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Abstract
In this study, we provide a simple one period mean-field-games setting for the joint
optimal trading problem for electricity producers in the electricity markets. Based on
the Markowitz mean-variance approach from stock trading, we consider a decision
problem of an electricity provider when determining the optimal fractions of produc-
tion that should be traded in the day-ahead and in the intraday markets. Moreover, all
such providers are related by a ranking criterion and each one wants to perform as
good as possible in this ranking. We first start with a simple model where only the
price risk in the intraday market is present and subsequently extend the problem to
the cases involving either production and/or demand uncertainty. The key technique
is to reduce the optimality conditions to a first order non-linear ordinary differential
equation. We will illustrate our findings by various numerical examples. Our findings
will in particular be important for electricity producers using renewable resources.

Keywords Mean-field games · Optimal trading · Electricity markets

Mathematics Subject Classification Primary 49N80 91A16; Secondary 91G10

1 Introduction andmodeling

Trading electricity in the intraday market comes with a lot of features such as the
possibility to satisfy an additional short-term demand for electricity, to offer a surplus
amount of electricity from solar and/or wind energy that is the result of better weather
conditions than predicted, and – on the other side of the scale – to compensate shortages

B Ralf Korn
korn@mathematik.uni-kl.de

Sema Coskun
sema.coskun@gmx.de

1 Department of Mathematics, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany

2 Department of Financial Mathematics, Fraunhofer ITWM, Kaiserslautern 67663, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10203-024-00445-1&domain=pdf
http://orcid.org/0000-0002-9123-3883


S. Coskun, R. Korn

in electricity production due to weather conditions that are worse than predicted (see
e.g. Coskun and Korn 2021 for details of the different electricity market segments
in Germany). Further, the possibility of direct trades between customer and provider
also results in price dynamics that can differ from the auction type price determination
in the day-ahead market and comparable markets (see Kiesel and Paraschiv 2017 for
the econometrics of prices). This might attract various players to trade in the intraday
market such as

• speculators who believe that they are better informed with regard to additional
demand or weather conditions and might enter positions in the day-ahead market
that they have to close in the intraday market,

• price sensitive customers (smart grids) that might have price predictions for the
intraday market that are favourable compared to the prices announced in the day-
ahead market,

• electricity providers that hope for better earnings for some part of their productions
that they decide to reserve for trading in the intraday market,

• electricity providers that use renewable resources (e.g. solar and wind power) for
production and use the intraday market for (at least partly) hedging their uncer-
tainties in the production.

Therefore, in this article, we develop a simple one-period mean-field games setting
for optimal behaviour of a set of electricity providers that trade at both the day-ahead
and in the intraday market (see e.g. Lasry and Lions 2007 and Carmona and Delarue
2013 for introductions in the theory of (continuous-time) mean-field games and also
Guéant et al. 2011 for a similar one-period model for optimal asset management). The
providers are connected by a ranking criterion according to which each one wants to
perform as good as possible measured in terms of return.
The concept of performing better among others, i.e. the relative performance concerns
of the agents/players, have been investigated in context of optimal investment by
Lacker and Zariphopoulou (2019), Espinosa and Touzi (2015) in continuous-time
markets. In a setting, where relative performance concerns of the players are present,
an agent does not solely take his absolutewealth into consideration but also the average
wealth of his peers. Mathematically, this can be achieved in different ways. In Lacker
and Zariphopoulou (2019) the ranking criterion is embedded in the utility functions
of homogeneous agents both in additive and multiplicative manners for an N-player
game and the limiting case, i.e. a mean-field-game. On the other hand, in Espinosa
and Touzi (2015) initially heterogeneous agents, i.e. with different utility functions
and different constraints sets, and subsequently homogeneous agents with relative
performance concerns for an N-player game are considered.
The recent literature regarding the use of the mean-field game theory in electricity
markets is centered around the problem of price formation in different settings (Gomes
and Sáude 2021; Féron et al. 2021, 2020).
We consider a one-period decision problem of an electricity trader who has to decide
about the fractionπ of his production that he reserves for trading at the intradaymarket
while trading the remaining fraction 1 − π at the day-ahead market. His correspond-
ing objective function is a sum of a mean-variance criterion and a weighted ranking
criterion among the remaining market participants. While leaving this second com-

123



Amean field gamemodel for optimal…

ponent away would lead to a simple Markowitz mean-variance problem of portfolio
optimization (seeMarkowitz 1952), including it will lead to a discrete-timemean-field
setting. We do not look at the consequences for the price formation.
Besides the formulation and the solution of the mean-field game problem, we will
also highlight some explicit features of the optimal solution that makes the obtained
strategies attractive for practical use and give insight of the potential of trading in the
intraday market. In particular, we will show that

• in the situation of an (at least partly) uncertain height of the electricity production,
it will be optimal for an electricity provider to trade parts of her production in the
intraday market, even in the case when the provider does not believe in a positive
risk premium for trading in the intraday market,

• without a positive risk premium (i.e. the belief that the average electricity price at
the intradaymarket exceeds the price at the day-aheadmarket), electricity providers
will not trade positive amounts in the intraday market if consumption is (at least
partly) uncertain and the electricity production is deterministic,

• traders with slightly positive or slightly negative beliefs on the risk premium for
intraday trading will generally increase/decrease their optimal positions in the
intraday market over proportionally compared to the situation when there is no
interrelation between the traders which in our model is expressed by a ranking
criterion.

In the next section,wewill first solve an idealizedmean-variance optimization problem
with a ranking criterion. After a numerical analysis of this idealized problem, we will
then take it as a building block for developing a more realistic approach by including
uncertainty of both electricity production and electricity demand in the intradaymarket
in the following section.
While our approach is mainly intended to model the situation of electricity providers
it can also be used by speculators or price sensitive consumers where then the roles of
demand and production have to be changed or suitably interpreted.

2 A first simple optimal trading problem in amean-variance setting

We will start with a simplistic situation where the electricity producers have a fixed
production capacity for the next day. We assume that this full production capacity can
be sold in the day-ahead and in the intraday market. Further, a producer can decide
about which proportion π of the production capacity shall be reserved for trading
in the intraday market, while the remaining proportion 1 − π is already sold in the
day-ahead market.
For this, we assume:

• The price in the day-ahead market is already fixed after having sold the intended
amount of electricity. Thus, it can be considered as a riskless investment with no
additional return at delivery, i.e. tomorrow.

• The return � (above or below the one in the day-ahead market) by trading the
remaining amount of produced electricity in the intraday market is assumed to be
normally distributed with � ∼ N (λ, σ 2).
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• Different producers differ by their view on the mean λ.

Further, all producers want to maximize the mean of the total return minus a fixed,
non-negative multiple γ of the variance of the total return by choosing the fraction π

of their production that is reserved for trading in the intraday market. Of course, this
strategy will depend on their personal view with regard to the size of λ.
On top of that, the producers want to perform goodwhen compared among themselves,
i.e. they want to achieve a ranking as close as possible to one with regard to the return
generated from trading in the intraday market. This is expressed by

C̃(π) := 1�>0M(π) + 1�≤0(1 − M(π)),

where M(.) is the distribution function of the strategies π chosen by the different
traders (see e.g. Guéant et al. 2011 for this criterion). Note in particular that for a
positive realization of � the trader using the highest value of π is ranked first, while
for a negative � the one with the lowest value of π is ranked first. C̃(π) takes these
conflictive situations into account.
Finally, the producers’ distribution of the view on the mean return λ of the producers
is described by the density function f (.) where we additionally assume that f (.) is
continuously differentiable on its support and satisfies f (0) > 0
We thus consider the optimization problem that each producer has to face as

max
π

{
πE(�) − 1

2
γπ2Var(�) + βE(C̃(π))

}

= max
π

{
πλ − 1

2
γπ2σ 2 + β{M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

)
}
}

(1)

where � denotes the distribution function of the standard normal distribution. By
taking the first order derivative with respect to π we get the first order condition

λ − γ σ 2π + βm(π)

(
2�

(
λ

σ

)
− 1

)
= 0 (2)

where m(π) = M ′(π). By assuming that the optimal solution of the maximization
problem (1) is an increasing function λ → π(λ), the density transformation theorem
yields the following relation between the view of the different traders about the mean
excess return λ achievable in the intraday market as expressed by the density function
f (λ) and the density function m(π(λ)) of their subjectively optimal strategies

m(π(λ))π ′(λ) = f (λ), (3)

a relation that is called consistency condition in Guéant et al. (2011). As we here have a
one-off decision, the density transformation formula suffices to derive this probability
transport relation. The use of the Kolmogorov partial differential equation for the
transition density can be avoided. Using relation (3) and multiplying the first order
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condition (2) with π ′(λ) yields the following differential equation for π(λ)

(
λ − γ σ 2π(λ)

)
π ′(λ) + β

(
2�

(
λ

σ

)
− 1

)
f (λ) = 0, (4)

π(0) = 0. (5)

Note that we get the boundary condition from solving the optimization problem (1)
for the choice of λ = 0.
The solution of Eq. (4) without the ranking effect, i.e. β = 0 is given by λ �→ π0(λ) =

λ
γ σ 2 . Thus, in our case, where β > 0, we rewrite the problem as follows:

π ′(λ) = β

γ σ 2

(
2�

(
λ

σ

)
− 1

)
f (λ)

π(λ) − π0(λ)
, λ �= 0, (6)

π(0) = 0 . (7)

This problem is not trivial, since the initial boundary cannot be defined for λ = 0,
which leads to a singularity in the domain of the ODE. Hence, any solution should be
on a subset of either (−∞, 0) or (0,∞). For this reason, the initial boundary condition
is only given in the limit as limλ→0 π(λ) = 0. Moreover, the right hand side of the
ODE is positive for λ > 0 if and only if we have

π(λ) > π0(λ), λ > 0. (8)

Thus, the assumption that π(λ) has to be increasing yields π(λ) > π0(λ) for λ > 0
and similarly π(λ) < π0(λ) for λ < 0.
We have thus obtained two requirements on the solution π(λ) of (4). The following
proposition will show that these requirements indeed uniquely determine the solution
of the corresponding ODE.

Proposition 1 (Existence and uniqueness) There exists a unique increasing solution
π(λ) of the initial value problem (IVP) given in Eq. (4) under the following constraints:

Case I λ > 0:

(i) π(λ) > π0(λ) = λ
γ σ 2 ,

(ii) limλ→0+ π(λ) = 0.

Case II λ < 0:

(i) π(λ) < π0(λ) = λ
γ σ 2 ,

(ii) limλ→0− π(λ) = 0.

See Appendix A for the proof.
So far, we have indeed only derived our candidate for the optimal solution from a
first order condition. We still need to verify that we have indeed found the optimal
solution when we have solved the above IVP. As in Guéant et al. (2011) we show this
via verifying the second order condition.
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Proposition 2 (Second order condition) The solution π(λ) of IVP that satisfies the
conditions of Proposition 1 solves the optimization problem (1).

See Appendix B for the proof.

Remark 1 (No variance constraint) One could also try to consider the problemwithout
the quadratic term in λ by setting γ = 0 and still use the initial condition π(0) = 0.
However, this time we have a totally degenerated situation as the optimal choice π0(λ)

would be π0(λ) = +∞ for a positive surplus and π0(λ) = −∞ for a negative surplus
due to the linear utility function. Thus, we cannot derive an ODE. Even, if we bound
the optimal values by ±1, we would still have a discontinuity in λ = 0. Thus, the
influence of the quadratic term in the utility criterion is essential for a reasonable
solution of the problem.

3 Numerical analysis of the basic problem

We illustrate the behaviour of the optimal strategy for different choices of β, σ 2 and
γ . Due to the special nonlinear form of the ODE, we use an implicit Euler method
to avoid instabilities when solving it. Our choices of the parameters is motivated by
the behavior of the case of β = 0. For reasonable choices of the surplus return λ the
individually optimal strategies should not exceed 1, or at least should not exceed it by
too much.

3.1 Normally distributed views

We start with the case of a normally distributed view on the mean excess return λ by
the traders, i.e. f (.) is the density of the normal distribution with parameters μ, θ2.
To understand the significance of the choices of μ, θ2, we should not consider traders
with a view outside the interval μ ± 3θ2.
We start with a value of β = 0.5, i.e. we give the ranking effect quite a high weight
(note that the ranking effect varies between 0 and 1). Further, we use γ = 1 and
σ 2 = 0.04. With (μ, θ2) = (0, 0.0001), i.e. a symmetric view on the surplus return,
we obtain Fig. 1.
Note the particular effect that outside the interval [−0.04, 0.04] it is not necessary to
take additional risk to perform well in the ranking condition as there are virtually no
traders with a lower or higher view. Thus, if a trader takes on such an extreme view,
it is already enough to have the best performance if her view is correct. Inside the
interval, however, an excess position of π(λ) − π0(λ) is required to perform better in
the ranking position.
If we reduce the weight of the ranking criterion to β = 0.1 then the mean-variance
criterion receives a higher weight which results in a reduction of the excess position
π(λ) − π0(λ) as can be seen in Fig. 2.
An asymmetric view of the traders – expressed by choosing μ = 0.01 – leads to
an expected asymmetric behaviour of the trader in taking more excess risk for the
performance criterion mostly for positive values of λ as can be seen in Fig. 3.

123



Amean field gamemodel for optimal…

Fig. 1 Choices of π(λ), normal
view with
(μ, θ2) = (0, 0.0001),
β = 0.5, σ 2 = 0.04, γ = 1

Fig. 2 Choices of π(λ), normal
view with
(μ, θ2) = (0, 0.0001),
β = 0.1, σ 2 = 0.04, γ = 1

Fig. 3 Choices of π(λ), normal
view with
(μ, θ2) = (0.01, 0.0001),
β = 0.1, σ 2 = 0.04, γ = 1
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4 The optimization problemwith uncertainty in the electricity
production and the electricity demand

So far, we have solved a basic mean field problem in Sect. 2 and (implicitly) assumed
that

• there is no uncertainty about the amount of electricity actually produced by the
different providers on the next day,

• each provider can certainly sell the desired amounts in the day-ahead and in the
intraday market.

As, however, these modeling assumptions are unrealistic, we will now show how to
deal with them in the framework that we have set up so far. The main idea is to use this
solved problem as a fundamental building block and try to repair the weaknesses of
the basic model. For this, we have to come up with versions of optimization problems
that address the above generalizations and still fall in the scope of our building block
problem.

4.1 Uncertain volume of the electricity production

Assume that we have a predicted production volume of electricity of ν and

1. choose to sell (1 − π)ν in the day-ahead market,
2. then are actually able to produce an amount of V of electricitywhich – for simplicity

– is revealed at the beginning of the delievery period,
3. and sell the part in the intraday market that has not already been sold in the day-

ahead market or buy the part in the intraday market by which the amount sold in
the day-ahead market exceeds the production of today.

This has the consequence that indeed the fraction

π̃ = V − (1 − π)ν

V

of the produced electricity is sold in the intraday market if we have V > (1 − π)ν or
has to be bought in the intraday market in case of V < (1− π)ν. Note that to include
the risk that the actual amount of production is below or above the amount, which is
already sold in the day-ahead market, we consider the value V as follows:

V = ν(1 + ε)

where ε is a random variable accounting for the production uncertainty. Hence, we
rewrite the fraction that can be traded in the intraday market as

π̃ = ν(1 + ε) − (1 − π)ν

ν(1 + ε)
= 1 − 1 − π

1 + ε
. (9)

123



Amean field gamemodel for optimal…

As we should ensure a non-zero denominator in this expression as well as an expec-
tation of zero for ε, a particularly suitable choice is

1 + ε = eαZ− 1
2α2

with Z ∼ N (0, 1) and α ∈ R. This results in

E(1 + ε) = 1, E(π̃) = 1 − (1 − π)eα2
.

Then, this formally leads to the new utility criterion of

π̃E(�) − 1

2
γ π̃2Var(�) + βE(C̃(π))

=
[
1 − 1 − π

1 + ε

]
λ − 1

2
γ σ 2

[
1 − 1 − π

1 + ε

]2
+ β

{
M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

)}
.

(10)

If we assume that the ranking effect remains the same as it was defined for the frac-
tion π , i.e. we keep the definition of C̃(π), then we obtain the following extended
maximization problem:

max
π

{
E(π̃)E(�) − 1

2
γ E(π̃2)Var(�) + βE(C̃(π))

}

= max
π

{
a1(π)λ − 1

2
γ b1(π)σ 2 + β{M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

)
}
}

.

(11)

with

a1(π) = E(π̃) = 1 − (1 − π)E

(
1

1 + ε

)

=: 1 − (1 − π)eα2
, (12)

b1(π) = E(π̃2) = E

[(
1 − 1 − π

1 + ε

)2
]

= (1 − π)2E

[(
1

1 + ε

)2
]

− 2(1 − π)E

(
1

1 + ε

)
+ 1

=: (1 − π)2e3α
2 − 2(1 − π)eα2 + 1. (13)

We can finally rewrite the problem as

max
π

{(
(λ − γ σ 2)eα2 + γ σ 2e3α

2
)

π − 1

2
γ σ 2e3α

2
π2+
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β{M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

)
}
}

+ 1 (14)

where the constant 1 is given by

1 = λ − 1

2

(
1 − 2eα2 + e3α

2
)

(15)

but is not important for solving the problem. As the actual fraction π̃ is only known a
posteriori, we are still choosing π and call this the intended portfolio. Note that with
this we have the same optimization problem as in the case of a fixed deterministic
production, but the coefficients ofπ andπ2 have changed. This change is then reflected
in the determination of the boundary condition for the corresponding ODE. Using the
abbreviations E1 = eα2

and E2 = e3α
2
, we obtain the relevant first order condition as

follows

(
(λ − γ σ 2)E1 + γ σ 2E2

)
− γ σ 2E2π + βm(π)

(
2�

(
λ

σ

)
− 1

)
= 0 (16)

Setting λ = 0 yields the required boundary condition. Consequently, we obtain the
following ODE for this extended case

π ′(λ) = β

γ σ 2E2

(
2�

(
λ

σ

)
− 1

)
f (λ)

π(λ) − πν(λ)
, λ �= 0, (17)

π(0) = 1 − E1

E2
(18)

where

πν(λ) = 1 + (λ − γ σ 2)E1

γ σ 2E2
.

The ODE is quite similar to the one in the simple case. Hence, a numerical solution
of the problem can be obtained in a similar way. For two values of α, we present the
optimal portfolios as a function of λ in the Fig. 4. Note in particular that it follows
from the explicit form of the boundary condition (18) that even if in the case of no risk
premium, i.e. λ = 0, the electricity provider now chooses a positive intended portfolio
value π(0) > 0. This is of course reasonable as the fraction now reserved for the
intraday market can be used to reduce the risk of a possible shortage in the production.
In Fig. 4, we can see the particular effect of the parameter α that determines the size
of the shortage risk. For α being close to zero, π(0) will also be small while for large
values of α, the intended portfolio π(0) will approximate one.

Remark 2 (Possible penalties for shortage in production) So far we have considered
the additional uncertainty in the production in the following implicit way:
Electricity already sold in the day-ahead market that has not been produced by the
provider can be bought in the intraday market. However, by using the modified basic
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Fig. 4 Optimal choices of π(λ)

in the case of uncertain
production: Setting normal view
on λ with (μ, θ2) = (0, 0.0001),
β = 0.5, σ 2 = 0.04, γ = 1

optimization problem we have assumed that it has to be bought with a risk premium of
λ that now the other market participants can realize. Under this assumption, we only
consider the shortage in production via a negative value of π̃ .
If however there are higher costs for a negative position π̃ then we will model this by
using a risk premium κ which is different and typically higher than λ. This will then
lead to a new formulation of the considered optimization problem below.

We could introduce the just mentioned penalty in the form of

p(π̃) = (κ − λ)E(π̃−) (19)
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In the case of the above introduced multiplicative model we can even calculate the
penalty explicitly as

p(π̃) = (κ − λ)

{
1 − (1 − π)eα2

�

(
1

α

(
ln(1 − π) + 3

2
α2

))}
(20)

and can include this form in the modified optimization problem

max
π

{E(π̃)E(�) − 1

2
γ E(π̃2)Var(�) − p(π̃) + βE(C̃(π))} (21)

Unfortunately, the non-linearity in π appearing in Eq. (21) results in an additional
term in the optimization problem and the first order condition that does not allow to
easily transform it into our standard form.

4.2 Uncertain electricity demand in the intradaymarket

We now look at the other typical source of uncertainty in the intraday market, the
case where the producers have to face uncertain electricity demand in the intraday
market. Assume that we have a certain production ν and our trading strategy is driven
by the uncertain demand D in the intraday market. In this case, we can determine the
proportion, which we aim to trade in the intraday market, as follows:

π̂ = D − (1 − π)ν

ν
.

As now the production is fixed, we can only have an additional demand in the intraday
market that is non-negative and at most equals that part of the produced energy that is
not already sold in the day-ahead market. Thus, we have the relation

D = ν(1 − π) + νπ̂

with

0 ≤ π̂ ≤ π

as the producer is of course not forced to satisfy excess demand above the production.
A possible modeling of the randomness can be π̂ = Zπ with

Z = min{Z̃ , 1}, Z̃ = eηw− 1
2 η2 , w ∼ N (0, 1) (22)

for some η ≥ 0. From this, we obtain:

E(π̂) = 2�

(
−1

2
η

)
π, E(π̂2) =

(
�

(
−1

2
η

)
+ eη2�

(
−3

2
η

))
π2.
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Again, we obtain explicit formulas in terms of π and obtain an optimization problem
in our standard form as

max
π

{
E(π̂)E(�) − 1

2
γ E(π̂2)Var(�) + βE(C̃(π))

}

= max
π

{
a2πλ − 1

2
γ b2π

2σ 2 + β

{
M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

)}}
. (23)

with a2 and b2 given as in Eq. (22), i.e.

a2 = 2�

(
−1

2
η

)
, b2 = �

(
−1

2
η

)
+ eη2�

(
−3

2
η

)

From this, we directly obtain the first order condition

a2λ − γ σ 2b2π + βm(π)

(
2�

(
λ

σ

)
− 1

)
= 0 (24)

which together with the usual consistency condition (3) leads to the following ODE

π ′(λ) = β

γ σ 2b2

(
2�

(
λ

σ

)
− 1

)
f (λ)

π(λ) − πd(λ)
, λ �= 0, (25)

π(0) = 0 (26)

where

πd(λ) = a2λ

b2γ σ 2 (27)

denotes the solution of the optimization problem with β = 0 and where the boundary
condition directly follows from the first order condition.

Remark 3 (Interpretation of the ODE) Note that with the notation of

γ̃ = b2
a2

γ, β̃ = 1

a2
β

we obtain the standard ODE (6) by replacing β by β̃ and γ by γ̃ , i.e. the uncertainty
in the demand leads to a change in the weights for the variance of the return � and
for the ranking criterion. Obviously, for η = 0 (i.e. no demand uncertainty and thus
full demand for the production), the weights are both equal to 1 while for η = 1
we obtain a2 = 0.617, b2 = 0.49. This means that the weight of the variance of the
return is only 80% of its original influence while the weight of the ranking criterion
increases by 62.5%. Note that in contrast to the situation of uncertain production,
the final condition π(0) = 0 implies that if there is no positive view here on the risk
premium in the intraday market then the optimal intended fraction will not be positive.
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Fig. 5 Optimal choices of π(λ)

in the case of uncertain
consumption: Setting normal
view on λ with
(μ, θ2) = (0, 0.0001),
β = 0.5, σ 2 = 0.04, γ = 1

To illustrate the effect of the uncertainty in the demand we present Fig. 5 where we
plotted the optimal strategies πη for η = 0 and η = 1. Note that for an increasing value
of η the relation between the mean and the variance of � is getting more favourable
for the mean. Thus, we see that the traders go for a higher deviation from the solution
of the case without taking into account the ranking criterion, i.e. the case of β = 0.

4.3 Uncertainty in both electricity production and demand in the intradaymarket

As a final extension, we consider the case where we face uncertainty in both electricity
production and demand in the intraday market. For this case, let again V be the actual
amount of produced electricity with E(V ) = ν and let D be the actual electricity
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demand. Now consider the following simple equation

V = (D − (1 − π)ν) + (V − (D − (1 − π)ν)) =: π̄V + (1 − π̄)V . (28)

Case 1: V ≥ (1 − π)ν

Aswe do not have to saturate excess demand above V as long aswe have V ≥ (1−π)ν,
we can already assume that we have

π̄ = D − (1 − π)ν

V

where we have in this case also implicitly assumed

D ≤ V ,

and where in general (also in Case 2 below) we also have

D ≥ (1 − π)ν (29)

as the right hand side of this inequality is already sold in the day-ahead market (as we
assume for the moment that we have π ≤ 1). If we rewrite Eq. (28) as

V = (D − (1 − π)ν) + (V − D) + (1 − π)ν =: A + B + C (30)

then we see that A is responsible for the surplus return in the intraday market, B shows
the imbalance between demand and production and can lead to losses in the intraday
market whileC has already been sold in the day-ahead market and is fully determined.
Case 2: V < (1 − π)ν

In this case we have

D = (1 − π)ν

and Eq. (28) can be rewritten as

V = (V − (1 − π)ν) + ((1 − π)ν) =: A + C (31)

which leads to the value of π̄ given by

π̄ = 1 − (1 − π)ν

V
. (32)

Summing up, we obtain the following proposition:

Proposition 3 (a) In the case of both random production V and (conditionally) ran-
dom consumption D, the choice to sell an amount of (1 − π)ν in the day-ahead
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market leads to the fraction of actually produced electricity V of

π̄ =

⎧⎪⎨
⎪⎩
1 − (1 − π)ν

V
if V ≤ (1 − π)ν,

D − (1 − π)ν

V
if V > (1 − π)ν

(33)

that is sold in the intraday market. Here, we assume that the demand D always is
at least equal to the amount of electricity sold in the day-ahead market and never
exceeds V .

(b) Under the assumptions of part a) we have:

E(π̄) = 1 − (1 − π)E
( ν

V

)
+ E

(
D − V

V
1{V>(1−π)ν}

)

= 1 − (1 − π)E
( ν

V

)
+ (1 − π)νE

(
1

V
1{V>(1−π)ν}

)

− E
(
(1 − π̄)1{V>(1−π)ν}

)
(34)

E(π̄2) = 1 − 2(1 − π)E
( ν

V

)
+ (1 − π)2E

(
ν2

V 2

)

+ E

(
D2 − V 2

V 2 1{V>(1−π)ν}
)

− 2(1 − π)νE

(
D − V

V 2 1{V>(1−π)ν}
)

. (35)

See Appendix 1 for the proof.

Remark 4 (Total elimination of the risk of a too small production) Note that in the
particular case of π ≥ 1, i.e. the electricity provider does not take on a long position
in the day-ahead market, the condition V > (1 − π)ν is automatically satisfied.
Further, as this way, no delivery obligation exists, there will not be the possibility for
the need to buy electricity in the intraday market. However, the risk of not selling all
the produced (and possibly bought!) electricity in the day-ahead market due to too
few demand is emphasized. We will in the following always require

π ≤ 1. (36)

A particular model specification for uncertain demand and uncertain electricity pro-
duction:Themain task that we have to overcome to be able to reduce the new setting to
our basic one with deterministic production and demand is to specify the distribution
of 1/V and the conditional distribution of D/V . For this, we try be close to the two
preceding sections.
First, we again consider a log-normally distributed production of the form

V = νeαZ− 1
2α2

(37)
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with Z ∼ N (0, 1). We further assume that there is a demand D with D ≥ (1−π)ν. It
is thus natural to suppose that the surplus demand exceeding the amount of electricity
already sold in the intradaymarket is proportional to the remaining amount of produced
electricity. More precisely, we model the random demand by the equation

D − (1 − π)ν = δ(V − (1 − π)ν) =: π∗V (38)

where for simplicity we assume δ to be a constant in [0, 1].1 This leads to the repre-
sentation of

π̄ =

⎧⎪⎨
⎪⎩
1 − (1 − π)ν

V
if V ≤ (1 − π)ν,

δ

(
1 − (1 − π)ν

V

)
if V > (1 − π)ν

(39)

In addition, for technical simplicity we now assume

π < 1, (40)

i.e. we do not allow for short positions in the day-ahead market.2

Under all these assumptions, we obtain

E(π̄) = E

((
1 − (1 − π)ν

V

)
1V≤(1−π)ν

)

+ δE

((
1 − (1 − π)ν

V

)
1V>(1−π)ν

)

= 1 − (1 − π)eα2 − E

(
(1 − δ)

(
1 − (1 − π)ν

V

)
1V>(1−π)ν

)

= 1 − (1 − π)eα2 − (1 − δ)�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)

+ (1 − π)eα2
(1 − δ)�

(
− 1

α
(ln(1 − π) + 3

2
α2)

)
(41)

Similarly, we arrive at

E(π̄2) = 1 − 2(1 − π)eα2 + (1 − π)2e3α
2

+ (δ2 − 1)

{
�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)

−2(1 − π)eα2
�

(
− 1

α
(ln(1 − π) + 3

2
α2)

)

1 Note that in the case of the deterministic production, i.e. V = ν, this boils down to the definition in the
setting of random demand above! Further, we also comment below on the use of a random parameter δ.
2 Relaxing this assumption would require to consider different cases in the calculations of the moments of
π̄ , but can otherwise be dealt with.
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+(1 − π)2e3α
2
�

(
− 1

α
(ln(1 − π) + 5

2
α2)

)}
(42)

What will help us in deriving the needed differential equation for the optimal fraction
π(λ) is the following proposition (which follows by simply calculating the derivative
in Eq. (43) for general j and relating it to the one of j = 1)

Proposition 4 For j ∈ {1, 2, 3, . . .} we have

d

dπ
�

(
− 1

α
(ln(1 − π) + j

2
α2)

)

= e− j−1
2 ln(1−π)e− j2−1

8 α2 d

dπ
�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)
(43)

Remark 5 The proposition in particular yields the following relations that simplify the
derivation of the ODE for the full optimization problem

d

dπ
�

(
− 1

α
(ln(1 − π) + 5

2
α2)

)
= 1

(1 − π)2
e−3α2 d

dπ
�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)

d

dπ
�

(
− 1

α
(ln(1 − π) + 3

2
α2)

)
= 1

(1 − π)
e−α2 d

dπ
�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)

Derivation of the initial condition of the ODE: Our first step to derive the differential
equation for the optimal intended fraction π(λ) as a function of the mean λ of the view
of the electricity provider of the risk premium attainable by trading in the intraday
market is to look at the initial condition for π(0).
For this, we consider the optimization problem with λ = 0 which has the following
form:

max
π

{
1

2
β − 1

2
γ σ 2

[
1 − 2(1 − π)eα2 + (1 − π)2e3α

2

+(δ2 − 1)

{
�

(
− 1

α
(ln(1 − π) + 1

2
α2)

)
− 2(1 − π)eα2

�

(
− 1

α
(ln(1 − π) + 3

2
α2)

)

+(1 − π)2e3α
2
�

(
− 1

α
(ln(1 − π) + 5

2
α2)

)}]}

To obtain π(0), we thus have to minimize the expression in square brackets as a
continuous function of π . Due to the facts that both δ and �(.) are between 0 and 1,
this expression further lies between two convex quadratic functions in π and thus has
a global minimum.
By making explicit use of the relations in Remark 5 and denoting the expression in
square brackets above by g(π), we obtain

g′(π) = 2eα2
(
1 + (δ2 − 1)�

(
− 1

α
(ln(1 − π) + 3

2
α2)

))
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− 2(1 − π)e3α
2
(
1 + (δ2 − 1)�

(
− 1

α
(ln(1 − π) + 5

2
α2)

))

If we note further that we have

g′(1) = 2eα2
(
1 + (δ2 − 1)� (+∞)

)
> 0

and also

g′(0) = 2eα2
(
1 + (δ2 − 1)�

(
−3

2
α)

))
− 2e3α

2
(
1 + (δ2 − 1)�

(
−5

2
α)

))

= 2eα2
(

(1 − e2α
2
) + (δ2 − 1)

(
�

(
−3

2
α

))
− e2α

2
�

(
−5

2
α

))
< 0,

we obtain the existence of a zero of the derivative. To see the last relation, note that
we have

e2α
2
�

(
−5

2
α

)
= e2α

2
∫ − 5

2α

−∞
1√
2π

e− 1
2 x

2
dx = e2α

2
∫ − 3

2α

−∞
1√
2π

e− 1
2 (x+α)2dx

<

∫ − 3
2α

−∞
1√
2π

e− 1
2 x

2
dx = �

(
−3

2
α

)

due to the fact that we have αx − 1
4α

2 < −2α2 for x < − 3
2α. On top of this, using

again the relations in Remark 5 we get

g′′(π) = 2e3α
2
(
1 + (δ2 − 1)�

(
− 1

α
(ln(1 − π) + 5

2
α2)

))
> 0,

which also yields that the zero π∗ of the derivative is a unique minimum. This value
can then be computed numerically and we have the initial condition for our ODE as

π(0) = π∗. (44)

The full optimization problem and the corresponding ODE: The optimization problem
inour newsetting is in principle similar to the one of the simplistic setting.However, the
replacement ofπ andπ2 by the expectations E(π̄) and E(π̄2) introduces amuchmore
complicated non-linear dependence of the criterion function from π . This has already
materialized in the derivation of the initial condition for π(0) where we considered
the special case of λ = 0 of the optimization problem. Using the notation of

�k := �k(π) := �

(
− 1

α
(ln(1 − π) + k

2
α2)

)
(45)
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and given all our computations above, it is straight forward to write down the opti-
mization problem as:

max
π

{
λ

(
1 − (1 − π)eα2 − (1 − δ)�1 + (1 − π)eα2

(1 − δ)�3

)

− 1

2
γ σ 2

[
1 − 2(1 − π)eα2 + (1 − π)2e3α

2 + (δ2 − 1)
{
�1 − 2(1 − π)eα2

�3

+(1 − π)2e3α
2
�5

}]
+ β

(
M(π)

(
2�

(
λ

σ

)
− 1

)
+ �

(
λ

σ

))}

Remark 6 1. Note that of course we could find a more compact representation of
the criterion in terms of powers of π . However, the current one will again prove
to be useful in combination with the relations of Remark 5. We will use them to
come up with an ODE for π(λ) that is derived from the first order condition of the
optimization problem.

2. With a similar argument as in the above case of the optimization for λ = 0, there
exists a global minimum of the criterion. For this, note that only additional terms,
that at most increase linearly in π , appear.

Proposition 5 (ODE in the general case) In the case of our particular model for uncer-
tain electricity consumption and uncertain production, we obtain the following ODE
for the optimal fraction π(λ)

π ′(λ) =
(
−βe−α2

f (λ)(2�(λ/σ) − 1)
)

·
[
λ(1 − (1 − δ)�3) − γ σ 2(1 − (1 − π)e2α

2 + (δ2 − 1)(�3 − (1 − π)e2α
2
�5)

]−1

with initial condition given by Eq. (44).

Solving this ODE numerically is again possible, see Fig. 6. The resulting optimal frac-
tions π(λ) admit the properties of the cases of single uncertainty in consumption resp.
demand. We observe a positive position π(0), even the trader does not assign a posi-
tive risk premium to trading in the intraday market. We also observe that the optimal
positions are more extreme in the risk premia for larger uncertainties in production
and demand.

Remark 7 (More random consumption) As already indicated above, we have used
a restricted random consumption approach by fixing the constant δ ∈ (0, 1). The
extension to a capped log-normal distribution for δ is straight forward, but needs some
tedious computations.

Remark 8 (Existence and uniqueness) Showing existence and uniqueness of the solu-
tion of the above ODE can in principle be shown as in the case of the basic ODE (4)
(inspect the different steps of the corresponding proof in the appendix). However, we
do not give it here as on one hand it needs a more involved notation and on the other
hand, we have here only considered a simplified uncertain consumption model.
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Fig. 6 Optimal choices of π(λ)

in the case of uncertain
production and demand: Setting
normal view on λ with
(μ, θ2) = (0, 0.0001),
β = 0.5, σ 2 = 0.04, γ = 1

4.4 Aspects of applicability and some remarks on parameter calibration

Aspects of applicability Our approach can be seen as viewing either trading over
a full day or as concentrating on one particular 15min slot for electricity delivery.
While the first choice might be a very rough approximation that completely ignores
storage problems of electricity, the second approach amounts to model and solve 96
optimization problems for one day (see e.g.Aïd et al. 2016 for a continuous-timemodel
that avoids solving 96 simple problems, but needs a more advanced mathematical
framework and then has to be applied in a discretized version). This, however, can be
easily implemented given our results presented above. Of course, we have to admit
that the information that is needed about the distribution of the risk aversion of the
remaining providers in the market can only be roughly estimated.
Some remarks on parameter calibrationAlthoughmost of the parameters of ourmodel
are subject to the specific situation of the electricity provider or trader, we will give
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some practical hints on calibrating the parameters. We thereby also suggest methods
used in asset portfolio optimization. As the parameters have different characters we
treat them and the possibilities for calibration separately in different blocks.
Parameters inside the objective function The parameters γ (the risk aversion) and
β (the parameter that yields the importance of the ranking compared to the other
traders) are personal (subjective) parameters that have to be chosen by the trader. By
construction, they cannot be estimated.
Parameters of the surplus return in the intraday market Let us first define the surplus
return at time ti . Here, t1, . . . , tN denote the delivery times at past days that coincide
with the delivery time of our day of interest, e.g. tomorrow 8:00 pm. Let D(ti ), I (ti )
denote the respective past day-ahead and intraday prices (in Euro per MWh). Then we
denote the surplus return �(ti ) by

�(ti ) = ln (I (ti )/D(ti )) .

As we assume that the surplus return � for our time of interest is normally distributed
with mean λ and variance σ 2, we calculate the maximum likelihood estimates of the
mean

�̄N = 1

N

N∑
i=1

�(ti )

and the variance

σ̂ 2
N = 1

N − 1

N∑
i=1

(
�(ti ) − �̄N

)2

of the actually realized surplus returns �(ti ) which can also be negative. As the dif-
ferences between the intraday and the day-ahead prices are usually small, the surplus
return is typically around zero, see also https://energy-charts.info/ for price charts and
for average weekly prices. The values of the weekly average surplus returns for the
weeks 49, 50, 51 and 52 of 2023 are 0.055,−0.038, 0.053, 0.25. However, these are
averages and should only serve as illustrations.
Concerningλ, we have to take into account that this is the subjective parameter for each
individual electricity provider and we again have to make a distributional assumption
about it. In the above examples we have assumed

λ ∼ N (μ, θ2)

and thus need to estimate both these parameters. As the decisions of the different
traders on the choice of π(λ) depend also on their choices/estimates of β, γ , σ 2, we
take a view that is similar to the one in the CAPM-approach of financial mathematics
(see e.g. Sharpe 1985): We assume that all traders have chosen the same values of
β, γ , σ 2. Then, we look at the realized fractions of volumes 1 − π at the day ahead
market of the active traders in the relevant past times. Given these values, we can now
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calibrateμ, θ2 by minimizing the L2-distance between the solution curve π(λ;μ, θ2)

and the observed values of π .
Of course, we are aware of the fact that this is computationally intensive and it requires
a deep analysis of the order book to get these data. This is beyond the scope of our
actual contribution.
If one ignores the competitors in our problem, then econometric prediction approaches
for the surplus return as described and compared in e.g. Kiesel and Paraschiv (2017)
or Maciejowska et al. (2019) are natural candidates.
The uncertainty parameters In the cases of production and demand uncertainty we
need some additional parameters. For the case of production uncertainty, the provider
needs a prediction model for the own production V that is unbiased and yields the
expected production of v. For this, we assume that the provider has an algorithm
that yields this value on the basis of the production that has been realized in past
times under the same e.g. weather forecasts and technical conditions. This could be
a simple algorithm that combines averaging over past values with an interpolation
method (in case that e.g. the weather forecast has not exactly been observed in the
past). The parameter α > 0 can then be estimated from past differences between Vi
and predictions vi , i = 1, . . . , � using the relation

Var(V ) = v2
(
eα2 − 1

)

by looking at the scaled differences Vi/vi . For the demand uncertainty a similar
approach that is based on a prediction model for the demand can be developed.

5 Discussion and Outlook

We have set up a simple mean-field framework to decide on an optimal fraction of the
electricity production that shall be sold in the intraday market. This decision depends
on both

• the view of the electricity provider towards risk and return of trading in the intraday
market and

• the distribution of the views of the competitors.

We have first considered and solved a simple model where only the price risk for
the electricity in the intraday market is present. This then allowed us to trace back
the solution in settings that include either production or demand uncertainty to the
basic problem. What can be observed is that the presence of the competitors leads
to strategies that encourage a more risky behaviour in either taking higher or lower
positions in the intraday market compared to the situation when the competitors are
ignored by the electricity provider.
Although our model uses only a very basic, one-period type mean-field games
approach, this can even be seen as an advantage in the application due to the fact
that the structure of electricity delivery is basically discrete in time (i.e. in units of
15min). Further, the solution of the 96 individual problems (related to all the quarters
of the day) can in principle be done in advance and should then not cause a lot of
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effort, only the views on the risk premia for trading in the intraday market possibly
have to be updated.
While the simplicity of the model and the existence of (nearly) explicit solutions of
the mean-field game make the approach an attractive one, one should also point on
some problems and weaknesses of the above presented results:

• Getting the parameters determining themodel requires amixture of basic statistics,
choosing personal preference parameters and solving a calibration problem of the
CAPM-type that needs heavy order book analysis.

• Assuming log-normal distributions for the production and the demand uncertainty
in Sects. 4.1–4.3 lead to tractable problems. However, it should be examined if
these assumptions can at least be justified as an approximation.

Consequently, obvious topics for future research and extensions of our model are:

• the inclusion of storage possibilities (in e.g. batteries) for electricity to transfer a
local surplus production to the next trading time slot,

• the possibility to influence the demand by a suitable offer price strategy when the
provider considers a surplus production to be highly likely,

• a detailed statistical analysis of order books to demonstrate the calibration of the
parameters of the surplus return in the intraday market (see Sect. 4.4).

Especially for electricity producers using renewable resources, using such an approach
can have a big potential

Acknowledgements Wegratefully acknowledge the financial supportwithin theBMBFProject “Modelling
and Control of Future Energy Networks (ENets)” for the first author.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflicts of interest The authors have no potential conflicts of interest. No research involving Human
Participants or Animals has been done within the project. Both authors have agreed to the submission of
this manuscript.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A Proof of Proposition 1 (Existence and Uniqueness)

Westart the section bypresenting a lemmawhich is necessary for provingProposition 1
for existence and uniqueness of the solution to the ODE of the basic problem.
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Lemma 1 Let h ∈ C0([0,∞))∩C1((0,∞)) with h(0) = 0. Assume there exists δ > 0
such that for t ∈ (0, δ) it holds:

h(t) = 0 �⇒ h′(t) > 0.

Then there exists 0 < δ̄ < δ such that we have either h(t) > 0 for all t ∈ (0, δ̄) or
h(t) < 0 for all t ∈ (0, δ̄).

Proof By the above assumptions, there exists t̄ ∈ (0, δ̄) with h(t̄) �= 0. Hence, we
have two possible cases:
Case A: h(t̄) < 0. Define t̂ = sup{t ∈ [0, t̄) | h(t) ≥ 0}. If t̂ > 0, then h(t̂) = 0 and
h′(t̂) < 0 which is a contradiction. So, t̂ = 0 and h(t) < 0 for t ∈ (0, t̄).
Case B: h(t̄) > 0. If there exists t̃ ∈ (0, t̄) with h(t̃) < 0, then we are in Case A.
Otherwise h(t̄) > 0 and h(t) ≥ 0 for t ∈ (0, t̄). Define t̂ = inf{t ∈ [0, t̄] | h(t) > 0}.
If t̂ > 0, then h(t) = 0 for t ∈ [0, t̂) and so h′(t̂) = 0 which leads to a contradiction.
Thus t̂ = 0 and h(t) > 0 for t ∈ (0, t̄). ��
We state the analogue to Lemma 1 that can be proven similarly:

Lemma 2 Let h ∈ C0((−∞, 0]) ∩ C1((−∞, 0)) with h(0) = 0. Assume there exists
δ > 0 such that it holds:

h(t) = 0 �⇒ h′(t) > 0 for − δ < t < 0

Then there exists 0 < δ̄ < δ such that we have either h(t) > 0 for all t ∈ (−δ̄, 0) or
h(t) < 0 for all t ∈ (−δ̄, 0).

Nowwe are in a position to prove the desired proposition on existence and uniqueness
of the solution to the basic ODE with the required additional properties:

Proof of Proposition 1 We begin with the proof of the existence of a global solution.
For this, we examine the existence of a local solution in the neighborhood of 0 and
then consider the existence in R. Due to the singularity at the initial condition of our
ODE given in (4), we seek the solution for positive and negative cases separately.
Eventually, we glue the two solutions. Hence, we first start with Case I, where λ > 0.
Case I: Consider the following ODE

H ′
1(λ) = g(λ) − 1

γ σ 2

√
2|H1(λ)|

H1(0) = 0. (A1)

For now, we assume that g(λ) is a continuously differentiable and monotonically
increasing non-negative function in the neighborhood of 0. Thus, by the Peano exis-
tence theorem there exists a local solution for the IVP given in Eq. (A1) such that
H1(λ) : (−δ, δ) → R, H1(0) = 0 for some δ > 0.
Claim I: H1(λ) > 0 for λ ∈ (0, δ). Since

H ′′
1 (λ) = g′(λ) − H ′

1(λ)

γ σ 2
√
2|H1(λ)| for 0 < λ < δ,
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we confirm that both H1 and H ′
1 satisfy the assumptions of Lemma 1. Thus, H1 is

strictly monotone on (0, δ̄) for some δ̄ > 0. Now it remains to determine if H1 is
increasing or decreasing. To this end, we assume H ′

1 < 0 on (0, δ̄) meaning that

H ′
1(λ) = g′(λ) − 1

γ σ 2

√
2|H1(λ)| < 0

�⇒ g′(λ)γ σ 2

√
2|H1(λ)| < 1 for λ ∈ (0, δ̄).

Then we have

H ′′
1 (λ) = g′(λ) +

(
1

γ σ 2

)2 [
1 − g(λ)γ σ 2

√
2|H1(λ)|

]

if λ is small enough. Since limλ→0+ H1(λ) = 0 and limλ→0+ H ′
1(λ) = 0, we have

H1(λ) =
∫ λ

0
H ′
1(s)ds =

∫ λ

0

∫ s

0
H ′′
1 (t)dt ≥ 0.

which is a contradiction with the assumption H ′
1 < 0. Consequently, H1 must be

strictly monotone increasing on (0, δ̄). In particular, H1(λ) > 0 for 0 < λ < δ̄. This
proves Claim I.
Our next concern is the existence of a solution for λ < 0 which directs us to the Case
II.
Case II: Consider the following ODE

H ′
2(λ) = g(λ) + 1

γ σ 2

√
2|H2(λ)|

H2(0) = 0. (A2)

By the Peano existence theorem there exists a local solution for the IVP given in Eq.
(A2) such that H2(λ) : (−δ, δ) → R, H2(0) = 0 for some δ > 0.
Claim II: H2(λ) > 0 for λ ∈ (−δ, 0).
By using

H ′′
1 (λ) = g′(λ) + H ′

2(λ)

γ σ 2
√
2|H2(λ)| for − δ < λ < 0,

we see that both H2 and H ′
2 meet the assumptions of Lemma 2. This yields that H2

is strictly monotone on (−δ̄, 0) for some δ̄ > 0. In order to see if H2 is increasing or
decreasing, we assume that H ′

2(λ) > 0 on (−δ̄, 0). This yields

H ′
2(λ) = g′(λ) + 1

γ σ 2

√
2|H2(λ)| > 0
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�⇒ g′(λ)γ σ 2

√
2|H1(λ)| > −1 for λ ∈ (−δ̄, 0).

A further examination shows that H ′′
2 (λ) < 0, ifλ small enough. Since limλ→0− H2(λ)

= 0 and limλ→0− H ′
2(λ) = 0 we have,

H2(λ) = −
∫ 0

λ

H ′
2(s)ds = −

∫ 0

λ

−
∫ 0

s
H ′′
1 (t)dt ≥ 0.

which is a contradiction to the assumption H ′
2 > 0. Consequently, H2 must be strictly

monotone decreasing on (−δ̄, 0). In particular, H2(λ) > 0 for −δ̄ < λ < 0. This
proves Claim II.
So far, we proved that IVPs given in (A1) and (A2) admit solutions in the neighborhood
of 0. We now define the function g more precisely as

g(λ) = β

γ σ 2

(
2�

(
λ

σ

)
− 1

)
f (λ) (A3)

where � is the cumulative standard normal distribution function and f a probability
density function with f (0) > 0 by assumption, respectively. Hence, we obtain a local
solution for our ODE given in (4) such as

π(λ) :=
{

π0(λ) + √
2H1(λ), λ ≥ 0

π0(λ) − √
2H2(λ), λ < 0.

(A4)

It can be verified that this solution satisfies the ODE. For λ > 0 we have

π ′(λ) = π ′
0 + d

dλ

√
2H1(λ)

= π ′
0 + H ′(λ)√

2H1(λ)

If we substitute π ′
0(λ) = 1

γ σ 2 ,
√
2H1(λ) = π(λ) − π0(λ) and H ′

1(λ) given by Eq.
(A1), then we get

π ′(λ) = g(λ)

π(λ) − π0(λ)

which is the desired result. A similar derivation can be done for λ < 0. Eventually,
we have a local solution, which is given in (A4), for our ODE (4) in the neighborhood
of 0.
The next step is to prove the existence of a global solution in R. Since there is no
singularity outside of 0, we can apply the Cauchy-Lipschitz theorem. We again treat
the two cases for positive and negative values of λ separately. Hence, we begin with
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the positive solution, i.e. for λ > 0. We define a local solution in the neighborhood of
0 as follows

πloc(λ) = π0(λ) + √
2H1(λ), λ > 0.

Note that this local solution also satisfies the two constraints. Hence by assumption,
the global solution shall also satisfy these constraints. We further assume that we
have a monotonically increasing solution π(λ) among the existing solutions. This
assumption can be justified by the economical arguments. Namely, if we have a higher
expectation of the mean return in the intraday market, then we would tend to trade a
bigger proportion of our production in the intraday market and hence take more risk.
Moreover, it is possible to verify that a larger value of λ causes all multipliers of π in
the objective function to increase. Hence, the optimalπ(λ) has to increase inλ, too. For
λ̃ in the neighborhood of 0, by the help of the Cauchy-Lipschitz theoremwe reconsider
Eq. (4) with the initial condition π(λ̃) = πloc(λ̃) on the domain {(λ, π) | λ > 0, π >

π0(λ)}. Let π be the maximal solution of this problem. Our aim is to show that the
maximal domain of the solution has no upper bound. To this end, we assume that there
exists such an upper bound λ̄. As π is increasing for λ > 0, we have two possible
cases:

lim
λ→λ̄

π(λ) = +∞

or

lim
λ→λ̄

π(λ) = π0(λ̄).

Next we show that these two cases are impossible.
We begin with the case where limλ→λ̄ π(λ) = +∞. It suffices to argue that π is
Lipschitz continuous at least on a small interval. For this, we show that π ′(λ) is
bounded on this interval. Assume that there exists an interval (λ, λ̄) such that for all
λ ∈ (λ, λ̄) we have π(λ) > π0(λ) + 1. This implies that

π ′(λ) ≤ β

γ σ 2

(
2�

(
λ

σ

)
− 1

)
f (λ) for all λ ∈ (λ, λ̄).

Hence, π is Lipschitz continuous on this interval meaning that we obtain

π(λ) ≤ π(λ) +
∫ λ

λ

β

γ σ 2

(
2�

(
t

σ

)
− 1

)
f (t)dt, for all λ ∈ (λ, λ̄).

As f (.) is integrable and the remaining parts of the integrand are bounded, we cannot
have limλ→λ̄ π(λ) = +∞.
We now consider the second case where limλ→λ̄ π(λ) = π0(λ̄). We first restrict
ourselves for a positive λ̄ value. We know that the solution of the ODE (4) for positive
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λ values reads as

π(λ) = π0(λ) + √
2H1(λ).

To realize limλ→λ̄ π(λ) = π0(λ̄), it is required that

lim
λ→λ̄

√
2H1(λ) = 0

which yields

H1(λ̄) = 0.

By recalling the ODE given in (A1), we deduce the following

H1(λ̄) = H1(0) +
∫ λ̄

0
g(λ)dλ.

This further yields

∫ λ̄

0
g(λ)dλ = 0.

There exists two possibilities for this equality to be realized. The first one is λ̄ = 0
which cannot be true due to the assumption λ̄ > 0. The second one is that the integral
of the function g(λ) is equal to zero. However, considering the explicit form of the
function g(λ) given in (A3), one can see that g(λ) is continuous and remains positive
for all λ > 0. Therefore, the integral cannot be equal to 0 unless the upper bound is 0.
Hence, we conclude that the maximal solution has no upper bound and we have
global existence of a positive solution. Same argumentation can be followed for the
global existence of the negative solution. Eventually, we obtain a global existence
of a solution to the ODE (4). To prove the uniqueness of the basic ODE under the
additional requirements in Proposition 1 let us first note that by the requirement of

π(λ) >
λ

γσ 2 , for all λ > 0 (A5)

the right hand side of the ODE is differentiable for all λ > 0 where f (λ) is differen-
tiable, i.e. by assumption for all λ in the support of f which in particular also contains
λ = 0.
To show that it is also differentiable in λ = 0, we note that by requirement (A5) and
the requirement that π(λ) is increasing, the only possibility for non-differentiability
in λ = 0 is to have π ′(0) = +∞. However, by l’Hospital’s rule, a necessary condition
for that would be π ′(0) = 1/(γ σ 2) �= ∞ and thus we have proved differentiability
(from the right) of the right side of the ODE for λ ≥ 0.
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Even more, we can then, again by using l’Hospital’s rule and the requirement (A5),
calculate the value of π ′(0) as

π ′(0) = 1

2γ σ 2 +
√

1

4γ 2σ 4 + 2
β

γ σ 3φ(0) f (0)

As a consequence of the above considerations, the Picard-Lindelöf-Theorem gives us
the unique existence of an increasing solution π(λ) satisfying the requirements (A5)
on each interval of the form [0, λ̄]. This completes the proof. ��

Appendix B Further Proofs

Proof of Proposition 2 We show that the solution π(λ) of Proposition 1 satisfies the
second order conditions. For this we consider the following function  as

(λ, π) = λ − γ σ 2π + βm(π)

(
2�

(
λ

σ

)
− 1

)

The first order condition now reads as

(λ, π(λ)) = 0.

Differentiating it with respect to λ yields

∂λ(λ, π(λ)) + π ′(λ)∂π(λ, π(λ)) = 0.

As π(λ) is increasing, we obtain the following second order condition

∂λ(λ, π) = 1 + βm(π)
2

σ
φ

(
λ

σ

)
> 0

with φ being the first order derivative of � function. ��
Proof of Proposition 3 Part a) follows directly from our considerations above. For part
b), we compute the expectations of π̄ from part a). To see e.g. the representation (34),
note that we have

E(π̄) = E
((

1 − (1 − π)
ν

V

)
1{V≤(1−π)ν}

)
+ E

(
D − (1 − π)ν

V
1{V>(1−π)ν}

)

To obtain Eq. (34) from this, we note that the term (1 − π)ν/V appears in both
expectations. Further, separating the constant term 1 from both expectations then
leads to Eq. (34). Equation (35) follows similarly. ��
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