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Abstract
Acceleration clauses shorten the residual life of an option when an acceleration con-
dition is met. Acceleration clauses are frequent in warrants, American call options on
traded stocks. In warrants with the acceleration clause, if an index (e.g. the average
underlying stock) triggers an acceleration threshold, the American call option can be
exercised on a much shorter maturity (e.g. 30 days). The actual time-to-maturity of
an American option with an acceleration condition is therefore stochastic. In order to
evaluate these contracts we first reduce the generic American option with stochastic
time-to-maturity to a compound American option with constant maturity, and provide
estimates for their prices. Finally we propose an efficient algorithm to price American
call options with the acceleration clause in a binomial setting.

Keywords Optimal stopping · American options · Acceleration clauses · Warrants ·
Backward recursion

JEL classification G12 · G13

1 Introduction

In this paper we study American options with path-dependent acceleration clauses,
that shorten the residual life of American options. Acceleration clauses have become
frequent in stock warrants, that are call options on stocks issued by parent compa-
nies, often part of a financing arrangement or as an incentive to investors. Warrants’
maturities can be fairly long (from 1 to 10 years). When the underlying price is high,
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warrants become expensive for the issuer. Callability features and acceleration clauses
mitigate this risk, and are common in warrants (see for instance Burney and Moore
1997).

The callability feature allows the issuer to terminate the warrant contract as soon as
the underlying share price exceeds a prespecified level. Their evaluation is relatively
easy, as the standard callability feature turns the contract into a knock-out barrier
option, some times with a rebate. Yagi and Sawaki (2010), evaluate callable warrants,
when the investor (resp. the firm) can exercise (resp. call back)) the warrant at any
time during the life of the contract, thus extending the work of Burney and Moore
(1997), who allow the exercise of the warrant at maturity only. To mitigate potential
legal issues, holders of callable warrants are typically provided with a notice period
(usually 30 days) to decide whether to exercise their warrants or accept the rebate, if
any (see Schultz 1993). The presence of a notice period defines an implicit accelera-
tion clause associated to the callability feature. This acceleration clause, however, is
usually neglected in the evaluation of warrants (see Burney and Moore 1997). Unlike
callable features, stand-alone acceleration clauses reduce the remaining lifespan of the
warrant, without terminating the contract; for this reason, warrants with acceleration
clauses are more appealing to investors than callable warrants. Due to the increase of
Special Purpose Acquisition Companies (SPACs), that issue warrants as part of their
unit financing, warrants with stand-alone acceleration clauses have proliferated in
recent years.1 To be more precise, acceleration clauses enable the company to shorten
the expiration period in the event that the company’s share price or its average value
over a specified number of days surpasses a predetermined threshold. Consequently,
acceleration clauses significantlymitigate the risk of thewarrant becoming excessively
costly for the issuer, even in the absence of any callability feature. Acceleration clauses
written on the average value of the underlying create a complex path dependency in
the warrants payoff structure and make their valuation challenging. While constant-
maturity American options have already been studied in the literature (see Yagi and
Sawaki 2010), we are the first to our knowledge to formally address the problem of
evaluating American options with acceleration clauses whose maturity is stochastic.
In Carr (1998) the constant maturity of the American option is replaced by a random
variable with a suitable distribution in order to reduce the complexity of the resulting
pricing equations for several underlying’s models. Importantly, Carr’s randomization
of the American option uses independent stopping times. On the contrary, the accel-
eration clause determines a stochastic maturity that is typically highly dependent on
the whole history of the underlying asset.

We propose an efficient approach to solve the pricing problem of an American
option with generic payoff X and an acceleration clause. When the option is accel-
erated at the stochastic date τ�, its time to maturity shrinks. We first transform the
American option with payoff X and stochastic time-to-maturity into a compound
American option with modified payoff X� and constant maturity T . The modified
compound payoff X� internalizes the stochastic time-to-maturity. We then approx-
imate the compound payoff X� to obtain an analytical approximation for the price
of the American option with stochastic time-to-maturity. We finally apply our results

1 https://cbvinstitute.com/events/valuing-warrants-with-acceleration-clause/.
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in a binomial setting and develop a forward-shooting grid method to price warrants
with the acceleration clause on the average underlying value. The paper is organized
as follows. After the introduction (Sect. 1), we introduce in Sect. 2 the compound
American call option. In Sect. 3 we introduce acceleration clauses, and rewrite the
American option with the acceleration clause as a compound option with a modified
payoff. This allows us to obtain an accurate lower bound for the price of the Amer-
ican option with the acceleration clause. In Sect. 4, we evaluate the effectiveness of
acceleration clauses in mitigating the risk of high warrant payoffs when exercise is
possible at maturity only. We analyze the acceleration clauses implicitly defined by
the 30-day notice period of callable warrants and assess the relative premium implied
by such acceleration clauses on callable warrants with no rebate. In Sect. 5 we focus
on American call options with an acceleration clause written on the average price
of the underlying stock, and markovianize the related pricing problem in a binomial
framework. Section6 provides an effective and intuitive implementation of the marko-
vianized pricing problem for the American call option with the acceleration clause in
a binomial framework. These results can be used for the post-issuance evaluation of
warrants that display the American option feature and a path-dependent acceleration
clause. Section7 concludes.

2 The American compound call option

Consider an arbitrage-free and complete market on the triple (�,F , Q). F denotes
the filtration, i.e. the information available to investors, and Q is the risk neutral
probability. Denote with r the constant riskless interest rate. Consider the American
option with maturity T and denote its payoff at t with X(t) ≥ 0, for all t ∈ [0, T ] .
We assume that X is strong Markov with respect to F . For instance, X can be a call
option on a strong Markov underlying asset S with respect to F . The discounted
no-arbitrage price of the (constant-maturity) American option at time t is

˜V (t) = sup
t≤τ≤T

Et
[

e−rτ X(τ )
] = sup

t≤τ≤T
Et

[

˜X(τ )
]

(1)

where the expectation is taken under the risk-neutral measure and τ denotes a generic
stopping time with respect to F .

The discounted value of the American option ˜V is the smallest risk-neutral
supermartingale dominating the discounted payoff ˜X . Consider now the American
zero-strike call option on the previous American option defined in (1), i.e. the option
to entry at any time from 0 to T in the American option V of above at zero price. This
is an American compound call option. Its discounted no-arbitrage price at time t is

˜CC(t) = sup
t≤τ≤T

Et
[

˜V (τ )
]

(2)

This zero-strike compound American call option on V has the same value as the
underlying American option, as we show in the next

123



A. Battauz, S. Staffolani

Lemma 1 With respect to the previous notations, C̃C(t) = ˜V (t)

Proof From the definition of the American compound call option (2) we immediately
see that ˜CC(t) ≥ ˜V (t). Moreover, by the properties of the Snell envelope, we know
that the ˜CC(t) is the smallest risk-neutral supermartingale dominating ˜V (t). Since
˜V (t) is itself a risk-neutral supermartingale, we have that ˜CC(t) = ˜V (t). ��

3 American options with acceleration clauses

Denote with τ� the F−stopping time describing the date of the acceleration clause.
Acceleration occurs only once during the life of the option. As long as τ� > t, the
time-to-maturity of the option is the whole residual life of the option at t, i.e. T − t .
If τ� = t ≤ T then the the time-to-maturity shrinks and actual maturity becomes
� = min

(

T ′ + τ�, T
)

, with T ′ < T . Typically, T is much larger than T ′, with
T = 5 or T = 10 years and T ′ = 1 month. The option with the acceleration clause
has therefore a stochastic maturity � defined as follows:

� =
⎧

⎨

⎩

T if τ� > T

min
(

T , T ′ + τ�

)

if τ� ≤ T
(3)

with T ′ < T . We denote with �(τ�) = min
(

T , T ′ + τ�

)

the maturity of the option
evaluated at the acceleration date τ�.

As an example, consider the acceleration clause written on the average price of the
underlying stock. Let τA = inf

{

t > 0 : A(t) ≥ A
}

be the hitting time when A(t), the
current average price of the underlying, hits A, the prespecified acceleration threshold,
with A > S(0), the initial price of the underlying. As soon as A(t) ≥ A then the
acceleration clause is met and the call option must be exercised in 1 month at the
most. If A(t) < A for all t, then the call option can be exercised till the maturity T .

The contingent maturity of the call option is therefore

�A =
⎧

⎨

⎩

T τA > T

min
(

τA + 1
12 , T

)

if τA ≤ T
(4)

Given τ�,� as in Equation (3), the discounted no-arbitrage value of the American
option with payoff X and acceleration clause � is

˜V�(t) = sup
t≤τ≤T

Et
[

˜X(τ )I0≤τ<τ� + ˜X(τ )Iτ�≤τ≤τ�+T ′
]

(5)

where τ denotes a generic stopping time with respect to F . In definition (5), if
T ≤ τ� (i.e. if the option is not accelerated) then the set τ� ≤ τ ≤ τ� + T ′ is empty,
Iτ�≤τ≤τ�+T ′ = 0 and ˜V�(t) = supt≤τ≤T Et

[

˜X(τ )
]

. On the contrary, if T > τ� then
after the acceleration date τ� the residual life of the option shrinks tomin

(

T − τ�, T ′)
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as I0≤τ<τ� = 0, and Iτ�≤τ≤τ�+T ′ = 1 in (5). In general, as � ≤ T , the definition
of (5) immediately implies that the value of the American call option with stochastic
maturity� is always dominated by the value of the constant-maturityAmerican option,
i.e. ˜V�(t) ≤ ˜V (t) for all t . We also observe that after τ� +T ′ the payoff of ˜V� is null,
because of the acceleration clause.

The value function defined in Equation (5) differs from an American knock-out
option, because when the event is triggered at τ� the option payoff does not become
null (see Vidal Nunes et al. 2020 and Detemple et al. 2020). On the contrary the
payoff stays the same, but it can be exercised only within a shorter time horizon. ˜V�

in Equation (5) is indeed an American option with payoff X and stochastic maturity
�.

In the next proposition we prove that the American option (5) coincides with the
compound American option with a new payoff X�. The payoff of the compound
American option X� coincides with the original X until τ�. When the acceleration
clause is triggered at τ� < T , the payoff X� is the value of an American option
with payoff X and time-to-maturity min

(

T − τ�, T ′) . After τ� the payoff X� is
null. By introducing the compound option, the next proposition2 allows to embed
in our continuous-time framework the discrete Bellman principle at τ�, taking the
maximum between the discounted immediate payoff ˜X(τ�) and the discounted value
of continuing the option over the residual life

[

τ�,min
(

T , T ′ + τ�

)]

.

Proposition 2 ˜V�(t) defined in equation (5) can be rewritten as ˜V�(t) = ˜VX�(t)
where

˜VX�(t) = sup
t≤τ≤T

Et
[

˜X�(τ)
]

(6)

where
˜X�(u) = ˜X(u)I0≤u<τ� + ˜V�(τ�)(τ�)Iu=τ� for u ∈ [t, T ]

and where ˜V�(τ�) denotes the discounted no-arbitrage price of the American option
with payoff X whose maturity in (1) is �(τ�) = min

(

T , T ′ + τ�

)

, known at τ�.

Proof We have to show that the option values in (5) and (6) coincide. We first observe
that ˜V� is a supermartingale and that it dominates ˜X�, the payoff of ˜VX�. In fact,
from the definitions (5) and (6) it follows that

˜V�(t) ≥ ˜X(t) = ˜X(t)I0≤t<τ� = ˜X�(t) for any 0 ≤ t < τ�

˜V�(τ�) = ˜X�(τ�) for t = τ�

˜V�(t) ≥ ˜X(t) ≥ 0 = ˜X�(t) for any τ� < t < T

Since ˜V� ≥ ˜X�, then ˜V� ≥ ˜VX�, as ˜VX� is the smallest supermartingale dominating
˜X�.

2 Battauz and Pratelli (2004) employ a similar argument to extend the set of admissible values of exercise
policies of American call options in continuous time when the underlying stock pays discrete dividends
during the life of the option.
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To prove the opposite inequality, we observe that, if t ≥ τ�, then ˜V� (t) = ˜VX� (t)
by the Lemma 1. If t < τ�, for any τ ∈ [t, T ] we have that

sup
τ�≤τ≤�(τ�)

Et
[

˜X(τ )Iτ�≤τ≤�(τ�)

] = sup
τ�≤τ≤�(τ�)

Et
[

Eτ�

[

˜X(τ )Iτ�≤τ≤�(τ�)

]]

≤ Et

[

sup
τ�≤τ≤�(τ�)

Eτ�

[

˜X(τ )
]

]

by Fatou’s lemma

= Et
[

Iτ�≤τ≤�(τ�)
˜V�(τ�)

]

because ˜V�(τ�) = supτ�≤τ≤�(τ�) Eτ�

[

˜X(τ )
]

and Iτ�≤τ≤�(τ�) = 1 for τ� ≤ τ ≤
�(τ�) . Therefore

sup
τ�≤τ≤�(τ�)

Et
[

˜X(τ )Iτ�≤τ≤τ�+T ′
] ≤ Et

[

Iτ�≤τ≤�(τ�)
˜V�(τ�)

]

= sup
τ�≤τ≤�(τ�)

Et
[

Iτ�≤τ≤�(τ�)
˜V�(τ�)

]

.

This implies that

˜V�(t) = sup
t≤τ≤T

Et
[

˜X(τ )I0≤τ<τ� + ˜X(τ )Iτ�≤τ≤τ�+T ′
]

= sup

(

sup
t≤τ<τ�

Et
[

˜X(τ )I0≤τ<τ� + ˜X(τ )Iτ�≤τ≤�(τ�)

]

,

sup
τ�≤τ≤�(τ�)

Et
[

˜X(τ )I0≤τ<τ� + ˜X(τ )Iτ�≤τ≤�(τ�)

]

)

= sup

(

sup
t≤τ<τ�

Et
[

˜X(τ )I0≤τ<τ�

]

, sup
τ�≤τ≤�(τ�)

Et
[

˜X(τ )Iτ�≤τ≤�(τ�)

]

)

≤ sup

(

sup
t≤τ<τ�

Et
[

˜X(τ )I0≤τ<τ�

]

, sup
τ�≤τ≤�(τ�)

Et
[

˜V�(τ�)Iτ�≤τ≤�(τ�)

]

)

= sup
t≤τ≤T

Et
[

˜X(τ )I0≤τ<τ� + ˜V�(τ�)Iτ�≤τ≤�(τ�)

]

= sup
t≤τ≤T

Et
[

˜X(τ )I0≤τ<τ� + ˜V�(τ�)Iτ�=τ

]

= sup
t≤τ≤T

Et
[

˜X�(τ)
] = ˜VX�(t)

and our thesis is proved. In all inequalities above we observe that if τ� > T then
τ ≤ min(τ�, T ), and the set τ� ≤ τ ≤ �(τ�) is empty. ��
Remark 3 The modified discounted payoff ˜X� in (6) is the discounted value of the
American call option at τ�. Because of Lemma 1, the American option (6) at τ� is
just a zero-strike American call option on the underlying American option V with
maturity min

(

T , T ′ + τ�

)

.
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Remark 4 The modified discounted payoff ˜X� of the above proposition is path-
dependent even if the original ˜X is not. Indeed, for all u ∈ [t, T ] we need to remember
whether or not τ� as already occurred.

The above proposition provides an implicit characterization of ˜V�, as in the defi-
nition of the payoff of the compound option ˜VX� the value of the underlying option
˜V�(τ�) appears in themodified payoff ˜X�.The characterization is however very handy,
as ˜V� enters the payoff definition of ˜VX� only when the option is accelerated. In most
applications the accelerated residual life of the option is small compared to the non-
accelerated residual life of the option. For this reason it is possible

• To use analytical asymptotic formulae for ˜V�(τ�), if the residual life of the option
is small enough (see Battauz et al. (2021) and the references therein);

• To evaluate numerically ˜V�(τ�) via the standard backward recursion in discrete
time;

• To approximate ˜V�(τ�) with the discounted value of the European option
˜Veur ,�(τ�), if the early exercise premium is negligible.

In general, ˜V�(t) defined in Eq. (5) has the following analytical lower bound:

Proposition 5 A lower bound for ˜V�(t) defined in equation (5) ∈ is

˜VLB(t) = sup
t≤τ≤T

Et
[

˜XLB(τ )
]

(7)

where
˜XLB(u) = ˜X(u)I0≤u<τ� + ˜Veur ,�(τ�)(τ�)Iτ�=u

where ˜Veur ,�(τ�)(τ�) is the discounted value of the European option with maturity
�(τ�) and discounted terminal payoff ˜X(� (τ�)).

Proof As the European option ˜Veur ,�(τ�) is dominated by the American one ˜VX�(τ�),
it follows that ˜XLB(u) ≤ ˜X�(u), and therefore ˜VLB(t) ≤ ˜V�(t).

The lower bound of the above proposition coincides with the value of the option
when the early exercise premium over the interval (τ�, T ) is null. This happens for
instance when the option is an American call and the underlying does not pay any
dividend in the residual life of the option (τ�, T ) .

In the Sect. 5 we apply these results to evaluate a call option with the accelerating
clause presented in (4) on a binomial underlying asset S. ��

4 Warrants with acceleration clauses

This section is dedicated to the analysis of warrant contracts on lognormal shares with
exercise possible at T only. We first show that acceleration clauses are as effective as
callbility features to reduce the risk of high payoffs for the warrant’s issuer. Secondly,
we quantify the premiumassociated to 30-days-notice clauses, that are often embedded
in callable warrants. Finally, we apply our results to see how the valuation of warrants
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at origination is affected by the presence of the callability and the 30-days-notice
clause.

We first apply risk-neutral valuation techniques to derive a simple method to
evaluate warrants with acceleration clauses after origination. As mentioned in the
introduction, acceleration clauses can be linked to callability features through the 30-
day notice period or can exist independently.3 The latter are becoming more frequent
in warrants contracts issued by SPACs. Acceleration clauses reduce the maturity of the
contract rather than terminating it, and therefore they are more palatable to the holders
than callability features. Moreover, acceleration clauses are as effective as callability
features in capping thewarrant payoff, thus reducing the risk of high payoff for thewar-
rant’s issuer. Indeed, let us compare a warrant on a lognormal asset with volatility σ,

initial value S(0), interest rate r , driftμ, zero dividend yield, andmaturity T .Assume
that the warrant is callable at b = 2K , that is assume that if the underlying S reaches
the threshold b = 2K , the warrant is terminated with the payoff (2K − K )+ = K .
Consider a warrant on the same asset that instead has an acceleration clause triggered
when the underlying S reaches the threshold a, that reduces the time-to-maturity to
T ′. The acceleration threshold a ∈ (K , b) such that the accelerated warrant payoff
is smaller than the one of the warrant with the callability features with probability

99% is a such that P
[

S(t + T ′) ≤ b
∣

∣S(t) = a
] = P

[

e

(

μ− 1
2 σ 2

)

T ′+σ
√
T ′Z ′ ≤ b

a

]

=
FN (0,1)

(

1
σ
√
T ′

(

ln b
a − (

μ − 1
2σ

2
)

T ′)
)

= 99%, where FN (0,1) denotes the cumu-

lative distribution function of a standard normal random variable, and Z denotes a
standard normal random variable. Because the 99%−quantile of the standard normal
distribution is 2. 326 3, we get that the acceleration threshold a that ensures that the
payoff with the acceleration clause is lower than the callable one with 99% probability
is

a = b exp

(

−σ
√
T ′ · 2. 326 3 −

(

μ − 1

2
σ 2

)

T ′
)

(8)

When μ = r formula (8) provides the acceleration threshold a that ensures 99%
risk neutral probability of having a lower terminal payoff than with the callability
feature. Table 1 provides the values of the acceleration threshold a implying with
99% probability a smaller payoff than with the callability feature for the contracts
of Table 1, at page 9 of Burney and Moore (1997), for different values of T ′, the
residual time-to-maturity after acceleration. In particular, for themost common T ′ = 1
month, the acceleration threshold that delivers an accelerated payoff smaller than the
redeemed one with 99% risk neutral probability is a = 134. 72, for S(0) = 100,
K = 80, r = 0.08, σ = 0.25, and b = 2K = 160. Assuming a historical drift of
μ = 15%, the acceleration threshold that delivers an accelerated payoff smaller than
the redeemed one with 99% historical probability is a = 133.94. The acceleration

3 In the US market, 80% of the outstanding warrants on October, 6th 2023 exhibits callability features,
with a 30 days notice period. An independent acceleration clause appears in 1% of the warrants, as reported
in https://stockmarketmba.com/stockscreener.php. On the same date, in the Italian stock exchange 8% of
the outstanding warrants has acceleration clauses, but no callbility features, as reported in https://www.
borsaitaliana.it/borsa/azioni/warrant/lista.html.
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Table 1 Values of a in (8)

Values of T ′ 1 week 1 month 6 months

a : Q
[

S(t + T ′) ≤ b
∣

∣S(t) = a
] = 99% 147. 46 134. 72 103. 50

a : P
[

S(t + T ′) ≤ b
∣

∣S(t) = a
] = 99% 147. 14 133. 94 99. 939

S(0) = 100, K = 80, r = 0.08, σ = 0.25, b = 2K = 160, δ = 0, μ = 15%

Fig. 1 The acceleration treshold a in (8) for b = 160, and T ′ = 1 month, as a function ofμ for σ = 0.15 in
green, 0.25 in black and 0.45 in red. The dots mark the 99%−risk-neutral acceleration treshold for μ = r

threshold is smaller under the historical probability than under the risk-neutral one,
because the historical drift μ = 0.15 > r = 0.08.
In the next figure, we plot the acceleration threshold a as a function of the historical
drift μ for different levels of volatility. For b = 2K = 160, and T ′ = 1 month, we
plot the acceleration threshold as a function of μ for σ = 0.15 in green, 0.25 in black
and 0.45 in red. The dots mark the acceleration threshold that ensures with 99% risk
neutral probability a lower payoff with the acceleration clause.

Thewarrantwith the acceleration clause delivers a payoff that is lower than (a − K ),
on the trajectories where the acceleration clause is not met because S(t) < a for all
t ∈ [0, T ] . On the trajectories where S(t) = a at some t ∈ (0, T ) , the option
is accelerated and the final payoff

(

S(t + T ′) − K
)+ ≤ (b − K ) with probability

99%. Thus, the one-month acceleration clause is as effective as the callability feature
in reducing the final payoff risk for the warrant issuer.

In the following proposition we quantify the impact of the acceleration clause
implied by the 30 days notice for callable warrants at b with no rebate on a lognormal
underlying that can be exercised at maturity only.
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Proposition 6 (30days notice premiumfor a callablewarrantwith no rebate). Consider
a callablewarrant with strike K on a zero-dividends lognormal asset S that is knocked-
out when S reaches b > S (0) with no rebate. Assume that the holder is notified when
the warrant becomes callable at

τ� = inf {t > 0 : S(t) ≥ b}

Then, if τ� < T , the 30 days notice relative premium of the warrant is

A (x, r , T , σ, b) bsc
(

b, K , T ′, r , σ
)

Wc,a (x, K , r , T , σ, b)

where

• bsc
(

b, K , T ′, r , σ
)

is the price of a European call option with maturity T ′ = 30
days, with initial stock value b, volatility σ, strike K , maturity T ′, interest rate r .

• A (x, r , T , σ, b) is the price of a cash-at-hit contingent claim that pays 1 as soon
as the barrier b is triggered before T ;

• Wc (x, K , r , T , σ, b) is the initial value of a knock-out call option on S with matu-
rity T , strike K and barrier b.

The values of the barrier derivatives are

A (x, r , T , σ, b) = E
[

Iτ�<T e
−rτ�

]

=
( x

b

)β− · N
(

1

σ
√
T

(

ln
( x

b

)

− T

2

(

σ 2 + 2r
)

))

+
( x

b

)β+ · N
(

1

σ
√
T

(

ln
( x

b

)

+ T

2

(

σ 2 + 2r
)

))

(9)

where

β−,+ = −
(

r

σ 2 − 1

2

)

∓ 1

2σ 2

(

σ 2 + 2r
)

and

Wc (x, K , r , T , σ, b) = E

[

e−rT (S (T ) − K )+ Iτ�>T

]

= x ·
[

N
(

1

σ
√
T

(

ln
( x

K

)

+
(

r + σ 2

2

)

T

))

−N
(

1

σ
√
T

(

ln
( x

b

)

+
(

r + σ 2

2

)

T

))]

−
(

b

x

)1+ 2r
σ2 ·

[

N
(

1

σ
√
T

(

ln

(

b2

Kx

)

+
(

r + σ 2

2

)

T

))

−N
(

1

σ
√
T

(

ln

(

b

x

)

+
(

r + σ 2

2

)

T

))]
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− e−rT K ·
[

N
(

1

σ
√
T

(

ln
( x

K

)

+
(

r − σ 2

2

)

T

))

−N
(

1

σ
√
T

(

ln
( x

b

)

+
(

r − σ 2

2

)

T

))]

−
( x

b

)1− 2r
σ2 ·

[

N
(

1

σ
√
T

(

ln

(

b2

Kx

)

+
(

r − σ 2

2

)

T

))

−N
(

1

σ
√
T

(

ln

(

b

x

)

+
(

r − σ 2

2

)

T

))]

(10)

The value of the callable warrant with the 30-days-notice period is

Wc,a (x, K , r , T , σ, b) = Wc (x, K , r , T , σ, b)+A (x, r , T , σ, b) bsc
(

b, K , T ′, r , σ
)

Proof At notification date τ� < T the warrant becomes a call option on S with
maturity T ′ = 30 days, whose value is

Eτ�

[

e−rT
′
(

S
(

T ′ + τ�

) − K
)+]

Since the notification occurs when S (τ�) = b, the markovianity of S implies that the
value of this call option at notification date τ� is

Eτ�

[

e−rT
′
(

S
(

T ′ + τ�

) − K
)+]

= E

[

e−rT
′
(

S
(

T ′) − K
)+ ∣

∣S (0) = b
]

= bsc
(

b, K , T ′, r , σ
)

where bsc
(

b, K , T ′, r , σ
)

denotes the price of a call option with initial stock value
b, volatility σ, strike K , maturity T ′, interest rate r . Right after origination at
t = 0, the premium for the 30 days notice is therefore the value of the call option
bsc

(

b, K , T ′, r , σ
)

that forward-starts at the (random) date τ� < T . This value is

E

[

Iτ�<T e
−rτ�Eτ�

[

e−rT
′
(

S
(

T ′ + τ�

) − K
)+]]

= E
[

Iτ�<T e
−rτ�bsc

(

b, K , T ′, r , σ
)]

= E
[

Iτ�<T e
−rτ�

]

bsc
(

b, K , T ′, r , σ
)

The first factor E
[

Iτ�<T e−rτ�
]

is the price of a cash-at-hit claim on S that pays 1
as soon as the stock S touches the barrier b before T . Its value is A (x, r , T , σ, b) =
E

[

Iτ�<T e−rτ�
]

resulting in formula (9) (see Nelken 1996).
The callable warrant at b is a knock-out call option on S with maturity T and

strike K whose price Wc (x, K , r , T , σ, b) is provided in (10). The callable warrant
with the 30-days-notice period has a complex terminal payoff. On trajectories where
τ� > T , the warrant is never knocked-out, and delivers the call’s payoff at T . The
value for this option is Wc (x, K , r , T , σ, b) . If τ� < T , then the knocked-out
payoff is compensated by the activated 30-days-notice period, whose value at t = 0
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Fig. 2 30-days-notice relative premium for a callablewarrant at b. Parameters values: S (0) = 100, K = 80,
r = 0.08, T = 5 years, σ = 0.25

is A (x, r , T , σ, b) bsc
(

b, K , T ′, r , σ
)

. In this way, the 30-days-notice period clause
effectively extends the resulting maturity of the warrant to τ� + T ′ ≥ T if T − T ′ ≤
τ� < T . The resulting initial value of the callable warrant with the 30-days-notice
period is

Wc,a (x, K , r , T , σ, b) = Wc (x, K , r , T , σ, b)+A (x, r , T , σ, b) bsc
(

b, K , T ′, r , σ
)

The 30-days-notice relative premium is therefore
A(x,r ,T ,σ,b)bsc(b,K ,T ′,r ,σ)

Wc,a(x,K ,r ,T ,σ,b) . ��
In Fig. 2, the 30-days- notice relative premium is plotted for barrier levels b > S(0),

with the same parameters values of Table 1, i.e. S (0) = 100, K = 80, r = 0.08,
T = 5 years, σ = 0.25. In particular, if the warrant is called when S(t) = b = 160
with no rebate, the 30-days-notice premium is 9. 4, that amounts to the 46% of the
total value of the callable warrant with the 30-days-notice period, 20. 39.

Figure 2 shows that disregarding the acceleration clause incorporated within 30-
day notice periods for callable warrants can result in non-negligible errors in warrant
valuation. In the remaining part of the article, we propose a simple and effective
method for evaluating path-dependent acceleration clauses of American call options
within a binomial setting for the underlying asset S.

Whilst it is obvious that the Black-Scholes call option formula overestimates the
callable warrant, because it neglects its knock-out feature, we see in Fig. 3 that the
overestimation is significant even if the callable warrant displays the 30-days-notice
period that increases its value. The following figure portraits the prices of the standard
Black Scholes call option bsc (green), the knock-out call option Wc, i.e. the callable
warrant with no rebate (red), the callable warrant with the 30-days notice periodWc,a
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Fig. 3 Wc,a (x) (purple), bsc (x) (green),Wc (x) (red). Parameters values: S (0) = 100, K = 80, r = 0.08,
T = 5 years, σ = 0.25, b = 160

(purple) and the callable warrant with the 30 days notice period until one month from
maturity (blue). The two last curves perfectly overlap.

Finally, we evaluate the impact of callability and acceleration clauses on the war-
rant premium at origination, when exercise is possible at T only. At origination, the
evaluation of warrants takes into account the potential dilution effect of the value of
the firm (see Galai and Schneller (1978) for the derivation of the warrant’s and firm’s
value at origination as well as their potential dilution effect. See also Lim and Terry
(2003) for the evaluation of crossdilution due to a series of European outstanding stock
warrants and the effects of their crossdilution on the later warrant series). According to
Hull (2021), at issuance, the warrant value w is the solution to a fixed point problem:

w = N

N + M
· bsc

(

S(0) + M

N
w

)

where N is the number of total outstanding shares, M is the number of issued war-
rants, S(0) is the price of the underlying share and bsc (x) denotes the price of an
European call option on the lognormal asset whose initial value is x = S(0) + M

N w.

The pricing functional for the warrant callable at b with 30-days-notice is Wc,a (x) =
Wc,a (x, K , r , T , σ, b) defined in the previous proposition. The warrant premium at
origination accounting for both callability and 30-days notice is wc,a

wc,a = N

N + M
· Wc,a

(

S(0) + M

N
wc,a

)
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Fig. 4 N
N+M · Wc,a

(

S(0) + M
N w

)

(blue line), N
N+M · bsc

(

S(0) + M
N w

)

(green), N
N+M ·

Wc

(

S(0) + M
N w

)

(red). Parameters values S (0) = 100, K = 80, r = 0.08, T = 5 years, σ = 0.25,

b = 160, N = 10000, M = 1000

BecauseWc,a (x) < bsc (x) , the value of a callable warrant with the 30-days notice at
origination is lower than the value implied by the Black-Scholes call option formula.
As an example, suppose that the number of total outstanding shares is N = 10000
and M = 1000. For the same parameters’ value as above, S (0) = 100, K = 80,
r = 0.08, T = 5 years,σ = 0.25 and b = 160,we have that N

N+M ·Wc,a
(

S(0) + M
N w

)

(blue line) intersects the identity line y = w at wc,a = 1. 858 4. The line derived
from the call option N

N+M · bsc (

S(0) + M
N w

)

(green) intersects the identity line in
the higher value w = 4.495 2. In red, we plot the graph implied by the callable
warrant N

N+M · Wc
(

S(0) + M
N w

)

, whose intersection with the identity line occurs
at the smallest wc = 0.993. The magnitude of the difference between wc,a and w

depend on the values of N , the number of total outstanding shares, and M , the number
of issued warrants, but wc,a is always smaller than w.

Because there is no closed form solution for the price of an American call option
on a dividend-paying stock, it is not possible to extend these results to the case of
warrants that allow for exercise at any date during the life of the contract.

However, once the traded underlying price has already adjusted to warrants dilution
effects, warrants must be evaluated following usual risk-neutral principles, as demon-
strated by Galai and Schneller (1978), Galai (1989) and Burney and Moore (1997).
In the next sections we apply risk-neutral evaluation techniques to evaluate American
call options with path-dependent accelerating clauses written on a binomial share.
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5 American options with accelerating clauses on the average of a
binomial asset

Consider a discrete-time arbitrage-free complete market on (�,F , Q) with t =
0,�t, ..., T . In our applications �t = T

N . The assets traded in the market are the
riskless bond B, the risky asset S.

Given B(0) = 1 and S(0) = S0, at time t we have riskless asset B(t + �t) =
B(t)er�t providing the riskless interest rate r and a risky stock S with risk-neutral
binomial distribution:

S(t + �t) =

⎧

⎪

⎨

⎪

⎩

S(t)eσ
√

�t with q = e(r−δ)�t−e−σ
√

�t

eσ
√

�t−e−σ
√

�t

S(t)e−σ
√

�t 1 − q

where σ is the volatility and δ is the dividend yield of the risky security S.
As�t → 0, the binomial process S converges to the lognormal one. SeeMulinacci

and Pratelli (1998) for details on the convergence of American derivatives written on
S. In this section we focus on the discrete-time pricing problem of American call
options with acceleration clauses.

In particular, consider the American call option on S with strike K and contingent
maturity � defined in the acceleration clause (4). In order to obtain a computation-
ally tractable discrete-time backward recursion for (7) we have to markovianize the
problem. In fact, the American call option with acceleration clause (4) is heavily
path-dependent, since clause (4) involves the arithmetic average price of S

A(t) = 1

n + 1

t
∑

s=0

S (s) at t = n�t

and the history of A. In fact, in order to compute the payoff XLB at t in (7), we must
distinguish three different cases:

1. The acceleration clause (AC) has happened (strictly) before t, i.e. τA < t . In
this case the payoff XLB (t) = 0, as the option Veur ,�(τ�)(τ�) has already been
liquidated in the past.

2. The acceleration clause (AC) has never happened before t nor at t, i.e. τA > t . In
this case the payoff XLB (t) = (S(t) − K )+ .

3. The acceleration clause (AC) happens at t, i.e. τA = t . In this case XLB (t) =
Veur ,�(τ�)(τ�), the price of a European call option on S with strike K andmaturity
�(τ�) = min

(

t + 1
12 ; T

)

.

An efficient triple to markovianize this problem is (S (t) , A (t) , ϒ (t)) where

ϒ (t) =
⎧

⎨

⎩

−1 if (AC) has happened before t
0 if (AC) has never happened before nor at t
1 if (AC) happens for the first time at t
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The updating rule for the forward shooting grid on the binomial tree for (S (t + 1),
A (t + 1), ϒ (t + 1)) given (S (t), A (t), ϒ (t)) is

S(t + �t) =

⎧

⎪

⎨

⎪

⎩

S(t)eσ
√

�t with q

S(t)e−σ
√

�t 1 − q

A(t + �t) = t A (t) + S (t + �t)

t + �t
(11)

and

ϒ (t) = −1 ⇒ ϒ (t + �t) = −1

ϒ (t) = 0 ⇒ ϒ (t + �t) =
{

0 if A(t + �t) < A
1 if A(t + �t) ≥ A

ϒ (t) = 1 ⇒ ϒ (t + �t) = −1 (12)

The updating rule (12) forϒ at t+�t depends on A (t + �t) andϒ (t) . The first case
ϒ (t) = −1 means that (AC) has already happened before t and (a fortiori) before
t + �t, so that ϒ (t + �t) = −1.

In the second case ϒ (t) = 0 means that (AC) has never happened before or at t .
Therefore (AC) may happen for the first time at t + �t leading to ϒ (t + �t) = 1 if
A(t + �t) ≥ A or it may not happen at t + �t if A(t + �t) < A leading in this case
to ϒ (t + �t) = 0.

In the third case ϒ (t) = 1 means that (AC) happens for the first time at t . Hence
(AC) has already happened before t + �t and ϒ (t + �t) = −1

We are ready to implement a forward shooting grid on the binomial tree for the
Markovian triple (S (t) , A (t) , ϒ (t))with an approximated auxiliary variable A. The
backward recursion for (7) in this case becomes:

Proposition 7 In discrete time ˜VLB(0) defined in equation (7) can be computed by
means of the following backward recursion:

VLB(T ) =
⎧

⎨

⎩

(S(T ) − K )+ if ϒ (T ) = 0 or ϒ (T ) = 1

0 if ϒ (t) = −1

and for t = T − �t, ...,�t, 0

VLB(t) = max
{

X�(t), E
Q
t

[

e−r�t VLB(t + �t)
]

}

(13)

where

X�(t) =
⎧

⎨

⎩

0 if ϒ (t) = −1
(S(t) − K )+ if ϒ (t) = 0
Veur , 1

12
(t) if ϒ (t) = 1
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and Veur , 1
12

(t) is the price at t of a European call option on S with strike K and

maturity min
( 1
12 , T − t

)

, i.e. 30 days or the residual life of the option (if smaller
than 30 days).

6 An effective and intuitive numerical method

We price the American call option with the acceleration clause on the average price
in the binomial setting by applying the Forward Shooting Grid (FSG) method (see
Hull and White 1993, and Ritchken et al. 1993). Via the FSG method we obtain
a parsimonious representation of the Markovianizing triplet (S (t) , A (t) , ϒ (t)) on
the binomial tree. In particular, we use a vector of representative running averages
spanning the full range of possible realizations of average prices A (t) at each node of
S (t), ranging uniformly from the lowest to the highest attainable average price. More
precisely, consider a d-dimensional representative vector Â(t) and denote by Amax(t)
and Amin(t) the maximum and the minimum average values achievable at a generic

node of S (t). Denoting with�A = Amax(t)−Amin(t)
d−1 , our vector of representative values

Â(t) is composed by the following components:

Â(t) [i] = Amin(t) + i · �A ∀i ∈ [0,d − 1] .

Once all the representative triples (S (t) , A (t) , ϒ (t)) are generated at each node
of the binomial-tree, we can easily implement the backward recursion of Proposition 7.
In particular, we start by computing the value of the American call option at maturity
T . At maturity, the American call option is exercised in all the nodes in which it is
in-the-money, provided that the acceleration clause has not occurred in the past; the
resulting payoff is the value of the American call option at T . At any other generic
date t ∈ [0, T ] and for any representative triple (S (t) , A (t) , ϒ (t)), we compute the
immediate payoff X�(t) and we compare it to the continuation value of the Amer-
ican call option. The updating rule (11) -(12) allows to identify for every value of
(S (t) , A (t) , ϒ (t)) its successor at t + �t . When an exact match for A (t + �t) is
not possible due to the discretization error, we take the closest from above among the
representative values found for A (t + �t) . The value of the American call option at
any node of the tree for any date t is then given by formula (13). At the final step, we
get the unique price of the American call option at t = 0. Uniqueness is given by the
fact that at time t = 0 only the value ϒ(0) = 0 is possible, since S(0) = A(0) < A.

In what follows we report the output of the implementation of the forward-shooting
grid method with dimension d=3, as it delivers the same numerical results as d=7.
The robustness with respect to the dimension d of the auxiliary variable A is very
helpful, because it reduces the computational burden of the algorithm and makes its
implementation easier. Moreover, the code execution is also very quick. On a standard
laptop with Intel Core i5 the VBA code output was generated in 17 seconds for d=3
and 21 seconds for d=7.

We now use our algorithm to analyze the impact of the acceleration clause on the
American call option. We first investigate the relationship between the initial price
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Fig. 5 V (0) as a function of acceleration threshold A. As A increases, V (0) tends to the price of the
American call VAmer (0), where K = 10, S0 = 100, σ = 0.3, T = 1y, r = 0.1, δ = 0, N = 125,
VAmer (0) = 90.9516

V (0) = VLB(0) and the Acceleration threshold A. An increasing value of A results in
a lower probability of triggering the acceleration clause during the life of the American
call option. Therefore, the greater A is, the greater the time value of the American call
option, ultimately leading to a higher initial price of the American call option. If A
is too high, the acceleration clause is never activated during the life of the American
call option, and its value coincides with the value of a standard American call option
on S with same maturity and strike price, which we denote by VAmer (0). Figure5
portraits this argument. The graph shows that as A increases, the initial American call
option’s price increases, tending to VAmer (0), the initial value of a standard American
call option on S.

We now analyze the optimal exercise policies of the American call option with the
acceleration clause.

If the barrier A is not too high compared to the initial value of the stock and its
risk-neutral drift, then the acceleration clause determines on the binomial tree a pure
acceleration region,where theAmerican call option is always accelerated. In particular,
VLB in (13) is a function of (t, S (t) , A (t) , ϒ (t)). If S increases a sufficient number
of times, the average A is definitely above A and the American call option is definitely
accelerated. We define the acceleration boundary as the smallest value of S on the
binomial tree such that for any larger (or equal) value of S at t the American call option
is always accelerated:

ab (t) = min {S at t : ϒ (t) = 1 for all A (t) compatible with S at t} (14)
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Fig. 6 Acceleration boundary, case δ = 0 K = 10, S0 = 100, σ = 0.3, T = 1y, r = 0.1, Ā = 110,
N = 125, VAmer (0) = 90.9516

Whenever the stock is above this boundary, the American call option is accelerated
and its value is Veur , 1

12
(t) as in (13).

What happens below the acceleration boundary depends on the dividend yield. If
δ = 0, it is never optimal to exercise early an American call option. However, the
acceleration clause triggers exercise in one month whenever ϒ (t) = 1. This case
is portrayed in Fig. 6, where the dividend yield is δ = 0. The red line represents
the values of the acceleration boundary ab above which the acceleration condition is
always activated, as a function of t . The oscillating behavior of ab is due to discrete
binomial realizations of the underlying S.

If the stock pays a positive dividend yield, the optimal exercise policies of the
American call option are more complex. Without acceleration clauses, the American
call option is optimally early exercised whenever the stock is above the standard free
boundary. Since the acceleration clause lowers the continuation value of the American
call option, the stock value that triggers optimal early exercise (provided that the
American call option has not been accelerated yet) is now lower. More precisely, we
define the free-boundary f b for the American call option with the acceleration clause
as
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Fig. 7 Acceleration boundary and free boundary, case δ = 0.05 K = 10, S0 = 100, σ = 0.3, T = 1y,
r = 0.1, Ā = 110, N = 125, VAmer (0) = 90.9516

f b (t)
∣

∣

ϒ(t)=0 = min

{

S at t : VLB(t, S (t) , A (t) , 0) = (S (t) − K )+
for all A (t) compatible with S at t

}

(15a)

The free-boundary f b (t)
∣

∣

ϒ(t)=0 in Fig. 7 is portrayed with a green dashed line. With
ϒ (t) = 0, the American call option is optimally continued below the green dashed
line and optimally exercised above it. We thus have three regions in the plane (t, S).
There is the pure acceleration region for the highest values of the stock, above the accel-
eration boundary plotted in red (as in Fig. 6). There is an intermediate region where
acceleration and early exercise coexist, depending on ϒ (t). In fact, if ϒ (t) = 0 and
S(t) ≥ f b (t)

∣

∣

ϒ(t)=0, then it is optimal to exercise the American call option, realizing

immediately (S (t) − K )+ . If ϒ (t) = 1 the American call option is accelerated for
the first time and its value coincides with the option expiring in one month (or less, if
the time to maturity is shorter than one-month). The caseϒ (t) = −1, i.e. acceleration
already triggered, is also possible. Below the free-boundary, there is the region where
neither early exercise of the American call option is optimal nor acceleration occurs.

The free-boundary f b (t)
∣

∣

ϒ(t)=0 depicts an almost flat line of values of S, decreas-
ing to K at maturity T .

We now analyze how the boundaries change with different values of A.
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Fig. 8 Boundaries for different values of Ā K = 10, S0 = 100, σ = 0.3, T = 1y, r = 0.1, δ = 0.05,
N = 125, VAmer (0) = 90.9516

In Fig. 8, we show that the acceleration boundary is very sensitive with respect to
the barrier values A, but the free boundary is not. Indeed, we take two distinct values
of A = 25 and A = 30 and plot with a green dashed line the free-boundary for
A = 25, and with a yellow dashed line the free-boundary for A = 30. The two dashed
lines almost perfectly overlap within the scale of our current plot. On the contrary,
the acceleration boundary (plotted in red, dotted for A = 25 and solid for A = 30 )
moves significantly upward as the value of A increases, because the values of S that
activate the acceleration condition are larger, other parameters being equal.

The discretization error due to the approximated updating rule for A is also neg-
ligible. In fact, computations with the closest-from-below approximating rule for A
coincide with the ones obtained with the closest-from-above rule for A. This is due
to the fact that the approximation rule does not have a direct sizeable impact on the
option’s payoff, but only on the option’s life. In Equation (6) as soon as the barrier
on A is triggered, the payoff of the American call option is not killed to zero (as in
knock-out barrier options), but becomes instead ˜V�(τ�), the value of an American call
option with reduced maturity �(τ�).

Finally, Table 2 shows themild entity of the under-estimation produced by algorithm
(13) in the evaluation of our American call option with the acceleration clause. Indeed
the relative errors in approximating the one-month-maturity American option values
via the European one are around 0.02%.
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Table 2 1-month early exercise premium of call options over the initial American option price

Values of S(0) 70 75 80 85 90 95 100

Relative Error 0.0226% 0.0227% 0.0228% 0.0229% 0.0229% 0.023% 0.023%

Parameters value are K = 1, σ = 0.02, T = 1m, r = 0.01, δ = 0.002, N = 30

7 Conclusions

In this paper we study American options with acceleration clauses, that shorten the
residual life of the option when an acceleration condition is met. Acceleration clauses
are frequent within warrants, whose maturity shrinks typically below one month once
they are accelerated. The acceleration clause is often embedded in callable warrants
that guarantee a 30-days-notice period to holders. The clause is often neglected in their
evaluation, possibly resulting in a significant underevaluation of the contracts. We
first prove that American options with acceleration clauses, whose maturity is actually
stochastic, have the samevalue of a compoundAmericanoptionwith constantmaturity.
The key idea is to modify the instantaneous payoff of the American compound option,
so that as soon as the acceleration condition is met, the payoff of the compound option
becomes the value of the American option with accelerated (i.e. reduced) maturity.
This allows to provide a lower bound for the American option with the acceleration
clause, approximating the value of the American option with accelerated maturity
with the European one. Finally, we propose a simple, efficient and robust algorithm
to price warrants with the acceleration condition in a binomial setting. Exploring how
the market responds to this mispricing of warrants’ acceleration clauses presents an
intriguing direction for future research.
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