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Abstract
Theaimof this paper is to deepen the studyof solutionmethods for rank-twononconvex
problems with polyhedral feasible region, expressed by means of equality, inequality

and box constraints, and objective function in the form of φ
(
cT x + c0,

dT x+d0
bT x+b0

)
or

φ̄
(
c̄T y+c̄0
aT y+a0

,
dT y+d0
bT y+b0

)
. These problems arise in bicriteria programs, quantitative man-

agement science, data envelopment analysis, efficiency analysis and performance
measurement. Theoretical results are proved and applied to propose a solution algo-
rithm. Computational results are provided, comparing various splitting criteria.

Keywords Nonlinear programming · Low-rank structures · Linear fractional
programs · Optimal level solutions · Global optimization

Mathematics Subject Classification 90C30 · 90C26 · 90C32

JEL codes C02 · C61 · C63

1 Introduction

Rank-two problems are low-rank problems where a linear transformation of the vari-
ables provides an objective function which depends on two variables. In other words,
the objective function of rank-two problems is something like φ(g1(x), g2(x)), which
can be rewritten in a two-variable formφ(θ, ξ), by assuming θ = g1(x) and ξ = g2(x).
In this paper we will consider rank-two problems, where g1(x) and g2(x) are linear
fractional functions. This class of problems is very used in applied models. In light of
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this, it is worth emphasizing chapter 3.5 in Bajalinov (2003), pp.62–72, and the books
(Barros 1998; Cooper et al. 2004; Mjelde 1983) describing applications of linear
fractional programs to transportation problems, product planning, location problems,
quantitative management science and data envelopment analysis (see also (Bomze
et al. 1997; Cambini and Martein 2009; Cambini and Sodini 2002, 2003, 2008, 2010,
2014; Frenk and Schaible 2005; Horst and Pardalos 1995; Horst and Tuy 1996; Horst
et al. 2001; Konno et al. 1997, 1991; Konno and Kuno 1995; Kuno 1996; Ryoo and
Sahinidis 2003; Schaible 1995; Tuy 1998)). From a theoretical and algorithmic point
of view, particular rank-two problems involving linear fractional functions have been
recently studied in Shen and Lu (2018), Shen et al. (2019). The aim of this paper is to
study rank-two problems involving linear fractional functions from both a theoretical
and an algorithmic point of view. Specifically speaking, the theoretical results stated
in Cambini and Sodini (2010), Cambini (2020), Cambini and Venturi (2021) will be
generalized, a solution algorithm based on a partitioning approach will be proposed,
and a detailed computational experience will be provided, with new splitting criteria
proposed and compared with the classical ones. In Sect. 2, a pair of rank-two problems
is defined: a general one, denoted with P , and a more particular one, named P . It will
be shown that P can be equivalently expressed in the form of P , so that just P needs to
be studied from a theoretical and a computational point of view. In Sect. 3, various the-
oretical results are stated and compared with the ones in Cambini and Sodini (2010),
Cambini (2020), Cambini and Venturi (2021). These results concerning optimal level
solutions, optimal value functions and underestimation functions allow to propose in
Sect. 4 a solution algorithm based on a partitioning approach. The solution method is
described in detail, and a deep computational experience is discussed in Sect. 5, where
new splitting criteria are proposed and compared with the classical ones.

2 Preliminary definitions

From now on, we will denote with R the set of real numbers and with R = R ∪
{−∞,+∞} the affinely extended real number system.

2.1 Main problem

Definition 1 Let us consider a general polyhedron X ⊂ R
n defined as:

X = {
x ∈ R

n : Ainx≤bin, Aeq x = beq , l≤x≤u
}

where Ain ∈ R
m×n , bin ∈ R

m , Aeq ∈ R
p×n , beq ∈ R

p, l, u ∈ R
n
. Given vectors

b, c, d ∈ R
n and scalar values b0, c0, d0 ∈ R, the following class of nonconvex

problems can be defined as:

P : inf
x∈X φ

(
cT x + c0,

dT x + d0
bT x + b0

)
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where bT x + b0 > 0 for all x ∈ X . The scalar function φ(θ, ξ) is defined on the
following set:

� =
{
(θ, ξ) ∈ R

2 : θ = cT x + c0, ξ = dT x + d0
bT x + b0

, x ∈ X

}

Notice that � ⊆ {
θ ∈ R : θ = cT x + c0, x ∈ X

} ×
{
ξ ∈ R : ξ = dT x+d0

bT x+b0
, x ∈ X

}
.

Moreover, φ(θ, ξ) is assumed to be continuous for all the values in the set � and
strictly increasing with respect to its first variable θ .

Notice that, if b = 0, problem P reduces to the ones already studied in Cambini
and Sodini (2010), Cambini (2020), Cambini and Venturi (2021) and involving linear
functions cT x+c0 and dT x+d0 only. Notice also that these classes of problems cover
several multiplicative, fractional and d.c. problemswhich are very used in applications
(see for all Bajalinov 2003; Barros 1998; Cooper et al. 2004; Frenk and Schaible 2005;
Konno et al. 1991; Kuno 1996; Mjelde 1983; Schaible 1995).

2.2 Amore general problem

The aimof this section is to show that a class of problems involving two linear fractional
functions (hence problemsmore general than the ones described in P) can be converted
in the form of P and hence be solved.

Definition 2 Let us consider a general polyhedron Y ⊂ R
n defined as:

Y = {
y ∈ R

n : Ain y≤bin, Aeq y = beq , l≤y≤u
}

where Ain ∈ R
m×n , bin ∈ R

m , Aeq ∈ R
p×n , beq ∈ R

p, l, u ∈ R
n
. Given vec-

tors a, b, c̄, d ∈ R
n and values a0, b0, c̄0, d0 ∈ R, the following class of nonconvex

problems can be defined as:

P̄ : inf
y∈Y φ̄

(
c̄T y + c̄0
aT y + a0

,
dT y + d0
bT y + b0

)

where aT y + a0 > 0 and bT y + b0 > 0 for all y ∈ Y . The scalar function φ̄(θ, ξ) is
defined on the following set:

�̄ =
{
(θ, ξ) ∈ R

2 : θ = cT y + c0
aT y + a0

, ξ = dT y + d0
bT y + b0

, y ∈ Y

}

Moreover, the function φ̄(θ, ξ) is assumed to be continuous for all the values in the
set �̄ and strictly monotone with respect to its first variable θ .

Let us point out that particular cases of problem P̄ have been recently studied in
Shen and Lu (2018), Shen et al. (2019) (where φ̄(θ, ξ) = θ + ξ or φ̄(θ, ξ) = θ · ξ ).
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First, notice that the objective function of problem P can be equivalently rewritten
as a strictly increasing function with respect to its first variable. In light of this, let us
introduce the following notations:

• if φ̄(θ, ξ) is strictly decreasing with respect to its first variable θ , then let c = −c̄,
c0 = −c̄0 and φ(θ, ξ) = φ̄(−θ, ξ);

• if φ̄(θ, ξ) is strictly increasing with respect to its first variable θ , then let c = c̄,
c0 = c̄0 and φ(θ, ξ) = φ̄(θ, ξ).

It results

φ̄

(
c̄T y + c̄0
aT y + a0

,
dT y + d0
bT y + b0

)
= φ

(
cT y + c0
aT y + a0

,
dT y + d0
bT y + b0

)

where φ(θ, ξ) is strictly increasing with respect to variable θ .
By means of a Charnes-Cooper transformation (Charnes and Cooper 1962), it is

then possible to convert problem P̄ in the form of P . In light of this, let us define the
following scalar variable x0 and vector variable xn :

x0 = 1

aT y + a0
∈ R and xn = x0 · y ∈ R

n

Being aT y + a0 > 0 ∀y ∈ Y , it results x0 > 0 so that:

cT y + c0
aT y + a0

= cT xn + c0x0

dT y + d0
bT y + b0

= dT xn + d0x0
bT xn + b0x0

while the constraints defining Y result to be:

Ainxn − binx0 ≤ 0 Aeq xn − beq x0 = 0 (1)

xn − ux0 ≤ 0 − xn + lx0≤0 (2)

aT xn + a0x0 = 1 x0 ≥ 0 (3)

Notice that the constraint x0 > 0 has been equivalently written as x0 ≥ 0 in (3), with
the aim to guarantee the closure of the feasible region. In light of this, observe that
the value x0 = 0 is not feasible (if x0 = 0 then (2) implies xn = 0 and hence in (3) it
yields 1 = aT xn + a0x0 = 0).

As a consequence, problem P̄ can be rewritten in the form of P as:

P̄ : inf
(xn ,x0)∈X

φ

(
cT xn + c0x0,

dT xn + d0x0
bT xn + b0x0

)

where the polyhedron X ⊂ R
n+1 is given by the vectors (xn, x0) ∈ R

n ×R verifying
the conditions (1), (2) and (3). Once the optimal solution of (x∗

n , x
∗
0 ) ∈ X is found,

then the corresponding optimal solution of P̄ is given by y∗ = 1
x∗
0
x∗
n .
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2.3 Generalized convexity properties

It is worth recalling (Avriel et al. 2010; Cambini andMartein 2009; Frenk and Schaible

2005; Schaible 1995) that linear fractional functions like dT x+d0
bT x+b0

are both pseudocon-
cave and pseudoconvex.

Definition 3 A differentiable function g : X → R with X ⊆ R
n open convex set

is said to be pseudoconvex on X if the following logical implication holds for all
x1, x2 ∈ X :

g(x1) > g(x2) ⇒ ∇g(x1)
T (x2 − x1) < 0

Function g is also said to be pseudoconcave on X if −g is pseudoconvex on X . More-
over, g is said to be pseudolinear on X if it is both pseudoconvex and pseudoconcave
on X .

The following useful properties hold (see for all Cambini and Martein 2009 sub-
section 3.3.2).

Theorem 1 Let g : X → R, with X ⊆ R
n open convex set, be a differentiable function.

If g is pseudolinear on X, then either ∇g(x) �= 0 for all x ∈ X or g is a constant
function.

Theorem 2 Let g : X → R, with X ⊆ R
n open convex set, be a differentiable function.

Then, g is pseudolinear on X if and only if the following double implication holds for
all x1, x2 ∈ X:

g(x1) = g(x2) ⇔ ∇g(x1)
T (x2 − x1) = 0

Theorem 1 shows that differentiable pseudolinear functions are either constant or
with no critical points, while Theorem 2 allows to verify that linear fractional functions
are pseudolinear.

Finally, let us recall the following further results involving the concept of semistrict
quasilinearity (see for all Cambini and Martein 2009, subsection 3.3.1 and subsection
3.3.2).

Theorem 3 Let g : X → R, with X ⊆ R
n open convex set, be a differentiable function.

If g is pseudolinear on X, then g is also semistrictly quasilinear on X.

Theorem 4 Let g : X → R, with X ⊆ R
n convex set, be a function. Then, g is

semistrictly quasilinear on X if and only if the following condition holds:

• any restriction of g on a line segment is an increasing function or a decreasing
function or a constant function.

Theorems 3 and 4 show that linear fractional functions restricted on feasible seg-
ments are either constant or strictlymonotone.Notice also that this property guarantees
that non-constant linear fractional functions over a compact feasible region attain the
minimum and the maximum at the boundaries of the feasible region.
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3 Theoretical results

The aim of this section is to state various theoretical results concerning problem P
which will allow to propose a solution algorithm. In light of this, the results stated
in Cambini and Sodini (2010), Cambini (2020), Cambini and Venturi (2021) will be
generalized or compared.

3.1 Image of feasible intervals overÄ

Theorem 5 Consider problem P and let x1, x2 ∈ X, with x1 �= x2, be extrema of the
feasible segment:

[x1, x2] = {x ∈ X : x = x1 + λ(x2 − x1), λ ∈ [0, 1]}

For the sake of convenience, define also the following auxiliary values:

ξ1 = dT x1 + d0
bT x1 + b0

, ξ2 = dT x2 + d0
bT x2 + b0

β1 = bT x1 + b0 > 0, β2 = bT x2 + b0 > 0, θ1 = cT x1 + c0 and θ2 = cT x2 + c0. We
can also assume, without loss of generality, that ξ1 ≤ ξ2.

i) If ξ1 = ξ2, then, denoting x(λ) = x1 + λ(x2 − x1) and θ(λ) = cT x(λ) + c0, it
results:

dT x(λ) + d0
bT x(λ) + b0

= ξ1 , θ(λ) = θ1 + λ(θ2 − θ1) , ∀λ ∈ [0, 1]

ii) If ξ1 < ξ2, then for all ξ ∈ [ξ1, ξ2] there exists one and only one x(ξ) ∈ [x1, x2]
such that:

ξ = dT x(ξ) + d0
bT x(ξ) + b0

Moreover, denoting θ(ξ) = cT x(ξ) + c0, for all ξ ∈ [ξ1, ξ2] it results:

x(ξ) = x1 + (ξ − ξ1)β1

(ξ − ξ1)β1 + (ξ2 − ξ)β2
(x2 − x1)

θ(ξ) = θ1 + (ξ − ξ1)β1

(ξ − ξ1)β1 + (ξ2 − ξ)β2
(θ2 − θ1)

Proof i) Just notice that:

dT x(λ) + d0
bT x(λ) + b0

= dT (x1 + λ(x2 − x1)) + d0
bT (x1 + λ(x2 − x1)) + b0
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= (dT x1 + d0) + λ
(
(dT x2 + d0) − (dT x1 + d0)

)

(bT x1 + b0) + λ
(
(bT x2 + b0) − (bT x1 + b0)

)

= ξ1β1 + λ(ξ2β2 − ξ1β1)

β1 + λ(β2 − β1)

so that, if ξ1 = ξ2 then
dT x(λ)+d0
bT x(λ)+b0

= ξ1. Finally, it results:

cT x(λ) + c0 = (cT x1 + c0) + λ
(
(cT x2 + c0) − (cT x1 + c0)

)
= θ1 + λ(θ2 − θ1)

ii) Since linear fractional functions are both pseudoconcave and pseudoconvex,
then restricted to any segment they results to be either constant or strictly monotone.

As a consequence, condition ξ1 < ξ2 implies that function dT x+d0
bT x+b0

is continuous and
strictly monotone over the segment [x1, x2] ⊂ X so that:

[ξ1, ξ2] =
{
ξ : ξ = dT x + d0

bT x + b0
, x ∈ [x1, x2]

}

This yields that for all ξ ∈ [ξ1, ξ2] there is one and only one x(ξ) ∈ [x1, x2] such that
ξ = dT x(ξ)+d0

bT x(ξ)+b0
. In light of this, it results:

ξ = dT (x1 + λ(x2 − x1)) + d0
bT (x1 + λ(x2 − x1)) + b0

= ξ1β1 + λ(ξ2β2 − ξ1β1)

β1 + λ(β2 − β1)

which yields:

ξβ1 + λξ(β2 − β1) = ξ1β1 + λ(ξ2β2 − ξ1β1)

and hence:

λ = (ξ − ξ1)β1

(ξ − ξ1)β1 + (ξ2 − ξ)β2

As a consequence, it results:

x(ξ) = x1 + (ξ − ξ1)β1

(ξ − ξ1)β1 + (ξ2 − ξ)β2
(x2 − x1)

and

θ(ξ) = cT x(ξ) + c0 = θ1 + (ξ − ξ1)β1

(ξ − ξ1)β1 + (ξ2 − ξ)β2
(θ2 − θ1)

��
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Remark 1 Notice that when ξ1 < ξ2:

θ ′(ξ) = β1β2(θ2 − θ1)(ξ2 − ξ1)

[(ξ − ξ1)β1 + (ξ2 − ξ)β2]2

θ ′′(ξ) = 2β1β2(β2 − β1)(θ2 − θ1)(ξ2 − ξ1)

[(ξ − ξ1)β1 + (ξ2 − ξ)β2]3

Being β1 > 0, β2 > 0, ξ1 < ξ2, it results (ξ − ξ1)β1 + (ξ2 − ξ)β2 > 0 for all
ξ ∈ [ξ1, ξ2] so that function θ(ξ) is:

• constant if θ1 = θ2
• strictly increasing if θ1 < θ2
• strictly decreasing if θ1 > θ2
• linear if either β1 = β2 or θ1 = θ2
• strictly convex if (β2 − β1)(θ2 − θ1) > 0
• strictly concave if (β2 − β1)(θ2 − θ1) < 0

Remark 2 It is useful to determine the “distance” between θ(ξ) and its linear counter-
part θ1 + ξ−ξ1

ξ2−ξ1
(θ2 − θ1):

�(ξ) = θ(ξ) −
(

θ1 + ξ − ξ1

ξ2 − ξ1
(θ2 − θ1)

)

By means of simple calculations we get:

�(ξ) = (θ2 − θ1)(β2 − β1)

(ξ2 − ξ1)
· −(ξ − ξ1)(ξ2 − ξ)

(ξ − ξ1)β1 + (ξ2 − ξ)β2

Clearly, if either β1 = β2 or θ1 = θ2, then �(ξ) is constantly null. If (β2 − β1)(θ2 −
θ1) �= 0, it is interesting to determine the “maximum distance” �(ξ). In light of this,
notice that:

�′(ξ) = (θ2 − θ1)(β2 − β1)

(ξ2 − ξ1)
· (ξ − ξ1)

2β1 − (ξ2 − ξ)2β2

[(ξ − ξ1)β1 + (ξ2 − ξ)β2]2

which vanishes when (ξ − ξ1)
2β1 = (ξ2 − ξ)2β2 that is (ξ − ξ1)

√
β1 = (ξ2 − ξ)

√
β2

(all factors are positive). The “maximum distance” is then reached at:

ξ∗ = ξ1
√

β1 + ξ2
√

β2√
β1 + √

β2
= ξ1 + (ξ2 − ξ1)

√
β2√

β1 + √
β2

so that:

�(ξ∗) = (θ2 − θ1)(β2 − β1)

(ξ2 − ξ1)
· −(ξ2 − ξ1)(√

β1 + √
β2

)2 = −(θ2 − θ1)(β2 − β1)(√
β1 + √

β2
)2
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Fig. 1 Plots of θ(ξ) with θ1 = ξ1 = 0 and θ2 = ξ2 = 1

As expected, if θ(ξ) is strictly concave, then (θ2−θ1)(β2−β1) < 0 and the “distance”
is positive (right-hand side of Fig. 1),while if θ(ξ) is strictly convex, then (θ2−θ1)(β2−
β1) > 0 and the “distance” is negative (left-hand side of Fig. 1).

3.2 Feasible levels

The feasible levels set is defined as:

	 =
{
ξ ∈ R : ξ = dT x + d0

bT x + b0
, x ∈ X

}
(4)

Scalar values in 	 are said feasible levels. In the following, specific values of 	 will
be denoted with ξ ′, ξ1, ξ2, and so on.

Theorem 6 The following properties hold:

i) 	 is convex;
ii) if X is bounded, then 	 is compact.

Proof i) The set X ⊂ R
n is a polyhedron, hence it is convex. All convex sets are

connected, and hence X is connected too. Given a continuous function, the image of

a connected set is connected too. As a consequence, the continuity of dT x+d0
bT x+b0

implies
that 	 is connected. Subsets of R are convex if and only if they are connected. As a
consequence, the set 	 ⊆ R is convex.

ii)The set X ⊂ R
n is a closed polyhedron and is bounded, hence it is compact.Given

a continuous function, the image of a compact set is compact too. As a consequence,

the continuity of dT x+d0
bT x+b0

implies that 	 is compact. ��

Remark 3 Notice that the closedness of polyhedron X does not guarantee the closed-
ness of 	. For example, consider the closed unbounded polyhedral set X = {x ∈ R :
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x ≥ 0} and values d = b = 1, d0 = 0, b0 = 1. Then, it is:

	 =
{
ξ ∈ R : ξ = x

x + 1
, x ≥ 0

}
= [0, 1)

which is a bounded interval neither open nor closed.

For the sake of convenience, the following values can be determined:

ξmin = inf
x∈X

dT x + d0
bT x + b0

, ξmax = sup
x∈X

dT x + d0
bT x + b0

Notice that ξmin and ξmax can be computed by means of a Charnes-Cooper transfor-
mation (Charnes and Cooper 1962) or by means of the method proposed in Cambini
and Sodini (2010), Cambini (2020), Cambini and Venturi (2021).

3.3 Optimal level solutions

Given a specific feasible level ξ ′ ∈ 	, the corresponding subset of X can be defined
as:

Xξ ′ =
{
x ∈ X : ξ ′ = dT x + d0

bT x + b0

}
=

{
x ∈ X : dT x + d0 − ξ ′(bT x + b0) = 0

}

Notice that the set Xξ ′ is a polyhedron too. Moreover, the following parametric sub-
problems can be introduced for all ξ ∈ 	:

Pξ : inf
x∈Xξ

φ
(
cT x + c0, ξ

)
; P̂ξ : inf

x∈Xξ

cT x + c0

Notice that being φ(θ, ξ) strictly increasing with respect to its first variable θ , then
subproblem Pξ can be solved by means of the linear programming subproblem P̂ξ .
Given a specific feasible level ξ ′ ∈ 	, optimal solutions of Pξ ′ and P̂ξ ′ , if they exist,
are said to be optimal level solutions. The set Sξ ′ ⊂ Xξ ′ collects all of these optimal
level solutions. It is worth recalling that the optimal level solutions have been the key
tool in stating the so called “optimal level solutions method”, see for all (Cambini and
Martein 2009; Cambini and Sodini 2002, 2003, 2008, 2010, 2014).

As preliminary results, let us now provide some conditions related to the existence
of optimal level solutions. These conditions extend some of the results proved in
Cambini and Sodini (2010), Cambini and Venturi (2021). Let us also recall that for
Theorem 6, if X is bounded, then 	 is convex and compact.

Theorem 7 Consider problem P. The following properties hold:

i) if there exists ξ ′ ∈ 	 such that Sξ ′ = ∅, then Sξ = ∅ ∀ξ ∈ 	;
ii) if there exists ξ ′ ∈ 	 such that Sξ ′ �= ∅, then Sξ �= ∅ ∀ξ ∈ 	;
iii) if there exists ξ ′ ∈ 	 such that Sξ ′ �= ∅ and 	 is compact, then problem P admits

at least one optimal solution;
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iv) every local minimum of P is also an optimal level solution.

Proof i) Since X is a closed polyhedron and Sξ ′ = ∅, then infx∈Xξ ′ cT x = −∞ and
hence there exists a half-line x = x ′ + tu, t ≥ 0, contained in Xξ ′ such that for all
t ≥ 0:

ξ ′ = dT x + d0
bT x + b0

= dT x ′ + d0 + tdT u

bT x ′ + b0 + tbT u

and limt→+∞ cT x ′ + tcT u = −∞. As a consequence, cT u < 0. Moreover, t(ξ ′b −
d)T u = (dT x ′+d0)−ξ ′(bT x ′+b0) = 0 for all t ≥ 0 which implies (ξ ′b−d)T u = 0.
Given any feasible level ξ ∈ 	, we can consider a half-line x = xξ + tu, t ≥ 0, where
xξ ∈ Xξ and u is the direction of the half-line contained in Xξ ′ . Since (ξ ′b−d)T u = 0,
this half-line belongs to Xξ and from cT u < 0 it follows that limt→+∞ cT (xξ + tu) =
limt→+∞(cT xξ + tcT u) = −∞ and hence Sξ = ∅.

ii) Assume by contradiction that there exists ξ ′ ∈ 	 such that Sξ ′ = ∅. Then, i)
yields Sξ = ∅ ∀ξ ∈ 	, which contradicts the assumption.

iii) Assume by contradiction that P has no optimal solutions. Then, there exists a
half-line x = x ′ + tu, t ≥ 0, such that:

inf
x∈X φ

(
cT x + c0,

dT x + d0
bT x + b0

)
= lim

t→+∞ φ

(
cT (x ′ + tu) + c0,

dT (x ′ + tu) + d0
bT (x ′ + tu) + b0

)

Notice that limt→+∞ dT x ′+d0+tdT u
bT x ′+b0+tbT u

= dT u
bT u

. Since dT x ′+d0+tdT u
bT x ′+b0+tbT u

∈ 	 and 	 is

compact, then ξ̂ = dT u
bT u

∈ 	. Moreover, since P has no optimal solutions, then

limt→+∞ cT x ′+c0+tcT u = −∞ and hence cT u < 0. Let x̂ ∈ X
ξ̂
so that ξ̂ = dT x̂+d0

bT x̂+b0
and consider the half-line x = x̂ + tu, t ≥ 0, where u is the direction of the previous
half-line. Taking into account this new half-line, it results:

ξ̂ = dT x̂ + d0
bT x̂ + b0

and ξ̂ = dT u

bT u
= lim

t→+∞
dT x̂ + d0 + tdT u

bT x̂ + b0 + tbT u

By Theorem 4, the linear fractional function dT x+d0
bT x+b0

along the half-line x = x̂ + tu,

t ≥ 0, must be constant, so that x̂ + tu ∈ X
ξ̂
for all t ≥ 0. Being cT u < 0, it results

limt→+∞ cT x̂ + c0 + tcT u = −∞ so that there are no optimal level solutions for
ξ̂ ∈ 	. For i), it follows that Sξ = ∅ for all ξ ∈ 	 and this contradicts the assumptions.

iv)Let x ′ ∈ X be a localminimumof P , let ξ ′ = dT x ′+d0
bT x ′+b0

the corresponding feasible
level, and suppose by contradiction that it is not an optimal level solution. Then, there

exists y ∈ Xξ ′ such that cT y < cT x ′ with ξ ′ = dT y+d0
bT y+b0

. As a consequence, for all
λ ∈ (0, 1) it is

dT (x ′ + λ(y − x ′)) + d0
bT (x ′ + λ(y − x ′)) + b0

= dT x ′ + d0 + λ(dT y + d0 − dT x ′ − d0)

bT (x ′ + λ(y − x ′)) + b0
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= ξ ′(bT x ′ + b0) + ξ ′λ(bT y + b0 − bT x ′ − b0)

bT x ′ + b0 + λ(bT y + b0 − bT x ′ − b0)
= ξ ′

and cT (x ′ + λ(y − x ′)) < cT x ′ . Since φ(·, ·) is strictly increasing with respect to its
first variable, it holds:

φ(cT (x ′ + λ(y − x ′)) + c0, ξ
′) < φ(cT x ′ + c0, ξ

′)

and this contradicts the local optimality of x ′ with respect to problem P . ��
The following results follow straightforward from the previous theorem:

• if P admits at least one local minimum, then Sξ �= ∅ ∀ξ ∈ 	.
• if P admits at least one local minimum and 	 is compact, then problem P admits
at least one optimal solution.

Moreover, the results stated in the previous theorem can be improved by means of
following value:

θmin = inf
x∈X c

T x + c0

Theorem 8 Consider problem P. The following properties hold:

i) if θmin > −∞ then ∃xθmin ∈ X such that:

xθmin = argmin
x∈X cT x + c0 and xθmin ∈ Sξθmin

�= ∅ ξθmin = dT xθmin + d0
bT xθmin + b0

ii) if θmin > −∞ then Sξ �= ∅ ∀ξ ∈ 	;
iii) if θmin > −∞ and the set of feasible levels 	 is compact, then problem P admits

at least one optimal solution.

Proof i) If θmin > −∞ then inf
x∈X c

T x + c0 is reached as a minimum, so that there

exists xθmin = argmin
x∈X cT x + c0. Defined ξθmin ∈ 	, then xθmin results to be an optimal

level solution corresponding to the feasible level ξθmin since it is c
T x + c0 ≥ θmin for

all x ∈ X ⊃ Xξθmin
.

ii) Follows from i) and from ii) of Theorem 7.
iii) Follows from i) and from iii) of Theorem 7. ��

Remark 4 Regarding ii) of Theorem 8, it is worth noticing that it is possible to have
θmin = −∞ and Sξ �= ∅ ∀ξ ∈ 	. For example, consider the closed unbounded
polyhedral set X = {(x1, x2) ∈ R

2 : x2 ≥ x1}, vectors c = (1, 1)T , d = (1, 0)T ,
b = (0, 0)T and values c0 = d0 = 0, b0 = 1, so that the problem is:

{
inf

(x1,x2)∈R2
φ (x1 + x2, x1)

x2 ≥ x1
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It results θmin = inf
(x1,x2)∈X

x1 + x2 = −∞ and 	 = R. Moreover, for all ξ ∈ 	 it is

Xξ = {(x1, x2) ∈ R
2 : x2 ≥ x1 , x1 = ξ} so that:

arg min
(x1,x2)∈Xξ

(x1 + x2) = (ξ, ξ) ∈ Sξ �= ∅ .

3.4 Optimal value functions

For the sake of convenience, the following optimal value functions can be introduced:

σ (ξ) = inf
x∈Xξ

φ
(
cT x + c0, ξ

)
, θ̂ (ξ) = inf

x∈Xξ

cT x + c0 , ξ ∈ 	

Notice that the fact that φ(θ, ξ) is strictly increasing with respect to its first variable

θ implies that σ (ξ) = φ
(
θ̂ (ξ ) , ξ

)
.

The properties stated in the previous subsection are very useful since they suggest
a simple way to check the existence of optimal level solutions. In light of this, let us
first define the following starting feasible level ξ0:

ξ0 =
⎧⎨
⎩

0 if ξminξmax ≤ 0
ξmin if ξmin > 0 (and hence ξmax > 0)
ξmax if ξmax < 0 (and hence ξmin < 0)

(5)

The following two cases occur:

• if Sξ0 = ∅, then Sξ = ∅ ∀ξ ∈ 	 so that:

inf
x∈X φ

(
cT x + c0,

dT x + d0
bT x + b0

)
= inf

ξ∈	
inf
x∈Xξ

φ
(
cT x + c0, ξ

)
= inf

ξ∈	
φ (−∞, ξ)

• if Sξ0 �= ∅, then Sξ �= ∅ ∀ξ ∈ 	 so that:

inf
x∈X φ

(
cT x + c0,

dT x + d0
bT x + b0

)
= inf

ξ∈	
min
x∈Xξ

φ
(
cT x + c0, ξ

)
= inf

ξ∈	
φ

(
θ̂ (ξ ) , ξ

)

It is now possible to prove the following fundamental result, which will allow
to determine an underestimation function for σ (ξ) and hence to develop a solution
algorithm based on a partitioning approach.

Theorem 9 Assume Sξ �= ∅ ∀ξ ∈ 	. Then, the optimal value function θ̂ (ξ ), ξ ∈ 	, is
a semistrictly quasiconvex function. Moreover, if θmin > −∞, then define:

ξ L
θmin

= inf
x∈X ,cT x+c0=θmin

dT x + d0
bT x + b0

, ξ R
θmin

= sup
x∈X ,cT x+c0=θmin

dT x + d0
bT x + b0

so that it results:
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• θ̂ (ξ ) is strictly decreasing for ξ ∈ 	, ξ ≤ ξ L
θmin

• θ̂ (ξ ) = θmin for all ξ ∈ [ξ L
θmin

, ξ R
θmin

]
• θ̂ (ξ ) is strictly increasing for ξ ∈ 	, ξ ≥ ξ R

θmin

Finally, if θmin = −∞, then θ̂ (ξ ) is strictly monotone for ξ ∈ 	.

Proof We have to prove that if θ̂ (ξ1) < θ̂(ξ2), then θ̂ (ξ1 + λ(ξ2 − ξ1)) < θ̂(ξ2) for all
λ ∈ [0, 1]. Assume by contradiction that there exists λ̄ ∈ [0, 1] such that θ̂ (ξ̄ ) ≥ θ̂ (ξ2),
ξ̄ = ξ1 + λ̄(ξ2 − ξ1), and let x1 = arg min

x∈Xξ1

cT x + c0 and x2 = arg min
x∈Xξ2

cT x + c0,

so that θ̂ (ξ1) = cT x1 + c0 and θ̂ (ξ2) = cT x2 + c0. Consider the feasible segment
[x1, x2]. By Theorem 5 and Remark 1, being ξ1 �= ξ2, there exists one and only one
x̄ ∈ [x1, x2] ∩ X ξ̄ . Moreover, being cT x1 + c0 < cT x2 + c0, then cT x + c0 is strictly
monotone on the segment [x1, x2] so that:

cT x̄ + c0 < cT x2 + c0 = θ̂ (ξ2) ≤ θ̂ (ξ̄ )

which is a contradiction since x̄ ∈ X ξ̄ and θ̂ (ξ̄ ) = min
x∈X ξ̄

cT x + c0.

Being θ̂ (ξ ) semistrictly quasiconvex, then every local minimum results to be global
minimum too, and the set of global minima is convex. As a consequence, θ̂ (ξ ) can be
constant over an interval [ξ1, ξ2] only if θ̂ (ξ ) = θmin for all ξ ∈ [ξ1, ξ2], while θ̂ (ξ )

is strictly monotone in intervals [ξ1, ξ2] such that [ξ L
θmin

, ξ R
θmin

] ∩ [ξ1, ξ2] = ∅ or when
θmin = −∞. ��

3.5 Underestimation functions

In order to propose a partitioning solution method, an underestimation function for
σ (ξ) is needed.

Definition 4 Assume Sξ �= ∅ ∀ξ ∈ 	. A function ψ(ξ) such that ψ(ξ) ≤ σ (ξ)

∀ξ ∈ [ξ1, ξ2] ⊆ 	 is said to be an underestimation function for σ (ξ) in [ξ1, ξ2].
Moreover, a function γ (ξ) such that γ (ξ) ≤ θ̂ (ξ ) ∀ξ ∈ [ξ1, ξ2] ⊆ 	 is said to be an
underestimation function for θ̂ (ξ ) in [ξ1, ξ2].

A particular underestimation function ψ(ξ) for σ(ξ) in [ξ1, ξ2] can be built by
considering the composition φ(γ (ξ), ξ),where γ (ξ) is an understimation function for
θ̂ (ξ ) in [ξ1, ξ2].
Theorem 10 Let [ξ1, ξ2] ⊆ 	 and let γ (ξ) be an underestimation function for θ̂ (ξ ) in
[ξ1, ξ2]. Then,ψ(ξ) = φ (γ (ξ), ξ) is an underestimation function for σ (ξ) in [ξ1, ξ2].
Proof Being function φ(·, ·) strictly increasing with respect to its first variable, it
results:

ψ(ξ) = φ (γ (ξ), ξ) ≤ φ
(
θ̂ (ξ ) , ξ

)
= σ (ξ) ∀ξ ∈ [ξ1, ξ2] (6)

and hence ψ(ξ) is an underestimation function for σ (ξ) in [ξ1, ξ2]. ��
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The following results will suggest some stopping criteria for the solution algorithm,
thus allowing to improve its performance.

Theorem 11 Let [ξ1, ξ2] ⊆ 	, let ψ(ξ) be an underestimation function for σ (ξ) in
[ξ1, ξ2] and assume that:

ξm = arg min
ξ∈[ξ1,ξ2]

ψ(ξ) and ψ(ξm) = σ(ξm)

Then, ξm = argminξ∈[ξ1,ξ2] σ(ξ).

Proof Just notice that:

σ(ξm) = ψ(ξm) ≤ ψ(ξ) ≤ σ(ξ) ∀ξ ∈ [ξ1, ξ2]
so that ξm = argminξ∈[ξ1,ξ2] σ(ξ). ��

The following corollary comes straightforward from the previous theorem.

Corollary 1 Let [ξ1, ξ2] ⊆ 	, let γ (ξ) be an underestimation function for θ̂ (ξ ) in
[ξ1, ξ2], let ψ(ξ) = φ (γ (ξ), ξ) and assume that:

ξm = arg min
ξ∈[ξ1,ξ2]

ψ(ξ) and γ (ξm) = θ̂ (ξm)

Then, ξm = argminξ∈[ξ1,ξ2] σ(ξ).

Proof Just notice that ψ(ξm) = φ (γ (ξm), ξ) = φ
(
θ̂ (ξm) , ξ

)
= σ(ξm). ��

The results stated in Subsection 3.4 allow to determine the following properties.

Theorem 12 Let [ξ1, ξ2] ⊆ 	 and assume that one of the following conditions holds:

• θmin = −∞;
• θmin > −∞ with either ξ R

θmin
≤ ξ1 or ξ2 ≤ ξ L

θmin
.

Then, the following functions γ1(ξ) andψ1(ξ) are underestimation functions in [ξ1, ξ2]
for θ̂ (ξ ) and σ (ξ), respectively:

γ1(ξ) = min{θ̂ (ξ1), θ̂ (ξ2)} and ψ1(ξ) = φ (γ1(ξ), ξ)

Moreover, the following results hold:

i) if ξ1 = argminξ∈[ξ1,ξ2] ψ1(ξ) and θ̂ (ξ1) ≤ θ̂ (ξ2), then ξ1 = argminξ∈[ξ1,ξ2] σ(ξ);
ii) if ξ2 = argminξ∈[ξ1,ξ2] ψ1(ξ) and θ̂ (ξ2) ≤ θ̂ (ξ1), then ξ2 = argminξ∈[ξ1,ξ2] σ(ξ).

Proof By Theorem 9 it follows that θ̂ (ξ ) is strictly monotone in [ξ1, ξ2]which yields:
γ1(ξ) = min{θ̂ (ξ1), θ̂ (ξ2)} ≤ θ̂ (ξ ) ∀ξ ∈ [ξ1, ξ2]

so that γ1(ξ) is an underestimation functions for θ̂ (ξ ) in [ξ1, ξ2]. By Theorem 10
this yields that ψ1(ξ) is an underestimation functions for σ (ξ) in [ξ1, ξ2]. Finally,
to prove i) assume ξ1 = argminξ∈[ξ1,ξ2] ψ1(ξ) and θ̂ (ξ1) ≤ θ̂ (ξ2). Then, γ1(ξ1) =
min{θ̂ (ξ1), θ̂ (ξ2)} = θ̂ (ξ1) so that the result follows from Corollary 1. The proof of
ii) is analogous. ��
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4 Partitioning solutionmethod for P

The results stated in Sect. 3 allow us to state an iterative partitioning solution method
for problem P . Specifically, in each iteration of the proposed algorithm:

• the best optimal level solution, denoted as Sol, found so far is maintained, as well
as its value UB;

• the partition of the feasible region corresponding to an interval [ξ1, ξ2] ⊂ 	 of the
feasible levels set is analysed and eventually splitted;

The strategy of such a solution methods is:

• to store the partitions and their lower bound in a priority queue;
• to analyse the partitions stored in the queue following a priority order, that is to
say that the partition with the smallest lower bound is visited first;

• to postpone as much as possible the analysis of the partitions having larger lower
bounds;

• to avoid the visit of the partitions whose lower bound is bigger than the incumbent
optimal value (these partitions cannot improve the incumbent optimal solution).

The following auxiliary subprocedure “OptLevSol()” will be very used in the solu-
tion algorithm. Its aim is twofold, that is, to determine the optimal level solution
corresponding to the feasible level ξ ′ ∈ 	 and to improve (if possible) the values of
UB and Sol.

Subprocedure OptLevSol (inputs: ξ ′; outputs: θ̂ (ξ ′))

Let x ′ := arg min
x∈Xξ ′

cT x + c0, θ̂ (ξ ′) = cT x ′ + c0, val ′ = φ(θ̂(ξ ′), ξ ′);

if val ′ < UB then U B := val ′, Sol := x ′ end if ;

end subproc.

4.1 Initializations and unboundedness

As it has been described in the introduction to this section, the partitioning method
maintains, along iterations, the current best optimal level solution Sol as well as
its value UB. The value of UB is fundamental to improve the performance of the
algorithm since it is used to discard the not useful partitions. For this very reason,
the algorithm should be initialized with Sol having a small UB value. Moreover, it
is worth noticing that the feasible region may be unbounded (components of ly and
uy may assume −∞ and +∞ values) so that there is the need to manage the case
of unbounded ξmin and ξmax . These preliminary steps are described in the following
subprocedures “InitializeAlgorithm()” and “UnboundImproveUB()”.

Subprocedure InitializeAlgorithm()

Compute ξmin := inf
x∈X

dT x+d0
bT x+b0

, ξmax := sup
x∈X

dT x+d0
bT x+b0

;

if ξminξmax ≤ 0 then ξ0 := 0 elseif ξmin > 0 then ξ0 := ξmin else ξ0 := ξmax end
if ;
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if inf
x∈Xξ0

cT x + c0 = −∞ then

Opt∗ := [], Val∗ := inf
ξ∈[ξmin ,ξmax ]

φ (−∞, ξ), QuitProcedure;

end if ;
Let UB := +∞ and θ̂ (ξ0) := OptLevSol(ξ0);

end subproc.

The aimof subprocedure “InitializeAlgorithm()” is to determine the set	of feasible
levels and to use the results of Subsection 4.4 in order to determine whether Sξ = ∅
∀ξ ∈ 	 or Sξ �= ∅ ∀ξ ∈ 	. In the former case, just φ (−∞, ξ) have to be analyzed
over 	, while in the latter case Sol and UB are initialized.

Subprocedure UnboundImproveUB()

Let ξbig >> 0;
if ξmin > − inf then ξL := ξmin else ξL := −ξbig end if ;
if ξmax < + inf then ξR := ξmax else ξR := ξbig end if ;
Let θ̂ (ξL) := OptLevSol(ξL);
Let θ̂ (ξR) := OptLevSol(ξR);
if ξmin < ξL then

[opt, val] := SolveUnbound(φ, X , ξmin, ξL);
if val < UB then U B := val, Sol := opt end if ;

end if ;
if ξmax > ξR then

[opt, val] := SolveUnbound(φ, X , ξR, ξmax );
if val < UB then U B := val, Sol := opt end if ;

end if ;

end subproc.

The aim of subprocedure “UnboundImproveUB()” is twofold: to manage the
unbounded sides of the feasible region (if any) and to improve variable UB with
a smaller value. Specifically, the unbounded cases are recognized by means of the
value ξbig >> 0. The feasible levels can then be first partitioned into three subsets,
that are the two possibly unbounded ones [ξmin, ξL ] and [ξR, ξmax ] and the compact
one [ξL , ξR]. The unbounded subproblems are solved by means of procedure “Solve-
Unbound()” which just need to visit a recession line. Variable UB is improved as
much as possible by means of the visit of the unbounded subregions, if there are any,
and by means of the feasible levels ξL and ξR . The compact interval [ξL , ξR] will be
studied later in the algorithm.

4.2 Partitions priority queue

The proposed solution algorithm needs to analyze several partitions with different
feasible levels intervals [ξ1, ξ2]. The partitions are stored in a priority queue, PQ, and
analyzed following a priority order, that is to say that the partition with the smallest
lower bound is visited first. The priority queue is managed by means of the following
commands:
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• AddToPQ(LB, ξa, ξb, ξp, θ̂ (ξa), θ̂ (ξb), θ̂ (ξp));
• (LB, ξ1, ξ2, ξ

′, θ̂ (ξ1), θ̂ (ξ2), θ̂ (ξ ′)) := Extract FromPQ().

where [ξa, ξb] denotes the generic interval added to the queue in the various iterations,
while [ξ1, ξ2] is the specific interval extracted from the queue in the single iteration.

The first command adds to the priority queue PQ the interval [ξa, ξb], the level
ξp ∈ [ξa, ξb] where the underestimation function ψ(ξ) reaches the minimum value,
and the corresponding lower bound LB = ψ(ξp). For the sake of convenience, θ̂ (ξa),
θ̂ (ξb) and θ̂ (ξp) are stored too. Clearly, PQ is a priority queue and hence the smaller
is the value of the lower bound LB, the higher the priority of the partition in the queue
PQ will be.

The second command removes from the priority queue PQ the interval [ξ1, ξ2]
having the smaller lower bound LB and provides such an interval as the output, as
well as the values of ξ ′, θ̂ (ξ1), θ̂ (ξ2) and θ̂ (ξ ′).

The following auxiliary subprocedure “EvalLevels()” is devoted to the analysis of
a segment of feasible levels [ξa, ξb].
Subprocedure EvalLevels(inputs: ξa, ξb, θ̂ (ξa), θ̂ (ξb))

Let ψ(ξ) = φ
(
min{θ̂ (ξa), θ̂ (ξb)}, ξ

)
;

Let ξp := argminξ∈[ξa ,ξb] ψ(ξ); LB := ψ(ξp);
if LB < UB then

Let θ̂ (ξp) := OptLevSol(ξp);
if (ξb − ξa) > ε then

if (ξp − ξa) ≤ ε and θ̂ (ξa) ≤ θ̂ (ξb) then exit EvalLevels end if ;
if (ξb − ξp) ≤ ε and θ̂ (ξb) ≤ θ̂ (ξa) then exit EvalLevels end if ;

AddToPQ
(
LB, ξa, ξb, ξp, θ̂ (ξa), θ̂ (ξb), θ̂ (ξp)

)
;

end if ;
end if ;

end subproc.

Specifically, the underestimation function proposed in Subsection 4.5 is used to
compute a lower bound LB corresponding to the interval [ξa, ξb] and an optimal level
solution is stated with respect to the feasible level ξp giving the lower bound LB
(eventually improving the value UB too). If LB ≥ UB, then the interval [ξa, ξb]
cannot improve the incumbent optimal solution and hence can be discarded. If (ξb −
ξa) ≤ ε, with ε > 0 small enough (ε = 2−30 is used in the computational test of
the forthcoming section), the interval [ξa, ξb] can be discarded too. By i) and ii) of
Theorem 12, if one of the following conditions holds:

• ξp = ξa and θ̂ (ξa) ≤ θ̂ (ξb)

• ξp = ξb and θ̂ (ξb) ≤ θ̂ (ξa)

then the optimal solution in [ξa, ξb] has been found and there is no need to further
visit such an interval (notice the use of the tolerance ε to manage numerical issues).
Finally, if no stopping condition held then the interval is added to the priority queue
PQ as well as the other useful values. Notice that subprocedure “EvalLevels()” is the
only one which adds records to the priority queue PQ.
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The initialization process of the priority queue PQ is described in subprocedure
“InitializePriorityQueue()”.

Subprocedure InitializePriorityQueue()

Let PQ := ∅, compute θmin := inf
x∈X c

T x + c0;

if θmin = −∞ then
EvalLevels(ξL , ξR, θ̂ (ξL), θ̂ (ξR));

else
Let ξ L

θmin
= inf

x∈X ,cT x+c0=θmin

dT x+d0
bT x+b0

, ξ R
θmin

= sup
x∈X ,cT x+c0=θmin

dT x+d0
bT x+b0

;

Let ξ∗
θmin

= arg min
ξ∈[ξ L

θmin
,ξ R

θmin
]
φ(θmin, ξ) and θ̂ (ξ∗

θmin
) :

= OptLevSol(ξ∗
θmin

);

if ξL < ξ L
θmin

then EvalLevels(ξL , ξ L
θmin

, θ̂ (ξL), θmin) end if ;

if ξ R
θmin

< ξR then EvalLevels(ξ R
θmin

, ξR, θmin, θ̂ (ξR)) end if ;
end if ;

end subproc.

Recall that if Sξ �= ∅ ∀ξ ∈ 	, function θ̂ (ξ ), ξ ∈ 	, is semistrictly quasiconvex
(see Subsection 4.4). As a consequence, if θmin = −∞, then θ̂ (ξ ) is strictly monotone
in [ξL , ξR], while if θmin > −∞, then it is worth to divide interval [ξL , ξR] as follows:

[ξL , ξR] = [ξL , ξ L
θmin

] ∪ [ξ L
θmin

, ξ R
θmin

] ∪ [ξ R
θmin

, ξR]

so that θ̂ (ξ ) results to be strictly monotone in [ξL , ξ L
θmin

] and [ξ R
θmin

, ξR] (and an under-
estimation function to compute LB is available) and constant in [ξ L

θmin
, ξ R

θmin
] (and just

σ(ξ) needs to be analyzed).

4.3 Themain procedure

The main solution procedure receives, as inputs, the parameters of problem P and
provides, as outputs, a global optimal solution, Opt∗, and its value, Val∗.

Procedure SolveP(inputs: P , α; outputs: Opt∗, Val∗)

InitializeAlgorithm();
UnboundImproveUB();
InitializePriorityQueue();
while not(isempty(PQ)) do

(LB, ξ1, ξ2, ξ
′, θ̂ (ξ1), θ̂ (ξ2), θ̂ (ξ ′)) := Extract FromPQ();

if LB ≥ UB then PQ := ∅
else ξs := DetermineSplitLevel(ξ1, ξ2, ξ ′);

SplitInterval(ξ1, ξ2, ξ ′, ξs, θ̂ (ξ1), θ̂ (ξ2), θ̂ (ξ ′));
end if

end while;
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Let Opt∗ := Sol, Val∗ := UB;

end proc.

In a preliminary phase, the algorithm is initialized by means of the subprocedures
described in Subsections 4.1 and 4.2. In subprocedure “InitializeAlgorithm()” the
feasible levels ξmin , ξmax and ξ0 are computed. If there are no optimal level solutions
( inf
x∈Xξ0

cT x + c0 = −∞), then an infimum is found and the whole procedure is closed.

Otherwise, variables Sol andUB are initialized bymeans of the optimal level solution
corresponding to the feasible level ξ0. Then, in subprocedure “UnboundImproveUB()”
unboundedness is managed and the value of UB improved, finally in subprocedure
“InitializePriorityQueue()” the priority queue PQ is initialized.

Various iterations are then executed, while the priority queue PQ is nonempty.
The partition [ξ1, ξ2] having the smallest lower bound LB is extracted. If LB ≥ UB,
then all the partitions in the queue PQ result not to be able to improve the incumbent
optimal solution and hence the queue itself can be emptied. If LB < UB, the interval
is split in subprocedure “SplitInterval()”, where the new intervals are evaluated by
means of subprocedure “EvalLevels()”, with respect to the level ξs given by subpro-
cedure “DetermineSplitLevel()”. In the next section, different splitting criteria will be
described and compared. At the end of the procedure, the final results are set. Notice
that the correctness of this proposed method is given by the explicit or implicit visit
of all the optimal level solutions. Moreover, the algorithm convergence will be guar-
anteed by requiring the new intervals determined in subprocedure “SplitInterval()” to
have a length smaller than 90% the length of [ξ1, ξ2].

5 Splitting criteria and computational results

The proposed algorithm has been fully implemented in a macOS 13.2.1 environment
with an M1 Pro 10-core processor, MATLAB 2022b for coding and Gurobi 10.0.1 as
solver for LP problems. Three different objective functions have been considered in
the computational test:

i) φ1(y1, y2) = y1y42 − y22 ,
ii) φ2(y1, y2) = y1(1.5 + sin(5 ∗ y2)),
iii) φ3(y1, y2) = log(y1)(1.5 + cos(4 ∗ y2)) − √

y2.

Notice that these functions are not semistrictly quasiconvex and hence allow the pres-
ence of many local minima.

Problems with n = 50 and n = 100 variables have been considered, with 2n corre-
sponding box constraints and with a numberm = 2n of further inequality constraints.
Various instances (200 for n = 50 and 200 for n = 100 for each of the three considered
objective functions) have been randomly generated and solved with all the considered
splitting criteria, with a grand total of 19200 problems solved. Specifically, matrices
and vectors Ain ∈ R

m×n , bin ∈ R
m , Aeq ∈ R

p×n , beq ∈ R
p, l, u, a, b, c̄, d ∈ R

n ,
have been randomly generated with components in the interval [−10, 10] by using the
“randi()” MATLAB function (integer numbers generated with uniform distribution).
Values a0, b0, c̄0, d0 ∈ R are generated in order to guarantee that aT y + a0 > 0 and
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bT y + b0 > 0 for all y ∈ Y . The generated instances have used to solve Problem P̄
with each of the three objective functions φ1(y1, y2), φ2(y1, y2) and φ3(y1, y2). The
average number of visited partitions, the average number of computed optimal level
solutions and the average time spent to solve the instances (obtained with the “tic” and
“toc” MATLAB commands) are given as the result of the computational test. Values
in bold emphasize the best performances obtained in the test.

5.1 The classical approach

The following splitting criteria for [ξ1, ξ2] are commonly used in the literature:

• split the interval with respect to the level ξ ′ which gave the lower bound LB, that
is [ξ1, ξ2] = [ξ1, ξ ′] ∪ [ξ ′, ξ2]; notice that this criteria may provide infinite loops
if ξ ′ ≈ ξ2 with θ̂ (ξ1) ≤ θ̂ (ξ2) or ξ ′ ≈ ξ1 with θ̂ (ξ2) ≤ θ̂ (ξ1) (one of the new
intervals would be almost equal to the old one), hence it will not be used in the
forthcoming computational test;

• split the interval with respect to the middle level ξm = ξ1+ξ2
2 , that is [ξ1, ξ2] =

[ξ1, ξm] ∪ [ξm, ξ2]; this criterion may be slow since does not take into account the
info given by LB;

• split the interval with respect to the level ξ3 := αξ ′ + (1 − α)ξm , with α ∈ [0, 1],
that is [ξ1, ξ2] = [ξ1, ξ3]∪[ξ3, ξ2]; this linear combination of ξ ′ and ξm is aimed to
improve the use of ξm by using the information implicitly given by ξ ′; to guarantee
the convergence of the method, α ∈ [0, 0.8] will be used (notice that α = 1 means
that the interval is split with respect to ξ ′).

The following subprocedures “DetermineSplitLevel1()” and “SplitInterval1()”
describe these criteria.

Procedure DetermineSplitLevel1(inputs: ξ1, ξ2, ξ ′; outputs: ξs)

Let ξm := ξ1+ξ2
2 ; ξs := αξ ′ + (1 − α)ξm ;

end proc.

Procedure SplitInterval1(inputs: ξ1, ξ2, ξ ′, ξs , θ̂ (ξ1), θ̂ (ξ2), θ̂ (ξ ′))

if ξ ′ = ξs then
EvalLevels(ξ1, ξ ′, θ̂ (ξ1), θ̂ (ξ ′));
EvalLevels(ξ ′, ξ2, θ̂ (ξ ′), θ̂ (ξ2));

else θ̂ (ξs) := OptLevSol(ξs);
EvalLevels(ξ1, ξs, θ̂ (ξ1), θ̂ (ξs));
EvalLevels(ξs, ξ2, θ̂ (ξs), θ̂ (ξ2));

end if

end proc.

The results obtained in the computational test are summarized in Table 1.
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Table 1 “SplitInterval1”, 0 ≤ α ≤ 0.8

n α Num visited partitions Num optimal level solutions Elapsed times (secs)
φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

50 0 2175.1 862.13 25.276 5226.3 2048.3 57.128 43.200 16.508 0.54059

50 0.2 2261.2 887.05 23.113 5414.1 2100.3 52.990 44.632 16.881 0.50162

50 0.4 2487.7 977.91 22.291 5902.5 2294.2 51.512 48.611 18.403 0.48844

50 0.6 3036.9 1198.7 23.631 7075.0 2764.3 54.350 58.291 22.159 0.51298

50 0.8 4668.1 1850.8 32.951 10531 4137.7 73.685 86.904 33.138 0.68248

100 0 2284.8 848.23 23.471 5486.9 1973.0 53.150 121.51 42.877 1.4423

100 0.2 2318.5 859.18 21.214 5549.0 1993.8 48.981 122.64 43.310 1.3369

100 0.4 2549.9 943.69 19.519 6039.5 2167.3 45.602 133.53 47.088 1.2500

100 0.6 3108.9 1154.3 20.044 7234.2 2610.1 47.019 159.97 56.707 1.2873

100 0.8 4800.3 1764.1 25.757 10816 3870.6 58.694 239.47 83.892 1.5807

Bold values emphasize the best performance for each function φ and for a number of variables given by
n = 50 or n = 100

It is worth noticing that:

• the number of visited partitions and the number of computedoptimal level solutions
do not vary so much with respect to the number of variables n. On the other hand,
the number of variables strongly affects the time needed to solve the problem, due
to the fact that the higher is the value of n, the higher is the time needed to compute
an optimal level solution;

• performances strongly depend on the objective function;
• performances vary with respect to both the value of α and the used objective
function φ. Specifically, α = 0 seems to be the choice for φ1 and φ2, while
α = 0.4 should be preferred for φ3;

• performances clearly depend on the used underestimation function ψ(ξ).

5.2 A costless improvement

In the previous subsection, the interval [ξ1, ξ2] is split with respect to the level ξs =
αξ ′ + (1 − α)ξm . Such a decision implies that θ̂ (ξ ′) is not used, even if it is known.
A first improvement of the previous splitting criteria could be the use of ξ ′ and θ̂ (ξ ′)
too, taking into account that they are known and hence their use is costless. Such an
approach is described in the following subprocedure “SplitInterval2()”.
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Table 2 “SplitInterval2”, 0 ≤ α ≤ 0.8

n α Num visited partitions Num optimal level solutions Elapsed times (secs)
φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

50 0 2199.6 847.68 20.468 5280.2 2012.5 48.099 43.308 16.017 0.46072

50 0.2 2249.6 879.18 18.453 5389.3 2082.9 44.232 44.124 16.507 0.42752

50 0.4 2478.7 973.07 18.005 5880.9 2279.9 43.571 48.126 17.964 0.42141

50 0.6 3037.4 1195.5 20.212 7079.9 2757.7 48.079 57.902 21.651 0.46301

50 0.8 4667.9 1859.8 30.399 10527 4159.1 69.473 85.999 32.307 0.65455

100 0 2232.2 831.64 18.500 5352.0 1935.2 44.039 118.07 41.861 1.2131

100 0.2 2308.9 856.59 16.029 5528.1 1987.0 39.223 122.07 42.958 1.0933

100 0.4 2557.2 942.34 15.078 6067.5 2165.0 37.427 133.95 46.516 1.0488

100 0.6 3121.7 1160.3 16.209 7261.7 2624.6 39.913 160.24 56.182 1.1110

100 0.8 4777.0 1775.8 22.791 10742 3903.3 53.816 236.83 83.312 1.4633

Bold values emphasize the best performance for each function φ and for a number of variables given by
n = 50 or n = 100

Procedure SplitInterval2(inputs: ξ1, ξ2, ξ ′, ξs , θ̂ (ξ1), θ̂ (ξ2), θ̂ (ξ ′))
if ξ ′ = ξs then

EvalLevels(ξ1, ξ ′, θ̂ (ξ1), θ̂ (ξ ′));
EvalLevels(ξ ′, ξ2, θ̂ (ξ ′), θ̂ (ξ2));

else θ̂ (ξs) := OptLevSol(ξs);
if ξ ′ < ξs then
EvalLevels(ξ1, ξ ′, θ̂ (ξ1), θ̂ (ξ ′));
EvalLevels(ξ ′, ξs, θ̂ (ξ ′), θ̂ (ξs));
EvalLevels(ξs, ξ2, θ̂ (ξs), θ̂ (ξ2));

else
EvalLevels(ξ1, ξs, θ̂ (ξ1), θ̂ (ξs));
EvalLevels(ξs, ξ ′, θ̂ (ξs), θ̂ (ξ ′));
EvalLevels(ξ ′, ξ2, θ̂ (ξ ′), θ̂ (ξ2));

end if
end if

end proc.

The results obtained in the computational test are summarized in Table 2.
It is worth noticing that performances are slightly better than the ones in Table 1,

since partitions may be smaller with no additional optimal level solutions needed to
be computed.

5.3 Some new splitting criteria

Some more splitting criteria can be found by changing the approach in determining
the split level ξs . So far, ξs = αξ ′ + (1 − α)ξm has been used. Such splitting level
does not use the position of ξ ′ with respect to the interval [ξ1, ξ2], that is to say
whether ξ ′ is “close” to either ξ1, ξ2 or ξm . The underestimation function ψ(ξ) =
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φ
(
min{θ̂ (ξa), θ̂ (ξb)}, ξ

)
is asymmetric, in the sense that it is tight on one side of the

interval [ξ1, ξ2] and it does not fit on the other one. In light of this, the computational
results given so far point out that it is better to split the interval almost in the middle
to reduce the interval/error as fast as possible. On the other hand, the computational
results emphasize that the fewer optimal level solutions are computed, the faster the
solution method is. For this very reason, a possible idea is to split the interval with
respect to ξ ′ whenever ξ ′ is “close” to ξm , so that no further optimal level solution
has to be computed. If ξ ′ is not “close” to ξm , then we can split the interval [ξ1, ξ2]
with respect to either ξm (in the middle), ξ1+ξm

2 (on one side but not “close” to ξ1

to guarantee the convergence) or ξm+ξ2
2 (on the other side but not “close” to ξ2 to

guarantee the convergence). Three different criteria C1, C2 and C3 are described in
the following subprocedure “DetermineSplitLevel2()”.

Procedure DetermineSplitLevel2(inputs: ξ1, ξ2, ξ ′; outputs: ξs)

Let posi tion := ξ ′−ξ1
ξ2−ξ1

;
if posi tion ∈ [0.25, 0.75] then ξs := ξ ′
else case C1

Let ξs := ξ1+ξ2
2 ;

case C2
if posi tion < 0.25 then ξs := ξ1 + 0.25(ξ2 − ξ1)

else ξs := ξ1 + 0.75(ξ2 − ξ1)

end if ;
case C3

if posi tion < 0.25 then ξs := ξ1 + 0.25(ξ2 − ξ1) else ξs := ξ1+ξ2
2 end if ;

end case;
end if

end proc.

The results obtained in the computational test are summarized in Table 3, where
C1, C2 and C3 refer to the use of subprocedures “DetermineSplitLevel2()” and
“SplitInterval1()”, while C1bis, C2bis and C3bis refer to the use of subprocedures
“DetermineSplitLevel2()” and “SplitInterval2()”.

It is worth noticing that:

• the number of visited partitions and the number of computedoptimal level solutions
are a little bit decreased with respect to the best performances in Tables 1 and 2;

• the elapsed solution time is decreased too, since some optimal level solutions are
not needed to be computed (when ξ ′ is “close” to ξm);

• C1with subprocedure “DetermineSplitLevel2()” seems to be the best for the objec-
tive functions φ1 and φ2, while C2 with subprocedure “DetermineSplitLevel2()”
seems to be used for φ3 (C2 allows the use of a splitting level ξs not close to ξm
just like α = 0.4 does in Tables 1 and 2).
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Table 3 C1, C2, C3, “SplitInterval1” and “SplitInterval2”

n Criteria Num visited partitions Num optimal level solutions Elapsed times (secs)
φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3

50 C1 2185.0 854.88 25.606 5242.4 2025.9 56.911 42.438 15.510 0.52921

50 C2 2704.0 1058.6 21.039 6366.1 2463.2 48.103 51.437 18.759 0.45115

50 C3 2417.7 932.55 25.606 5746.8 2191.7 56.911 46.225 16.558 0.52579

50 C1bis 2182.7 847.06 20.941 5238.9 2007.5 48.798 42.091 15.066 0.45991

50 C2bis 2709.2 1061.6 18.833 6378.2 2470.1 44.966 51.193 18.534 0.42832

50 C3bis 2428.3 928.19 20.941 5768.5 2181.3 48.803 46.164 16.287 0.45736

100 C1 2197.4 835.06 24.248 5272.2 1937.0 53.937 115.63 41.045 1.4499

100 C2 2777.2 1034.5 18.131 6528.3 2355.5 41.845 143.24 49.658 1.1468

100 C3 2512.1 910.94 24.228 5956.1 2100.1 53.917 129.84 43.823 1.4419

100 C1bis 2195.2 831.73 18.947 5269.3 1931.9 44.680 114.72 40.284 1.2157

100 C2bis 2779.6 1032.4 15.393 6533.7 2352.3 37.699 142.48 49.055 1.0447

100 C3bis 2512.3 908.02 18.947 5956.9 2095.7 44.689 129.37 43.588 1.2126

Bold values emphasize the best performance for each function φ and for a number of variables given by
n = 50 or n = 100

5.4 Final remarks

The best performances are given by the new splitting criteria, that is, by the use of
subprocedures “DetermineSplitLevel2()” and “SplitInterval2()”. Specifically speak-
ing, C1 or C2 seem to be chosen depending on the objective function.

The obtained results are strictly related to the chosen underestimation function
ψ(ξ). In light of this, the study of underestimation functions tighter than the one used
in this paper deserve to be further explored.

This paper extends the existing literature in several ways. First, problems P and
P̄ are more general than the ones studied in Cambini (2020), Cambini and Venturi
(2021), which can be seen as the particular case of P̄ where a = b = 0. In other
words, the solution algorithm presented in this paper generalizes the one proposed in
Cambini (2020), Cambini and Venturi (2021). From an application point of view, these
problems extend andovercome the limitations of the ones presented inCambini (2020),
Cambini and Venturi (2021). For example, P̄ allows to approach in a very general way
bicriteria efficiencymodels (Khalili et al. 2010), which need linear fractional functions
to be managed in the objectives. It is worth pointing out that such a generalization is
paid with a not necessarily convex region �, which does not allow to determine tight
underestimations.

Second, this paper covers and extends the class of functions presented in Shen and
Lu (2018), Shen et al. (2019), though limited to the rank-two case. In P̄ , the objective
function has two linear fractional functions scalarized by means of a generic two-
variable function assumed to be strictly monotone with respect to the first variable.
On the contrary, Shen and Lu (2018) consider the sum of linear fractional functions,
while Shen et al. (2019) study the sum or product of linear fractional functions. In a
future work, it could be interesting to computationally compare the general method
proposed in this paper for two linear fractional functions with the ones proposed by
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Shen and Lu (2018), Shen et al. (2019) for the particular cases of the sum or of the
product of linear fractional functions.

6 Conclusions

In this paper a class of rank-two nonconvex problems involving linear fractional func-
tions has been studied. Various theoretical results have been stated, generalizing recent
studies concerning rank-two problems involving linear functions. These theoretical
results allowed to propose a solution algorithm based on a partitioning approach. A
complete computational experience has been provided, and new splitting criteria have
been proposed and compared with the classical ones.
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