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Abstract
This study addresses a research gap in quantitative modeling framework and scenario
analysis for the risk management of stable value fund wraps, a crucial segment of the
U.S. financial market with over USD $400 billion in assets. In this paper, we present an
asset–liability model that encompasses an innovative approach to modeling the assets
of fixed-income funds coupledwith a liabilitymodel backed by empirical analysis on a
unique data set covering 80% of the stand-alone plan sponsor market, contrasting with
models based solely on regular deterministic cash flows and interest rate differences.
Our model identifies and analyzes two critical risk scenarios from the insurer’s per-
spective: inflationary and yield spike. Our approach demonstrates that the tail risk of
wraps, used as an economic capital measure, is sensitive to characteristic parameters
of the fund, such as the duration, portfolio composition and credit quality of assets.
This finding significantly differs from U.S. regulatory approaches like the NAIC’s,
which often result in a zero capital requirement. These findings reveal limitations in
current actuarial risk and profitability metrics for U.S. insurers and argue that a more
sophisticated risk model reproducing the two critical scenarios is necessary.
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1 Introduction

Stable value funds are an essential investment choice within 401(k) plans, functioning
as financial vehicles that ensure capital preservation and augment the range of invest-
ment options for investors. The funds’ notoriety is highlighted by the third quarter of
2020, where stable value funds managed over USD $888 billion of assets (2020). A
study by 2022 observes that over 82% of defined contribution plans provide stable
value funds to their participants. The practical utility of stable value funds is also
highlighted by Babbel and Herce (2018), who found that can improve the return of a
retirement portfolio through better diversification.1

Despite their significant role in the U.S. market, academic studies on stable value
funds’ asset–liability management from an insurer’s perspective are scarce, with lim-
ited literature such as Kwun et al. (2009) and Kwun et al. (2010). This analytical
gap becomes increasingly relevant due to recent trends in stable value funds, where
there is a noticeable shift towards lower credit quality and longer-duration assets. This
evolution in investment strategy accentuates the need for robust quantitative methods
to effectively assess the associated insurance risks.

The 2023 technical defaults of several banks, as highlighted by Dinh (2023), fea-
tured distinct participant demographics, especially deposit holders in the venture
capital industry, who, as Vo and Le (2023) notes, are likely to know each other,
increasing the risk of a bank run. This underscores the importance of understanding
the behavioral aspects of participants in asset–liability management. drawing from
Alimoradian et al. (2023)’s empirical analysis of 44, 000 monthly cash flows across
297 stable value plans, we model a multicomponent liability model. This model incor-
porates behavioral factors observed within the participant cash flows such as rate
deficit (Dar and Dodds 1989; Sierra Jimenez 2012), reputational mass lapse (Shin
2009), flight-to-safety behavior (Baur and Lucey 2010; Dorn and Huberman 2005),
and regime-switching trends.

In this paper, we also introduce a robust asset model that encapsulates the primary
risk factors in fixed-income funds. The traditional method for projecting a bond fund
in the literature is combining interest rate models with defining fixed coupon payment
structure as per Ringer and Tehranchi (2006), Andersson and Lagerås (2013), Alfonsi
et al. (2019). However, these models often become overly complex, focusing predom-
inantly on secondary risks such as term-structure basis spread risk. This complexity
can overshadow the detection of primary risk factors, namely yield and duration. Our
paper aims to address this gap by proposing a more streamlined approach that models
the yield, a critical risk factor for diversified fixed-income funds. Utilizing the Cox-

1 Although some conclusions from this paper may be applicable to stable value funds in general, our
primary focus is on individually managed synthetic guaranteed investment contracts (GICs), also known as
wraps According to 2020, about USD $400 billion is insured via wrap contracts.
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Ingersoll-Ross (CIR) process, we simulate the dynamics of spreads and rates affecting
the fund’s yield,with the calibration of theCIRparameters conducted against historical
data using the log-likelihood method.

To complement our approach, we define a script that encapsulates the Synthetic
GIC’s contractual cashflow terms, enabling us to estimate the insurer’s payoffs.Having
scripted the three building blocks in a computer language - the asset model scenario
generator, the participants’ cash flow model scenario generator, and the code for the
Synthetic contract’s financials, we simulate scenarios using a Monte Carlo framework
to assess the Synthetic GIC’s tail risk. We also provide sensitivity analysis to various
input data.

Based on the simulation scenarios, we conduct scenario detection analysis to iden-
tify common patterns in the most significant tail scenarios produced by the Monte
Carlo simulations. This scrutiny of significant tail scenarios helps pinpoint the pri-
mary risk scenarios for the insurer.2 This risky scenario detection methodology will
further assist us in Sect. 7, to further justify our liability cash flow mode; our liability
model’s stochastic trend component is key in generating these adverse loss scenarios,
in contrast to models like Kwun et al. (2009), which lack an independent stochastic
component and struggle to generate high withdrawal rates at critical times. Addition-
ally, the U.S. regulatory approach (2015) for reserve calculation doesn’t fully capture
the complex, path-dependent nature of insurance risk in this product, often overlooking
the riskiest scenarios in cash flow projections

Ermanno Pitacco’s seminal work on variable annuities (Bacinello et al. 2011) has
profoundly influenced our research. His pioneering approach to modeling insurance-
linked products has been a guiding beacon for us, particularly his insightful detection of
risk scenarios (Bacinello et al. 2010). Pitacco’s blend of theoretical rigor and practical
application has not only shaped our research but also continues to influence practices
in the insurance industry. The existence of our current research is a testament to the
continuity of his innovative thinking.

The rest of the paper is structured as follows: Sect. 2 introduces the stable value
ecosystem, elucidates its structural mechanism, and explains the efficiency of such
an investment structure. Section3 and Sect. 4 present the asset model and the partici-
pants’ lapse liability model, respectively. Section5 overlays the numerical simulation
results while Sect. 6 discusses the risk scenarios for the insurer. Section7 in particular
discusses the path-dependent nature of the risk of this product and the suitability of
our cash flow model. The paper concludes with a discussion of the economic capital
requirements and best practices in stable value fund guarantee risk management. It
provides recommendations for practitioners, rating agencies, and regulators on esti-
mating stable value fund wrap risk in Sect. 8.

2 Regulatory emphasis on such analysis is highlighted in 2015, recommending reverse stress tests in the
ORSA process.
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Fig. 1 Stable value ecosystem

2 Stable value guaranteed insurance contract

Stable value funds are investment options offered by many defined contribution retire-
ment plans, generally characterized as very low-risk investment options with liquidity
and principal preservation similar to money market funds but with slightly higher
returns.3,4,5

Figure1 is a pictorial representation of the stable value ecosystem. Participants, in
search of low-risk and principal-preserving investments, make their contributions or
distributions to a retirement account managed by a bankruptcy-remote trust. These
contributions or distributions are made through an employer or a pool of employers,
and an investment entity then invests those assets appropriately.6 Under the terms of
the insurance contract, the assets are guaranteed at book value responsive payment.
The details of this book valuemechanismwill be discussed in the following subsection.

3 For more details about stable value funds, we refer the reader to the 2020 and Fabozzi (1998) compre-
hensive handbook on stable value investments.
4 According to the Stable Value Investment Association’s quarterly survey, USD $162 billion of the stable
value wrap market is represented by stable value pooled funds, and USD $270 billion are individually
managed (2020). See (2020) for more details.
5 Generally speaking, there are three major types of stable value products: General Account where the
assets of the funds are managed by and invested in the insurance company’s general account, Separate
Account where the insurance company is also the manager of the fund, but the assets of the funds will be
segregated from the insurance company’s general account, and Synthetic Guaranteed Investment Contracts
(Synthetic GICs) where the insurance company is an independent entity from the manager of the funds (see
2020 for more details). Stable value funds can also either represent one employer or a pool of employers. In
the case where the plan sponsor is one employer, the fund is known as individually managed. In contrast,
pooled funds allow small and medium-sized plan sponsors to bring their stable value funds together in a
single fund formed under federal or state banking laws.
6 Fig. 1 also shows cash flows by company plan sponsor/employer. These cash flows are usually standard
contributions, like bonus payments made by the employer. Still, they can also include once-off cash flows
due to restructuring after a merger or acquisition, company bankruptcy, layoffs, or other company plan-
sponsor corporate actions. The insurance guarantee may have strict contractual terms for these cash flows
and may not cover them at book value payment under the wrap agreement or may cover them up to a
certain, predetermined limit. In the case of general and separate account products, the investment and the
guarantor roles are performed by the same entity, typically an insurance company. However, with Synthetic
Guaranteed Investment Contracts (GICs), the retirement plan trust engages one ormore guarantors, typically
insurance companies, to ensure a balance between its assets and liabilities.
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2.1 Book value wrap accounting

This subsection presents the mathematical formulation for the book value wrap
accounting concept in the context of stable value funds. This specific accounting
practice allows the fund participants to treat their investments at their original cost
plus any credited interest, as opposed to their current market value. This key feature,
which allows transactions at book value, provides the principal protection character-
istic inherent to stable value funds.

Bt and Mt represent the aggregated book value and market value for the sum of all
participant contracts, respectively.

Definition 1 We define the following time-dependent processes for each t ≥ 0:

• {Mt }t≥0 represents the market value of the fund;
• {Bt }t≥0 denotes the book value of the fund;
• {γt }t≥0 corresponds to the rate, also known as the crediting rate, that represents
the growth of the book value of the fund;

• {Ct }t≥0 represents the cash flow activities in/from the fund.

The book value of the fund evolves according to the following dynamic

dBt = Btγt dt + dCt , (1)

while we assume crediting {γt }t≥0 to be described by the following equation:

γt =
(
1

θt
ln

Mt

Bt
+ yt − p

)
+

, (2)

where p ∈ R
+ is the insurance premium while {θt }t≥0 (expressed in years) is the

duration, and {yt }t≥0 is the yield of the fund that will be mathematically developed
further in this paper.

Remark 1 For general accounts andmost separate stable value funds, γt can be defined
at the discretion of the insurance company. However, for Synthetic GICs and some
separate account products, γt can be defined bymeans of an exact formula.While there
are several versions for the crediting formulas used within the market, one of the most
used formulas corresponds to Eq. (2). Other contracts may use a different crediting rate
expression. Still, when expressed in a continuous formulation, they always converge
to Eq. (2) (or equivalent have a residual difference w.r.t. this formula).

Note that Eq. (2) is aiming at making the book value converge to the market value
in θt years. Hence, for a given yield yt (resembling the growth speed of the market
value Mt ) and insurance costs p, the right side of Eq.2 approximates the crediting rate
to achieve the convergence of the book value to the market value in θt years.

For example, if we assume no cash inflows/outflows, i.e., if dCu = 0 during the
period [t, t + θt ], Bt depends only on the crediting rate γt . Moreover, if we neglect
market risk, i.e., the market value grows at a pace of yt − p, then even if there is an
asset–liability mismatch at t , i.e., Bt �= Mt , we desire the two to be the same over θt
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Table 1 Simplified T-Account from the 401(k) trust’s perspective

Assets Liabilities

Fund’s asset (Mt ) Book value (Bt )

Present value of insurance guarantee Present value of the sum of upcoming insurance premiums

years.7 However, in reality, both cash inflows and outflows occur, and the yield of the
fund changes over time. Furthermore, if γt ≤ 0, convergence is no longer guaranteed.
This is the motivation behind the fact the fund needs to recourse to an insurance
company to cover any losses due to an asset–liability mismatch, which will be further
explained in the following Section.

In the context of stable value funds, the retirement plan trustmanages assets using an
investment entity while being liable for the book value of the assets to the retirement
plan participants. To ensure asset–liability parity, the trust enters into a guarantee
contract with an insurer.

2.2 Insurance guarantee

Table 1 illustrates a simplified T-account from the 401(k) trust’s perspective. On the
left side, the trust manages assets using an investment entity. On the right side, the
trust is liable for the book value of the assets to 401(k) plan participants. To ensure
asset–liability parity, the trust enters into a guarantee contract with an insurance firm
and pays insurance premiums. According to the asset–liability matching principle,
the book value plus the sum of insurance premiums should always be at par with the
assets.

A key characteristic of a stable value fund guarantee is that the insurance company
acts as the last resort, meaning that as long as the last individual (or the last pool
of individuals) has not withdrawn their assets from the fund, the current participants
invested in the stable value fund - and not the insurer - will pay for any past fund
shortage. In other words, the insurer will make a claim payment only when the assets
of the stable value fund have been fully exhausted. The last resort concept is the core
advantage of stable value funds over other guaranteed investment structures, making
the insurance guarantee relatively more affordable since, because of the last resorting,
the embedded put option becomes very remote and out of the money.

Definition 2 The market value deficit Gt , also known as asset–liability mismatch, is
defined as the difference between the book value andmarket value, i.e.,Gt = Bt −Mt .

Another key tool is given by the last resort time. Given a time horizon Tmax , the
last resort time T̂ is defined as the time when the market value reaches below zero
MT̂ ≤ 0, thus

7 In other words, if the right side of Eq.2 is positive (γt > 0), and if the yield is constant over time, and
there are no cash inflows and outflows, (dCt = 0 ), then the market value and book value will converge in
θt years.
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T̂ = Tmax ∧ inf
t≥0

{t : Mt ≤ 0} .

Moreover, GT̂ as the insurance loss paid at time T̂ , the asset–liability mismatch at
the last resort when the last participant withdraws, hence the following

GT̂ = (
BT̂ − MT̂

)
+ = BT̂ , (3)

holds.

We emphasize that the stochastic resort time T̂ corresponds to a random variable.
Although the contract theoretically has no fixed maturity, it’s common to introduce
a time horizon, Tmax , for practical purposes. This is because parties may have the
option to terminate the contract early under legal clauses commonly known as extended
termination orwind-down.Also, a defined time horizon is necessary for computational
simulation.Here, we note that even though in this paper the stochastic last resort time T̂
is determined by computational methods, this variable can also be calculated bymeans
of stochastic optimal control techniques; this analysis is left for further research.

3 Asset model

This section of the paper focuses on modeling the dynamics of the market value of
stable value funds, an essential aspect of the asset–liability management framework.
Diverging from the methodology of modeling fixed income funds based on the sum of
coupons, the model presented in this paper adopts a more generic approach, emphasiz-
ing yield as the primary risk factor. This approach is inspired by the way practitioners
assess the dynamics and returns of these types of funds.

The following equation describes how the market value of the fund can grow or
shrink based on the fund’s cash flows (Ct ), taking into account the insurance premium
(p) as a cash outflow.

dMt = Mt (yt + δ)dt − Mtθt dyt − pBtdt + dCt . (4)

In the model described by Eq.4, the yield yt is crucial as it represents the return on
investment. The adjustment rate δ accounts for the increase/decrease in the value of
the securities within the fund due to factors such as the convexity of the fund, impaired
securities, operational volatility, etc. Therefore, in our model, the net expected growth
rate of the fund is captured by yt +δ. In the real world, the parameter δ can be dynamic
and stochastic, possibly influenced by various factors including the yield. However,
for simplicity in our model, we assume δ to be constant. It’s also worth noting that a
variation of the model, as seen in Eq.4, is discussed in the works of Jarrow (1978) and
Hopewell and Kaufman (2017).

By concentrating on the yield as the primary risk factor and incorporating the
effective duration, this model provides a more suitable approach for understanding
and managing the risks associated with fixed-income funds.
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To complete our model, we have to define the dynamics of the yield {yt }t≥0. A
natural approach to modeling the yield of a fixed income fund involves decomposing
it into the sum of a risk-free rate rt and a spread st given by:

yt = rt + st . (5)

The spread st is commonly known as an option-adjusted spread, or OAS.8 We
also assume that the interest rates and OAS evolves according to the following Cox-
Ingersoll-Ross (“CIR”) model.

drt = κr (rt − r∞)dt + νr
√
rtdW

r
t

dst = κs(st − s∞)dt + νs
√
stdW

s
t

〈Ws
t ,Wr

t 〉 = ρt . (6)

The parameters of the Cox-Ingersoll-Ross (CIR) model are detailed as follows:
The mean reversion levels, r∞ for rates and s∞ for spreads, represent the long-term
average levels. These parameters are the asymptotic values of the rate rt and spread
st as t becomes large. The speed of mean reversion is defined by κr for rates and
κs for spreads, indicating how rapidly the reversion towards the mean occurs. The
volatilities, νr and νs , measure the extent of fluctuation in rates and spreads. The
model also specifies the initial values for rates and spreads. The Brownian motions
Ws

t andWr
t introduce randomness into the model, with ρ representing the correlation

between these two stochastic processes.

4 Liability cash flowmodel

In this section, we present a model for the liability cash flow dynamics of the stable
value fund, focusing on the cash flows generated by the participants’ contributions
and withdrawals. Recall thatCt is the stochastic process representing the accumulated
cash flows by the participants of the stable value fund. A positive Ct indicates the
growth of the stable value fund, while a negative Ct signifies withdrawals from the
fund. We define the dynamics of {Ct }t≥0 as per Eq.7:

dCt = Bt

⎛
⎜⎝ βt︸︷︷︸

structural trend including herd behavior

+ g(rt − γt )︸ ︷︷ ︸
rate deficit

+ f (st )︸ ︷︷ ︸
flight-to-safety

⎞
⎟⎠ dt . (7)

As it can be deciphered from Eq.7, the model is composed of key components
whose relevance to liability cash flows will be elaborated upon in the rest of this
section.

• A structural, non-monotonic regime-changing trend in cash flows related to the
nature of plan sponsors’ ecosystem, which indirectly influences participants’
behavior. In our model, this is captured by the term βt .

8 see Choudhry and Lizzio (2015); Elton et al. (2001).

123



Risk assessment for synthetic GICs: a quantitative…

• A rate deficit risk factor: This is represented in our model by the term g(rt − γt ).
The rate deficit hypothesis, as illustrated in Alimoradian et al. (2023); Barsotti
et al. (2016), suggests that withdrawals from financial products can be modeled
using interest rate differentials between the product in question and other Conflict
of interest rates.

• A herd behavior component: This component is also included in our model’s βt

term.
• The cash flow risk-mitigating effect of flight-to-safety behavior during a crisis: In
our model, this is captured by the term f (st ).

4.1 Regime changing trend component

The regime-changing trend component is important for capturing the dynamics of
different market conditions and plan-sponsor ecosystem and their impact on the par-
ticipant’s cash flows. Alimoradian et al. (2023) conducted empirical data analysis and
identified non-monotonic trends within the historical participant cash flow data; they
observed that these trends are stochastic, varying in both size and duration,with notable
change points. Importantly, they find no strong correlation between trends before and
after a change point. This lack of correlation is attributed to an economic intuition
that these trends are indicative of the prevailing market environment and the overall
health of the plan-sponsor ecosystem.9 These observations align with the findings of
Madrian and Shea (2001) and Mitchell et al. (2006), who analyzed individual 401(k)
account data and concluded that the plan-sponsor’s role is critical in investment allo-
cation decisions. They found that approximately 10% of liability cash flow activities
by participants of the fund were found to be influenced by the plan sponsor. Notably,
these changes in trends are often structural and unpredictable, contingent on factors
like management decisions that extend beyond quantifiable economic variables. For
instance, a company with a history of stable employment may continue this trend in
the subsequent years. However, if there is a regime change, the trend could swing in
any direction.

We define the set {Si , τi } as the i-th state and its time of switching to this state.
With this notation, Eq.8 relates the trends β with the states. In addition, the duration
of each state (τi+1 − τi ) is stochastic, and we assume that it follows an exponential
distribution with the intensity parameter 1

di
. Note that di does have a simple economic

interpretation; it is the average duration in years of being in the regime Si . Therefore,
we have:

∀τi ≤ t ≤ τi+1 , βt = bi

P(τi+1 − τi ≥ x) = e
− x

di

P(Si = s) = ps . (8)

9 Factors such as plan sponsor communication andmanagement decisions, financial health, industry sector,
employment policies, growth or layoffs, plan demographics, and default options can all impact participant
cash flow trends.
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Table 2 Participant trends probability of occurrence and their average duration

State Respective trend Probability of occurrence Average duration

Stable state b0 1 − p1 − p2 − p3(
Mt
Bt

) d0 years

Decline state b1 p1 d1 years

Growth state b2 p2 d2 years

Herd state b3 p3(
Mt
Bt

) d3 years

As discussed earlier, in Eq.9, we assume that the trend of the next regime, βi+1, is
independent of the trend of the current regime, βi .

(βi+1, τi+1) ⊥⊥ (βi , τi ) , (9)

In other words, we assume the parameters of the next regime do not depend on
those of the current regime.

To round out our model, we discretize the state process into four states: growth,
stability, and decline, and we include an additional herd state. This is depicted in
Table 2. The growth state signifies a positive cash flow trend for the fund, whereas the
decline state signifies a trend of withdrawals. Note that in Table 2, the probability of
occurrence of the herd state is a function of the market-to-book value ratio, while the
probabilities of occurrence of other states are considered constant.

Table 2 presents a regime-switching model with three main states and an additional
state to account for herd behavior. A three-state model offers the benefit of alternating
between high, stable, and low withdrawal rates at random intervals. It is worth noting
that the goal here is not to prescribe the exact number of states needed for cash flow
projections. Instead, we aim to provide a generic model for liability cash flows that
aligns with behavioral studies, as seen in Alimoradian et al. (2023). Therefore, an
insurance industry practitioner could choose to apply to fewer or more states based on
the specific experience of the plan.

4.2 Herd component

The herd state is an important component in our model because it accounts for the
potential impact of mass withdrawals on the insurer’s liability. This behavioral compo-
nent was observed in stable values by Alimoradian et al. (2023). Further, according to
studies by Loisel andMilhaud (2011) and Barsotti et al. (2016), peer-to-peer influence
and contagion effects can lead to mass correlation in withdrawals among policyhold-
ers’ cash flows, resulting in mass lapses. Alimoradian et al. (2023) also note that a low
market-to-book value could potentially be perceived as a weakness and hypothetically
lead to reputational issues, increasing the likelihood of herd behavior. Therefore, in
Table 13, the herd behavior is shown in the last trend component p(Mt

Bt
) as a function

of market-to-book value.
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4.3 Rate deficit component

Equation7 alsohas a rate deficit component shownby the function g(·) as the difference
between the yield of the fund and the crediting rate of the stable value fund. This
concept, a well-recognized hypothesis in literature, has been empirically examined in
studies such as Outreville (1990), Tsai et al. (2002), Floryszczak et al. (2016), Barucci
et al. (2020). In Alimoradian et al. (2023), the authors analyze historical data for the
years 2000 to 2021 to observe any relationship between the participant’s lapses and
the interest rates. However, the authors did not observe any relationship between the
rate deficits and the cash flow rates. Still, they pointed out that the historical period
of 2000 to 2021 was limited as the market was not exposed to an inflationary period
where interest rates rose significantly.

4.4 Flight-to-safety component

The flight-to-safety hypothesis, as discussed in Baur and Lucey (2010), Ji et al. (2020)
and Dorn and Huberman (2005), posits that during times of market stress, investors
tend to shift their investments from riskier assets to safer assets. The risk-mitigating
effect of flight-to-safety was empirically observed in stable values by the study of
Alimoradian et al. (2023). This factor should thus be considered whenmodeling stable
value fund liability cash flows to account for potential shifts in participant behavior
during market crises.

In this work, we model the ’flight-to-safety’ effect using the function f (st ), where
st represents the OAS spread of the fund. One might question why we have chosen st
as an indicator of market distress and the flight to safety rather than other indicators,
such as equity performance. We have two primary reasons for this choice.

First, stable value funds are diversified investment portfolios encompassing a large
portion of U.S. fixed income markets. Therefore, these funds are highly correlated
with and representative of the U.S. fixed income market. A common indicator of the
U.S. financial market entering a crisis is a widening global credit spread, as discussed
in Salhi and Thérond (2014). Given its diversified nature, a stable value fund would
also experience this widening of spreads during a crisis.

Secondly, the OAS spread is an internal risk factor to the system, impacting both
assets and liabilities. Using an internal risk factor is more coherent with the model
structure and ensures that the flight-to-safety component is organically integrated
into the system. If we chose an external factor, it would be equivalent to adding an
independent stochastic component to the model. For instance, if equity performance
was used as the argument to the function f (.), it would only be material to the risk
measurement if there is a significant correlation between interest rates and equities.
Assuming no strong correlation exists, incorporating equities would merely add an
independent stochastic factor that would be more appropriately introduced directly
into the stochastic trend component as an extra trend state representing process.
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Table 3 Loss frequency for different probabilities of entering a declining state in a year, and different
declining state annual withdrawal rate

p1 = 1/100 p1 = 1/50 p1 = 1/20 p1 = 1/10

b1 = 1/5 0.08% 0.12% 0.23% 0.45%

b1 = 1/4 0.09% 0.15% 0.39% 0.84%

b1 = 1/3 0.19% 0.36% 0.86% 1.80%

Table 4 99% CTE of present value (PV) of loss, comparison for the different probabilities of entering a
declining state in a year, and different declining state annual withdrawal rate

p1 = 1/100 p1 = 1/50 p1 = 1/20 p1 = 1/10

b1 = 1/5 0.05% 0.20% 0.26% 0.50%

b1 = 1/4 0.06% 0.28% 0.53% 0.85%

b1 = 1/3 0.14% 0.53% 1.24% 2.24%

5 Wrap risk results

This section outlines the main results from the Monte Carlo simulation of the model
we described earlier. Before diving into the specifics, we will introduce an added
assumption to the model. In our model framework, the effective duration, represented
by θt , indicates how sensitive an asset is to changes in its yield. For the discussions
in this paper, we will assume that the effective duration remains constant. This is a
reasonable assumption because stable-value funds often have fixed durations due to
the investment constraints set by their respective insurance companies. So, for the rest
of this paper, we assume that ∀t ≥ 0 θt = θ .

Table 3 shows the loss frequency under different parameter assumptions for the
probability of transitioning into a decline (p1) and different definitions of a decline
(b1). Other parameter inputs are as described in Appendix A. Table 3 also shows the
convexity of the wrap risk resulting when the loss frequency is low, an indication of
the remoteness of the risk. 10

In our analysis presented in Tables 4 and 3, we set the correlation parameter (ρ)
between interest rates and spread brownians as zero. Recognizing the sensitivity of
our results to this parameter, we conducted an expanded analysis across different
correlation levels, as shown in Table 5. Table 5 illustrates that a higher correlation
betweenOAS and interest rates slightly heightens the tail risk for insurance guarantees.
This is intuitively expected, as higher correlation between the two variables, implies
higher volatility for the fund which means higher chances of the fund reaching to
lower market-to-book value ratios. However, the Table 5 also shows that the results
are not very sensitive to this parameter.

As detailed by Duffee (1998), the relationship between interest rates and OAS
spreads is complex and regime-dependent, often exhibiting a negative correlation. In

10 Unless otherwise stated, Portfolio 1 from Table 6 is used by default, ρ = 0, and δ = −0.07%, for all
risk metrics analyses conducted.
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Table 5 Loss frequency and
99% CTE of PV of loss for
different correlation between
rate and spreads’ Brownians.

ρ = −0.5 ρ = 0 ρ = 0.5

Loss frequency 0.22% 0.23% 0.24%

99% CTE of PV of loss 0.25% 0.26% 0.28%

This analysis assumes a probability of transitioning into a decline state
(p1 = 1/20) and defines a decline (b1 = 1/5)

addition toDuffee (1998), which focused on corporate bonds, onemay realize by look-
ing at Table 6 that there is a very high concentration on mortgage-backed securities in
stable value funds. These securities are known to experience duration convexity, and
consequent OAS spread variations due to prepayment behaviors during rate fluctua-
tions (Hanson 2014; Boudoukh et al. 1997). This adds another layer to the nuanced
interplay between interest rates and OAS spreads for stable value funds. However, our
analysis in Table 5 indicates that the first-order risk sensitivity to the correlation factor
ρ is not substantial. Therefore, even though the relationship is more complex than
just correlating two Brownians, our choice of the model is fit for the purpose simply
because the sensitivity of the tail risk of the guarantee to this relationship seems to be
limited.11 Given the non-stationarity and predominantly negative correlation, along
with the limited sensitivity to ρ, we maintain a zero correlation assumption for the
remainder of this paper.

Table 6 shows that stable value funds consist of various asset classes, including
Asset-Backed Securities (ABS), Residential Mortgage-Backed Securities (RMBS),
Commercial Mortgage-Backed Securities (CMBS), and Mortgage-Backed Securities
(MBS). This table presents three portfolios with varying risk levels based on their
allocations to these securities: Portfolio 1 has the lowest risk, Portfolio 3 the highest,
and Portfolio 2 represents a medium risk profile. We, therefore, analyze the impact of
credit quality and asset composition on wrap risk.12 We then performed a risk analysis
for these different portfolios in Table 7 shows the risk profile of the wrap for Portfolio
1, 2, and 3; it shows how the stable value wraps tail risk increases when guaranteeing
riskier assets.

Most stable value wraps do not cover, or only partially cover, the default risk of the
assets. However, in practice, investmentmanagers can sell the assets before any default
occurs. Therefore, the fund will still likely experience a market value loss due to credit
rating migration. This credit migration risk is embedded in the parameter δ of Eq.4 of
our model.13 We note that, in the real world, δ can be time-dependent and stochastic

11 Insurers, however, may opt for more sophisticated models, or predefined interest rates and bond spread
scenarios within their enterprise risk management framework, or provided by regulatory and policymaking
bodies (Actuaries 2005, 2020).
12 In order to do so for each of the portfolios described in Table 6, the OAS CIR parameters are calibrated
to historical time series as detailed in Appendix B.
13 One way to obtain an estimate of δ is to use the transition probability matrix as discussed in Caouette
et al. (1998), if we calibrate this to the tables from Caouette et al. (1998), for example, for AA-rated
investments corporate bond, we obtain δ = −0.07%14 However, as it can be deciphered from Table 6,
the composition of a stable value fixed income fund is more diverse, and the migration risk for the asset
classes within the fund has possibly a different probability transition matrix of a downgrade than corporate
securities discussed in Caouette et al. (1998).
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Table 6 Asset Allocation for three investment portfolios. Portfolio 1 is of lowest risk profile, followed by
Portfolio 2 and 3 which are respectively of higher risk

Sector Portfolio 1 Portfolio 2 Portfolio 3

ABS 15% 17.5% 15%

A-rated ABS 0% 5% 10%

Agency MBS 15% 10% 10%

Non-Agency CMBS 10% 17.5% 20%

Mezz CMBS 0% 5% 5%

AA-rated CMBS 0% 5% 5%

A-rated CMBS 0% 0% 10%

Corporates 30% 30% 35%

High Yield 0% 5% 15%

Non-Agency RMBS 0% 5% 10%

Governmental Securities 30% 20% 10%

Table 7 Guarantee risk of funds with different investment portfolios for a wrap contract specified in Sect.
A.

δ 99% CTE of PV Avg. loss Loss
Assumption of loss size Frequency

Portfolio 1 −0.05% 0.53% 2.42% 0.36%

−0.10% 0.55% 2.14% 0.43%

Portfolio 2 −0.20% 0.57% 2.34% 0.41%

−0.30% 0.64% 2.17% 0.50%

Portfolio 3 −0.50% 0.72% 2.58% 0.46%

−0.70% 0.89% 2.28% 0.68%

For this analysis, we assumed b1 = 1/4, and b1 = 1/20

in nature. However, for simplicity, we assume that δ is constant. Nevertheless, given
this simplification, we consider a conservative approach in setting this parameter, and
also for completeness, we provided results for a range of values for the δ parameter in
Table 7.

To ensure our paper’s findings are not overly dependent on the time of publication,
we did not set the initial OAS spread (s0) to the most current market-calibrated level
in any of the results shown in this paper. Instead, we used the long-term mean level
(sinf ) for s0. However, to study how changes in the current OAS spread level might
affect our results, we conducted additional analyses. The outcomes of these analyses
are presented in Table 8, demonstrating that the tail risk of wrap has little sensitivity
to variations in s0.

One factor that has a strong impact on the tail risk of the guarantee is the duration.
Table 9 shows that funds with higher duration have significantly greater tail risk. As an
example, the loss frequency increases from 0.03% to 3.22% from a 3-year to a 6-year
stable value fund duration.
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Table 8 Loss frequency and 99% Conditional Tail Expectation (CTE) of the present value (PV) of loss for
different initial OAS spread levels (s0) of Portfolio 1.

s0 = s∞ − 0.50% s0 = s∞ s∞ + 0.50%

Loss frequency 0.41% 0.39% 0.37%

99% CTE of PV of loss 0.54% 0.53% 0.53%

In this analysis, the long-term mean level of the OAS spread (s∞) is kept constant, equivalent to the value
calibrated in Table 12. Additionally, the analysis assumes a probability of transitioning into a decline state
(p1 = 1/20) and defines a decline (b1 = 1/4)

Table 9 Guarantee risk for
different asset durations. For this
analysis, we assumed b1 = 1/5,
and p1 = 1/20

Duration 99% CTE of PV Loss Avg. loss
in years of loss frequency size

3 0.01% 0.03% 1.16%

4 0.26% 0.23% 2.05%

5 1.53% 1.55% 1.99%

6 5.35% 3.22% 3.42%

Lastly, we also reviewed the statutory reserve and capital requirements for the wrap
contract and compared it with the tail risk of the model presented here.

The U.S. National Association of Insurance Commissioners (NAIC) model regula-
tion for reserve estimation for Synthetic GICs are described in (2015). The execution
of the model regulation, generally requires insurers to project liability cash flows, pre-
supposing a minimum guaranteed rate, typically set at 0% for individually managed
Synthetic GICs. Since liabilities almost invariably possess a 0% crediting rate floor,
the present value of liabilities predominantly falls below the market value of assets.
Therefore, for a typical individually managed Synthetic GICs contract similar to the
one presented in Appendix A, the reported reserve is almost always 0, and the reserve
margin is positive. The reserve margin is defined as the positive part of the differ-
ence between the market value of assets and the present value of projected guaranteed
liabilities.

Also, NAIC’s Risk Based Capital (RBC) for Synthetic GICs are detailed in 2021.15

The NAIC risk-based capital rules treat Synthetic GICs akin to guaranteed separate
accounts, as deduced from 2021:

“Synthetic GICs are contracts with provisions similar to separate accounts with
guarantees, except that the insurance company does not own the assets. For
businesses of this type, the C1 and C-3 risk-based capital is determined to be

15 Since the emergence of the principles-based approach, especially Solvency I and II by the European
regulators, NAIC has also adopted a principles-based approach, which applies stochastic modeling under
C3 Phases (2008). This approach corroborates with the International Association of Insurance Supervisors
(IAIS) initiative to develop an International Capital Standard (ICS) and a comparable measure of capital
across different jurisdictions.Currently, large global insurance groups are subject to different capital stan-
dards that make it difficult to compare their solvency positions across jurisdictions. The main objectives of
the ICS are to establish a common language for supervisors to discuss the solvency of IAIGs and to enhance
global convergence among the group capital standards that are in place.
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Table 10 Monte Carlo based estimation of the stable value fund wrap risk. For this analysis, we assumed
b1 = 1/5, and p1 = 1/20.

NAIC A-695 NAIC A-695 99% CTE of PV Loss Avg. loss
Reserve Capital of loss-premium frequency size

0% 0% 0.26% 0.23% 2.05%

Here, we considered a typical stable value guarantee contract specified in Appendix A

the same as if the insurance company owned the assets and provided the same
guarantees as in a guaranteed separate account.”

Further elaboration on guaranteed separate accounts interprets C-1 and C-3 com-
ponents, with potential offsets by the reserve margin. 2021 statement:

“Non-Indexed Separate Accounts: … For contracts valued using the fair value
of assets and the fair value (at current interest rates) of liabilities, risk-based
Capital is calculated as the excess of the regular C-1 and C-3 standards over the
applicable reserve margins…”

It is worth noting that the Appendix for RBC capital in Fabozzi (1998) does not
explicitly mention this offsetting effect. However, the interpretation posits that any
computed C-1 and C-3 capital can be offset against any reserve margins. Given that a
typical individually managed Synthetic GIC, such as the one presented in Appendix
A, possesses a positive reserve margin, effectively neutralizing the C-1 and C-3 capital
impact. Therefore, due to this potential offset of both C-1 and C-3 risks by the reserve
margin, risk-based capital typically culminates in zero allocation.

Table 10 illustrates the NAIC reserve and capital charges for a U.S. insurer under
the formulaic approach and the assumption of reserve estimates regulation 2015. For
completeness, we also assessed the 99% conditional tail expectation (CTE), the loss
frequency, and the average loss size.

6 Risk scenarios to be considered by an insurer

The main objective of this paper is to introduce the readers to the risk scenarios from
the insurer’s perspective. In order to do this, we projected assets and liabilities within
aMonte Carlo framework and studied the scenarios in which losses are observed. This
exercise helped us to identify two common patterns: the yield spike mean reverting
scenario and the inflationary scenario. In this section, we discuss these scenarios and
provide historical backtests to assess their validity.

6.1 Inflation

Figure2 shows the average yield and withdrawal rates for the loss threshold of 0.1%
centile. This is the highest threshold of losses, and, as can be seen, the most extreme
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Fig. 2 Top 0.1% average loss path scenarios. Data source: Monte Carlo simulation

scenarios occur when the yields are rising with strong withdrawal rates occurring
simultaneously. We call these scenarios the inflationary scenarios.

Inflationary yield rises have already happened historically, specifically during the
inflationary period of the late 1970s/early 1980s and during the Great Depression
Period of the 1930s. Although stable value funds did not exist at the time, evaluating
a hypothetical wrap risk during these periods may provide insight into the magnitude
of the risk. Therefore, without any explicit assumptions, we back-test a wrap contract
against these periods.

1970 s Inflationary Period: In the late 1970s and into the early 1980s, there was an
inflationary period that experienced sustained double-digit interest rates for approx-
imately three years (Fig. 3). From the perspective of stable value fund assets, this
scenario would have exhibited a longer period of adverse market conditions than the
2008 financial crisis. However, higher yields also allow the crediting rate reset mech-
anism to potentially converge to differences between market values and book values.
Figure4 below shows a hypothetical loss scenario over this period. Although stable
value funds did not exist at the time, we used historical data from the Federal Reserve
to construct this hypothetical scenario. It shows an insurance loss scenario with cash
withdrawal rates of 40% annually (∼ 4.16% monthly) for a sustained period of 7
years. In the figure, the fund yield is the historical yield level obtained by summing
the 3y UST rates and the OAS spreads. Interest rates were based on 2020, and OAS
spreads were estimated using US Moody’s equivalent Baa corporate bonds available
from 2020.

GreatDepressionPeriod: Interest rates also reached double digits during theGreat
Depression, starting in the late 1920s. With the Great Depression lasting approxi-
mately ten years, the adverse conditions would have lasted much longer than the 2008
financial crisis. Figure4 shows a hypothetical loss scenario over this period. The graph
shows the losses incurred for a 60% annualized withdrawal rate for a sustained period
of 3 years. Once again, high yields combinedwithworseningwithdrawal rates produce
an environment that can result in sustained losses.

COVID-19 Pandemic: Post-COVID-19 pandemic is not yet known, the U.S. econ-
omy has experienced high inflation and rising interest rates during much of the
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Fig. 3 Hypothetical Synthetic GIC contract with losses during the Inflationary Period if stable value funds
had existed at the time. Data source: Simulated backtest against historical data by 2020

Fig. 4 Great Depression hypothetical scenario. The same data sources as the inflationary period were used
for this analysis. Data source: Simulated backtest against historical data by 2020

aftermath of the pandemic with stable value funds, consequently experiencing asset–
liability mismatches that could result in a loss when coupled with a high withdrawal
rates. Figure5 shows the consequence of the aftermath of the pandemic period for
a very high withdrawal scenario on a hypothetical fund. The long-term effect of the
pandemic is not yet known, but for the example wrap contract, there is an 11% mar-
ket value to book value deficit, so the wrap may incur losses if it experiences a high
withdrawal rate in the future.

6.2 Yield spike

Figure6 shows another pattern observed within the 1% loss scenarios. The pattern
shows a period in which yields rise and withdrawals co-occur, followed by sustained
lower yields, which we refer to as yield spike mean reverting scenarios. The mean
reverting scenario is when yields rise sharply and then subsequently revert back to
more normalized levels. While the normalization of market conditions would likely
suggest the mitigation of risk, this scenario is risky if it coincides with very large
withdrawals during high yield periods. Suppose large withdrawals do not occur during
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Fig. 5 Post COVID-19 pandemic inflationary scenario assuming no liability cash flows (positive or nega-
tive). Data source: Valerian Capital Group LLC proprietary data for the SV Fund Yield

Fig. 6 The yield spike mean reverting scenarios observed within the 1% of loss scenarios. Data source:
simulated single scenario

high yield periods. In that case, mean reversion will have a lesser impact since there
will be capital gains that offset any capital losses that occurred during the original
increase in yields. As such, the path to a loss is a “run” on the stable value fund with a
large proportion of the book value balances withdrawn over a relatively short period of
time. The interrelationship in this scenario is path dependent; higher yields followed
by mean reversion and withdrawals combine to create a low-yielding environment
without a likelihood of market-to-book value convergence.

Financial Crisis: The reader may again realize that mean-reverting scenarios have
also happened historically, specifically during the 2008 financial crisis. During the
financial crisis, there were adverse conditions that reduced the market value of stable
value fund assets. However, most of the funds did not experience net cash outflows,
so there were no actual wrap contract losses experienced during the financial crisis.16

Furthermore, as shown below in Fig. 7, the market value of stable value fund assets
rose significantly by mid-2009 as shown by the negative market value deficit, i.e., by

16 Source: Aggregated cash flow index from Valerian Capital Group.
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Fig. 7 Withdrawal scenario that would have generated losses as a result of the financial crisis. Simulated
backtest

mid-2009, the market value had returned to a level equal to or greater than the book
value.

Figure7 shows a loss scenario under a potential cashflowwithdrawal rate. Thegraph
shows a loss scenario generated by a 60% (∼ 7.35% monthly) annualized withdrawal
rate occurring for a sustained period of 18 months.

The inflation andmean reverting yield spike are the two riskiest scenarios observed
within our projected paths. In both of these scenarios, a common characteristic is
that an increase in yields aligns with significant cash flow withdrawals. When yields
rise, the market value of assets, as well as the gap between assets and liabilities,
expands. If this coincideswith substantial withdrawals, the gap becomes irrecoverable,
leading to losses for the insurer. Another way to describe the economics behind the
above scenarios is through the time of recovery of an asset–liability mismatch. In the
discussion in Sect. 2.1, we showed that if there is no market risk, and no cash flow
risk, and the crediting rate formula has not reached its plateau of 0%, then book and
market value will converge over θ years. This last condition in our previous statement
is crucial. If the market-to-book ratio is very low, one can see that crediting rate
formula 2 will result in a 0% crediting rate and therefore, the recovery time will be
much longer. In addition, when we have strong withdrawals coinciding with a low
market-to-book value, each withdrawal will worsen the market-to-book ratio hence

in mathematical terms we have:
Mt

Bt
< 1 ⇒ Mt − 


Bt − 

<

Mt

Bt
. Therefore, the riskiest

scenarios from the insurance perspective arewithdrawals occurring during lowmarket-
to-book ratio, because theywill make the convergence ofmarket-to-book to par longer,
if not impossible. Such a scenario of low market-to-book ratio as such can occur only
if the yields rises. This is the basis of the inflation and mean reverting yield spike.

7 Path dependence of synthetic GIC Risk and the suitability of the
liability model

This section investigates the path-dependent nature of Synthetic GIC risk and our
model’s aptitude for generating scenarios that replicate the riskiest paths.

In section 6, we identified inflation and mean-reverting yield spikes as the primary
risk scenarios. When these scenarios coincide with large withdrawals, they lead to
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Fig. 8 Three variations of the mean reverting scenario. Data source: simulated backtest.Data source: sim-
ulated single scenario

Fig. 9 A mean-reverting scenario example. If a deterministic model were used instead, the loss size would
be less than 2% of the initial book value. Conversely, combining cash flowwithdrawals with the stable value
fund’s significant market value decrease results in an approximately 11% loss of the initial book value. Data
source: simulated backtest

insurer losses. However, the timing of withdrawals is crucial-they must follow the
yield increase, but not too distantly.

Figure8 presents three variations of the mean-reverting scenario. The left graph
shows a scenario with early withdrawals, and the right graph depicts late withdrawals.
Neither of these scenarios results in losses. Conversely, the central scenario represents
a substantial loss payment, demonstrating the significant impact of withdrawal timing
on insurance loss.

Indeed, not only is the timing of withdrawals crucial but so too are the periods
without withdrawals. Figure9 compares the same mean reverting scenario with a
deterministicmodelwith constantwithdrawal rates andonewhere the samewithdrawal
rates only occur during a yield spike. A severe loss of about 11% of the original
notional results is evident when the withdrawal rate occurs within 24 months (left
graph). Conversely, if a deterministic trend model were used, the loss would be just
below 2% (right graph).

Figure10 further emphasizes the impact of synchronizing theyield spikeperiodwith
the withdrawal period by comparing the insurance loss size for various withdrawal
starting dates. The same yield spike scenario forms the basis for this comparison, with
annual withdrawal rates of 20%, 40%, and 60% over 48 months. The x-axis marks the
withdrawal starting period relative to the yield spike initiation date. Negative values
on the x-axis denote withdrawals starting before the yield increase, and positive values
indicatewithdrawals beginning after the yield increase. Themost substantial insurance
loss arises when the withdrawal kick-off aligns with the yield spike onset.

The stochastic state trend component of our cash flow model provides flexibility
in high withdrawal rate durations and starting periods, as well as non-withdrawal
periods. Therefore, our model can generate the riskiest paths due to this stochastic
trend component. However, if our model only incorporated a rate-deficit component,
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Fig. 10 Insurance loss size (Market-to-Book value deficit) as a function of the withdrawal starting date
relative to the yield spike initiation date. Data source: simulated backtest

Fig. 11 Mean reverting scenario with a linear rate-deficit withdrawal model g(.). Data source: simulated
backtest. Data source: simulated backtest

akin to themodel inKwun et al. (2010), themean-reverting scenario depicted in Fig. 11
would generate no losses as withdrawals would not be correctly timed.

We should note that while the examples given primarily focused on the mean-
reverting yield spike scenario, we also tested the inflationary scenario. Our findings
confirm that for both scenarios, the highest insurance loss occurs when periods of high
withdrawals coincide with the yield spike or inflationary period.

In conclusion, our cash flowmodel, with its stochastic multi-state beta component,
proves an adaptable tool for the valuation and risk management of insurance liabilities
arising from stable value wrap contracts. The path-dependent nature of Synthetic GIC
risk necessitates a model capable of generating a wide variety of loss scenarios with
variable withdrawal timings and durations. Our model’s flexibility, combined with
its grounding in empirical participant behavior, allows it to generate nuanced risk
scenarios critical for effective risk management of stable value funds.
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8 Conclusions

The paper describes a methodology for insurance companies to use within their ERM
framework to better understand risk scenarios, assess tail risk, and determine capital
requirements for stable value guarantees. Hence, our model can be used to estimate the
capital requirements for the insurance company to maintain a certain low probability
of insufficient capital for loss payments. In this research, we proposed and tested an
asset and liability model for stable value fund wraps.

On the asset side, we suggested an innovative approach to modeling fixed income
funds that offers a compelling alternative to traditional arbitrage-free interest rate
models, which we argue are ill-suited to handle large portfolios of fixed-income funds.
Our model’s core strength lies in its ability to capture the primary risk factor for fixed-
income funds, the yield, despite its simplicity.

On the liability side, we introduced a multi-component model encapsulating a rate
deficit, regime switching trends, herd behavior, and a flight-to-safety component. We
argue this is the most suitable model for detecting risk scenarios from the insurer’s
perspective. Furthermore, our model is consistent with empirical observations that
detect long-to-medium-term trends within historical data.

Through our research, we identified two critical scenarios: the inflationary scenario
and the mean reverting yield spike scenario. The importance of these scenarios lies in
their ability to provide comparative notes on different risk sectors, aiding companies
in assessing their aggregate risk exposures.

Economic capital requirements were a focus of our research. Our findings showed
that the tail CTE, as ameasure of economic capital, is starkly different from theNAIC’s
approach, which almost always results in zero capital. We noted the significance of
understanding the differing statutory capital requirements under various regulations.
While we did not explicitly calculate the Solvency II capital for a typical fund, our
analysis suggests that it would likely be near zero for a fund with 100% market-to-
book ratio due to less frequent loss occurrences. In contrast, the Swiss solvency test’s
99% expected shortfall might demonstrate a non-zero capital charge.

The research highlights the vital influence of duration on tail risk. Our findings
show an almost threefold increase in estimated loss frequency for a six-year fund
guarantee compared to a four-year fund, with the loss size being more than twice as
large. Additionally, we highlighted how the composition of the portfolio and the credit
quality of assets influence tail risk. To illustrate this, we provided metrics for tail risk
across various stable value fund portfolios, each with differing risk levels.

In conclusion, our research underscores the necessity for a model that can generate
variable withdrawal scenarios in response to fluctuations in yield. We demonstrated
that our multi-state beta component model outperforms deterministic trend models
and rate-deficit function models in capturing the complex interplay between yield
spikes, inflation, and participant withdrawal behavior. Our research contributes to a
comprehensive understanding of Synthetic GIC risk management, with our model’s
flexibility accommodating additional factors specific to the insurance contract. This
model serves as a step towards better industry practices in managing Synthetic GIC
risks and a robust foundation for further research.
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Appendix A Benchmark stable value guarantee contract

Table 11 shows themost important flavors of a typical stable value guaranteed contract.

Table 11 Features of a typical guaranteed contract

Policy flavor Value Description

Initial market to book value 100%

Fund duration 4 years

Assets rating AA The average rating of the assets that make up the
composition of the fund

Contract term 30 years Generally, contracts are into perpetuity, but
given that the Monte Carlo simulation cannot
handle an infinity term, our analysis shows
that—within the assumptions of our
model—increasing the terms of the contract
any further has an insignificant impact on the
tail risk The 30 year term includes an extended
termination period of 10 years. Extended
termination, also known as the wind-down
period, is a clause that allows the insurer to
impose stronger limits on the insured assets of
the portfolio. We assume that the insurer will
trigger such a clause at the 20th year
anniversary of the contract
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Table 12 CIR estimates, used in
this paper, from the
log-likelihood method

κ ν r∞ or s∞

Interest rates 0.0794 0.0656 0.0425

OAS spreads portfolio 1 0.893 0.0634 0.0070

OAS spreads portfolio 2 0.687 0.0774 0.0111

OAS spreads portfolio 3 0.661 0.0974 0.0184

Appendix B Asset model parameters assumptions

Using a log-likelihood method, we calibrated the interest rates and OAS spreads on
3-month increments. The historical calibration window spans 20 years for the Option-
AdjustedSpread (OAS) spreads, sourced from [48] up toDecember 2021.This analysis
is based on diverse asset allocations detailed in Table 6. For interest rates, a 50-year
period up to September 2023 was used, sourced from 2020, focusing on the 3-year
constant maturity rates. The CIR model’s parameter estimation is carried out using
the pre-processing and calibration method outlined in Algorithm 1 (Table 12).

Algorithm 1 Rate and Spread Calibration Methodology
1: Input: Daily time series of 3-year constant maturity U.S. Treasury rates or OAS spread series, noted as

(ti , rti ). Use backfilling for missing days to ensure each month has 22 days.
2: Define a new data panel of di , where i is the index of tge i-th business day of each quarter. A quarter

has approximately 3x22 business days, hence i ∈ {1, 66}.
3: Reorganize the rate and spread time series into quarterly data, for each di , define

{
r ik

}
where i is the

i-th business day of the quarter, and k is the index of the quarter over the historical period analyzed. For
example, if 50 years of historical data is being used, then k would be between 1 and 50x4=200 quarters;
we, therefore, would have 66 times, each of size 200.

4: For each di , estimate the 3-month increments of 
r ik = ri,k − ri,k−1 .Apply the maximum likelihood

method to 
r ik . Compute the log-likelihood for each of the 66 series and sum these to obtain the total
likelihood. The methodology used for obtaining the log-likelihood of each of the 66 series is explained
in Kladívko (2007).We then call our objective function the sum of the likelihood of all of these 66 series.

5: We fixed the θ parameter and focused on optimizing σ and κ only. For interest rates, θ was set using
the mean reversion point estimated in 2020, calibrated as of June 2023. Regarding the OAS spread,
we considered the average OAS spread during historical low-risk periods, excluding the financial crisis
(September 2007 to December 2009) and the COVID period (February 2020 to December 2020), the
2015 stock downturn (September 2015 to October 2016), the EU sovereign crisis (January 2011 to
October 2010).

6: We optimized the sum of the log-likelihood of the 66 time series to obtain the model parameters.

Appendix C Liability model parameters assumptions

Figure12 shows function g(·) as an S-shape structure. The graph assumes that the rate
deficit shall reach a critical level for participants to react. For example, the critical level
in Fig. 12 is around ±4%, with a maximum withdrawal rate of 20%. These numbers
are just inputs and are not empirically verified. To emphasize that the function g() is
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Fig. 12 Cash flow rate as a function of the crediting rate deficit. The empirical data points have been
superposed to the theoretical function. Historical data source: Valerian proprietary data

Table 13 Default parameters input assumption, used in this paper, for the trend model

State Respective trend Probability of occurrence Average duration (di )

Stable state 0 0.85 − 0.0003 × 1 Mt
Bt

<1.0
8 years

Decline state −1/5 0.05 3 years

Growth state +1/10 0.1 5 years

Herd state −90% 0.0003 × 1 Mt
Bt

<1.0
0.25 years

consistent with the historical observations, Fig. 12 also overlays the graph of historical
data points from Alimoradian et al. (2023) with the parametric model presented by
the authors in its top-left corner.

The parametrization assumption for the rate deficit component ( g(γt − rt )) is as
below:

g(x) = 0.1 × tanh(−100x + 5)) + 0.1 × tanh(−100x − 5) (C1)

Therefore, the flight-to-safety component is represented by the following function:

f (s) = 0.2 × 1s≥0.03. (C2)
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