tn is called a project and denoted by

t0 t1 t2 · · · tn−1 tn
a0 a1 a2 · · · an−1 an

. (1)

If a project is given, its discounted cash flow dcf function is defined by the position

dcf : (−1,+∞) → R dcf(r) :=
n∑

k=0

ak(1 + r)t0−tk :

from the financial point of view, the dcf is the function that associates to every r ∈
(−1,+∞) the sum of the discounted values at time t0, according to the interest rate
r , of all the amounts involved in the project. The evaluation dcf(r) of the dcf at a
given interest rate r is called the net present value (npv) of the operation at that rate.

An evocative interpretation of the npv is given as follows. Suppose that all of the
moneymovements of the project are deposited into, orwithdrawn from, a bank account
which produces and asks interests at rate r (the same for deposits and for loans). The
final balance of the account will be the same that would obtain if an amount equal to
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the npv be invested from time t0 until time tn at compound interest r (i.e., so to say,
in that same account).

Every interest rate r∗ ∈ (−1,+∞) such that dcf(r∗) = 0 is called an internal rate
of return irr of the project: note that irrs are roots of a polynomial equation, so that
they need not be unique, nor even exist.

The irr can be immediately read as the yield of the project, in the case of an invest-
ment, or as its overall cost, in the case of a loan: significantly, the Annual Percentage
Rate (apr) of a financing project can be calculated as its irr, properly taking into
account all of the fees and charges. As such, an agent can evaluate the profitability
of a project by comparing its irr with the typical yield of her/his usual investments:
an investment is profitable if the irr is greater than her/his usual yield, and a loan is
profitable in the opposite case.

The “bank account” interpretation seen for the npv is even crispier in the case of
the irr: if the cash flows of the project are borrowed from, or invested into, a bank
account with working interest rate r∗, such a rate r∗ is an irr for the project if, and
only if, the final balance of the account is null.1

All in all, the irr enjoys a good popularity among financial operators for at least
two reasons. First of all, the irr can be easily expressed as a yearly “percentage” of
profitability or cost, which makes it quite easy (at least apparently) to communicate
and to understand. Furthermore, unlike other criteria (such as the npv itself), the irr of
a project comes from an “objective” calculation, without the need to take into account
any “subjective” conditions of the agent undertaking the project itself.

We already mentioned in the introduction that a long discussion can be found in the
literature about irr’s oddities and “flaws”. Since we shall use it as a working example
for our decomposition theorem (Example 1 below), we just mention that Lorie and
Savage (1955) started from a very sensible problem of firm management to end up
with a project (the algebraic difference of the cash flows generated by two possible
alternatives) which could not be easily to classify neither as an investment nor as a
loan, and which admitted two different irrs without a clear financial meaning.

3 Decomposition into elementary projects

It is immediate to identify the project (1) with the vector [a0 a1 a2 · · · an] ∈
R
n+1, by orderly associating the amounts a0, a1, . . . , an to thematurities t0, t1, . . . , tn .

Throughout this and the following section, the set of maturities is supposed (without
loss of generality, as it will be argued in Sect. 5) to be {0, 1, 2, . . . , n} (n ∈ N).

The following two classes of simple projects, collectively called elementary
projects, are introduced. They will be central in the interpretation proposed in this
note.

1 The “bank account” interpretation is nothing less and nothing more than a Gedankenexperiment but
unfortunately it has been historically mistaken for the implicit assumption—or even the request—that the
implied refinancing/reinvestment opportunities be actually available for the npv or the irr to be meaningful
(see, e.g., Dudley (1972)): a disproval of such a “reinvestment fallacy” can be read in Keane (1979) and,
more thoroughly, in Magni and Martin (2017). The same Keane (1979) propose to interpret the irr as “the
maximum cost of capital a project can sustain”, although such an interpretationmay become a little puzzling
in the case when a project has multiple irrs.
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Definition Let t, s ∈ N, 0 � t < s � n and r ∈ (−1,+∞).

(i) It,s(r) denotes the project with a single unit outflow at time t and a single inflow
(1 + r)s−t at time s:

It,s(r) := [0 · · · 0
t−1

−1
t

0
t+1

· · · 0
s−1

(1 + r)s−t

s

0
s+1

· · · 0] ∈ R
n+1.

(ii) Yt,s(r) denotes the project with a single unit outflow at time t , inflows equal to
r from time t + 1 to time s − 1 and a final inflow of 1 + r at time s:

Yt,s(r) := [0 · · · 0
t−1

−1
t

r
t+1

· · · r
s−1

1 + r
s

0
s+1

· · · 0] ∈ R
n+1.

Remark 1 Classically, It,s(r) is called a zero-coupon bond issued at time t and with
maturity s; its yield to maturity (i.e., its unique irr) is of course r . Analogously,
Yt,s(r) is called a traditional bond, or bullet bond issued at time t with maturity s
and coupon rate r ; again, its yield to maturity (and unique irr) is plainly r . Note
that It−1,t (r) = Yt−1,t (r) for every t = 1, 2, . . . , n and every r ∈ (−1,+∞): as
such, bonds of this kind will be called single period bonds without the need to specify
whether they are traditional or zero-coupon (such bonds coincidewith the “very simple
transactions” of Cuthbert (2018)).

In the case of bonds, the irr is unique and it has a crisp and immediate meaning:
it is a cost for the issuer and a yield for the purchaser.

The main result of this paper will be proved through two preliminary lemmas.

Lemma 1 Let n ∈ N, r ∈ (1,+∞), and denote by Sn(r) the set of all projects on the
set {0, 1, 2, . . . , n} of maturities with irr r . Then:

(i) Sn(r) is a linear n-dimensional subspace ofRn+1, containing all the elementary
projects It,s(r) and Yt,s(r) (0 � t < s � n);

(ii) the set {It−1,t (r) : t = 1, 2, . . . , n} is a basis of Sn(r);
(iii) the sets {It,s(r) : 0 � t < s � n} and {Yt,s(r) : 0 � t < s � n} are both

spanning systems for Sn(r).

Proof (i) It is enough to note that

Sn(r) =
{

[a0 a1 a2 · · · an] ∈ R
n+1 :

n∑

t=0

at (1 + r)−t = 0

}

is the set of the solutions of a linear equation, i.e., a hyperplane in R
n+1. Of course,

all the elementary projects {It,s(r) : 0 � t < s � n} and {Yt,s(r) : 0 � t < s � n}
belong to Sn(r), because, as already pointed out, they have r as (the unique) irr.

(ii) It is a standard Linear Algebra result that a set of n vectors in an n-dimensional
linear space is a spanning system if and only if it is linearly independent2, so it is

2 This is the consequence of three combined results: (i) every spanning system contains at least as many
vectors as every linearly independent set (this is called “(Steinitz) Exchange Lemma”); (ii) every spanning
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enough to check linear independence of {It−1,t (r)}t . Suppose that∑n
t=1 βt It−1,t (r) =

[0 0 · · · 0]: since it is also
n∑

t=1

βt It−1,t (r) = [−β1 (1 + r)β1 − β2 · · · (1 + r)βn−1 − βn (1 + r)βn]

it is straightforward to see that it has to be β1 = 0, which makes the second component
equal to −β2, thus allowing to conclude that β2 = 0 as well, and so on, thus proving
linear independence of {It−1,t (r)}t .

(iii) It is enough to note that {It−1,t (r)}t is contained both in {It,s(r)}t<s and in
{Yt,s(r)}t<s , because, as already pointed out, It−1,t (r) = Yt−1,t (r) for every t =
1, 2, . . . , n. ��
Remark 2 In proving part (iii) of Lemma 1, it has been pointed out that {It−1,t (r)}t ⊆
{It,s(r)}t<s ∩ {Yt,s(r)}t<s . The opposite inclusion holds as well, because the only
way for a bond to simultaneously have and not have intermediate payments is not
having intermediate dates at all, which amounts to saying, reaching maturity in the
date immediately following issue. Therefore, we can conclude that {It−1,t (r)}t =
{It,s(r)}t<s ∩ {Yt,s(r)}t<s .

It is possible to explicitly show that {It−1,t (r)}t is a spanning system for Sn(r).
Given indeed any [a0 a1 · · · an] ∈ Sn(r), set β1 = −a0, β2 = −a1 − a0(1 + r),
and, in general,

βt = −
t−1∑

k=0

ak(1 + r)t−k−1 (t = 3, . . . , n);

take into consideration the portfolio
∑n

t=1 βt It−1,t (r). Recalling that each It−1,t (r)
yields non null amounts at times t − 1 and t only:

• at time 0, the portfolio yields the overall amount β1 · (−1) = a0;
• at the generic time t = 1, 2, . . . n − 1, the portfolio yields the amount βt (1+ r) −

βt+1 = −∑t−1
k=0 ak(1 + r)t−k + ∑t

k=0 ak(1 + r)t−k = at ;
• at time n, the portfolio yields βn · (1+ r) = −∑n−1

t=0 at (1+ r)n−t = −(1+ r)n ·∑n−1
t=0 at (1+r)−t . Since

∑n
t=0 at (1+r)−t = 0, because r is an irr for the project,

it follows that −(1 + r)n · ∑n−1
j=0 at (1 + r)−t = (1 + r)n · an(1 + r)−n = an .

As a particular case, it is immediate to see how {It−1,t (r)}t spans both {It,s(r)}t<s and
{Yt,s(r)}t<s : for every 0 � t < s � n,

It,s(r) =
s∑

k=t+1

(1 + r)k−t−1
Ik−1,k(r) and Yt,s(r) =

s∑

k=t+1

Ik−1,k(r).

Footnote 2 continued
system can be refined to a basis, i.e., it contains a linearly independent subset which still is a spanning
system; (iii) every linearly independent set can be completed to a basis by adding a finite number of vectors
from any given spanning system.
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A final, but remarkable, consideration is in order. Given the expressions for the
coefficients βt , t = 1, 2, . . . , n, it is straightforward to check that

βt+1 = (1 + r)βt − at (2)

which describes the dynamic evolution of the capital (βt ) invested in the project,
as dictated by the irr. Such a value is referred to as the “outstanding capital” in
Peccati (1987) and as the “internal”, or “Hotelling”, value inMagni (2010, 2013). This
recursive relation also serves as the foundational block in Hazen (2003). Magni (2010,
2013) extends this concept in a broader framework, referred to as the “fundamental
economic relation” (eq. (1) inMagni (2013)) or the “law ofmotion” (eq. (1.1) inMagni
(2020)), demonstrating its applicability to any economic (real or financial) asset and
its role as a unifying principle in finance and accounting.

Example 1 (Lorie and Savage 1955) showed that, on the set {0, 1, 2} of maturities,
the project [−1 600 10 000 −10 000] has two irrs: i∗1 = 25% and i∗2 = 400%. By
Lemma 1(ii), the project can be decomposed as follows: according to i∗1 = 25% (note
that−8 000 = −10 000− (−1 600) ·1.25 = −a0−a1(1+r), as in Remark 2 above),

elementary project t = 0 t = 1 t = 2
1 600 · I0,1(0.25) −1 600 2 000 0

−8 000 · I1,2(0.25) 0 8 000 −10 000
overall −1 600 10 000 −10 000

and, according to i∗2 = 400% (and with −2 000 = −10 000 − (−1 600) · 5),

elementary project t = 0 t = 1 t = 2
1 600 · I0,1(4) −1 600 8 000 0

−2 000 · I1,2(4) 0 2 000 −10 000
overall −1 600 10 000 −10 000

.

Example 2 The project [−302.4 1 650 −3 350 3 000 −1 000], on the set {0, 1, 2, 3, 4}
of maturities, has four irrs: 11.1111%, 25%, 42.8571%, and 66.6667%.

(a) With r = 0.1111, the project can be decomposed as

elementary project t = 0 t = 1 t = 2 t = 3 t = 4
302.4 · I0,1(0.1111) −302.4 336 0 0 0

−1 314 · I1,2(0.1111) 0 1 314 −1 460 0 0
1 890 · I2,3(0.1111) 0 0 −1 890 2 100 0
−900 · I3,4(0.1111) 0 0 0 900 −1 000

overall −302.4 1 650 −3 350 3 000 −1 000

.
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(b) With r = 0.25, the project can be decomposed as

elementary project t = 0 t = 1 t = 2 t = 3 t = 4
302.4 · I0,1(0.25) −302.4 378 0 0 0

−1 272 · I1,2(0.25) 0 1 272 −1 590 0 0
1 760 · I2,3(0.25) 0 0 −1 760 2 200 0
−800 · I3,4(0.25) 0 0 0 800 −1 000

overall −302.4 1 650 −3 350 3 000 −1 000

.

(c) With r = 0.4286, the project can be decomposed as

elementary project t = 0 t = 1 t = 2 t = 3 t = 4
302.4 · I0,1(0.4286) −302.4 432 0 0 0
−1 218 · I1,2(0.4286) 0 1 218 −1 740 0 0
1 610 · I2,3(0.4286) 0 0 −1 610 2 300 0
−700 · I3,4(0.4286) 0 0 0 700 −1 000

overall −302.4 1 650 −3 350 3 000 −1 000

.

(d) With r = 0.6667, the project can be decomposed as

elementary project t = 0 t = 1 t = 2 t = 3 t = 4
302.4 · I0,1(0.6667) −302.4 504 0 0 0
−1 146 · I1,2(0.6667) 0 1 146 −1 910 0 0
1 440 · I2,3(0.6667) 0 0 −1 440 2 400 0
−600 · I3,4(0.6667) 0 0 0 600 −1 000

overall −302.4 1 650 −3 350 3 000 −1 000

.

Lemma 2 Let n ∈ N, r ∈ (1,+∞), and denote by Sn(r) the linear (sub)space of all
projects on the set {0, 1, 2, . . . , n} of maturities with irr r . The following sets:

(i) {It−1,t (r) : t = 1, 2, . . . , n},
(ii) {It−1,n(r) : t = 1, 2, . . . , n},
(iii) {I0,t (r) : t = 1, 2, . . . , n},
(iv) {Yt−1,n(r) : t = 1, 2, . . . , n}, and
(v) {Y0,t (r) : t = 1, 2, . . . , n}

are bases of Sn(r).

Proof Note that part (i) is simply a rewording of Lemma 1(ii), included here to gather
all the bases in a single statement. Parts (ii-v) are proved just like (i) (see Lemma 1
again): all the involved sets have exactly n elements and therefore it is enough to
see that each of them is a linearly independent set, which quickly follows from their
definition. ��
Remark 3 It is straightforward (although a little toilsome here and there) to calculate
the coefficients that yield the generic project [a0 a1 · · · an] as a linear combination
of the bases shown in Lemma 2:
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(i) with the basis {It−1,t (r)}t , as seen in Remark 2, the coefficients βt =
−∑t−1

j=0 a j (1 + r)t− j−1 (t = 1, 2, . . . , n) are used;
(ii) with {It−1,n(r)}t , the coefficients are βt = −at−1 (t = 1, 2, . . . , n);
(iii) with {I0,t (r)}t , the coefficients are βt = at (1 + r)−t (t = 1, 2, . . . , n);
(iv) with {Yt−1,n(r)}t , the coefficients are β1 = −a0, β2 = −a1 − ra0, βt =

−at−1 − r · ∑t−2
j=0 a j (1 + r)t− j−2 (t = 2, . . . , n);

(v) finally, with {Y0,t (r)}t , the coefficients are βt = at (1+r)−1−r ·∑n
j=t+1 a j (1+

r)t− j−1 (t = 1, 2, . . . , n − 1), βn = an(1 + r)−1.

Note that the term
∑t−2

j=0 a j (1+ r)t− j−2, which appears in (iv), equals the investment
balance at time t −2 of the project (see, e.g., Hartman and Schafrick (2004)). Further-
more, the term

∑n
j=t+1 a j (1 + r)t− j−1, which appears in (v), is the present value, at

rate r and at time t , of the last n − t cash-flows of the project (which, if r coincided
with the market rate, would amount to its market price at time t after cashing at ).

It is now possible to give the main result of the paper.

Theorem 1 If the interest rate r is the irr of a project on the set {0, 1, 2, . . . , n} of
maturities, then there exists suitable portfolios:

(i) of single period bonds,
(ii) of zero-coupon bonds with maturity n,
(iii) of zero-coupon bonds with issue date 0,
(iv) of traditional bonds with maturity n, and
(v) of traditional bonds with issue date 0

(with all the involved bonds having yield r to maturity), which have the same payments
as the project.

Proof It is an immediate consequence of Lemmas 1 and 2, with the terminology seen
in Remark 1. ��
Remark 4 Theorem 1 could actually be stated as a characterization: r is the irr of a
project if and only if there exist porfolios of bonds with yield r to maturity which
hedge the project. The opposite implication, though, is actually too straightforward
to mention (for instance, it is a direct consequence of Lemma 1(i)). Furthermore,
Theorem 1 points out just five of the infinitely many decompositions that may be
conceived: it is clear that a decomposition of a financial project with irr r can be
found with respect to any spanning system of Sn(r), and in particular with respect to
every n linearly independent projects (not necessarily bonds!) with irr r .

In the five highlighted decompositions, the meaning of the irr is crisp for each
of the bonds composing the portfolio: it is a yield for the buyer and a cost for the
issuer. Remarkably, though, such a clarity of interpretation need not propagate to the
entire portfolio: for instance, although the irr is unique for all of the elementary
bonds, yet the project can show multiple ones. Indeed, generally speaking, some of
the bonds in the portfolio are bought and some other are (short-)sold, and therefore
the resulting cash-flow stream may not be immediate to tell as an investment or a
borrowing. We refer the reader to, e.g., Magni (2010) again to understand how it is
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possible to classify every project as a net investment or a net borrowing with respect
to each of its significant rates of return.

Note that, as seen in Examples 1 and 2, if a project has multiple irrs, each of them
can be used to decompose it as in Theorem 1. Roughly speaking, it can be said that a
project has (at least) five significant representations as a portfolio of bonds for each
irr it admits.

Example 3 (follows from 2) It is immediate to check that the project of Example 2 is
equivalent to the portfolio 302.4·I0,4(r)−1 650·I1,4(r)+3 350·I2,4(r)−3 000·I3,4(r)
(basis (ii)) for every r ∈ {11.1111%, 25%, 42.8571%, 66.6667%}.

It is straightforward that, if m > n, then Sn(r) ⊆ Sm(r). Such a trivial remark
has the non-trivial consequence that a project with irr r and final maturity n can be
“decomposed” in a portfolio of (elementary) projects with final maturity even greater
than n.

Example 4 (follows from 2) The project of Example 2 is equivalent to the following
portfolio, with r = 11.1111%.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

302.4·Y0,5(r) −302.4 33.60 33.60 33.60 33.60 336
−1616.4·I1,4(r) 0 1616.4 0 0 −2217.28 0
3383.6·Y2,4(r) 0 0 −3383.6 375.96 3759.56 0
−2590.44·I3,5(r) 0 0 0 2590.44 0 −3198.08
2575.87·Y4,5(r) 0 0 0 0 −2575.87 2862.08
overall −302.4 1650 −3350 3000 −1000 0

We point out that the decompositions seen in this section might just be theoretical,
because no real market could be found where the needed bonds are actually traded. In
such a case, the given representation maintains its value only from an interpretative,
and no longer from an operational, point of view.

4 An application to loans’ amortization

A simple and yet fairly general definition of the amortization of a loan (based
on Broverman (2017)) is given below, both to set the notations used in this section and
for the convenience of the reader.

Suppose that the amount L is borrowed by a debtor from a bank (or a financial
institution) and repaid by n payments of amounts K1, K2, …, Kn at times 1, 2, . . . , n
which have to include interests according to a certain rate r , agreed upon by the two
parties. For every time t = 0, 1, . . . , n the outstanding balance (or principal, or debt)
OBt is defined, according to the following rules: at the time t = 0 when the loan is
started, OB0 := L (which simply amounts to say that the whole borrowed amount has
to be entirely repaid) and, for every time t = 1, 2, . . . , n of payment,
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(i) the interest due for the period from t − 1 to t , denoted by It , is calculated as the
rate r times the outstanding balance OBt−1 at the beginning of the period;

(ii) the difference PRt := Kt − It between the agreed payment Kt and the interest
It due is called the principal repaid at time t ;

(iii) the oustanding balance at time t is OBt := OBt−1 − PRt .

Since these rules lead to split every payment in two elements (a principal and an
interest), the method of amortization following such rules may be called a meal (a
Method for Elementary Amortization of Loans).3

It is worth pointing out that a meal can also be defined starting from a given
sequence PR1, PR2, . . . , PRn of principals repaid: it simply suffices to replace Rule
(ii) with the equivalent rule

(ii′) the payment Kt due at time t is the sum PRt + It of the agreed principal PRt

repaid and the interest It due.

Finally, a meal can also be defined by a sequence OB1, OB2, . . . , OBn of outstanding
balances (with OB0 = L), because of course they immediately allow to deduce the
principals repaid as PRt = OBt−1 − OBt , t = 1, . . . , n.

Remark 5 The outstanding balances could be defined without explicitly splitting the
payment in two components. Indeed, since for the period from t − 1 to t the interest
It = r · OBt−1 is due, the total debt due before the payment at time t amounts to
OBt−1 · (1 + r), and the outstanding balance at time t can therefore be calculated
as OBt := OBt−1 · (1 + r) − Kt . Note that, taking Rule (ii) into consideration, the
above formula can be written OBt := (OBt−1 + It ) − (PRt + It ), which shows its
full equivalence with Rule (iii).

It is noteworthy that such a recursive formula for calculating OBt is again perfectly
analogous to (2), thus emphasizing that the outstanding balances in meal play the
same role as the outstanding capitals in npv decomposition and as the investment
balance in general projects, that is, roughly speaking, the value that, at a given date,
remains committed to the project. Given the obvious analogy between payments in
loans and cash-flows in projects, this also highlights an analogous link between period
operating profits and interests due (which is quite reasonable indeed, because such
interests are the profit required by the institution which grants the loan).

The loan is said to be amortized by the payments K1, K2, …, Kn if the final
outstanding balance is null, i.e., if OBn = 0. It is straightforward to check that this
amounts to saying that the sum of the principals repaid equals the whole borrowed
amount, i.e., that PR1+PR2+· · ·+PRn = L: such a condition is called the elementary
balance condition for the amortization of the loan. Although less immediate, it is also
possible to check that such condition holds if and only if the sum of the discounted
values at time t = 0 of the payments equals the borrowed amount, i.e., if K1(1 +
r)−1 + K2(1 + r)−2 + · · · + Kn(1 + r)−n = L: such a condition is called the initial

3 This acronym comes from an educated translation of an analogous Italian term introduced by F. Pressacco
and L. Ziani (University of Udine), who are kindly acknowledged. Note that it also provides a good reminder
for the fact that the payments should include interests, because of course “There is no such thing as a free
meal”.
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balance condition for the amortization of the loan. A more general condition can
also be proved in the same way, showing that, for every t = 1, 2, . . . , n − 1, the
outstanding balance OBt is the sum of the discounted values of future payments, i.e.,
that OBt = Kt+1(1 + r)−1 + Kt+2(1 + r)−2 + · · · + Kn(1 + r)t−n , or, in a more
compact form, OBt = ∑n

j=t+1 K j (1 + r)t− j .
From the point of view of the lending institution, the set of cash flows generated by

a meal can be denoted as the project [−L K1 K2 · · · Kn] on the set {0, 1, 2, . . . , n}
of maturities. In such a setting, the initial balance condition amounts to saying that r
is the unique irr of such a project (uniqueness follows from Descartes’s rule, because
the cash flows have only one change of sign). This way, Theorem 1 (and Remark 3)
can be applied, to show that, for the lender, granting a loan is financially equivalent to
setting up one of the following portfolios of bond, whose calculations are explicitly
carried out because they will suggest some non trivial economic considerations:

(i) buying β1 = L units of I0,1(r) at time 0 and, for every t = 1, . . . , n − 1,

βt+1 = L(1 + r)t − ∑t
j=1 K j (1 + r)t− j

= ∑n
j=1 K j (1 + r)t− j − ∑t−1

j=1 K j (1 + r)t− j

= ∑n
j=t K j (1 + r)t− j = OBt

units of It,t+1(r) at time t ;
(ii) buying β1 = L units of I0,n(r) at time t = 0 and issuing −βt+1 = Kt units of

It,n(r) at times t = 1, 2, . . . , n − 1;
(iii) buying, at time 0, βt = Kt (1 + r)−t unit of I0,t (r) for every maturity t =

1, 2, . . . , n;
(iv) buying β1 = L units of I0,n(r) at time t = 0, issuing −β2 = K1 − r L = PR1

units of I1,n(r) at time t = 1 and, in general, issuing

−βt+1 = Kt − r L(1 + r)t−1 + r · ∑t−1
j=1 Kt (1 + r)t− j−1

= Kt−1 − r ·
[ ∑n

j=1 Kt (1 + r)(t−1)− j − ∑t−1
j=1 Kt (1 + r)t− j−1

]

= Kt−1 − r · ∑n
j=t Kt (1 + r)t− j−1

= Kt − rOBt−1 = Kt − It = PRt

units of Yt,n(r) at times t = 2, . . . , n − 1;
(v) buying, for every maturity t = 1, 2, . . . , n − 1,

βt = Kt (1 + r)−1 − r · ∑n
j=t+1 K j (1 + r)t− j−1

= (
PRt + rOBt−1)(1 + r)−1 − r · (1 + r)−1OBt

= (
PRt + r(OBt−1 − OBt )

)
(1 + r)−1

= (
PRt + r PRt

)
(1 + r)−1 = PRt
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units of Y0,t (r) and, at time n,

βn = Kn(1 + r)−1 = (PRn + In)(1 + r)−1

= (
PRn + r PRn

)
(1 + r)−1 = PRn

units of Y0,n(r).

Example 5 A bank loan of 100 000eis paid back at r = 6% rate in five constant
instalments, each of 100 000/a5 0.06 � 23 740e.4 The classical amortization table
according to the meal is

t Kt It PRt OBt

0 – – – 100000
1 23740 6000 17740 82260
2 23740 4936 18804 63456
3 23740 3807 19932 43524
4 23740 2611 21128 22396
5 23740 1344 22396 0

The cash flows sequence generated from such a loan, from the bank’s point of view,
amounts to the project [−100 000 23 740 23 740 23 740 23 740 23 740], whose
unique irr is of course 6%. The project can be decomposed with respect to the five
bases seen above as follows:

(i) with respect to {It−1,t (0.06) : t = 1, 2, . . . 5},

elementary project t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

100 000 · I0,1(0.06) −100 000 106 000 0 0 0 0
82 260 · I1,2(0.06) 0 −82 260 87 196 0 0 0
63 456 · I2,3(0.06) 0 0 −63 456 67 264 0 0
43 524 · I3,4(0.06) 0 0 0 −43 524 46 136 0
22 396 · I4,5(0.06) 0 0 0 0 −22 396 23 740
overall −100 000 23 740 23 740 23 740 23 740 23 740

4 A more precise value would be 23 739.64e; for space reasons, though, figures are rounded to the unity
throughout this entire example.
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(ii) with respect to {It−1,5(0.06) : t = 1, 2, . . . , 5},

elementary project t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

100 000 · I0,5(0.06) −100 000 0 0 0 0 133 823
−23 740 · I1,5(0.06) 0 23 740 0 0 0 −29 971
−23 740 · I2,5(0.06) 0 0 23 740 0 0 −28 274
−23 740 · I3,5(0.06) 0 0 0 23 740 0 −26 674
−23 740 · I4,5(0.06) 0 0 0 0 23 740 −25 164
overall −100 000 23 740 23 740 23 740 23 740 23 740

(iii) with respect to {I0,t (0.06) : t = 1, 2, . . . , 5},

elementary project t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

22 396 · I0,1(0.06) −22 396 23 740 0 0 0 0
21 128 · I0,2(0.06) −21 128 0 23 740 0 0 0
19 932 · I0,3(0.06) −19 932 0 0 23 740 0 0
18 804 · I0,4(0.06) −18 804 0 0 0 23 740 0
17 740 · I0,5(0.06) −17 740 0 0 0 0 23 740
overall −100 000 23 740 23 740 23 740 23 740 23 740

(iv) with respect to {Yt−1,5(0.06) : t = 1, 2, . . . , 5},

elementary project t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

100 000 · Y0,5(0.06) −100 000 6 000 6 000 6 000 6 000 106 000
−17 740 · Y1,5(0.06) 0 17 740 −1 064 −1 064 −1 064 −18 804
−18 804 · Y2,5(0.06) 0 0 18 804 −1 128 −1 128 −19 932
−19 932 · Y3,5(0.06) 0 0 0 19 932 −1 196 −21 128
−21 128 · Y4,5(0.06) 0 0 0 0 21 128 −22 396
overall −100 000 23 740 23 740 23 740 23 740 23 740

(v) with respect to {Y0,t (0.06) : t = 1, 2, . . . , 5},

elementary project t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

17 740 · Y0,1(0.06) −17 740 18 804 0 0 0 0
18 804 · Y0,2(0.06) −18 804 1 128 19 932 0 0 0
19 932 · Y0,3(0.06) −19 932 1 196 1 196 21 128 0 0
21 128 · Y0,4(0.06) −21 128 1 268 1 268 1 268 22 396 0
22 396 · Y0,5(0.06) −22 396 1 344 1 344 1 344 1 344 23 740
overall −100 000 23 740 23 740 23 740 23 740 23 740
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Therefore, for the bank, the loan is equivalent to several possible portfolios of
bonds, either traditional or zero-coupon, each bond yielding a 6% rate to maturity.

Remark 6 It may be useful to point out that (almost) each one of the five “remarkable”
decompositions proposed in this paper has a significant economic interpretation when
applied to loans.

(i) As already said, the bonds of the type It−1,t (r) feature full return at the date
immediately after issue of the principal and the interests due. From the point of
view of the debtor, then, issuing L units of I0,1(r) at time t = 0 means to assume
the full obligation to repay L(1 + r) at time t = 1; to meet such an obligation,
she/he allocates a certain sum K1 and contracts a new (and lower) debt, to repay
at time t = 2, for the reamining part. Note that, of course, the amount of such a
debt is bound to be L(1 + r) − K1 = L + I1 − K1 = L − PR1 = OB1. This
first decomposition, then, shows that every amortization of a loan is financially
equivalent to a sequence of “chained debts” of amounts equal to the outstanding
balance for every date of payment.

(ii) This decomposition has an interpretation similar to the classical “bank account”
characterization of irr. It indeed shows that, from the point of view of the debtor,
the loan works as an obligation and an entitlement: the debtor assumes the obli-
gation to repaying the principal L at time t = n with compound interest (i.e., to
repaying the sum L(1+r)n), and she/he is entitled to put into place n “deposits”,
at the payment dates, which will generate compound interests at the same rate r ,
thus concurring to the payment due at time t = n.

(iii) The debt is here no longer seen as a single loan, but rather as a set of loans, each
to be repaid with compound interest. Since the values at time 0 of such loans
are of course the discounted values of the future payments, this decomposition
immediately translates into the general initial balance condition. Notably enough,
this interpretation has been misused, in legal contexts, to suggest that the meal
inherently implies the payment of compound interest, which is forbidden by law
in some states (see Pressacco et al. (2022), for an examination of the Italian
case).
It may be useful to point out that, even if in Example 5 the sequence of the
discounted amounts of the loans is the reversed sequence of the principals repaid,
this is not a general feature, but is due to a particular property of the constant
rate amortization (namely, the well known fact that its principals repaid form a
geometric progression).

(v) This situation is examined before (iv), because it allows for better understanding
a point that will come into play in that case as well. Note that the recursive relation
OBt = OBt−1 − PRt , together with the initial budget condition, translates into
the closed form expressions OBt−1 = L − ∑t−1

j=1 PR j = ∑n
j=t PR j . In turn,

this implies that Kt = PRt + r · ∑n
j=t PR j : the payment at time t includes its

own principal repaid and the interests due on all principals repaid from t on. The
cash flows that the loan generates for the issuer can therefore be written as in
the following table (which unsurprisingly but notably resembles the method for
deriving Makeham’s Formula, see, e.g., Broverman (2017), Figure 3.5), where
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the first row comes from the elementary balance condition itself.

−L = −PR1 + −PR2 + −PR3 + · · · + −PRn

K1 = (1 + r)PR1 + r PR2 + r PR3 + · · · + r PRn

K2 = (1 + r)PR2 + r PR3 + · · · + r PRn

K3 = (1 + r)PR3 + · · · + r PRn
...

. . .
...

Kn = (1 + r)PRn

It is evident that the n columns after the “=” equal the sequences of payments
of n bonds, issued at time t = 0 at coupon rate r , with nominal value PRt and
maturity date t for each t = 1, 2, . . . , n.

(iv) In the spirit of case (v) above, this decomposition becomes easier to understand.
Buying the first bond for the full amount L = ∑n

j=1 PRn entitles to receive
the coupon r

(∑n
j=1 PRn

)
at each time t = 1, 2, . . . , n − 1 and the payment

(1 + r)
(∑n

j=1 PRn
)
at time n. Issuing the second bond adds PR1 to the first

intake, which thus becomes PR1+r L = K1, and subtracts r PR1 at each time t =
2, 3, . . . , n−1, for a temporary total of r

(∑n
j=2 PRn

) = rOB1, and (1+r)PR1

at time t , for a temporary total of (1+r)
(∑n

j=1 PRn
) = (1+r)OB1. Issuing the

third bond adds PR2 to the second intake, which becomes PR2+rOB1 = K2, and
further subtracts r PR2 at times t = 3, 4, . . . , n−1, for a temporary total of rOB2,
and (1+r)PR2 at time t , for a temporary total of (1+r)OB2. Applying the same
argument over and over shows that payments at each time t = 3, 4, . . . , n − 1
become equal to PRt + r · ∑n

j=t PRn = PRt + rOBt−1 = Kt , and that the final
payment becomes equal to (1 + r)OBn−1 = PRn + rOBn−1 = Kn .

Remark 7 The results of this section, as well as those of the previous one, admit a
converse formulation: every portfolio of bonds with common yield r to maturity is
naturally equivalent to a loan amortization scheme, built according to themeal rules.
Such a result is obtained, for instance, by applying Lemma 2(iv) to decompose the
resulting cash flows into a portfolio of traditional bonds with maturity n and, then,
recalling that the number of bondsYt,n(r) in such a portfolio is numerically equivalent
to the principal PRt repaid at time t . Analogously, a decomposition according to
Lemma2(ii) could be used, to directly deduce the payments.Of course, someprincipals
repaidmay turn out to be null, or negative (leading, in the second case, to an increase in
the outstanding balance), or greater than the current outstanding balance (which will
lead to a negative outstanding balance at the nextmaturity): although thismay generate
legal issues in practice, there are no mathematical obstacles to the interpretation.

It is well know that not every loan amortization is built according to themeal rules:
in the market, several other types of loan amortization are sold (e.g., sinking fund,
merchant’s rule, actuarial method, “german” amortization with anticipated interests,
and so on). It is nevertheless generally true that every amortization scheme consists,
for the debtor, in a single intake at time t = 0 and a sequence of outflows at times
t = 1, 2, . . . , n. This ensures existence and uniqueness of the irr of the overall cash
flows (which is of course the apr, if all fees and charges are included into the cash
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flows) and, therefore, through the results of this paper, that the scheme is equivalent
to a meal amortization with a suitable interest rate.

Example 6 (follows from 2) The decomposition seen in Example 2 for r = 11.1111%
shows that the project [−302.4 1 650 −3 350 3 000 −1 000] can be seen as a loan,
amortized according to themeal rules, with outstanding balances (orderly equal to the
number of bonds issued or bought, i.e.) OB0 = 302.4, OB1 = −1 314, OB2 = 1 890,
and OB3 = −900, that is to say, with principals PR1 = 1 616.4, PR2 = −3 204,
PR3 = 2 790, and PR4 = −900 “repaid” (or “reborrowed”). It is indeed immediate
to see that the table (built according to the meal rules)

t Kt It PRt OBt

0 – – – 302.4
1 1650 33.6 1616.4 −1314
2 −3350 −146 −3204 1890
3 3000 210 2790 −900
4 −1000 −100 −900 0

induces “payments” that exactly match the cash flows of the original project.

5 Generalizations, further developments, and conclusions

Given an interest rate r ∈ (−1,+∞), this paper explicitly showed a fully general
financial equivalence among:

• projects with irr r ,
• portfolios of bonds with yield r to maturity, and
• loans, amortized according to the meal rules, with interest r due,

Saying that two such objects are financially equivalent means that they feature (or
induce) the same cash flows in the various maturities under consideration, and that
it is possible to find suitable (and essentially one-to-one, under technical conditions)
correspondences that allow to transform either one into the other. As well as it happens
in other fields of Mathematics (the simplest example that comes to mind is, e.g., the
possibility to approach the solution of a geometrical problem either with Euclidean
deductive arguments or with Descartes’s analytical description), it is then possible to
examine a project in any of the three equivalent forms, possibly deducing from one of
them some properties that may not be evident elsewhere.

In the paper, five possible cases of portfolios of bonds have been taken into particular
consideration: the case of one period bonds, the two cases of traditional and zero-
coupon bonds with common initial issue date and varying maturity, and the two cases
of traditional and zero-coupon bonds with varying issue date and common maturity at
the last date of the set into consideration. These are not, of course, the only possible
portfolio types that can be taken into consideration: for instance, it has been said that
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the set of all “elementary projects” (i.e., classical bonds) {It,s(r)}t<s ∪ {Yt,s(r)}t<s is
a spanning system for the linear (sub)space Sn(r) of all projects with final maturity
n and irr r and, therefore, any linear independent subset of such a set is a legitimate
basis for the same space. For instance, it is possible to decompose any project in S4(r)
with respect to the basis {Y0,4(r), I1,2(r), I2,4(r),Y2,4(r)}, although the resulting
decomposition may not lead to particularly interesting financial insights.

The discussion has been confined to the case of n+1 equidistant maturities, in order
to keep the notation as simple as possible. In the general case of any set {t0, t1, . . . , tn}
of increasing maturities, it is enough to define the elementary bonds by choosing two
indices i < j and setting

Ii, j (r) := [0 · · · 0
ti−1

−1
ti

0
ti+1

· · · 0
t j−1

(1 + r)t j−ti

t j

0
t j+1

· · · 0]

Yi, j (r) := [0 · · · 0
ti−1

−1
ti

ri+1
ti+1

· · · r j−1
t j−1

(1 + r j )
t j

0
t j+1

· · · 0]

with coupon rates rk = (1 + r)tk−tk−1 − 1 (k = i + 1, i + 2, . . . , j) calculated at
compound interest (because other definitions may not guarantee r to be an irr for
Ii, j (r)). Nothing would then change in the main results of the paper, except of course
a significant increase in complexity of the notation.

Note that, instead of a single irr r , a whole term structure of rates r = {rk : k =
1, 2, . . . , n} could be considered over the generic set {t0, t1, . . . , tn} of maturities, with
r1 the spot rate from t0 to t1 and rk the forward rate from tk−1 to tk for k = 2, 3, . . . , n
(note that these will not be yearly rates, unless some tk is exactly one year away from
tk−1). Thisway, the present value at time t0 of a cash flowa j at time t j ( j = 1, 2, . . . , n)

would be a j · ∏ j
k=1(1 + rk)−1. In such a setting, the elementary traditional bond

would be defined with payments [0 . . . 0 −1 ri+1 . . . r j−1 1 + r j 0 . . . 0] as
above, whereas in the zero-coupon bonds the payment at time t j would be replaced

by
∏ j

k=i+1(1+ r j ). Of course, a new definition of generalized dcf would be needed,
by discounting the cash flows accordingly to a whole n-dimensional vector of forward
rates, and a vector r∗ would be defined a generalized irr, or a variable irr (or, as
in Peccati (1989), an internal financial law) of a project whenever the generalized dcf
of such a project with respect to r∗ were null. Such a setting is now fully compatible
with the most general decomposition of a project with variable period yields such as
introduced byMagni (2010), and thereforewith theairr defined thereby.Analogously,
a generalizedmealwould bedefined, supposing that the interest Ik due at time tk would
be rk ·OBk−1 (k = 1, 2, . . . , n).With such adjustments, the results of the present paper
still hold true (although once again some major complication in the notation would
appear), thus allowing for further analogies and possible practical consequences. Note,
for instance, that the generalizedmeal allows towrite an amortizationwhich replicates
not only the payments, but also the outstanding balances of the original plan (possibly
considering as such the amounts due for early extinction of the debt): the period irrs
deduced in such a way from the original plan would visibly show the actual costs
sustained by the debtor and this, for instance, may help choosing suitable collateral
projects to reduce the risk of her/his position.
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A final consideration is in order. In the case of a constant irr r , it is possible to read
the amortization of a loan according to the meal as a decomposition of the cash flows
of the corresponding project in the spirit of Peccati (1987), where the outstanding
balances play the role of the outstanding capitals: from each inlay (i.e., from every
payment Kt , t = 1, 2, . . . , n) a part of profit is deduced, measured as a percentage r
of the outstanding capital (which numerically equals the interest due according to the
meal), while the remaining part (i.e., the principal repaid) is destined to reducing the
outstanding capital invested in the project. Notably enough, the principals repaid are
the coefficients used with respect to basis (v), reinforcing the interpretation that they
are the various yearly contributions to the global npv of the project; in order to fully
get the whole Peccati’s setup, it is then enough to introduce a subjective interest rate
and to calculate the Economic Values Added year by year. Of course, such a reading
of the meal could be carried out unchanged in the case of a variable irr, recovering
the spirit of Peccati (1989) and, once again, of Magni (2010).
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