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Abstract
Risk aversion has an unambiguous meaning in the univariate context: But, what does
it mean to be risk averse in the multivariate case? Concave Risk Aversion (CRA)
and Multivariate Risk Aversion (MRA) are relevant extensions of the risk aversion
concept used in the univariate case to the multivariate case, corresponding to concave
and ultramodular utility classes, respectively. Although CRA and MRA can coexist,
they are dramatically different in some ways, leading to opposite preferences under
some circumstances, as in the face of irreversible risks. We introduce the notions
of purely concave and purely multivariate risk aversion, related to disjoint utility
classes. We apply the purely risk aversion notions to the field of sustainability, where
catastrophic and irreversible outcomes can be faced, in order to highlight and compare
the consequences of the two approaches on sustainability policies. In this respect, we
provide three main results. First, the kind of risk aversion determines the pursued
goal. Second, the principle of “rejecting any fair bet” is not always preserved. Third,
sustainability policies induced by different risk aversions, if repeated, produce final
states in which mean-variance criterion holds.

Keywords Risk aversion · Multiattribute utility · Ultramodularity · Concavity ·
Sustainability
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1 Introduction

The construction of a representative multiattribute utility function is a fundamental
step in decision making under uncertainty when the selection is among uncertain
prospects with multiple attributes.
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F. Beccacece

The analytic properties usually required for the multiattribute utility function u are
due to the non-satiation property and risk aversion. The non-satiation property states
that more is preferred to less (Ingersoll 1987) and implies the strict monotonicity
of u. While the non-satiation property has the same meaning in both univariate and
multivariate contexts, there is not a unique definition of risk aversion in themultivariate
context. A first extension of risk aversion from the univariate case to the multivariate
case is that of Russell and Seo (1978, p. 607): “A risk averse agent is one who rejects
every fair bet. In the multivariate case, as in the univariate, this condition is met if and
only if the utility function is concave” . In this case, we have Concave Risk Aversion
(for brevity, embodied in the CRA acronym) and we use the term to refer to both the
utility function and DMs with this attitude towards risk.

Almost contemporaneously, Richard (1975) introduced a “new type of risk aversion
unique to multivariate utility functions and called multivariate risk aversion ... in that
the decision maker prefers getting some of the ‘best’ and some of the ‘worst’ to
taking a chance on all of the ‘best’ or all the ‘worst”’. It corresponds to correlation
aversion (Eeckhoudt et al. 2007; Lichtendahl and Bodely 2010; Epstain and Tanny
1980). Richard (1975) remarks that the concavity of u does not imply multivariate risk
aversion and shows that, provided that u ∈ C2, a necessary and sufficient condition
for this kind of risk aversion is that the second-order mixed partial derivatives are
all non-positive. This sign condition is equivalent to the submodularity of the utility
function, as shown in Ortega and Escudero (2010). Tsetlin and Winkler (2009) define
the preference for combining good with bad, which is a stronger condition than that
introduced in Richard (1975), requiring that all second-order partial derivatives be
non-positive. In this case, we have Multivariate Risk Aversion (for brevity, embodied
in theMRAacronym) and, as before, we use the term to denote both the utility function
and DMs. Although CRA and MRA are both notions of risk aversion, they result in
dramatically different behaviours in some circumstances. One of the most relevant
case is when irreversible risks are faced: for this, we study CRA and MRA in the field
of sustainability where this kind of risks is widespread.

Sustainability is concerned with whether the current patterns of economic activity
can be continued over long periods without catastrophic consequences for the environ-
ment and living beings. Sustainable development is referred to as “development that
meets the needs of the present without compromising the ability of future generations
to meet their own needs” (Brundtland Report, 1987). As a consequence, sustainability
needs to adopt policies to face “new” risks, such as global warming, species extin-
tion, desertification, and lethal viral diseases. Most of them “are poorly understood,
endogenous, collective and irreversible” (Chichilnisky and Heal 1998a).

Managing these risks requires to recognize the central role of uncertainty.
In the following,we always refer to risky situations involving catastrophic outcomes

and in which the probabilities of relevant events are assessed.
Chichilnisky and Heal (1998a) distinguish different levels of uncertainty and possi-

ble sustainability actions.There are two levels of uncertainty.Thefirst level is collective
and generally concerns the incidence of the critical event in the population as a whole.
The second level is individual and concerns whether an individual is harmed or not by
the event (conditional upon its occurrence).
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Multivariate risk attitude…

Chichilnisky andHeal (1998b) proposemodels to findfinancial solutions tomitigate
the effects of both collective and individual risk, finding efficient allocations where
the economy is described by statistical states instead of social states. A social state is
a complete description of the state of the economy, that is, a list of the states of all the
agents, while a statistical state lists the fractions of the population in each state. Given
n states, any statistical state can be summarized in a non-negative vector x ∈ [0, 1]n

such that
∑n

i=1 xi = 1.
Since irreversibility is the main reason for the distinctiveness of uncertainty in

sustainability, there is a good reason to recommend caution, as validate by the Pre-
cautionary Principle,1 that is a foundational principle to sustainability policies. The
Precautionary Principle issues a word of caution, aiming to anticipate (or minimize)
serious or irreversible risks for the environment under conditions of uncertanty. In this
sense, it seems to advise high levels of risk aversion.

The aim of this paper is to study the diversity of the notions of CRA and MRA,
which, in our opinion, are not fully addressed in the literature. Furthermore, we inves-
tigate the impacts on the preferences of the DM generated by this diversity.

Since CRA and MRA can coexist, we need to isolate the “pure” effect of each
of them on the preferences of the DM. We thus define as purely CRA (p-CRA) and
purely MRA (p-MRA) a CRA (but not MRA) DM and an MRA (but not CRA) DM,
respectively. We use these terms to refer to the utility functions as well. We study the
effects of p-CRA and p-MRA on the choice of sustainability policies in the face of
catastrophic outcomes. We focus on the collective level of uncertainty, when a DM
faces the problem of reducing the incidence of a harmful event and the economy is
described by statistical states.

We show that, in the multivariate case, the choice of sustainability policies leading
to prefixed results is related to the type of the DM’s risk aversion. A direct connection
between the type of risk aversion and the goal is investigated. When the avoidance
of irreversibly harmful events is the main concern driving the choice of sustainability
policies, the aim is to minimize the occurrence of irreversible events. We show how
this follows from p-MRA but not from p-CRA. On the contrary, a p-CRA DM can
choose policies with a higher probability of irreversible events.

We test the principle of “rejecting any fair bet” for both p-MRA and p-CRA DMs.
We compare sustainability policies that provide a sure outcome with ones leading to
risky outcomes and an expected value equal to that of the certain outcome, ensuring
that they both involve the same fraction of the population harmed by the irreversible
event. We show how a p-MRA DM can exhibit risk-seeking behavior: For example,
the DM can prefer a stochastic sustainability policy P to a deterministic policy Q,
where P produces a result with an expected value equal to that of the result produced
by Q. This does not happen in the case of a p-CRA DM, who always prefers Q to P ,
by definition.

Finally, we determine the state of the economy when the patterns of sustainability
policies induced by p-MRA and p-CRA are repeated numerous times. We call this

1 The definition provided in the Report of the United Nations Conference (1992) is: “In order to protect the
environment, the precautionary approach shall be widely applied by States according to their capabilities.
Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used
as a reason for postponing cost-effective measures to prevent environmental degradation.”
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the final state and show how p-MRA induces a better final state than p-CRA does,
according to mean-variance criterion (Ingersoll 1987).

The paper is organized as follows. Section 2 recalls the basic notions of multivariate
risk aversion in the literature and introduces the definitions of p-MRAand p-CRA,with
the related classes of utility functions. Section 3 presents our main results in the case of
twice-differentiable utility functions, accompanied by an example that illustrates the
impact of p-MRA and p-CRA on the choice of sustainability policies. We show that a
p-MRA DMmay be risk seeking in some of the choices whereas a p-CRA DMwould
never be. The case of quadratic utility functions, where the results are stronger, is also
presented. Section 4 highlights the connection between the type of the risk aversion
of the DM and the goal that he pursues. Section 5 studies the final state derived by the
repetition for n times of the policy induced by p-CRA or, alternatively, by p-MRA.
Section 6 draws some conclusions. All the proofs are relegated to the Appendix.

2 Risk attitude in themultivariate case

In the multivariate as in the univariate case, several stochastic orderings are defined
by means of a class of utility functions. A wide literature deals with this topic and
stochastic orderings among vectors have a huge field of applications in probabil-
ity and statistics (Denuit et al. 2013; Denuit and Mesfioui 2010). Two are the main
consequences of this literature: On one hand, a different concept of risk aversion is
derived and, on the other hand, an extension of the rules of first and second stochastic
dominance for multivariate utility functions is investigated. In this work, we confine
our attention to two classes of utility functions and to the corresponding stochastic
orderings: concave utility functions related with multivariate second-order stochastic
dominance, as shown in Russell and Seo (1978), and neg-ultramodular utility func-
tions connected with second-degree concave stochastic dominance (Beccacece and
Borgonovo 2011; Denuit et al. 2013; Marinacci and Montrucchio 2005). We stay
within the expected utility framework. Alternatives to expected utility, developed in
the last decades provide a richer definition of risk aversion in the univariate case (for a
review see Starmer (2000)). The extension of these concepts to the multivariate case,
surely of interest, is beyond the scope of our work.

We first introduce some notation. For two n-dimensional (row) vectors x, y we
write x � y to indicate that xi � yi for all i and we write x ≥ y when xi � yi for
all i but x �= y. Random variables and random vectors are denote by capital letters.
Let X and Y be two n-dimensional random vectors whose ranges are contained in the
n-dimensional simplex �n , that is the set of n-vectors with non-negative values that
add up no more than 1.

The vector Y is said to be smaller than X in the �� ordering associated with the
class U� of real-valued functions defined on �n when

E[u(X)] � E[u(Y )] for all u ∈ U� (1)

Let UC denote the class of all the utility functions that are increasing and concave
on �n . If (1) holds with U� = UC , then we say that Y is dominated by X in the
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concave multivariate ordering �C . An agent with utility function u ∈ UC is CRA,
that is, the agent assesses that the certainty equivalent of any X is smaller than E[X ].
Thus, the decision rule leads to preferring a sure outcome to any lottery that offers
an equal expected value. Russell and Seo (1978) prove that the concave multivariate
ordering �C is equivalent to a generalized second-order stochastic dominance.

The m-degree concave stochastic dominance is defined by means of a subset of
utility functions u ∈ Cm (Denuit et al. 2013). Let Um denote the class of utility
functions having all partial derivatives of a given order up to order m with the same
sign and this sign is positive for odd orders and negative for even orders. If (1) holds
with U� = Um , then we say that Y is dominated by X in the sense of mth degree
concave stochastic dominance.2

Concave stochastic dominance has a strict connection with the preference of com-
bining good lotteries with bad lotteries, as defined in Tsetlin and Winkler (2009). Let
(a j , b j ) be a sequence of m pairs of vectors of R

n , with a j � b j , j = 1, · · · ,m; we
say that, in each pair, a j is good and b j is bad. Recursive pairs of good and bad lotteries
(X j ,Y j ), j = 1, · · · ,m, with equal chances of obtaining X j or Y j , respectively, are
created by combining the vectors a j and b j and assuming a preference for combining
good with bad. Let X1 = a1 and Y1 = b1; in the pair (X1,Y1) X1 is good and Y1 is
bad (at the first level) and we write X1 �L1 Y1. A second pair of lotteries is defined by
combining (X1,Y1) and (a2, b2): X2 = [X1+b2,Y1+a2] andY2 = [X1+a2,Y1+b2],
where X2 combines good with bad and Y2 combines good with good and bad with
bad. For the preference of combining good with bad, we find that X2 is good and Y2
is bad (at the second level). Thus we write X2 �L2 Y2. Recursively, for each pair
(X j ,Y j ), j = 1, 2, · · · ,m, X j combines good with bad and Y j combines good with
good and bad with bad; we thus write Xm �Lm Ym . A necessary and sufficient condi-
tion for the preference of combining good with bad up to level m is that the DM has
a utility function u ∈ Um (see Theorem 1 in Tsetlin and Winkler (2009), p. 1945). In
particular, for m = 2, the DM has a preference for combining good with bad up to
level 2 if and only if u ∈ U2, given all non-negative first-order partial derivatives and
all non-positive second-order partial derivatives. This corresponds to second-degree
concave stochastic dominance. A DM with u ∈ U2 is MRA and prefers combining
good with bad up to level 2. We note that the preference of combining good with bad
up to level 2 is a stronger condition than that introduced in Richard (1975), because
it also requires single-attribute risk aversion. Since this additional condition implies

that
∂2u

∂x2i
� 0 for i = 1, 2, · · · , n, the condition on the second-order partial deriva-

tives of u becomes that all of them are non-positive. Such a condition corresponds to
the neg-ultramodularity of u (see Beccacece and Borgonovo (2011), Marinacci and
Montrucchio (2005)).

The differences and similarities between CRA and MRA are not evident at first
glance. On one hand, they do not conflict with each other, that is, UC ∩ U2 �= ∅.
On the other hand, neither of the two implies the other, that is, UC � U2 and U2 �

2 An analogous multivariate ordering called m-degree convex stochastic dominance is defined by means
of the class of utility functions for which all partial derivatives of a given order up to order m with the same
sign and this sign is negative for odd orders and positive for even orders.
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UC . We conduct a more in-depth analysis of the two concepts. Fondamentally, the
rationale behind bothMRAandCRA is to ensure compliancewith a founding principle
regardless any other: combining good with bad and rejecting any fair bet, respectively.
We focus on DMs (and utility fuctions) who are MRA and not CRA and, conversely,
CRA and not MRA. Our approach, resulting in a restriction of the concept of MRA
and CRA, offers, in our opinion, a new perspective to capture the essential meaning
of the two kinds of risk aversion. As a consequence, from a mathematical viewpoint,
we exclude the elements of the intersection UC ∩ U2 �= ∅ from our analysis, as the
multiattribute utility introduced in Prékopa and Mádi-Nagi (2008), Definition 1.1,
p. 594 and the mixex utility studied in Tsetlin and Winkler (2009), because compliant
with both CRA and MRA.

Let us consider the set U = UC ∪U2 and the partition of U :

U = (UC \U2) ∪ (U2 \UC ) ∪ (UC ∩U2) (2)

Definition 1 introduces the concept of pure CRA and pure MRA, referring to both the
DM and the utility function.

Definition 1 Let U be the set of utility functions given by (2).

(i) A DM who is CRA but not MRA is said to be p-CRA. The class of p-CRA
multiattribute utility functions is

Up-CRA = UC \U2 = {u ∈ UC : u /∈ U2} (3)

(ii) A DM who is MRA but not CRA is said to be p-MRA. The class of p-MRA
multiattribute utility functions is

Up−MRA = U2 \UC = {v ∈ U2 : v /∈ UC } (4)

3 Preferences with p-CRA and p-MRA utility functions

There is a population at risk for serious, possibly lethal disease. We can consider a
community of people or animals or a forest under risk. Olive Quick Decline Syndrome
(OQDS), which is a current very relevant sustainability issue, can be taken as an
example of our setting.3 Several treatments - most of them with unknown results and
performed on repeated courses - are adopted to contain the disease. Since treatments
are alternative and expensive, the decision of the most efficient treatment, i.e. the
best sustainability policy, is crucial. The effectiveness of those treatments may be
measured through the percentages of healthy/sick/dead plants after therapy. As such,
we list the possible social states that are relevant to the consequences, from best to
worst. For simplicity, we assume only three possible states: healthy (H), sick (S),
and dead (D). The extension to the case of n possible state with several levels of

3 OQSD is a disease affecting olive plants, due to the bacterium Xylella fastidiosa and it is estimated to
have caused the death of around 20 million olive plants in the last 10 years.
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sickness of increasing severity is immediate. Let p and q be the fractions of H and
S, respectively. Then p + q � 1 , p, q ∈ [0, 1], while the fraction of D is univocally
given by 1− p − q � 0. Any statistical state σ = (p; q) is represented by a vector in
[0, 1]2: For example, σ = (0; 1) means that all the members are S and σ = (0.1; 0.5)
means that 10% are H, 50% are S, and therefore 40% are D. The set of all possible
statistical states is the 2-dimensional simplex �2 = {

(p q) ∈ [0, 1]2 , p + q � 1
}
.

Some sustainability policies do reduce the incidence of the disease, but most pro-
duce unknown results. To be simple, assume that a stochastic policy leads to a lottery
with equal chances of reaching the statistical states σ1 and σ2. Let I denote the policy
consisting in the lottery yielding σ1 or σ2 with the same probability; we then write
I = [

σ I
1 , σ I

2

]
. A deterministic policy produces a certain result corresponding to a

unique statistical state that we denote with C = σC .
A DMmust decide the best policy to apply. Let u be the DM’s multiattribute utility

function defined on �2. Henceforth, we assume that u ∈ C2 and u is increasing in p

and q on �2 and therefore
∂u

∂ p
� 0 and

∂u

∂q
� 0 at any interior point of �2, where

p + q < 1 and the fraction of D is 1 − p − q > 0. Monotonicity of u with respect to
p is intuitive: If p increases, the utility increases since there are more healthy living
beings. It is worth noting that with q constant, the increase of p results in a decrease
of the fraction of D given by 1 − p − q. Similarly, so far as monotonicity of u with
respect to q is concerned, the increase of q, with p constant, results in a decrease of
the fraction of D as well as before, and thus the (overall) utility increases.4

Concerning theDM’s risk attitude,we consider twodifferent cases: (i) TheDM, is p-
CRAand, hence, themultiattribute utility function is concave but not neg-ultramodular
on�2; and (ii) the DM is p-MRA and, hence, the multiattribute utility function is neg-
ultramodular but not concave on �2. In both cases, the DM’s risk attitude can be
analyzed by means of the sign of the second-order derivatives of the utility function.

First, to present the conclusion plainly, we address some comments and take advan-
tage of a numerical example in which we assume quadratic multiattribute utility
functions defined on �2, so that the Hessian matrix is constant. In case (i), the Hes-
sian matrix of u is negative semidefinite and the second-order mixed derivatives are
non-negative, while, in case (ii), this is not so, and thus the Hessianmatrix is indefinite.

As a simple running example, consider that the available sustainability policies are
I = [(0.5; 0), (0; 0.5)] and I I = [(0.5; 0.5), (0; 0)]. Both provide uncertain results:
Policy I leads (with equal chances) to the state with 50% H and 50% D (nobody is
S) or to the state with 50% S and 50% D (nobody is H), while policy I I leads to the
state with 50% H and 50% S (nobody is D) or to the state where nobody is H or S (all
are D).

The p-CRA DM has the multiattribute utility function

u(p, q) = −(p − 3)2 − 2(q − 3)2 + (p − 3)(q − 3) (5)

4 Comparing the statistical states σ 1 = (0.1; 0.5) and σ 2 = (0.1; 0.6), we have that u(σ 1) ≥ u(σ 2), being
0.4 and 0.3 the fraction of D, respectively.
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Such a u is strictly increasing on �2. The Hessian matrix ∇2u is negative definite
and the second-order mixed derivatives are positive. Thus u is concave but not neg-
ultramodular. This corresponds to case (i).

Since E[u(I I )] = −15.25 > −15.375 = E[u(I )], the p-CRA DM prefers I I to I .
The same I and I I are faced by the p-MRA DM, with the multiattribute utility

function
v(p, q) = −(p − 3)2 − 2(q − 3)2 − 6(p − 3)(q − 3) (6)

As before, v is strictly increasing on �2. The Hessian matrix ∇2v is indefinite and
all the second-order derivatives are negative. Hence v is neg-ultramodular but not
concave. This corresponds to case (ii). We remark that the function v reveals the
preference for combining good with bad up to level 2 (see Richard (1975), Tsetlin and
Winkler (2009)), meaning that

[(p + c; q), (p; q + d)] �L2 [(p + c; q + d), (p; q)] for any feasible c, d > 0 (7)

Since E[v(I )] = −67.875 > −68.625 = E[v(I I )], the p-MRA DM prefers I to
I I . Such a preference is confirmed by combining good with bad, since (7) applies to
the example, setting p = q = 0 and c = d = 0.5.

Let us now investigate what happens when, in addition to stochastic policies, a
deterministic policy is offered to the DM. Let the policy I I I = σ I I I = (0.25; 0.25)
be added to I and I I for the choices of the DM. Policy I I I provides for sure the
expected value5 of I . For instance, we can imagine that a tested medicine provides
the statistical state given by I I I and the DM must decide whether to change the
previously selected policy to improve the outcomes of the policy, taking on the risk
of uncertainty. In particular, we answer the following question: Are the two DMs risk
averse, preferring I I I to I?

Since u(I I I ) = −15.125 > −15.375 = E[u(I )], the p-CRA DM prefers I I I to
I and hence is risk averse, according to the definition of p-CRA. Since u is concave
on�2, that is, any one-dimensional restriction of u is concave, every stochastic policy
is dispreferred to the certain one offering the same expected value. We can conclude
that I I I is preferred to I for any concave u and, a fortiori, for any concave u that is
not neg-ultramodular.

Comparing I I I and I bymeans of the p-MRA utility function, we obtain v(I I I ) =
−68.0625 < −67.875 = E[v(I )] and hence the p-MRA DM prefers the stochastic
policy I to the certain policy I I I . Then she is risk seeking in this case. The result should
not be a surprise. The one-dimensional restriction of v in the direction h = (−0.5 0.5),
starting from x∗ = (p∗ q∗) = (0.5 0), is convex. Since σ I

1 corresponds to the vector
x∗ = (0.5 0), σ I

2 to x∗ + h = (0.5 0) + (−0.5 0.5) = (0 0.5), and σ I I I to
x∗ +0.5h = (0.5 0)+0.5(−0.5 0.5) = (0.25 0.25), the outcome of I I I lies between
the outcomes of I in the direction h. Due to the convexity of the one-dimensional
restriction of v at x∗ in the direction h,the p-MRADM is risk seeking when comparing
I with its expected value given by I I I .

5 The policies I and I I have the same expected value: For our purposes, we need only investigate the
comparison between I and I I I . Obviously, a symmetric example can be built by comparing I I with I I I .
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The risk-seeking attitude shown in the example, with a p-MRA quadratic utility
function, is not occasional: this result isworth considering because it suggests that risk-
seeking behavior is embedded in p-MRA. The following analysis of p-MRA utility
functions confirms such an intuition.

The goals pursued by the two DMs are due to their different risk aversions and not
to the specifications of the utility functions.

Consider the classesUp−CRA andUp−MRA as defined in Sect. 3, which correspond
to p-CRA and p-MRAand are consistent with the cases (i) and (ii), respectively. All the
utility functions in Up−CRA are concave with a negative semidefinite Hessian matrix
and non-negative second-ordermixed derivatives. The utility functions inUp−MRA are
neg-ultramodular, with a Hessian matrix that is not negative semidefinite everywhere
and non-positive second-order derivatives. Since any v ∈ Up−MRA is not concave,
∇2v cannot be negative semidefinite at all the interior points of the domain. Moreover,
thanks to the non-positivity of all the second-order derivatives, it cannot be positive
semidefinite (or, in particular, positive definite) at any interior point as well. Therefore
∇2v needs to be indefinite at some interior point x∗.

Let �u and �v denote the preferences induced by u and by v, respectively (
u and

v indicate the strict preferences).

We now address two issues. First, we investigate the preference of a p-CRA DM
and of a p-MRADMwhen the DM faces the policies I = [(p+c; q), (p; q +d)] and
I I = [(p + c; q + d), (p; q)], where c, d > 0 and (p + c; q + d) ∈ �2. Second, we
investigate whether the p-MRA DM can reveal risk-seeking behavior by preferring a
stochastic policy to a deterministic policy with the same expected value.

Proposition 1 states the results concerning the preferences of the two DMs. Suffi-
cient conditions for 
u and �v are provided, in addition to a necessary condition for
�u .

Proposition 1 Let u, v ∈ C2 be multiattribute utility functions.
(i) Suppose u ∈ Up−CRA.

(a) If
∂2u

∂ p∂q
> 0, then I I 
u I .

(b) If
∂2u

∂ p∂q
� 0 and

∂2u

∂q2
is strictly increasing in the first argument (or

∂2u

∂ p2
is

strictly increasing in the second argument), then I I 
u I .

(c) If I I �u I , then
∂2u

∂ p∂q
� 0 and

∂2u

∂q2
is increasing in the first argument (or

∂2u

∂ p2
is strictly increasing in the second argument).

(ii) Suppose v ∈ Up−MRA. Then I �v I I .

Sufficient and necessary conditions in case of quadratic utility functions are provided
by Proposition 2.

Proposition 2 Let u, v be quadratic utility functions.
(i) If u ∈ Up−CRA, then I I �u I ;
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(ii) if v ∈ Up−MRA, then I �v I I ;
In the following special case of (i), the conclusion can be strengthened:

(i’) If u ∈ Up−CRA and
∂2u

∂q∂ p
> 0, then I I 
u I .

The analogy of Propositions 1 and 2 is simple. In case (i), if u is not quadratic, a zero
mixed second-order partial derivative does not allow one to be conclusive about the
preference between I I and I . For this, the sufficient condition is more structured and,
precisely, two sufficient conditions are identified. Condition (a) states that, if themixed
second-order partial derivative is strictly positive, then the strict preference I I 
u I
holds. This condition corresponds to the sufficient condition (i’) of Proposition 2.
Condition (b) provides a sufficient condition for 
u under the assumption of non-
negative mixed second-order derivatives. It requires that the second-order derivatives
∂2u

∂q2
or

∂2u

∂ p2
be strictly increasing in the second and first arguments, respectively.

We note that such a condition corresponds to the concept of prudence introduced by
Kimball (1990) to capture the idea of precautionary saving. Condition (c) states a
necessary condition that follows directly from the above considerations. For case (ii),
the statement is the same for quadratic and non-quadratic utility functions.

The previous example provides us with a p-MRA quadratic utility function consis-
tent with risk-seeking behavior. This is true also for non-quadratic utility functions.
Proposition 3 formalizes that a p-MRA DM can reject a deterministic policy with
respect to a stochastic one offering an expected value equal to that of the sure out-
come.

Proposition 3 Let v ∈ Up−MRA. Then there always exists an entire bidimensional
region S ⊂ �2 of lotteries such that

I �v I I I for all I ∈ S, I I I = E[I ] (8)

For utility functions that are p-MRA, the principle of rejecting any fair bet is thus
contradicted in infinitely many cases. On one hand, any policy with both outcomes
along one of the directions where v is convex, is preferred to the sure policy offering
the same expected value. On the other hand, given a sure policy C = σ c in �2, there
exist infinitely many stochastic policies that are preferred toC , precisely all those with
both outcomes lying on a (surely existing) direction along which the restriction of v

is convex.
The intrinsic meaning of p-MRA does not include the concept of rejecting any fair

bet but, on the contrary, is in accordance with risk-seeking behavior in the evaluation
of lotteries belonging to a specific set. We therefore say that the risk-seeking behavior
is systematic.

4 p-MRA and p-CRA goals in sustainability policies

A direct connection between the type of risk aversion and the pursued goal can be
investigated.On the basis of the results illustrated in the previous sections,we highlight
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the main differences between the two approaches and their relevant consequences for
the choice of sustainability policies. Since any stochastic policy leads to a lottery with
equal chances of reaching the statistical state σ1 or σ2, the choice of the DM depends
only on the results given by these statistical states and is not affected by probabilities.

The p-MRA DM has a preference for combining good with bad. This means that
she likes to temper the possible result of the sustainability policy. In the example, she
forgoes the chance of obtaining the best result offered by policy I I consisting in 0%D,
to avoid the risk of the policy’s total default, that is, the occurrence of the irreversible
event of 100% D.With the aim of avoiding the irreversibly harmful event, the p-MRA
DM compares the lowest fraction of survivals (i.e. the sum of the fractions of H and
S) provided by all the policies and prefers the policy with the highest one, since the
probability associated with each statistical state is always equal to 50%. Given such
behavior, she clearly reveals the preference deriving from p-MRA: The main concern
of avoiding irreversibly harmful events drives her choice.

From a theoretical point of view, the choice of the p-MRA DM is the solution
of an optimization problem. Let P i , i = 1, 2, · · · , z, denote a family of possible
sustainability policies, each leading to the statistical states σ i

j = (pij , q
i
j ), j = 1, 2.

Combining good with bad, expressed by (7) means solving the problem

maxi [min j (p
i
j + qij )] (9)

that is a maxmin strategy. According to the maximin principle, the p-MRA DM com-
pares alternatives by the worst possible percentage of survivors given by (min j (pij +
qij )) under each alternative, and she chooses one which maximizes the worst outcome.
This principle tends to support the same operational measures as the Precautionary
Principle, particularly in the case of high probability associated to the worst case.

What drives the p-CRA DM to prefer I I to I? Do some intuitive reasons for the
DM’s behavior stand out? The p-CRA DM prefers the policy providing the statistical
state with the best result, that is, the lowest fraction of D, even if this choice could
result in the total loss of the community, since the other statistical state associated to
the policy yields 100% D. In this case, he does not seem to share with the p-MRA
DM the concern of avoiding irreversibly harmful events: Choosing I I , the DM has the
same chance of facing 100% D and the total survival of the community. In addition,
the outcomes deriving from policy I I are muchmore unstable than those due to policy
I . For all these reasons, the p-CRADM does not seem to be risk averse in this context.
This should not be a surprise. The preference relation stated by p-CRA concerns the
choice when comparing a risky lottery and its expected value. This is not the case
faced by the p-CRA DM, where both policies in question are stochastic. Then, only
apparently, there are no reasons justifying his preference; on the contrary, the choice
is based on a kind of risk aversion that drives the decision making in the case of
uncertainty versus certainty.
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Fig. 1 Evolution of Xs for a p-MRA DM

5 The final state

In this section,we investigate the results of a sustainability policy under the assumption
that it can be repeated more than once. To illustrate the problem we aim to address,
we can consider the previously introduced example of a treatment for OQDS that is
repeated for multiple cycles on a population of olive trees. The initial state of the
plant population has a fraction q0 of S on which the therapy is applied. At the end of
the first treatment cycle, the fraction of S has certainly decreased - some plants die,
others recover - becoming q1 = q0 · q < q0. The second cycle of therapy is applied
to the fraction q1, causing a further decrease in sick plants, resulting in a fraction
q2 = q1 · q < q1, and so on, envisioning the completion of n cycles.

How can the DMmeasure the efficiency of a sustainability policy repeated n times?
And how can the DM choose the best policy among several? Since the fraction of S
decreases over time - becoming D or H - after a high number of repetitions, the
population is approximately divided into dead and healthy living beings: we refer to
this as the “final state”. The distribution of H (or D) after n repetitions of the policy
serves as a tool for assessing efficiency: the higher H (or the lower D), the better the
policy.
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Fig. 2 Evolution of Ys for a p-CRA DM

We now compute the distribution of H after n repetitions of the favorite strategy
for the p-MRA and p-CRA DM, respectively.

Let I = [(p; 0), (0; q)] be the favorite policy for p-MRA DM. We denote by Xs

the fraction of H after s repetitions for s = 1, 2, · · · , n − 1, n. The evolution of Xs is
sketched6 in Fig. 1.

The final state is described by the random variable

Xn =
⎧
⎨

⎩

0 ( 12 )
n

pqn−s−1 ( 12 )
n−s s = 0, · · · , n − 1

(10)

Let’s now move on to I I = [(p; q), (0; 0)], the favorite policy of the p-CRA DM.
We denote by Ys the fraction of H after s repetitions. The evolution of Ys is sketched
in Fig. 2.

The random variable describing the final state is

Yn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ( 12 )

p
∑s

t=1 q
t−1 ( 12 )

s+1 s = 1, · · · , n − 1

p
∑n

t=1 q
t−1 ( 12 )

n

(11)

6 For simplicity, we set q0 = 1 and q constant. We also indicate the portion of S (in parentheses).
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The comparison of the expected value and the variance of Xn and Yn would be
suitable for the DM’s purpose of finding the best policy. Mean-variance criterion is
a consolidated normative principle that governs optimal decision making (Ingersoll,
1975).

First, it is easy to verify that X1 ≡ Y1. The percentage of H is p or 0, both occurring

with a probability of
1

2
. Hence the expected values and the variances of X1 and Y1 are

equal: E[X1] = E[Y1] and Var[X1] = Var[Y1]. Despite their identity, the two random
variables are subject to a crucial difference: while the p-MRA strategy provides p
in an oucome and q in the other outcome, the p-CRA strategy provides p and q in
the same outcome, and only D in the other one. This leads to a radical diversity of
outcomes when the policy is repeated. In the case of p-MRA, the percentage of H
takes intermediate values between 0 and p, with certain probabilities—thanks to the
recovery of H from the percentage of S of previous stages—simultaneously decreasing
the probability of it taking the value 0. Furthermore, the percentage of H never exceeds

p, which always occurs with a probability of
1

2
. In the case of p-CRA, on the other

hand, the percentage of H takes values greater than p with a certain probabilities—
thanks to the recovery of H from the percentage of S of previous stages—but does not

take any value between 0 and p. In any case, the probability that it is equal to 0 is
1

2
.

This turns out in differentiating the set of values taken by Xn and Yn respectively.7

Xn takes a finite number of values in the interval [0, p], with a probability mass of
1

2
at p. Yn takes a finite number of values in the set A = {0} ∪ [p, pq̄n], where

q̄n = ∑n
t=1 q

t−1, with a probability mass of
1

2
at 0.

The larger the number n the greater the effect: Xn takes more andmore values in the
interval [0, p] and the range of Yn extends further and further to the right. Intuitively,
the variance of X decreases, and the variance of Y increases as n grows. At first glance,
nothing can be said about the expected values.

Proposition 4 provides a remarkable result stating the preference of Xn on Yn
according to the mean-variance criterion.

Proposition 4 Let Xn and Yn be defined as in (10)
and (11), respectively.
It holds:

(i) E[Xn] = E[Yn] for n ≥ 1
(ii) VAR[Xn] ≤ VAR[Yn] for n ≥ 1

and Xn dominates Yn for n ≥ 1 according to the mean-variance criterion.

7 This is already noticeable when comparing X3 and Y3 from Figs. 1 and 2. X3 takes four values from 0
to p, Y3 takes four values from 0 to p + pq + pq2, being p + pq + pq2 > p.
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6 Conclusions

Both CRA and MRA are used to model risk attitude in multidimensional decision
problems. They can coexist but, indeed, differ greatly from each other, leading to dis-
tinct behaviors and choices in decision problems, especially when irreversible events
are faced. To reveal their differences, we separate CRA and MRA and investigate the
goal pursued by a DM driven MRA but not CRA and viceversa. To this end, we define
p-CRA and p-MRA and study the preferences of a DM who faces a decision problem
on sustainability policies, often involving irreversible and catastrophic risks.

Themain result is that p-CRA and p-MRA confirm different principles, both widely
shared in decision theory. On one hand, p-CRA confirms the principle of rejecting any
fair bet, that is, the most widely shared answer by risk averters when a risky alter-
native is compared with a sure outcome of equal expected value. On the other hand,
p-MRA confirms the preference of combining good with bad, on a set of risky alterna-
tives, which means the willingness of the DM to avoid the occurrence of irreversible
outcomes. We conclude that p-MRA and p-CRA are effective and can be easily inter-
preted, in specific decision contexts.

In the general case, when the set of lotteries is composed of some risky lotteries and
some certain ones, p-CRA and p-MRA lead to different choices and are not without
some drawbacks. Basically, p-MRA has two consequences: The DM minimizes the
occurrence of default but can also be risk seeking under some circumstances. This
second fact cannot be easily justified in the framework of risk aversion. In the same
context, p-CRA also has two consequences: It preserves the principle of rejecting any
fair bet and leads the DM to compare the best cases offered by all the lotteries with
equal probability, choosing the policy that offers the best outcome among all the best
policies. Consequently, the other outcome of the lottery could be the absolutely worst
case. This fact cannot be easily accepted when that case is irreversible.
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Appendix

Proof of Proposition 1 (i) Consider the difference

D = [u(p + c, q + d) − u(p + c, q)] − [u(p, q + d) − u(p, q)] (12)

The preference I I �u I (I I 
u I )means that D � 0 (D > 0). The second-degree
Taylor expansion of u guarantees that

u(x + h) = u(x) + ∇u(x)h + hB(x)hT + o(‖h‖2) (13)

where x ∈ �2, h is such that x + h ∈ �2, and B(x) = 1

2
∇2u(x). Given (13), we

have

D = [∇u(p + c, q) − ∇u(p, q)] (0 d
)T + (

0 d
) [B(p + c, q) − B(p, q)] (0 d

)T + o(d2)

=
[

∂u(p + c, q)

∂q
− ∂u(p, q)

∂q

]

d +
[

∂2u(p + c, q)

∂q2
− ∂2u(p, q)

∂q2

]

d2 + o(d2) (14)

To investigate the sign of D, we distinguish the following cases.

(a)
∂u(p + c, q)

∂q
− ∂u(p, q)

∂q
�= 0 for all (p, q) . Applying the first-degree Taylor

expansion to the function
∂u

∂q
, we obtain

D ∼
[
∂u(p + c, q)

∂q
− ∂u(p, q)

∂q

]

d ∼ ∂2u(p, q)

∂ p∂q
cd

If
∂2u(p, q)

∂ p∂q
0, then D > 0.

(b)
∂u(p + c, q)

∂q
− ∂u(p, q)

∂q
= 0 for some (p, q). Then, around these points,

D ∼
[
∂2u(p + c, q)

∂q2
− ∂2u(p, q)

∂q2

]

d2

Hence, if
∂2u(p, q)

∂ p∂q
= 0 and

∂2u(p, q)

∂q2
is strictly increasing in the first

argument p, then D > 0.

Summing up, we conclude that, if
∂2u(p, q)

∂ p∂q
� 0 and

∂2u(p, q)

∂q2
is strictly

increasing in the first argument p, then D > 0.

(c) Conversely, if D � 0, then
∂2u(p, q)

∂ p∂q
� 0 and, if

∂2u(p, q)

∂ p∂q
= 0,

∂2u(p, q)

∂q2
is increasing in p.
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Since (14) can be alternatively written as

D = [∇u (p, q + d) − ∇u (p, q)] (c 0)T + (c 0) [B (p, q + d)

−B (p, q)] (c 0)T + o(c2)

=
[
∂u(p, q + d)

∂ p
− ∂u(p, q)

∂ p

]

c +
[
∂2u(p, q + d)

∂ p2
− ∂2u(p, q)

∂ p2

]

c2 + o(c2)

the condition of monotonicity (with respect to the second argument) is valid for

the second-order partial derivative
∂2u(p, q)

∂ p2
as well.

(ii) It follows directly from Tsetlin and Winkler (2009, Theorem 1, p. 1945) and from
Beccacece and Borgonovo (2011, Proposition 2, p. 328). ��

Proof of Proposition 2 (i) Condition I I �u I requires that

1

2
u(p + c, q + d) + 1

2
u(p, q) � 1

2
u(p + c, q) + 1

2
u(p, q + d)

or, equivalently,

u(p + c, q + d) − u(p + c, q) � u(p, q + d) − u(p, q) (15)

The quadratic utility function u is of the form u (x) = x BxT, where x ∈ �2 and

B =
(
b11 b12
b21 b22

)

is a constant symmetric 2×2matrix (and,moreover,∇2u = 2B).

Both sides of (15) can be written as

u (x + h) − u (x) = (x + h) B (x + h)T − x BxT

where h is such that x + h ∈ �2.

Given the symmetry of B, we obtain

(x + h) B (x + h)T = (x + h) BxT + (x + h) BhT =
= x BxT + hBxT + x BhT + hBhT =
= x BxT + 2x BhT + hBhT

and hence

u (x + h) − u (x) = (x + h) B (x + h)T − x BxT = 2x BhT + hBhT (16)

We apply (16) to both sides of (15). Setting x = (
p + c q

)
and h = (

0 d
)
, the

left-hand side results in

u(p + c, q + d) − u(p + c, q) = 2
(
p + c q

)
B

(
0 d

)T + (
0 d

)
B

(
0 d

)T =
= 2

(
p + c q

)
B

(
0 d

)T + d2b22 =
= 2

(
p q

)
B

(
0 d

)T + 2
(
c 0

)
B

(
0 d

)T + d2b22
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Setting x = (
p q

)
and h = (

0 d
)
, the right-hand side results in

u(p, q + d) − u(p, q) = 2
(
p q

)
B

(
0 d

)T + (
0 d

)
B

(
0 d

)T =
= 2

(
p q

)
B

(
0 d

)T + d2b22

Hence (15) becomes

2
(
p q

)
B

(
0 d

)T + 2
(
c 0

)
B

(
0 d

)T + d2b22 ≥ 2
(
p q

)
B

(
0 d

)T + d2b22

and finally

2
(
c 0

)
B

(
0 d

)T = 2cdb12 = cd
∂2u

∂ p∂q
≥ 0

which is always satisfied thanks to the non-negativity of the second-order mixed
derivatives of u.

(i’) The special case of condition I I 
u I corresponds to

u(p + c, q + d) − u(p + c, q) > u(p, q + d) − u(p, q) (17)

and, almost as before, we obtain

2
(
c 0

)
B

(
0 d

)T = 2cdb12 = cd
∂2u

∂ p∂q
> 0

Thanks to the positivity of the second-order mixed derivatives of u, (17) is always
satisfied.

(ii) Condition I �v I I follows directly from Tsetlin and Winkler (2009, Theorem 1,
p. 1945) and from Beccacece and Borgonovo (2011, Proposition 2, p. 328). ��

Proof of Proposition 3 Consider the one-dimensional restrictions ϕh (t) = v (x∗ + th)

of v in the direction h (and starting from x∗). Their second derivatives turn out to be
ϕ′′
h (t) = v′′ (x∗ + th) = h · ∇2v (x∗ + th) · hT. Since ∇2v is necessarily indefinite at

some interior point x∗, then ϕ′′
h (0) = h · ∇2v (x∗) · hT changes sign with h and, thus,

there exists some direction h (starting from x∗) in which it takes on strictly positive
values and (thanks to the continuity of all the second-order derivatives) these remain
strictly positive, at least in an open interval of t containing the origin. There exists,
thus, at least one point x∗ and one direction h such that the restriction ϕh of v is
convex in an interval (a, b) of value t , with a < 0 < b. Thanks to the continuity of the
second-order derivatives of v, for each point x∗ there exist infinitely many directions
h that satisfy that condition; then an entire bidimensional region exists on which v is
convex. ��
Proof of Proposition 4 Xn dominates Yn according to the mean-variance criterion if (i)
and (i i) hold.
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(i) We compute the expected values of Xn and Yn .

E[Xn] =
n−1∑

s=0

pqn−s−1
(
1

2

)n−s

E[Yn] = p

[
n−1∑

s=1

(
1

2

)s+1

·
s∑

t=1

qt−1 +
(
1

2

)n s∑

t=1

qt−1

]

Setting Bn =
n−1∑

s=1

(
1

2

)s+1

·
s∑

t=1

qt−1 and Cn =
(
1

2

)n s∑

t=1

qt−1, we expand the

terms of Bn and Cn as follows
s = 1

( 1
2

)2
q0 +

s = 2
( 1
2

)3
(q0 + q1) +

s = 3
( 1
2

)4
(q0 + q1 + q2) +

· · · · · ·
s = n − 1

( 1
2

)n
(q0 + q1 + · · · + qn−2) +

Cn
( 1
2

)n
(q0 + q1 + · · · + qn−2 + qn−1) =

Rearranging the terms according to the increasing powers of q, we get

Bn + Cn = q0
(
1

2

)2 n−2∑

s=0

(
1

2

)s
+ q1

(
1

2

)3 n−3∑

s=0

(
1

2

)s
+ · · · + qn−2

(
1

2

)n
+

+
(
1

2

)n
(q0 + q1 + · · · + qn−2 + qn−1) = q0

⎡

⎢
⎣

(
1

2

)2 1 −
(
1
2

)n

1
2

+
(
1

2

)n−1
⎤

⎥
⎦+

+q1

⎡

⎢
⎣

(
1

2

)3 1 −
(
1
2

)n−2

1
2

+
(
1

2

)n

⎤

⎥
⎦ + ... + qn−2

[(
1

2

)n
+

(
1

2

)n]

+ qn−1
(
1

2

)n
=

+q0
(
1

2

)

+ q1
(
1

2

)2
+ · · · + qn−2

(
1

2

)n−1
+ qn−1

(
1

2

)n
=

n−1∑

s=0

qn−s−1
(
1

2

)n−s

Finally we have

E[Yn] = p(Bn + Cn) =
n−1∑

s=0

pqn−s−1
(
1

2

)n−s

= E[Xn]

(ii) Let Z be the random variable

Z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
1

2

p
1

2

whose variance is Var [Z ] = p2

4
.
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We now compare the variance of Z with that of Xn and Yn , respectively. Xn takes

a finite number of values in the interval [0, p], with a probability mass of
1

2
at p.

Since the dispersion of the values of Xn is not higher than that of Z , it follows that
the variance of Xn is not greater than the variance of Z .

Yn takes a finite number of values in {0} ∪ [p, pq̄n], with a probability mass of
1

2
at 0. The dispersion of the values of Yn is not lower than that of Z , therefore the
variance of Yn is not lower than the variance of Z .
As a result, the following relationship holds

Var [Xn] ≤ p2

4
≤ Var [Yn]

In particular, the equality holds for n = 1, since X1 ≡ Y1 ≡ Z . ��
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