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Abstract
Traditional stochastic mortality models tend to extrapolate, to focus on identifying
trends in mortality without explaining them. Those that do link mortality with other
variables usually limit themselves to GDP. This article presents a novel stochastic
mortality model that incorporates a wide range of variables related to economic,
environmental and lifestyle factors to predict mortality. The model uses principal
components derived from these variables, extending the Niu and Melenberg (Demog-
raphy 51(5):1755–1773, 2014) model to variables other than GDP, and is applied to
37 countries from the Human Mortality Database. Model fit is superior to the Lee—
Carter model for 18 countries. The forecasting accuracy of the proposed model is
better than that of the Niu–Melenberg model for half of the countries analyzed under
various jump-off years. The model highlights the importance of economic prosperity
and healthy lifestyle choices in improving lifespan, while the effect of environmental
variables is mixed. By clarifying the specific contributions of different factors and thus
making trade-offs explicit, the model is designed to facilitate scenario building and
policy planning.
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1 Introduction

Over the past century, the average human lifespan has increased significantly. In 1913,
the global life expectancy was estimated to be 34.1 years, while in 2001 it increased

B Matteo Dimai
matteo.dimai@phd.units.it

1 Department of Economics, Business, Mathematics and Statistics, University of Trieste, Trieste,
Italy

2 Regione autonoma Friuli Venezia Giulia, Trieste, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10203-024-00434-4&domain=pdf
http://orcid.org/0000-0003-1126-5234


M. Dimai

to 66.6 years, and by 2015, it had further increased to 71.8 years (Riley 2005; Wang
et al. 2016). Forecasting the evolution of mortality rates is very important for actuarial
practice, as well as for health care and pension systems in general, and so, forecasts
should be carefully assessed.

Yet, forecasts are based on past and present trends and a fundamental uncertainty
is the extent to which these trends will remain valid in future. Hence, it is important to
model uncertainty not only to the extent that it is expressed as variability around current
trends, but also as to incorporate sources of variation that can affect, perhaps even
reverse current trends. Human health depends on a large number of factors, including
biological, environmental and social ones. These drivers may have reinforcing or
opposing effects and are subject to varying degrees of uncertainty.

The most common mortality models, with Lee and Carter (1992) perhaps being
the most famous, are extrapolative in nature. They are simple, robust and have good
statistical properties, but rely on one critical assumption: that the past trends are repre-
sentative of future developments. Ignoring factors that drive trends in mortality means
being unable to model turning points. For example, the dissolution of the Soviet Union
caused diverging patterns inmortality inLithuania, Belarus andRussia (Grigoriev et al.
2010), three countries that had convergent paths until then. Modeling the future when
the trend changes is difficult. But in that case, models with covariates would have
allowed a researcher in 1991 to model possible pathways, based on possible economic
and social developments, while extrapolative models couldn’t have.

This paper aims to develop a model that can incorporate a wide range of covariates
and be used to forecast mortality under different scenarios. The main assumption is
that mortality and the covariates do not diverge in the long run, without requiring
causality assumptions.

The contribution of this study is to show how broadening the scope of external
variables included in stochastic mortality models can improve forecasts compared to
Niu and Melenberg (2014) and at the same time allow actuarial practitioners and pol-
icymakers to use interpretable models to assess the impact of different scenarios on
mortality. The inclusion of covariates from different domains allows the researcher to
model the full uncertainty surrounding mortality improvements. Mortality rates do not
exist in a void: they are the product of the material, technological and environmental
characteristics of the populations subject to them. Additionally, the study will explore
the extent to which different variables have a disparate impact on mortality in differ-
ent countries, highlighting the need to tailor the analysis to each country’s specific
characteristics and history.

Previous research in the field of stochastic mortality models incorporating external
variables is relatively scarce. Economic prosperity, among the first variables to be
associated with reduced mortality (Preston 1975), is the main and often the only
factor used to drive mortality reductions. Niu and Melenberg (2014) and Seklecka
et al. (2019) approach the issue with a single-population model, while Boonen and
Li (2017) present a multipopulation model using principal components, an approach
used in the present study as well. More recently, environmental effects have been
considered, with Dutton et al. (2020) extending Seklecka et al. (2019) by including
the effect of temperature anomalies on mortality. Lifestyle factors like nutrition and
smoking have been considered by French and O’Hare (2014). On the other hand,
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there is a vast literature of both demographic and medical studies that highlight links
between mortality and a multiplicity of variables, including the ones in this study.
Healthy habits are consistently linked with lower mortality, while air pollution is
linked to excess deaths. However, to the author’s knowledge this it is the first study
in which variables from these three domains are included together in a stochastic
mortality model.

The rest of the paper is organized as follows. Section 2 presents a review of the
literature on stochastic mortality models, with a focus on the ways to include external
variables in themodeling process. The single-populationmodelwith external variables
(SEV) is introduced in Sect. 3 along with details about the fitting process, about the
variables and an analysis of the characteristics of the time series used. The results are
presented in Sect. 4, with a focus on five countries and a general overview of goodness
of fit and forecasting performance for all countries considered. Section 5 concludes
with a discussion of the findings.

2 Literature review

The approaches to forecast mortality are generally classified into three categories,
namely the extrapolation, explanation and the expectation ones (Stoeldraijer et al.
2013). Extrapolation approaches assume that existing trends and patterns in mortality
rates by age are regular enough to continue into the future. Explanation approaches
model future mortality with exogenous variables that have a known link to mortal-
ity, like smoking and lung cancer, using structural or epidemiological equations. The
expectation approach instead incorporates expert opinions regarding various aspects
of mortality. The three approaches can coexist in a single model, and the boundaries
between the approaches can be blurred. Using external covariates tomodel mortality is
close to the explanation approach. However, when appliedwithout explicitlymodeling
the dependency structure between variables, this results in a model closer to extrapola-
tive ones. The present work hence draws partly from the explanation and partly from
the extrapolation approach, which is the one stochastic modeling has mostly concen-
trated on (Cairns et al. 2011). A common approach to extrapolative modeling is to
extend past trends into the future by fitting linear trends for log-mortality rates with a
temporal component that can be specified, for example, through a random walk with
a linear or quadratic drift. These models may be accurate in the short run and back-
testing, but they are unable to identify turning points and are not useful for assessing
mortality under various development and policy scenarios. Even when models allow
for the incorporation of expert judgment to set mortality targets (e.g., Boumezoued
et al. (2019)), these targets are essentially set exogenously.

The linkbetween economicdevelopment andmortality has beenwidely studiedover
the past decades. Preston (1975) described the association between life expectancy and
per capita income almost 50 years ago. Further studies established both positive (Bren-
ner (2005), Birchenall (2007)) and negative (Tapia Granados 2008; Tapia Granados
and Ionides 2011; Tapia Granados and Ionides 2017) effects of economic growth.

There are examples of stochastic mortality models that incorporate economic vari-
ables in the context of extrapolative models based on Lee and Carter (1992). Hanewald
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(2011) describes a relationship between the latent factor of the Lee–Cartermodel, GDP
and unemployment. Building on that, Niu and Melenberg (2014) propose a more gen-
eral model that allows for multiple latent and multiple exogenous factors and offers an
application using GDP as a predictive variable. An extension to the multipopulation
case is provided by Boonen and Li (2017), with a model that allows for additional
exogenous variables and where the latent factor of the Lee–Carter model is dropped
entirely. Most notably, they focus on multiple groups of populations, including post-
Soviet countries who experienced a mortality increase after the drop in GDP due
to the dissolution of the Soviet Union: the temporary increase in mortality in those
countries before GDP recovered solidifies the relationship between GDP and mor-
tality. Bozzo et al. (2021) represented a further development applied to the mortality
between regions in Italy.

Other models lend themselves to the inclusion of economic variables. The model
from O’Hare and Li (2012), which extends the model of Plat (2009) and allows for
additional terms to estimate young mortality, is modified by Seklecka et al. (2019) by
using the correlation between GDP andmortality. Dutton et al. (2020) took this further
by multiplying a term of the model by the correlation between temperature anomalies
and mortality, emphasizing the importance of environmental effects. Non-economic
explanatory variables have also been included in some models. For example, French
and O’Hare (2014), building on King and Soneji (2011) and on the literature that links
mortality to lifestyle and dietary variables, present a model with GDP, health care
expenditures, tobacco and alcohol consumption, fat intake and fruit and vegetables
consumption.

More recently, Li and Shi (2021) propose a global vector auto-regressive (GVAR)
approach that can model mortality rates for a large number of populations with the
inclusion of global factors. These could be external factors like GDP or other covari-
ates. In their application, however, the authors only employ the average of themortality
rates of the 15 countries they include, as a proxy for the global advancement ofmedical
treatments.

An important challenge when modeling mortality by including multiple economic,
social, environmental and technological factors is the lack of micro-level data. Ide-
ally, death rates would need to be available for every possible subpopulation defined
by every combination of the factors one wishes to study, or even at the individual
level in case of continuous factors, covering several decades and the whole popula-
tion. Although there are some studies working with individual data (i.e., Cairns et al.
(2019)), the time frame of available data and the selection of covariates is usually
limited, resulting in models that apply only for a limited age range. Therefore, it is
necessary to use factors that can be thought of having a wider, general effect on a
population. Since the relationship between the external factor and mortality is rarely
direct, much less known with certainty, these models lie somewhere between pure
extrapolation models and explanation models.

An alternative approach to modeling mortality with external factors is to divide the
population into subpopulations based on a specific covariate, such as an affluence or
development index, and use a multipopulation model for the different subpopulations,
ensuring coherent forecasts. Thismethoddoes not explicitly include the covariate in the
model, but instead forecastsmortality for each subpopulation separately, assuming that
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the subdivision of the population according to the covariate is stable and accurate. Like
regions in a state (i.e., Bozzo et al. (2021) and Danesi et al. (2015) for two examples
with Italian regions), other groupings of the population at the subnational level can
be reasonably believed to have a converging mortality pattern in the long run, while
allowing for divergence in the short run. For ranked groups, a desirable outcome is for
groups to preserve their ordering, that is, to avoid crossovers in estimates of mortality
rates.

An example of this approach is given by Villegas and Haberman (2014), where a
composite deprivation index is used to rank small areas in England, classify thembased
on their rank and track theirmortality counts. The authors showhow less deprived quin-
tiles had lower mortality throughout the period and also experienced faster mortality
declines than more deprived quintiles, leading to a widening of mortality differentials
by socioeconomic status. The population can be subdivided into subpopulations either
by identifying homogenuous geographical entities (Villegas andHaberman 2014;Wen
et al. 2021) or by classifying the individuals directly (Cairns et al. 2019).

3 Methodology and data

The availability and comparability of data across multiple countries is a main concern
of this study, which meant that data sources have been carefully selected in order
to ensure comparability and both the countries analyzed and the variables included
reflect the availability of high-quality, comparable data.

The mortality data used in this article is limited to males and has been sourced from
the Human Mortality Database (HMD), imported into R through the HMDHFDplus
package. All 42 available countries were considered. The choice of the external vari-
ables has been more problematic. On the one hand, plausible covariates are variables
that have already shown a link with mortality at the individual level or in forecasting or
non-forecasting population-wide models. These include GDP, health care spending,
other affluence measures, education, up to lifestyle variables like alcohol and tobacco
consumption, obesity, marital/cohabitation status, etc. On the other hand, comparabil-
ity required that the external variables be chosen among those available from reliable,
official data sources, like the databases from the United Nations’ World Health Orga-
nization (WHO) or Food and Agriculture Organization (FAO), PennWorld Tables and
others, with time series extending as far back as the 1970s. Due to the absence of
data for one or more covariates, 5 countries (Hong Kong, Israel, Luxembourg, New
Zealand, Taiwan) have been excluded and the analysis performed on the remaining
37. The model estimates males and females separately and although only males are
discussed for brevity, the covariates are available for females as well and broken down
by gender where possible. Model estimation has been carried out with a version of
the StMoMo R package modified by the author to allow for the inclusion of external
variables.

123



M. Dimai

3.1 Modelingmethodology

The model proposed in this article is based on the Lee–Carter model, where the latent
factor is substituted by one or more factors obtained from external variables through
principal components analysis (PCA). Themethodology is amix ofNiu andMelenberg
(2014), Boonen and Li (2017) and French and O’Hare (2014) and can be summarized
as follows:

1. Select possible covariates based on availability of data for a wide set of countries,
an extended number of years and from reputable data sources. In addition to GDP
and other affluence-related variables, consider variables related to environmental
effects (i.e., air quality) and to lifestyle choices (i.e., alcohol consumption) that
have a strong empirical link to mortality;

2. Perform tests on the possible covariates to assess their characteristics, i.e., deter-
mine whether they are stationary, non-stationary or stationary with structural
breaks. Explore the long-term relationships between them and mortality, i.e., by
checking whether cointegration relationships exist and are stable between coun-
tries;

3. For all countries with available data, fit the following single-population model,
based on the model specified by Niu and Melenberg (2014):

log
(
mx , t

) � ax +
J∑

j�1

b j , x k j , t +
L∑

l�1

cl, x gl, t + εx , t , (1)

with J age-period terms (J � 0 or J � 1 in the applications) and L orthogonal exter-
nal factors gl, t . The external factors are combinations of multiple external variables,
in order to reduce dimensionality and solve identification issues akin to the use of
principal components in Boonen and Li (2017).

The proposed approach tries to minimize assumptions about the regularity of mor-
tality rates and of the covariates. The main assumption instead is that there are stable
long-term relationships between covariates andmortality, even if the series themselves
aren’t stationary or exhibit structural breaks. To this end, the cointegration analysis
at step 2 investigates the existence of said long-term relationships: the cointegration
coefficients themselves, though, aren’t used in the model. The assumption of a long-
term relationship between variables is a crucial one if the resulting model is to be
used in scenario planning where forecasts are required under deviations from current
trends.

In the stochastic mortality modeling framework presented, covariates are treated
uniformly across all age groups. Variations in their effect on mortality rates across
ages are briefly discussed in Sect. 3.3. Overall, while some differences in impact exist,
they do not appear substantial at a preliminary analysis and any age-specific effects
are anticipated to be captured through the age loadings within the model’s compo-
nents. The model is specifically tailored for planners who may encounter challenges
in accessing or forecasting age-disaggregated data. For certain variables, such as eco-
nomic or environmental ones, the breakdown by agemay be impractical or impossible.
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For this kind of applications, the practitioner faces a trade-off between model
simplicity and data availability versus the intricate modeling of external effects on
mortality, involving the identification of causal relationships, lagged effects, etc. The
approach advocated in this study follows Niu and Melenberg (2014) and Boonen and
Li (2017), favoring the former: in general, practical usability necessitates simplifica-
tions in any model, though balancing accuracy and feasibility amidst real-world data
constraints remains a challenge.

3.2 Parameter estimation

The fitting procedure of the SEV models draws upon the Generalized Age-Period-
Cohort (GAPC) models as implemented in the StMoMo R package (Villegas et al.
2018), which is itself based on the gnm R package (Turner and Firth 2023), drawing
from Niu and Melenberg (2014) as well. The StMoMo package has been extended
in order to allow for external terms in the fitting procedure. Even though StMoMo
allows offsetting terms to be included in the model, they are wholly external to the
fitting process and therefore age loadings can’t be fit for them without modifying the
package. The following implementation bridges this gap in capability.

The SEVmodel for J age-period terms and L external terms is described in Eq. (1).
The GAPC models model deaths instead of death rates. This is equivalent to fitting
death rates and therefore death rates will be used in the following instead of deaths
and exposures for compactness.

The terms gl, t are linear combinations of the O external variables ho, t , with L < O .
In the applications, J � 1.

The fitting algorithm is as follows:

• Obtain yearly deaths by age Dx , t , their correspondent exposures Ex , t (the ratio of
these two quantities is equivalent to death rates mx , t ) and O external variables ho, t
for the given country;

• Perform a singular value decomposition on the scaled matrix of ho, t external vari-
ables, retain the L components which explain a share of variance larger than a set
threshold, up to a given maximum of components, denote them with gl, t ;

• Estimate the model with gnm, obtaining the quantities ax , b j , x , k j , t and cl, x ;
• Fit the rates using the estimated parameters;
• Transform the parameters so that they satisfy the identifiability constraints;
• Fit the rates with the transformed parameters and check whether the transformation
preserves the rates. If so, output the model.

The variance threshold, themaximumnumber of principal components andwhether
to include an age-period term are parameters set before fitting. The parameters, as is
usual for mortality models based on the Lee–Carter model, are not identified without
additional constraints. For example, setting J � 1,with c∗ ∈ R

J , d∗ �� 0 and e∗ ∈ R
L ,

it is possible to obtain, for the logarithm of the fitted rate mx , t :

mx , t �ax + bxkt +
L∑

l�1

cl, x gl, t
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�ax + bxkt +
L∑

l�1

cl, x gl, t +
L∑

l�1

elbx gl, t −
L∑

l�1

elbx gl, t + bxc
∗ − bxc

∗

�(
ax − bxc

∗) + bx
d∗ d

∗
(

kt −
L∑

l�1

e∗
l gl, t + c∗

)

+
L∑

l�1

(
cl, x + e∗

l bx
)
gl, t

�ãx + b̃x k̃t +
L∑

l�1

c̃l, x gl, t ,

with

ãx � ax − bxc∗
b̃x � bx

d∗
k̃t � d∗

(
kt − ∑L

l�1 e
∗
l gl, t + c∗

)

c̃l, x � cl, x + e∗
l bx .

It follows then that c∗, d∗ and e∗
l need to be functions of the parameters such that,

after the transformation, calculating c∗, d∗ and e∗
l again yield c∗ � 0, d∗ � 1 and

e∗
l � 0.
The following normalization constraints based on Niu and Melenberg (2014) and

Boonen and Li (2017) are proposed:

N∑

x�1

bx � 1,

T∑

t�1

kt � 0,

k � (k1, . . . , kT ) �� 0,

T∑

t�1

kt gl, t � 0, for l � 1, . . . , L ,

with the last constraint describing that the sample covariance of kt and gl, t is 0. These
correspond to the following transformations:

c∗ � −
∑T

t�1 kt
T

d∗ � ∑N
x�1 bx

e∗
l � cov(glt , kt )/var(glt ) for l � 1, . . . , L ,

with cov() and var() denoting sample covariance and variance, respectively. In order to
demonstrate that the proposed constraints identify the model uniquely, the following
theorem must be proven:
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Theorem 1 (Identification) Let m � (
mx , t

)
x�1, ..., N , t�1, ..., T � m(θ), where m � m

(θ) satisfies mx , t � ax + bxkt +
∑L

l�1 cl, x gl, t for some θ �
(
(ax )x�1, ..., N ,

(bx )x�1, ..., N , (kt )t�1, ..., T ,
(
cl, x

)
x�1, ..., N , l�1, ..., L

)
. Then the parametrization θ0 sat-

isfying the normalization constraints above satisfies the following:

• θ0 is a function of θ .
• m is a function of θ through θ0.
• The parametrization of m by θ0 is exactly identified. That is, if θ1 �� θ2 are two
sets of parameters satisfying the normalization constraints, then m

(
θ1

) �� m
(
θ2

)
.

The proof is in the Appendix.

3.3 Variables

The external variables chosen are meant to represent widely available and easily mea-
surable variables that may have a plausible, although perhaps weak or indirect, effect
on mortality. This is consistent with the overall focus on forecast improvement and
scenario building. They are as follows (sources after dashes, literature linking them to
mortality in parentheses):

• Average height of men aged 18, as height is linked with a lower disease load in
children which affects mortality—(NCD-RisC) (2016) and (NCD-RisC) (2020)
estimate, considered as non-stochastic quantities [Hatton (2011); Quanjer (2023)]

• Real GDP per capita—Feenstra et al. (2015) and PWT (Boonen and Li 2017; Niu
and Melenberg 2014; Seklecka et al. 2019)

• Age-standardized share of men with raised blood pressure—Zhou et al. (2017),
NCD-RisC estimate, considered as non-stochastic quantities (Benjamin et al. 2017;
Lim et al. 2012; Sundström et al. 2011)

• Fruit consumption per capita1—FAO (Benjamin et al. 2017; Lim et al. 2012)
• Vegetable consumption per capita—FAO (Benjamin et al. 2017; Lim et al. 2012)
• Daily supply of calories per person—FAO (Benjamin et al. 2017; Lim et al. 2012)
• Recorded alcohol consumption in liters per capita (15 +)—WHO and Wine Eco-
nomics Research Centre, University of Adelaide, (Benjamin et al. 2017; Holmes
and Anderson; 2017; Lim et al. 2012)

• Cigarette consumption—International CigaretteConsumptionDatabase, (Benjamin
et al. 2017; Lim et al. 2012; Poirier et al.; 2019)

• Surface temperature anomaly in degrees Celsius (difference between average coun-
try temperature and 1961–1990 global average temperature)—HadCRUT4 (Patz
et al. 2005)

• Fossil fuel consumption per capita—BP Statistical Review ofWorld Energy via Our
World in Data, a proxy variable for air pollution (Lim et al. 2012)

1 Both fruit consumption and vegetable consumption data are sourced from FAO’s food balances survey
(FBS). Since FBS underwent a change in methodology starting in 2014, there is a break in the series, which
can be substantial. The old methodology and new methodology series have been reconciled by multiplying
the new methodology (post-2014) series by a coefficient calculated as the ratio of average consumption in
2010–2013 and average consumption in 2014–2017.
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Fig. 1 Correlations between mortality rates and three potential covariates, by age

The preceding variables have both data available for a very high share of HMD
countries and exhibit a high correlation with both age-specific death rates and the kt
time index of the Lee–Carter model.

The graphs of correlations with mortality by age and country show distinctive
patterns, displaying either correlations above 0.75 in absolute value for most ages
or smaller correlations that are erratic across ages. An example with three variables
in seven countries is shown in Fig. 1. Correlations usually become much weaker or
disappear entirely at ages above 90. In some cases, e.g., for the share of men that
are obese, the correlation with mortality weakens markedly for ages from 20 to 40,
around the mortality hump. In countries with a more complicated mortality history
like Russia or with shorter time series like Slovenia, correlations for a given variable
across ages are more likely to be erratic than in countries with longer time series and
a simpler mortality history.

Table 1 summarizes the correlation between yearly age-standardizedmortality rates
and external factors for seven HMD countries. The age weights used are the WHO
2000–2025 Standard Million (Ahmad et al. 2001).

3.4 Stationarity of mortality time indices

Having covariates that are correlated with mortality is not, by itself, enough to build
a mortality model, since if any time series is a non-stationary process, the model
estimates will be inconsistent and the correlations may be spurious. It is therefore
necessary to investigate whether mortality rates—summarized by the time index kt of
the Lee–Carter model—and external variables are stationary or not. In the latter case,
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Table 1 Correlations between external variables and age-standardized mortality rates

Variable Italy Slovenia Russia Netherlands Germany Japan USA

Real GDP per
capita

− 0.977 − 0.946 − 0.835 − 0.967 − 0.993 − 0.954 − 0.984

Temperature
anomalies

− 0.807 − 0.330 − 0.273 − 0.778 − 0.274 − 0.453 − 0.570

Fossil fuel
consumption
per capita

− 0.489 0.321 − 0.681 − 0.278 0.932 − 0.804 0.609

Caloric supply
per capita

− 0.612 − 0.819 − 0.686 − 0.439 − 0.869 0.022 − 0.899

Share of men
with raised
blood pressure

0.945 0.990 0.681 0.989 0.994 0.989 0.962

Average height
of men

− 0.978 − 0.978 − 0.697 − 0.743 − 0.988 − 0.753 0.077

Fruit and
vegetable
consumption
per capita

− 0.379 0.114 − 0.630 − 0.621 0.102 0.900 − 0.416

Alcohol
consumption
liters per capita

0.959 0.578 0.285 0.890 0.977 − 0.774 0.758

Cigarette
consumption
per capita

0.796 0.006 − 0.093 0.836 0.879 0.834 0.987

cointegration analysis needs to be performed in order to ascertain whether the time
series have a common stochastic trend.

As in Seklecka et al. (2019), the Lee–Carter kt index for male mortality and all
countries has been tested for stationarity with both the Phillips–Perron (Phillips and
Perron 1988) and KPSS (Kwiatkowski et al. 1992) tests, for which the null hypotheses
are non-stationarity and stationarity, respectively. The version of the KPSS test for
which the null is trend stationarity has been used.

The two tests agree on non-stationarity of kt (by not rejecting the null hypothesis
for the Phillips–Perron test and by rejecting it for the KPSS test, in both cases at the
5% level) in 35 cases out of 42 countries. The tests disagree on the non-stationarity of
kt for Japan, Republic of Korea and Russia. The kt time index appears stationary for
Chile, Croatia, Hong Kong and Taiwan. For these seven countries, with the exception
of Japan and Russia, the time series of mortality rates start relatively late, between
1970 for Taiwan and 2003 for the Republic of Korea. The detailed results are presented
in Table 2, with p values > 0.1 for the KPSS test presented as 0.1 and p values < 0.01
presented as 0.01.
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Table 2 Phillips–Perron and KPSS tests on the Lee–Carter time index

Country PP PP KPSS KPSS Start End

statistic p value statistic p value year year

Australia − 2.013 0.570 0.422 0.010 1950 2019

Austria − 1.371 0.831 0.444 0.010 1950 2019

Belgium − 0.539 0.977 0.443 0.010 1950 2019

Bulgaria − 2.366 0.427 0.234 0.010 1950 2019

Belarus − 0.721 0.963 0.244 0.010 1959 2018

Canada − 1.117 0.913 0.442 0.010 1950 2019

Chile − 5.028 0.010 0.099 0.100 1992 2019

Croatia − 4.576 0.010 0.085 0.100 2001 2019

Hong Kong − 4.389 0.010 0.072 0.100 1986 2019

Switzerland − 1.326 0.849 0.449 0.010 1950 2019

Czechia − 0.271 0.989 0.443 0.010 1950 2019

East Germany − 1.642 0.720 0.404 0.010 1956 2019

West Germany − 2.063 0.549 0.374 0.010 1956 2019

Denmark 0.393 0.990 0.437 0.010 1950 2019

Spain − 2.125 0.524 0.320 0.010 1950 2019

Estonia 0.038 0.990 0.348 0.010 1959 2019

Finland − 0.832 0.954 0.412 0.010 1950 2019

France − 1.870 0.628 0.439 0.010 1950 2019

Greece − 2.852 0.240 0.261 0.010 1981 2019

Hungary 0.008 0.990 0.368 0.010 1950 2019

Ireland − 0.101 0.990 0.442 0.010 1950 2019

Iceland − 2.929 0.197 0.382 0.010 1950 2019

Israel − 3.030 0.174 0.169 0.031 1983 2016

Italy − 1.511 0.774 0.459 0.010 1950 2019

Japan − 3.674 0.033 0.380 0.010 1950 2019

Republic of Korea − 3.097 0.155 0.087 0.100 2003 2019

Lithuania − 2.466 0.387 0.236 0.010 1959 2019

Luxembourg − 2.588 0.337 0.364 0.010 1960 2019

Latvia − 0.309 0.987 0.330 0.010 1959 2019

Netherlands 0.046 0.990 0.441 0.010 1950 2019

Norway 0.637 0.990 0.451 0.010 1950 2019

New Zealand − 1.618 0.730 0.451 0.010 1950 2019

Poland − 0.374 0.984 0.376 0.010 1958 2019

Portugal − 1.604 0.736 0.409 0.010 1950 2019

Russia − 1.301 0.856 0.135 0.070 1959 2014

Slovakia 0.676 0.990 0.368 0.010 1950 2019
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Table 2 (continued)

Country PP PP KPSS KPSS Start End

statistic p value statistic p value year year

Slovenia − 1.754 0.669 0.211 0.012 1983 2019

Sweden 0.061 0.990 0.464 0.010 1950 2019

Taiwan − 3.594 0.043 0.132 0.075 1970 2019

Ukraine − 1.405 0.814 0.152 0.045 1959 2013

UK − 1.510 0.775 0.450 0.010 1950 2019

USA − 2.044 0.557 0.335 0.010 1950 2019

The countries in bold are those where the two tests show a discrepancy

3.5 Structural breaks in mortality and covariates

Following Boonen and Li (2017) and Berkum et al. (2016), the possible presence
of structural breaks has been investigated. While in Boonen and Li (2017) structural
breaks are only used to calibrate forecasts, a non-stationary series may instead be
trend stationary with structural breaks (Perron 1989), which may alleviate issues with
variables who show a high order of integration. Moreover, the presence of a common
structural break in both mortality series and an external covariate, with a similar trend
for the two variables both before and after the break, would reinforce the credibility
of a link between them.

The variables considered were the kt Lee–Carter mortality index and the stochastic
covariates2: logarithm of real GDP, temperature anomalies, fossil fuel consumption,
caloric supply, fruit and vegetable consumption, alcohol consumption, cigarette con-
sumption.

The methods to test for structural change are the generalized fluctuation tests,
described by Zeileis et al. (2010) and implemented in the R package strucchange.
Recursive residuals have been used to analyze both cumulative sums of residuals
(CUSUM processes) and moving sums of residuals (MOSUM processes). For each
time series, a linear time trend is estimated and then residuals are calculated. The
series is deemed to have at least a structural break if the null hypothesis of no break
is rejected by the structural change test with α � 0.05 for at least one of the CUSUM
and MOSUM processes. The optimal break points are then estimated by using the
algorithm of Bai and Perron (2003), with up to 1 break point identified per series.

Out of 42 countries, 35 have at least one break point in either the kt Lee–Carter time
index or in a covariate. Belgium, Hong Kong, Israel, Republic of Korea, Luxembourg,
New Zealand and Taiwan show no breakpoints. More specifically, 21 countries have
at least one structural break in the kt index. Temperature anomalies show a structural
break in 3 countries, fossil fuel consumption in 11 countries, fruit and vegetable
consumption in 13 countries, while the other covariates have a structural break in
between 16 and 20 countries.

2 As mentioned in Sect. 3.3, average height at age 18 and share of men with raised blood pressure are
modeled quantities and are therefore considered non-stochastic.
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For each of the 21 structural breaks in the time index kt , it has been checked
whether a covariate had a structural break in the same or in the preceding year. Fossil
fuel consumption has a concurrent or immediately preceding break point in two cases,
same as cigarette consumption per capita, followed by logarithm of real GDP, caloric
supply, alcohol consumption and fruit and vegetable consumption with one case.

To sum up, both the mortality index kt and the external variables are often non-
stationary and prone to having structural breaks even in relatively short time series (40
years or less). It does not appear, though, that breaks in kt are systematically preceded
or followed by breaks in one or more of the external variables; hence, there is no
evidence that a structural break in a variable causes a break in kt or vice versa.

Additionally, to check whether the relationship between mortality and the other
variables is stable over time, it has been investigated whether there is a structural
break in the series of the residuals of the time index kt regressed on the stochastic
external variables. The only country to show such a break is East Germany, with a
break estimated in 1996.When regressed on all variables, including the non-stochastic
share of men with raised blood pressure and male height at age 18, Spain shows a
structural break around 1985 and Poland in 1988. Except these three countries, the
relationship between the mortality index and the external variables is stable over time.

3.6 Integration of covariates

It has been shown that both the time index kt and the external variables are non-
stationary in most cases. In order to be able to model their long-term relationship,
non-stationary variables need to be cointegrated and a prerequisite for cointegration is
that the series are I(1). To investigate whether this is the case, the order of integration
of all variables for all countries has been explored with both the Phillips–Perron and
the KPSS tests (both at α � 0.05), with the following procedure:

• Run both the Phillips–Perron test and the KPSS test on the series;
• If both tests agree on non-stationarity (that is, the Phillips–Perron does not reject
the null and the KPSS test rejects the null), differentiate the series and repeat the
procedure on the differentiated series;

• If both tests disagree with each other (i.e., they both fail to reject the null), for
illustrative purposes only add 0.6 to the order of integration if the Phillips–Perron
test points to non-stationarity and 0.4 if the KPSS test points at non-stationarity.

The results are presented in Fig. 2. Temperature anomalies are mostly stationary,
with 5 countries non-stationary according to the Phillips–Perron test only and 1 country
non-stationary according to the KPSS test only. The other variables are generally non-
stationary, with multiple cases of discordance between the PP and KPSS tests about
whether a series is I(1) or I(2). Alcohol consumption in the Republic of Korea, which
has a short time series, is I(3) according to the Phillips–Perron test and I(0) according
to the KPSS test, while for real GDP in Croatia is I(3) for the Phillips–Perron test and
I(1) for the KPSS test. The procedure has been repeated considering structural breaks
as well for series that had an order of integration of 1 or above. For series that had an
order of integration below 1, structural breaks were ignored. Due to the shortness of
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Fig. 2 Orders of integration for all countries by variable

the series, considering the structural break usually results in the null not being rejected
for both the Phillips–Perron and the KPSS tests.

All in all, temperature anomalies are mostly stationary and the other variables are
non-stationary. No series is unambiguously I(2) or higher, though for a sizable number
of series the tests disagree whether they are I(1) or I(2). When considering structural
breaks, the series are either I(1) or are non-stationary according to the Phillips–Perron
test and stationary according to the KPSS test. Therefore, it cannot be argued that the
series are stationary with structural breaks.

3.7 Cointegration analysis

As already outlined, most of the time series considered are I(1). Following themethod-
ology outlined in Seklecka et al. (2019), the presence of cointegration relationships
in the data has been explored. Cointegration is a prerequisite for producing consistent
estimates in case of non-stationary time series. The procedure by Johansen (1991) has
been applied to all countries with at least 20 years of data (27 countries), assuming a
linear trend in cointegration. The results are presented in Table 3. With the exception
of Denmark and Finland, all countries have at least one cointegration relationship with
a p value under 5% and 23 countries (85%) have at least one cointegration relationship
with a p value under 1%. In both Denmark and Finland the p value is just above 5%.
For countries with less than 20 years of data, the series were not tested for cointe-
gration due to the small number of years available. Although the long-run behavior
of the series has not been ascertained for these countries, the fact that the series are
cointegrated for almost all countries that were tested means that cointegration is likely
in countries with short time series as well.
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Table 3 Cointegration relationships between the Lee–Carter time index and external variables

Country Number of cointegration
relationships at 99% significance

Number of cointegration
relationships at 95% significance

Australia 1 3

Austria 1 1

Bulgaria 0 2

Canada 1 2

Chile 6 7

Switzerland 1 1

Czechia 7 8

East Germany 1 1

West Germany 1 1

Denmark 0 0

Spain 2 3

Finland 0 0

France 1 1

Greece 2 3

Hungary 2 3

Ireland 1 1

Iceland 1 3

Italy 2 3

Japan 2 2

Netherlands 2 3

Norway 2 3

Poland 0 3

Portugal 1 1

Slovakia 7 7

Sweden 1 2

UK 1 1

USA 3 3

Despite the non-stationary nature of both mortality rates, represented by the
Lee–Carter time index (kt ), and the covariates, the identification of a cointegration
relationship points to their long-term coherence. This implies that these variables do
not deviate significantly from each other over time, allowing for a reliable model-
ing approach with consistent estimates. Furthermore, the infrequent occurrence of
structural breaks in kt when regressed on the covariates reinforces this finding.
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4 Results

The SEV model is applied to male mortality between the ages of 40 to 90, with a
maximum of two principal components and a threshold of 15% of variance explained
by the principal component in order for it to be included in the model. The variance
threshold and the limit on the maximum number of principal components ensure the
best combination of fit and parsimony, as shown in Sect. 4.5 along with a brief discus-
sion of alternative specifications. The 15% threshold was chosen since a preliminary
principal components analysis on the covariates for a subset of countries evidenced
a consistent presence of at least one principal component beyond the first explaining
more than 10% of the variance, with a share of variance explained ranging between
15 and 25% depending on the country.

The overall performance of the SEV model for all countries analyzed is discussed
first, using several goodness of fit measures comprising both absolute and percentage
errors. The distribution of age at death is concentrated on higher ages; therefore,
absolute residuals will be more influenced by the fit at old ages, while percentage
residuals are more sensitive at younger ages, when the number of deaths is small
and a small residual in absolute terms can lead to large errors in percentage terms.
Subsequently, the forecasting performance is evaluated for various jump-off years,
which represent the starting points for mortality projections based on historical data.

The impact of individual variables on mortality is examined by investigating the
loadings of principal components, which form the external factors gl, t used in mor-
tality modeling. Afterward, the contribution of specific variables to overall mortality
reductions is scrutinized, focusing on selected countries for analysis.

The Appendix contains an in-depth discussion of the results for a selection of
countries, with a specific focus on whether the model fit captures the mortality trend
adequately by analyzing the model residuals, again both in raw number of deaths and
in percentage terms.

4.1 Goodness of fit andmodel comparison

The fit of the SEV models is compared to the Lee–Carter model and to the Niu-
Melenberg model, estimated on the same set of years and ages, using the mean
absolute deviation (MAD), mean absolute percentage error (MAPE) and the Bayesian
information criterion (BIC). They are defined as follows, with the predicted deaths
D̂x , t � exp{ax + ∑J

j�1 b j , x k j , t +
∑L

l�1 cl, xdl, x gl, t }Ex , t :

MAD �
∑

x
∑

t

∣∣∣Dx , t − D̂x , t

∣∣∣

XT

MAPE �
∑

x
∑

t

∣
∣∣Dx , t−D̂x , t

∣
∣∣

Dx , t

XT

BIC � m logM − 2 log L̂ ,
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Fig. 3 Mean absolute deviation (MAD) for SEV, Niu-Melenberg and Lee–Carter models

Fig. 4 Mean absolute percentage error (MAPE) for SEV, Niu-Melenberg and Lee–Carter models

with X being the number of ages, T the number of years,m the number of parameters,
M the number of observations and L̂ the likelihood in the model. A lower value of the
BIC indicates a better fit.

The results are presented in Figs. 3, 4 and 5, while a more detailed breakdown is
provided in the Appendix. The SEV models outperform both the Lee–Carter and the
Niu-Melenberg models in terms of both MAD and MAPE. As the two metrics are
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Fig. 5 Bayesian information criterion (BIC) for SEV, Niu-Melenberg and Lee–Carter models

each more sensitive to different ages, better performance in terms of both suggests a
better fit at all ages.

In terms of BIC, the SEV models have either a lower BIC or a very close BIC to
both the Lee–Carter and Niu-Melenbergmodels, outperforming the Lee–Carter model
for 18 countries out of 37 and the Niu-Melenberg model for 12 countries out of 37.
The proposed single-population models therefore improve the fit beyond their cost in
additional model complexity for between a third and half of the countries examined,
while in the other countries the improved fit comes at a negligible added complexity.

4.2 Forecasting performance

Even more important than fitting historical data is the model’s ability to forecast
future mortality rates. The forecasting performance of the single-population models is
evaluated on historical data by estimating the model up to a jump-off year, forecasting
the remaining years until the end of the sample and then comparing the forecasts with
the actual mortality rates. The metric used is the relative root mean forecast square
error (RMFSE), as in Boonen and Li (2017).

Given a jump-off year û, a predicted logarithm of mortality rate ̂log mx , i , t for
country i , age x and year t , and Ui being the end of sample year for population i , the
RMFSE is:

RMFSEM
(
i , û

) �

√√
√√√ 1

N
(
Ui − û

)
Ui∑

u�û+1

N∑

x�0

(
logmi , x , u − ̂logmx , i , t

)2

∣∣logmi , x , u
∣∣
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The period term kt has been modeled as a random walk with drift. The models are
evaluated with jump-off years between 2000 and 2010, in order to compare different
forecast horizons. The results are presented for all countries in Table 4 for years 2000,
2005 and 2010. For the whole span of jump-off years 2000–2010, the results are
presented in Fig. 6 for a group of low-mortality countries with similar mortality paths
and in Fig. 7 for a group of similar high-mortality countries.

The forecasting performance has been tested for a given jump-off year if the model
had at least 10 years of data up to the jump-off year included, if data was available
for at least one year after the jump-off year and if the country is big enough to have at
least 5.000 deaths per year across all ages considered.

For 12 countries out of 23, the ratio between the RMFSE of the SEV model and
the Niu-Melenberg model is lower than 1, that is, the SEV model outperforms the
Niu-Melenberg model in terms of RMFSE. For jump-off years 2005 and 2010 the
countries outperforming the Niu-Melenberg model are 18 out of 31 and 12 out of 34,
respectively. Overall, adding external variables beyond GDP improves the forecasting
performance of the model for about half of the countries.

The relative performance of the SEV and Niu-Melenberg models can vary from
year to year. As shown in Fig. 6, the SEV model is generally outperforming the Niu-
Melenbergmodel for Australia, Switzerland and Canada.3 For France, Italy and Spain,
the better model changes from year to year. Still, for all six countries there are years
when the SEV model outperforms the Niu-Melenberg model and vice versa.

This is even more evident in Fig. 7: the SEVmodel decidedly outperforms the Niu-
Melenberg model in Bulgaria and, to a lesser extent, Slovakia, while it underperforms
in Hungary. For all three countries, though, there are years where the opposite is true.

There is no clear relationship between the number of years used to train the model
and the relative forecasting performance. The two countries with data starting in the
2000s (Belgium and Croatia) do not outperform the Niu-Melenberg model, but there
are both countries with data starting in 1975 (the Netherlands) and countries with
data from 1992 onwards (Russia) that outperform the Niu-Melenberg model for all
applicable jump-off years.

4.3 Composition of external factors

While the O external variables ho, t used for the model are the same for all countries,
the external factors gl, t actually used in the fitting process are linear combinations
of the ho, t , obtained through singular value decomposition. The loadings of the prin-
cipal components express the relative importance of the variables for each principal
component, and their analysis highlights whether variables’ importance is constant or
differs across countries.

As shown in Table 5, the first principal component has a positive loading for real
GDP that is quite stable across countries, as can be seen by the low standard deviation
of the loading. Likewise, temperature anomalies have a positive loading and a low
standard deviation, same for male height at age 18. These three variables all have a

3 Covariate data are missing for Canada between 1999 and 2004; hence, the last year with actual data is
1998 until 2005.
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Table 4 Ratio between root mean square forecast squared error (RMFSE) for single-population models and
correspondent Niu-Melenberg (NM) models, jump-off year 2000, 2005 and 2010, only countries with at
least 9 years of data up to jump-off year

Country Model starting
year

Ratio RMFSE/
RMFSE NM 2000

Ratio RMFSE/
RMFSE NM 2005

Ratio RMFSE/
RMFSE NM
2010

Australia 1975 1.069 0.685

Austria 1975 0.758 1.147 1.454

Belarus 1997 1.188

Belgium 2000 1.376

Bulgaria 1975 0.758 0.752 1.192

Canada 1975 1.129 0.544 0.613

Chile 1992 0.521 0.855

Croatia 2001 0.799

Czechia 1993 0.849 1.299

Denmark 1975 1.000 0.919 1.145

East Germany 1975 0.856 0.981 0.998

Estonia 1996 1.113 0.818

Finland 1975 1.006 1.044 0.820

France 1975 0.914 1.056 1.057

Greece 1981 1.187 0.992 1.172

Hungary 1975 1.050 1.607 1.006

Ireland 1975 1.044 0.775 1.163

Italy 1975 0.916 1.151 1.154

Japan 1975 0.964 0.919 0.830

Latvia 1996 0.961 0.985

Lithuania 1996 1.088 1.026

Netherlands 1975 0.953 1.026 0.891

Norway 1975 1.039 1.219 0.961

Poland 1975 0.939 1.476 1.113

Portugal 1975 1.520 2.217 1.509

Russia 1996 0.531 1.493

Slovakia 1993 0.893 1.216

Slovenia 1997 0.810

Spain 1975 1.257 0.862 1.933

Sweden 1975 1.114 1.070 1.584

Switzerland 1975 0.829 0.540 1.053

Ukraine 1996 0.763 0.846

UK 1975 0.785 0.960 1.759

USA 1975 1.240 1.350 1.350

West Germany 1975 0.898 0.980 1.203

Bolded values represent cases where the SEV model outperforms the Niu-Melenberg model
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Fig. 6 Difference betweenRMFSE for the SEVmodel for theNiu-Melenbergmodel, low-mortality countries
(SEV is performing better if the line is under the dashed line)

Fig. 7 Difference between RMFSE for the SEV model for the Niu-Melenberg model, high-mortality coun-
tries (SEV is performing better if the line is under the dashed line)

positive impact on mortality reductions, while the share of males with raised blood
pressure has the opposite impact and has consequently a negative loading.

Thevariable loadings for the secondprincipal component aremorevaried,withmost
variables more or less equally split between positive and negative loadings. A more
detailed look at the loadings in Table 6 reveals how the second principal component
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Table 5 Loadings summary for first and second principal component (PC) used in single-population models

Variable 1. PC,
mean

1. PC, st.
dev

1. PC, %
positive

2. PC,
mean

2. PC, st.
dev

2. PC, %
positive

Real GDP 0.394 0.021 100.0 − 0.031 0.148 27.0

Temperature
anomalies

0.241 0.096 94.6 − 0.014 0.286 48.6

Fossil fuel
consumption

0.018 0.325 54.1 − 0.048 0.413 48.6

Caloric supply 0.236 0.201 91.9 − 0.028 0.420 48.6

Men with
raised blood
pressure

− 0.372 0.128 2.7 0.033 0.169 54.1

Male height at
age 18

0.338 0.135 94.6 − 0.037 0.297 45.9

Fruit and
vegetable
consumption

0.143 0.271 73.0 0.001 0.405 43.2

Alcohol
consumption

− 0.129 0.308 32.4 − 0.011 0.352 56.8

Cigarette
consumption

− 0.199 0.232 21.6 − 0.063 0.401 43.2

usually has one or two (in the case of Spain, three) variables with a high loading,
over 0.5 in absolute value. Cigarette consumption and caloric supply have a loading
over 0.5 in absolute value for the second principal component for 11 countries, then
fruit and vegetable consumption (10 countries), fossil fuel consumption (9), alcohol
consumption (7), male height at age 18 (5), temperature anomalies (2), share of men
with raised blood pressure (1), while real GDP per capita never has a loading over
0.43 in absolute value.

4.4 Effects of external variables onmortality

The changes in the variables and their effect on mortality vary across countries. The
changes in variables between the first and the last year considered and their respective
contribution to log-mortality reduction are presented in Figs. 8 and 9, respectively.
These countries are analyzed in more detail in the Appendix.

The reduction in alcohol consumption in the Netherlands and in Spain appears to
have had a substantial effect on mortality reduction. On the other hand, the effect is
much smaller in Poland, where alcohol consumption actually increased, possibly due
tomore affluence. The effect is small and differs by age in Sweden.Rising temperatures
contributed to strong mortality reductions in Spain and the Netherlands, while having
a negligible effect in Poland and Sweden. The effect is likely due to milder winters,
since heat waves and their impact on mortality are a relatively recent effect. Cigarette
consumption is falling in all four countries and contributes significantly to mortality
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Fig. 8 Change of standardized variables between the first and last year of the time span analyzed by variable,
selected countries

Fig. 9 Contributions to log-mortality reduction between the first and the last year of the time span analyzed
by age and variable, selected countries

123



Modeling and forecasting mortality with economic, environmental…

reductions, as well as increases in GDP. The reduction in fossil fuel consumption has
a substantial effect in Sweden only.

The results are overall in line with the literature: reductions in alcohol and tobacco
consumption drive down mortality, as well as increases in GDP, better cardiovascular
health, increased fruit and vegetable consumption. Somehow surprising are the effects
of caloric supply, with strong increases in the Netherlands and Sweden contributing
to reduction in mortality, while having no or negative effects in Spain and Poland,
respectively. The reduction in fossil fuel consumption had notable positive effects on
mortality in Sweden only, while having little to no effect in the Netherlands, Spain
and Poland. The effect of rising temperatures is also unclear.

Isolating the contribution of multiple variables allows to build scenarios regarding
one ormore variables: in example, cigarette consumption in Swedenwas equal to 1,797
cigarettes per capita in 1975 and 749 in 2014. In standardized terms, consumption fell
from a value of 1.329 to -1.329. A further fall to 500 cigarettes per person would
translate into a reduction of mortality at, say, age 60 by a further 2.66%.

4.5 Robustness checks and alternative specifications

Several alternative specifications of the SEVmodel have been tested, as well as various
covariate sets.

While the number of external variables has no direct effect on model complexity,
since the external factors are principal components of the SVDof the external variables
matrix, it has been tested nevertheless whether excluding certain variables improves
model fit by reducing noise. The tests have been carried out for models covering the
40–90 age range, with a maximum of two principal components and an additional
age-period term. The tested sets are presented in Table 7. No set is clearly superior
in terms of MAD and MAPE, while considering BIC the full variable set performs
best, minimizing the BIC for 11 countries and being the second best choice for 4 more
countries. It is therefore possible to further improve on the results presented in Sect. 4.1
by choosing a different subset of covariates, as the full variable set was chosen for all
countries for comparability.

For both the 0–90 and 40–90 age ranges, it has been investigated whether the
inclusion of an age-period term and different limitations on the number of external
factors can improve model fit. These tests have been carried out with the full covariate
set and the results are presented in Table 8. While more relaxed criteria on inclusion
of principal components of external variables increase fit, the BIC suggests more
stringent limits. For the 0–90 age range, BIC is minimized for most countries with
the inclusion of 3 principal components, while for 6 countries the BIC is minimized
with the inclusion of a fourth principal component. For the 40–90 age range, two to
three principal components are generally sufficient and additional components add
little value. An age-period term markedly improves model fit in all cases.

The age range chosen for this study, 40–90, excludes both younger and older ages.
As shown in Sect. 3.3, the correlation of mortality rates with external variables drops
substantially at ages over 90. In a model covering a larger range of ages, the role of
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Table 7 Alternative variable sets to the base set and number of countries for which the set maximizes MAD
and MAPE and minimizes BIC

Variable set Excluded variables Countries with
maximum MAD

Countries with
maximum MAPE

Countries with
minimum BIC

1 None 5 6 11

2 Temperature
anomalies

3 2 4

3 Temperature
anomalies and
non-stochastic
variables (blood
pressure, height)

4 4 2

4 Temperature
anomalies and
height

4 6 5

5 Temperature
anomalies and
blood pressure

2 0 0

6 Temperature
anomalies, blood
pressure and
fruit/vegetable
consumption

4 6 1

7 Temperature
anomalies, blood
pressure and fossil
fuel consumption

3 4 2

8 Temperature
anomalies and
alcohol
consumption

6 3 8

9 Temperature
anomalies and
cigarette
consumption

6 5 4

Base set of variables: real GDP per capita, temperature anomalies, fossil fuel consumption, caloric supply,
share of men with raised blood pressure, average height at age 18, fruit and vegetable consumption per
capita, alcohol consumption per capita, cigarette consumption per capita. MAPE not finite for Iceland

an age-period term would be to model and consequently forecast those ages for which
external variables hold little explanatory power.

Younger ages, on the other hand, pose different challenges. They are correlated
with external variables, but since over the years they are representing an increasingly
smaller share of total deaths, they are more sensitive to specific events that target those
ages specifically. A telling example is the AIDS epidemic, which had a very strong
effect on male mortality for ages up to 40 until 1995. Its effect on mortality over 40
is briefly discussed in the Appendix when discussing the model results for the USA.
Moreover, the correlation of some variables with mortality rates shows a significant
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Table 8 Parameter sets andnumber of countries forwhich the setmaximizesMADandMAPEandminimizes
BIC

Par.
set

Age
range

Max n.
PC

Variance
threshold

Age-period
term

Countries
with
maximum
MAD

Countries
with
maximum
MAPE

Countries
with
minimum
BIC

A 0–90 5 0.10 Yes 36 25 13

B 0–90 3 0.10 Yes 1 0 22

C 0–90 5 0.10 No 0 0 2

D 40–90 5 0.10 Yes 37 36 4

E 40–90 5 0.10 No 0 0 1

F 40–90 3 0.10 Yes 0 0 6

G 40–90 3 0.15 Yes 0 0 11

H 40–90 2 0.15 Yes 0 0 15

MAPE not finite for twelve countries in age range 0–90, for Iceland in age range 40–90. Seven out of 13
countries have 3 principal components above the variance threshold, and their BIC is therefore the same as
for parameter set B

drop in the age range 20–40 formales, i.e., GDP as evidenced by Seklecka et al. (2019).
While the identification of factors affecting young mortality specifically is outside the
scope of this study, calibration of the model on a per-country basis would benefit from
the inclusion of external variables disproportionately affecting younger ages.

Ultimately, the 40–90 age range has been chosen due to an overall better forecasting
performance compared to the Niu-Melenberg model, with the RMFSE ratio being
lower than 1 for a higher number of countries at all jump-off years tested.

Model specification has a larger effect on the BIC than the choice of covariates:
while testing alternative specifications, the BIC would vary substantially in terms
of countries outperforming the corresponding Lee–Carter model, while as far as the
choice of variables is concerned, once a model outperformed the Lee–Carter model,
it would continue doing so under all sets of variables tested for almost all countries.

4.5.1 Cohort terms

As shown in the previous sections, some countries exhibit cohort effects; therefore,
it is sensible to investigate whether including a cohort term would improve the fit.
Unfortunately, when fitting the model with both an age-period term and a cohort term,
an infinite deviance is produced, preventing a successful estimate of the parameters;
hence, the inclusion of a cohort term requires the omission of the age-period term.

A single-population model with a cohort term and no age-period term has been
estimated for three countries where model residuals suggested a cohort effect: Spain,
Poland and the USA; the results are presented in Table 9. The inclusion of a cohort
term yields mixed results for the USA, where there is a decrease in MAPE and BIC,
but not in MAD, while for Spain and Poland the fit is noticeably worse.

123



M. Dimai

Table 9 Mean absolute deviation
(MAD), mean absolute
percentage error (MAPE) and
Bayesian information criterion
(BIC) for single-population
models with cohort term and no
age-period term

Country MAD MAPE BIC

Spain 61.155 2.247 25,937

Poland 100.395 3.369 33,432

USA 281.718 1.653 39,709

4.5.2 Stationarity of the age-period term

The age-period term bxkt fits trends not captured by the external factors gl, t . But it is
possible that the age-period term captures temporary idiosyncrasies, which vanish in
the long term. To this end, the stationarity of the kt terms has been investigated with
the Phillips–Perron test. For 11 countries, the period term kt is stationary (with a p
value less than 0.05) and therefore for these countries there are no systematic trends
not captured by the external factors gl, t .

5 Discussion

The effect of economic development, environmental and lifestyle factors on mortality
is well documented. Prosperity, living in a clean environment and having healthy
habits all contribute to a long life. Mortality rates and these factors are correlated
and cointegration analysis has shown that this relationship is stable over the long
run even if the individual series are usually non-stationary and also include structural
breaks. Hence, external variables can be credibly incorporated in a stochastic mortality
model. On one hand, this can improve fit and forecasting performance compared to
the Lee–Carter model and to the Niu-Melenberg model which only includes GDP.
In addition to improving model performance, including a wider set of variables can
also improve the interpretability of stochastic mortality models and offer insights
on the relative importance of different factors and how they vary across countries.
This makes it easier to elaborate scenarios considering the trade-offs, i.e., between
economic growth and environmental protection.

The main goal of this study was to build a model that could be useful in scenario
building and policy planning. To this end, expanding the scope of variables included
in the model is crucial. If we don’t model a variable, it is ignored: the optimal policy to
reduce mortality based on a model which only incorporates GDP is to maximize GDP,
nomatter the effect on environment and on public health, which is clearly nonsensical.

Mortality is a complex phenomenon and stochastic mortality modeling is in a
constant trade-off between simple, parsimonious models and more comprehensive
models that capture the multifaceted nature of mortality. The complexity of mortality
is reflected in the fact that in none of the analyzed countries the relationship between
mortality and the other variables could be described by a single principal component.
To put it otherwise, economic prosperity is not enough. Moreover, while GDP features
prominently in the first principal component in all countries, the composition of the
second principal component ismuchmore varied, suggesting that different factors have
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different weight in explaining and predicting country-level mortality. Caloric supply,
cigarette consumption, fossil fuel consumption, a proxy for air quality, fruit and veg-
etable consumption and, to a lesser degree, alcohol consumption feature prominently
in the second principal component.

The differences in the weights of the covariates between countries suggest that
each country, with its own characteristics and evolution of mortality, faces different
challenges. The present analysis,with a fixed set of covariates for all countries, ismeant
to show the potential benefits of a more flexible model. The SEV model with the full
set of external variables outperforms the Lee–Carter model for 18 countries, the Niu-
Melenbergmodel for 12 countries and bothmodels for a diverse set of 11 countries, that
is, Australia, Bulgaria, Hungary, Italy, Japan, Netherlands, Russia, Spain, Ukraine, UK
and USA, plus Canada for which a lack of data for a covariate prevents the calculation
of the Lee–Carter model for the same years. The choice of the variable set has been
shown to have an impact on the BIC and the full variable set minimizes the BIC for just
11 countries (4 of which also outperform the Lee–Carter and Niu-Melenberg models).
One can reasonably conclude that for each individual country, both fit and forecasting
performance can be improved upon with different sets of covariates, tailored on that
country’s characteristics, and an appropriate variable selection.

A more in-depth analysis of the contributions of the various variables to mortality
reductions over the period of analysis has been carried out for four countries. While
GDP accounts for a substantial part of the mortality reductions over the period, the
other variables are important aswell, with effects generally in linewith those estimated
in the literature. Across countries and ages, variables’ importance can differ markedly,
highlighting the need to tailor the models to the specific country’s characteristics and
mortality history. Temperature anomalies—that is, deviations from long-run averages
due towarming—appear to have contributed tomortality reductions in countrieswhere
their effect is non-negligible. This result should be further investigated and could
perhaps be linked to reduced winter mortality. Over the period considered, milder
winters might have had a stronger effect on mortality than hotter summers and heat
waves.

Nevertheless, the choice of covariates appears to have captured the most common
factors influencing mortality. Beyond the external variables, the additional age-period
term has no clear trend across countries and doesn’t have a common pattern for the
age loadings either. Its interpretation varies from country to country, suggesting no
easily identifiable omitted variables. To the extent where the age loadings peak at a
moderately old age (65 years in Italy, 75 in Spain), it could conceivably be interpreted
as the effect of the healthcare system’s ability to reduce mortality beyond national
affluence and lifestyle choices. For a little under a third of all countries considered,
though, it’s a stationary process and thus it may simply capture past idiosyncrasies
with no relevance for forecasting. This suggests that the external factors used actually
captured the relevant trends in mortality.

The inclusion of a diverse set of covariates can improve forecasting performance
upon theNiu-Melenbergmodel, as shown in backtesting.Arguably, though, the biggest
advantage of using covariates covering a number of different factors is that it allows
for wide-ranging model-based scenario planning based on actual historical data. How
would mortality be affected if excise taxes were to be raised to the point that alcohol
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consumption is halved? How would a protracted stagnation impact on mortality?
The impacts on mortality of policy decisions do not concern only policymakers, but
actuaries as well, since policies with a future effect on mortality, like a smoking ban,
have an immediate effect on pricing. Trends in mortality should be modeled using a
range of scenarios incorporating both current trends and stated policy objectives in
order to account for the full uncertainty of all factors.

5.1 Limitations

Even though mortality rates and the external variables used in this study have histori-
cally been correlated, these correlations are not guaranteed to remain valid in future as
well. The covariates are proxies of actual factors that influence mortality and the rela-
tionship between the proxy and the factor may not hold in time, there could be possible
non-linear effects (i.e., temperature anomalies and heat waves) and other unforeseen
factors that may influence mortality may emerge (i.e., vaping as an alternative to
smoking).

While the study refrains from asserting causal relationships between external vari-
ables and mortality, it acknowledges the potential for spurious correlations. It is
important to highlight, however, that existing literature offers credible biological rea-
sons linking mortality to these variables and hence using them for stochastic mortality
modeling is grounded in existing scientific discourse.

Possibly the main difficulty in applying the SEVmodel to forecasts lies in the need
to predict covariates, especially considering the inherent difficulty in forecasting eco-
nomic variables. The incorporation of a broader range of variables both exacerbates
andmitigates this challenge.On the one hand, forecastingmultiple variables adds com-
plexity and uncertainty. On the other hand, errors in forecasting individual variables
are more likely to offset each other, at least partially. Larger errors in a single covariate
have a relatively diminished impact on forecasts compared to single-covariate models
like the Niu-Melenberg. As for how to obtain estimates, the practitioner might either
use expert forecasts, i.e., the International Energy Agency’s scenarios for fossil fuel
consumption, or extrapolative methods.

A purely extrapolative model, despite its apparent simplicity, does not inherently
reduce uncertainty. Rather, it implicitly overlooks the uncertainty linked to the influ-
ence of covariates on mortality. This uncertainty persists whether explicitly modeled
or not; the crucial distinction lies in acknowledging and quantifying this uncertainty
in the forecasting process. Therefore, forecasting covariates, although challenging,
presents a more comprehensive and transparent approach to mortality prediction. This
approach accounts for the inherent uncertainty in external factors affecting mortality
outcomes.

In some countries model residuals evidenced the presence of cohort effects, a well-
known phenomenon in the study of mortality. The model presented allows for the
inclusion of cohort terms at the expense of age-period terms. In general, a cohort term
can improve model fit, but it is not a given and its inclusion should be considered
carefully against the alternatives and considering the estimation difficulties.
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A technical limitation of the model is its need to use uncorrelated factors, which
leads to the use of principal components and therefore limits the direct interpretabil-
ity of the model coefficients. Nevertheless, the impact of a specific variable can be
derived from the model coefficients and this doesn’t limit the model ability to forecast
mortality rates using arbitrary future values of the external variables, which is its main
application. Another limitation of stochastic mortality models is their need of data
for a relatively large number of years, which limits the set of available covariates and
raises questions about the comparability of data across space and time.

A possible avenue for future research would be an extension to the multipopulation
case. On the same note, further research is needed to determine why the importance
of the different variables in the single-population model varies across countries.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10203-024-00434-4.
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