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Abstract
In this paper, we give an overview of (nonlinear) pricing-hedging duality and of its
connection with the theory of entropy martingale optimal transport (EMOT), recently
developed, and that of convex risk measures. Similarly to Doldi and Frittelli (Finance
Stoch 27(2):255–304, 2023), we here establish a duality result between a convex
optimal transport and a utility maximization problem. Differently from Doldi and
Frittelli (Finance Stoch 27(2):255–304, 2023), we provide here an alternative proof
that is based on a compactness assumption. Subhedging and superhedging can be
obtained as applications of the duality discussed above. Furthermore, we provide a
dual representation of the generalized optimized certainty equivalent associated with
indirect utility.
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1 Introduction

Nonlinear option pricing and risk measures are two widely explored topics in Math-
ematical Finance. In Sect. 2, we provide an overview of nonlinear pricing-hedging
duality and its connection with entropy martingale optimal transport (EMOT) and risk
measures. We proceed step-by-step, starting from the classical pricing theory and its
relation with coherent/convex risk measures via the subhedging/indifference pricing,
going through the recent theory of model uncertainty and pathwise finance and its
links with martingale optimal transport. We further discuss the duality between the
EMOT problem and the subhedging price, already established in Doldi and Frittelli
(2023) and here proved under stronger assumptions but with an alternative and simpler
proof.

We synthetically anticipate the discussion in Sect. 2 in the following table, and we
point out that in this paper (as well as in Doldi and Frittelli (2023)) we develop the
duality theory sketched in the last line of the table and provide its financial interpre-
tation.

In row 1 (resp. 2), one finds, in the column “functional form”, the definition of a
coherent (resp. convex) risk measure, while in row 3 (resp. 4) the definition of the
subreplication (resp. indifference buyer) price is sketched. The last four rows treat
the optimal transport problems, in their various formulations: the genuine optimal

Table 1 c is the contingent claim to be evaluated; A is the set of acceptable random variables
defined on the probability space (�,F , P); �(�) is the set of all probabilities on �; P(P) =
{Q ∈ �(�) | Q � P}; Mart(�) is the set of all martingale probabilities on �; M(P) = Mart(�) ∩
P(P); the functions αA, αU , DU in the last column are penalty functions over probability mea-
sures; I�(X) is the stochastic integral of the trading strategy � with respect to the underly-
ing price process X ; �(Q1, Q2) = {Q ∈ �(�) with given marginals (Q1, Q2)}; Mart(Q1, Q2) =
{Q ∈ Mart(�) with given marginals (Q1, Q2)}; Meas(�) is the set of all positive finite measures on �;
the functions ψ and ϕ represent options to be used in static hedging; Sub(c) is the set of static parts of
semistatic subhedging strategies for c (see Eq. (54));U is a concave proper utility functional; and SU is the
associated generalized optimized certainty equivalent

Functional form Sublinear Convex

1 - Coherent
R.M

− inf{m ∈ R | c + m ∈ A},A cone inf
Q∈Q⊆P(P)

EQ [c]

2 - Convex
R.M

− inf{m ∈ R | c + m ∈ A}, A convex inf
Q∈P(P)

(EQ [c] + αA(Q))

3 Subreplic.
price

sup
{
m ∈ R | ∃� : m + I�(X) ≤ c

}
inf

Q∈M(P)
EQ [c]

4 Indiff. price sup {m ∈ R | U (c − m) ≥ U (0)} inf
Q∈M(P)

(EQ [c] + αU (Q))

5 O.T sup
ϕ+ψ≤c

(
EQ1 [ϕ] + EQ2 [ψ]) inf

Q∈�(Q1,Q2)
EQ [c]

6 E.O.T sup
ϕ+ψ≤c

U (ϕ, ψ) inf
Q∈Meas(�)

(EQ [c] + DU (Q))

7 M.O.T sup
[ϕ,ψ]∈Sub(c)

(
EQ1 [ϕ] + EQ2 [ψ]) inf

Q∈Mart(Q1,Q2)
EQ [c]

8 E.M.O.T sup
[ϕ,ψ]∈Sub(c)

SU (ϕ, ψ) inf
Q∈Mart(�)

(EQ [c] + DU (Q))
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On EMOT duality

transport (OT), the entropic optimal transport (EOT), the martingale optimal transport
(MOT) and the entropic martingale optimal transport (EMOT). The associate defini-
tions are sketched in the column “functional form.” In the last two columns, one finds
the corresponding dual representation. While in row 5 (OT) the supremum is taken for
the sum of two option prices (the sum of two expectations), in row 6 the supremum is
taken for the nonlinear evaluation functional U . A similar difference is between rows
7 and 8. Observe that differently from rows 1, 2, 5, 6, in rows 3, 4, 7, 8, the financial
market is present and martingale measures are involved in the dual formulation. In
rows 1, 2, 3, 4, we illustrate the classical setting, where the conditions in the functional
form hold P-a.s., while in the last four rows optimal transport is applied to treat the
robust versions, where the inequalities holds for all elements of �.

To ease readability, a summary of the main symbols and notations used in this paper
can be found in Sect. A.4.

2 Review on risk measures and the pricing-hedging duality

In this section, we provide a brief review of the theory of risk measures and of the
pricing-hedging duality.

2.1 Risk measures and the pricing-hedging duality: the classical setup

The notion of subhedging price is one of the most analyzed concepts in financial
mathematics. Although specular considerations can be done for the superhedging
price, in this introduction we focus on the subhedging price. We are assuming a
discrete-time market model with zero interest rate. It may be convenient for the reader
to have at hand the summary described in Table 1. In the classical setup of stochastic
securities market models, one considers an adapted stochastic process X = (Xt )t ,
t = 0, ..., T , defined on a filtered probability space (�,F , (Ft )t , P), representing
the price of some underlying asset. Let P(P) be the set of all probability measures on
� that are absolutely continuouswith respect to P ,Mart(�) be the set of all probability
measures on � under which X is a martingale and M(P) = P(P) ∩ Mart(�). We
also let H be the class of admissible integrands and I� := I�(X) be the stochastic
integral of X with respect to� ∈ H. Under reasonable assumptions onH, the equality

EQ
[
I�(X)

] = 0 (1)

holds for all Q ∈ M(P) and, as well known, all linear pricing functionals compatible
with no arbitrage are expectations EQ[·] under some probability Q ∈ M(P) such
that Q ∼ P .

We denote with p the subhedging price of a contingent claim Z := c(XT ) written
on the payoff XT of the underlying asset. If we let L(P) ⊆ L0(�,FT , P) be the
space of random payoffs, then p : L(P) → R is defined by

p(Z) := sup
{
m ∈ R | ∃� ∈ H s.t. m + I�(X) ≤ Z , P − a.s.

}
. (2)
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The subhedging price is independent from the preferences of the agents, but it depends
on the reference probability measure via the class of P-null events. It satisfies the
following two key properties:

(CA) Cash Additivity on L(P): p(Z + k) = p(Z) + k, for all k ∈ R, Z ∈ L(P).

(IA) Integral Additivity on L(P): p(Z + I�) = p(Z), for all � ∈ H, Z ∈ L(P).

When a functional p satisfies (CA), then Z , k and p(Z) must be expressed in the
samemonetary unit and this allows for themonetary interpretation of p, as the price of
the contingent claim. This will be one of the key features that wewill require also in the
novel definition of the nonlinear subhedging value. The (IA) property and p(0) = 0
imply that the p price of any stochastic integral I�(X) is equal to zero, as in (1).

Since the seminal works of El Karoui andQuenez (1995), Karatzas (1997), Delbaen
and Schachermayer (1994), it was discovered that, under the no arbitrage assumption,
the dual representation of the subhedging price p is

p(Z) = inf
Q∈M(P)

EQ [Z ] . (3)

More or less in the same period, the concept of a coherent risk measure was
introduced in the pioneering work by Artzner et al. (1999). A coherent risk mea-
sure ρ : L(P) → R determines the minimal capital required to make acceptable a
financial position and its dual formulation is assigned by

− ρ(Y ) = inf
Q∈Q⊆P(P)

EQ [Y ] , (4)

where Y is a random variable representing future profit and loss and Q ⊆ P(P).
Coherent risk measures ρ are convex, cash additive, monotone and positively homo-
geneous. We take the liberty to label both the representations in (3) and (4) as the
“sublinear case ”.

In the study of incomplete markets, the concept of the (buyer) indifference price
pb, originally introduced byHodges andNeuberger (1989), received, in the early 2000,
increasing consideration (see Frittelli (2000), Rouge and El Karoui (2000), Delbaen
et al. (2002), Bellini and Frittelli (2002)) as a tool to assess, consistently with the
no arbitrage principle, the value of nonreplicable contingent claims, and not just to
determine an upper bound (the superhedging price) or a lower bound (the subhedging
price) for the price of the claim. Differently from the notion of subhedging, pb is based
on some concave increasing utility function u : R → [−∞,+∞) of the agent. By
defining the indirect utility function

U (w0) := sup
�∈H

EP [u(w0 + I�(X))],

where w0 ∈ R is the initial wealth, the indifference price pb is defined as

pb(Z) := sup {m ∈ R | U (Z − m) ≥ U (0)} .
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Under suitable assumptions, the dual formulation of pb is

pb(Z) = inf
Q∈M(P)

{
EQ [Z ] + αu(Q)

}
, (5)

and the penalty term αu : M(P) → [0,+∞] is associated with the particular utility
function u appearing in the definition of pb via the Fenchel conjugate of u. We observe
that in case of the exponential utility function u(x) = 1 − exp(−x), the penalty is
αexp(Q) := H(Q, P) − minQ∈M(P) H(Q, P), where

H(Q, P) :=
∫

F

(
dQ

dP

)
dP , if Q � P and F(y) = y ln(y),

is the relative entropy. In this case, the penaltyαexp is a divergence functional, similarly,
e.g., to those considered in (11). Observe that the functional pb is concave, monotone
increasing and satisfies both properties (CA) and (IA), but it is not necessarily linear
on the space of all contingent claims. As recalled in the conclusion of Frittelli (2000),
“there is no reason why a price functional defined on the whole space of bundles
and consistent with no arbitrage should be linear also outside the space of marketed
bundles”.

It was exactly the particular form (5) of the indifference price that suggested to
Frittelli and Rosazza Gianin (2002) to introduce the concept of convex risk measure
(also independently introduced by Föllmer and Schied (2002)), as a map ρ : L(P) →
R that is convex, cash additive and monotone decreasing. Under good continuity
properties, the Fenchel–Moreau theorem shows that any convex risk measure admits
the following representation

− ρ(Y ) = inf
Q∈P(P)

{
EQ [Y ] + α(Q)

}
(6)

for some penalty α : P(P) → [0,+∞]. We will then label functional in the form
(5) or (6) as the “convex case”. As a consequence of the cash additivity property, in
the dual representations (5) or (6) the infimum is taken with respect to probability
measures, namely with respect to normalized nonnegative elements in the dual space,
which in this case can be taken as L1(P). Differently from the indifference price
pb, convex risk measures do not necessarily take into account the presence of the
stochastic security market, as reflected by the absence of any reference to martingale
measures in the dual formulation (6) and (4), in contrast to (5) and (3). The discussion
and comparison regarding convex/coherent risk measures are summarized in rows 1–2
of Table 1, while rows 3–4 compare the subheding price with the indifference price.

2.2 Pathwise finance

In the classical setting of nonlinear pricing recalled before, it was implicitly assumed
that a reference probability P was fixed and known a priori. The financial crises in
2008, however, somehow inspired and motivated an increasing interest in the case
where uncertainty in the selection of a reference probability occurs. The classical
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notions of arbitrage and pricing-hedging duality have been therefore investigated in
this new framework. Twomain approaches have been adopted to deal with uncertainty
in P . One approach consisted in replacing the single reference probability P with a
family of—a priori nondominated—probability measures, leading to the theory of
quasi-sure stochastic analysis (see Bayraktar and Zhang (2016), Bayraktar and Zhou
(2017), Bouchard and Nutz (2015), Cohen (2012), Denis and Martini (2006), Peng
(2019), Soner et al. (2011)). An alternative approach, even more radical, developed
a probability-free, pathwise, theory of financial markets, see Acciaio et al. (2016),
Burzoni et al. (2016), Burzoni et al. (2017), Burzoni et al. (2019), Riedel (2015).
In such framework, optimal transport theory became a very powerful tool to prove
pathwise pricing-hedging duality results with relevant contributions by many authors
(Beiglböck et al. (2013), Davis et al. (2014), Dolinsky and Soner (2014) and Dolinsky
and Soner (2015), Galichon et al. (2014), Henry-Labordère (2013), Henry-Labordère
et al. (2016);Hou andObłój (2018), Tan andTouzi (2013), Bartl et al. (2019), Cheridito
et al. (2020) and Cheridito et al. (2017), Guo and Obłój (2019), Backhoff-Veraguas
and Pammer (2020), Neufeld and Sester (2021), Sester (2023) and Sester (2023)).

These contributions mainly deal with what we labeled above as the sublinear case,
while our main interest in this paper is to develop the convex case theory, as explained
below.

Fromnowon,wewill abandon the classical setup described above andworkwithout
a reference probability measure. We consider a finite horizon T ∈ N, T ≥ 1, and

� := K0 × · · · × KT

for K0, . . . , KT subsets of R and assume that K0 is a singleton, that is, K0 = {x0},
x0 ∈ R. We let X0, . . . , XT be the canonical projections Xt : � → Kt , for t =
0, 1, ..., T . We denote

Mart(�) := {Martingale probability measures for the canonical process of �} ,

and when μ is a measure defined on the Borel σ -algebra of (K0 × · · · × KT ), its
marginals will be denoted with μ0, . . . , μT . We consider a contingent claim c : � →
(−∞,+∞] which is now allowed to depend on the whole path, and for hedging
purposes, we will adopt semistatic trading strategies. In other words, in addition to
dynamic trading in X via the admissible integrands� ∈ H, we may invest in “vanilla”
options ϕt : Kt → R. For modeling purposes, we take vector subspaces Et ⊆ Cb(Kt )

for t = 0, . . . , T , where Cb(Kt ) is the space of real-valued, continuous, bounded
functions on Kt . For each t, Et represents the set of options to be used for hedging,
say affine combinations of options with same maturity t but different strikes. The key
assumption in the robust, optimal transport-based formulation is that the marginals
(Q̂0, Q̂1, ..., Q̂T ) of the underlying price process X are known. This assumption
can be justified (see the seminal papers by Breeden and Litzenberger (1978) and
Hobson (1998), as well as the many contributions by Hobson (2011), Cox and Obłój
(2011a), Cox andObłój (2011b), Cox andWang (2013),Henry-Labordère et al. (2016),
Brown et al. (2001), Hobson and Klimmek (2013)) by assuming the knowledge of a
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sufficiently large number of plain vanilla options maturing at each intermediate date,
implying then the possibility of calibration.

Thus,

M(Q̂0, Q̂1, ...Q̂T ) := {
Q ∈ Mart(�) | Xt ∼Q Q̂t for each t = 0, . . . , T

}

represents the set of arbitrage-free pricing measures that are compatible with the
observed prices of the options. In this framework, the set of admissible trading strate-
gies and of the corresponding stochastic integrals are, respectively, given by

H := {� = [�0, . . . , �T−1] | �t ∈ Cb(K0 × · · · × Kt ;R)} (7)

I :=
{

I�(x) =
T−1∑

t=0

�t (x0, . . . , xt )(xt+1 − xt ) | � ∈ H
}

(8)

and the subhedging duality, obtained in Beiglböck et al. (2013) Th. 1.1, takes the form:

inf
Q∈M(Q̂0,Q̂1,...Q̂T )

EQ [c]

= sup

{
T∑

t=0

EQ̂t
[ϕt ] | ∃� ∈ H s.t.

T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀x ∈ �

}

, (9)

where the RHS of (9) is known as the robust subhedging price of c. Comparing (9)
with the duality between (2) and (3), we observe that: (i) the P−a.s. inequality in (2)
has been replaced by an inequality that holds for all x ∈ �; (ii) in (9) the infimum of
the price of the contingent claim c is taken under all martingale measure compatible
with the option prices, with no reference to the probability P; and (iii) in (9) static
hedging with options is allowed.

As can be seen from the LHS of (9), this case falls into the category labeled above
as the sublinear case, and the purpose of this paper (as well as of Doldi and Frittelli
(2023)) is to investigate the convex case, in the robust setting, using the tools from
entropy optimal transport (EOT) recently developed in Liero et al. (2018).

Let us first describe the financial interpretation of the problems that we are going
to study.

2.3 The dual problem

Differently from the pricing theory in finance where the problem
infQ∈M(Q̂0,Q̂1,...Q̂T ) EQ [c] in the LHS of (9) is a dual problem, in martingale opti-
mal transport (MOT) it represents the primal problem (called henceforth sublinear
case of MOT). In Liero et al. (2018), the primal entropy optimal transport (EOT)
problem takes the form
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inf
μ∈Meas(�)

(

EQ [c] +
T∑

t=0

DFt ,Q̂t
(μt )

)

, (10)

where Meas(�) is the set of all positive finite measures μ on �, and DFt ,Q̂t
(μt ) is a

divergence in the form:

DFt ,Q̂t
(μt ) :=

∫

Kt

Ft

(
dμt

dQ̂t

)
dQ̂t , if μt � Q̂t ; (11)

otherwise, DFt ,Q̂t
(μt ) := +∞. We label with F := (Ft )t=0,...,T the family of diver-

gence functions Ft : R → R∪ {+∞} appearing in (11). Problem (10) represents the
convex case of OT theory. Notice that in the EOT primal problem (10) the typical
constraint thatμ has prescribed marginals (Q̂0, Q̂1, ...Q̂T ) has been relaxed thanks to
the introduction of the divergence functionalDFt ,Q̂t

(μt ), which penalizes those mea-
sures μ that are “far” from some reference marginals (Q̂0, Q̂1, ...Q̂T ). We are then
naturally led to the study of the convex case of MOT, i.e., to the entropy martingale
optimal transport (EMOT) problem

inf
Q∈Mart(�)

(

EQ [c] +
T∑

t=0

DFt ,Q̂t
(Qt )

)

(12)

having also a clear financial interpretation. The marginals are not any more fixed
a priori, to capture the fact that the available information might not be enough to
detect them with satisfactory precision. So the infimum is taken over all martingale
probability measures, but those that are far from some estimate (Q̂0, Q̂1, ...Q̂T ) are
appropriately penalized through DFt ,Q̂t

. Of course, when DFt ,Q̂t
(·) = δQ̂t

(·), we
recover the sublinear MOT problem, where only martingale probability measures
with fixed marginals are allowed. Observe that in addition to the martingale property,
the elements Q ∈ Mart(�) in (12) are required to be probability measures, while
in the EOT (10) theory all positive finite measure are allowed. As it was recalled
after equation (6), this normalization feature of the dual elements (μ(�) = 1) is
not surprising when one deals with dual problems of primal problems with a cash
additive objective functional as, for example, in the theory of coherent and convex
risk measures.

Potentially, we could push our smoothing argument above even further: In place
of the functionals DFt ,Q̂t

(μt ), t = 0, ..., T , we might as well consider more gen-
eral marginal penalizations, not necessarily in the divergence form (11), yielding the
problem

D(c) := inf
Q∈Mart(�)

(

EQ [c] +
T∑

t=0

Dt (Qt )

)

. (13)

These penalizations D0, . . . ,DT will be better specified later.
We point out that an additional entropic term has been added to optimal transport

problems since the seminal work of Cuturi (2013) (see also the survey/monograph
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Peyré and Cuturi (2019)). On this topic, we also cite Nutz andWiesel (2011), Bernton
et al. (2021), Ghosal et al. (2021), De March and Henry-Labordère (2020), Henry-
Labordère (2019), Blanchet et al. (2020). We also point out that in all the works
stemming from Cuturi (2013), the exact matching of the marginals is still required.
In this paper such constraint is absent to take into account uncertainty regarding the
marginals themselves. In Table 1, rows 5–6, one may compare optimal transport with
entropy optimal transport, while in rows 5–7 one may compare optimal transport with
martingale optimal transport.

3 Toward entropymartingale optimal transport

3.1 The primal problem: the nonlinear subhedging value

We provide the financial interpretation of the primal problem which will yield the
EMOTproblem in (12) as its dual. It is convenient to reformulate the robust subhedging
price in the RHS of (9) in a more general setting.

Definition 3.1 Consider a measurable function c : � → R representing a (possi-
bly path dependent) option, the set V of hedging instruments and a suitable pricing
functional π : V → R. Then the robust subhedging value of c is defined by

�π,V (c) := sup {π(v) | v ∈ V s.t. v ≤ c} .

In the classical setting, functionals of this form (and even with a more general
formulation) are known as general capital requirement, see for example Frittelli and
Scandolo (2006). We stress, however, that in Definition 3.1 the inequality v ≤ c
holds for all elements in � with no reference to a probability measure whatsoever.
The novelty in this definition is that a priori π may not be linear and it is crucial to
understand which evaluating functional π we may use. For our discussion, we assume
that the vector subspaces Et ⊆ Cb(Kt ) satisfies R ⊆ Et , for t = 0, . . . , T . We let
E := E0 × · · · × ET , and the Minkowski sum V := E0 + · · · + ET + I, meant as a
vector subspace of the class of continuous functions on �. Suppose we took a linear
pricing rule π : V → R defined via a Q̂ ∈ Mart(�) by

π(v) := EQ̂

[
T∑

t=0

ϕt + I�

]
(i)= EQ̂

[
T∑

t=0

ϕt

]
(i i)=

T∑

t=0

EQ̂t
[ϕt ], (14)

where we used (1) and the fact that Q̂t is the marginal of Q̂. In this case, we would
trivially obtain for the robust subhedging value of c
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�π,V (c) = sup {π(v) | v ∈ V s.t. v ≤ c} (15)

= sup

{
T∑

t=0

EQ̂t
[ϕt ] | ∃� ∈ H s.t.

T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀x ∈ �

}

= sup

{

m ∈ R | ∃� ∈ H, ϕ ∈ E, s.t. m −
T∑

t=0

EQ̂t
[ϕt ] +

T∑

t=0

ϕt + I� ≤ c

}

= sup

{

m ∈ R | ∃� ∈ H, ϕ ∈ E, with EQ̂t
[ϕt ] = 0 s.t. m +

T∑

t=0

ϕt + I� ≤ c

}

,

(16)

where in the last equality we replaced ϕt with (EQ̂t
[ϕt ] − ϕt ) ∈ Et , which satisfies:

EQ̂t

[
EQ̂t

[ϕt ] − ϕt

]
= 0. (17)

Interpretation: �π,V (c) is the supremum amount m ∈ R for which we may buy zero-
cost portfolios of options ϕt and dynamic strategies � ∈ H such that m +∑T

t=0 ϕt +
I� ≤ c, where the values of both the portfolios of options and the stochastic integrals
are computed as the expectation under the samemartingalemeasure (Q̂ for the integral
I�; its marginals Q̂t for each option ϕt ).

However, as mentioned above when presenting the indifferent price pb, there is a
priori no reason why one has to allow only linear functional in the evaluation of v ∈ V .
We thus generalize the expression for �π,V (c) by considering valuation functionals
S : V → R and St : Et → R more general than EQ̂[·] and EQ̂t

[·].
Nonetheless, in order to be able to repeat the same key steps we used in (15)–(16)

and therefore to keep the same interpretation, we shall impose that such functionals S
and St satisfy the property in (17) and the two properties (i) and (ii) in Eq. (14), that
is:

(a) St (ϕt + k) = St (ϕt )+ k and St (0) = 0, for all ϕt ∈ Cb(Kt ), k ∈ R, t = 0, . . . , T .

(b) S

(
T∑

t=0
ϕt + I�(x)

)
= S

(
T∑

t=0
ϕt

)
for all � ∈ H and ϕ ∈ E .

(c) S

(
T∑

t=0
ϕt

)
=

T∑

t=0
St (ϕt ) for all ϕ ∈ E .

We immediately recognize that (a) is the cash additivity (CA) property on Cb(Kt )

of the functional St and (b) implies the integral additivity (IA) property on V . As a
consequence, repeating the same steps in (15)–(16), we will obtain as primal problem
the nonlinear subhedging value of c :
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P(c) = sup {S(v) | v ∈ V s.t. v ≤ c}

= sup

⎧
⎨

⎩

T∑

t=0

St (ϕt ) | ∃� ∈ H s.t.
T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀x ∈ �

⎫
⎬

⎭
(18)

= sup

⎧
⎨

⎩
m ∈ R | ∃� ∈ H, ϕ ∈ E, with St (ϕt ) = 0 s.t. m +

T∑

t=0

ϕt + I� ≤ c

⎫
⎬

⎭
, (19)

to be compared with (16).
Interpretation: P(c) is the supremum amount m ∈ R for which we may buy zero-

value portfolios of options ϕt and dynamic strategies� ∈ H such thatm+∑T
t=0 ϕt +

I� ≤ c, where the values of both the portfolios of options and the stochastic integrals
are computed with the same functional S.

3.2 Stock additivity

Before further elaborating on these issues, let us introduce the concept of stock additiv-
ity, which is the natural counterpart of properties (IA) and (CA)whenwe are evaluating
hedging instruments depending solely on the value of the underlying stock X at some
fixed date t ∈ {0, . . . , T }. Let Idt be the identity function on Kt

Idt : xt �→ xt .

We recall that the set of hedging instruments is denoted by Et ⊆ Cb(Kt ) and we will
suppose that Idt ∈ Et (that is, we can use units of stock at time t for hedging) and that
R ⊆ Et (that is, deterministic amounts of cash can be used for hedging as well).

Definition 3.2 A functional pt : Et → R is stock additive on Et if pt (0) = 0 and

pt (ϕt + αt Idt + λt ) = pt (ϕt ) + αt x0 + λt ∀ϕt ∈ Et , λt ∈ R, αt ∈ R .

We now clarify the role of stock additive functionals in our setup. Suppose that
St : Et → R are stock additive on Et , t = 0, . . . , T . It can be shown (see Lemma A.3)
that if there exist ϕ,ψ ∈ E0× ...×ET and� ∈ H such that

∑T
t=0 ϕt = ∑T

t=0 ψt + I�

then
T∑

t=0

St (ϕt ) =
T∑

t=0

St (ψt ).

This allows us to define a functional S : V = E0 + · · · + ET + I → R by

S(υ) :=
T∑

t=0

St (ϕt ), for υ =
T∑

t=0

ϕt + I�. (20)
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Then S is a well-defined, integral additive functional on V , and S, S0, . . . , ST satisfy
the properties (a), (b), (c). There is a natural way to produce a variety of stock additive
functionals, as explained in Example 3.3.

Example 3.3 Consider a martingale measure Q̂ ∈ Mart(�), a concave nondecreasing
utility function ut : R → [−∞,+∞), satisfying ut (0) = 0 and ut (xt ) ≤ xt ∀xt ∈ R,
and define

UQ̂t
(ϕt ) := sup

α∈R, λ∈R

(∫

�

ut (ϕt (xt ) + αxt + λ) dQ̂t (xt ) − (αx0 + λ)

)
. (21)

If we take St (ϕt ) = UQ̂t
(ϕt ), then, as shown in Lemma 5.2, the stock additivity

property is satisfied for these functionals. Two relevant examples of St = UQ̂t
are

those corresponding to linear or exponential utility functions (see Sect. 5.1). For a
linear utility ut (x) = x , we get

UQ̂t
(ϕt ) = EQ̂t

[ϕt ].

For the exponential utility ut (x) = 1 − e−x , we obtain

UQ̂t
(ϕt ) = EQα̂ [ϕt (xt )] + H(Qα̂, Q̂t ) = min

Q∈Mart(K0×Kt )

(
EQ[ϕt (xt )] + H(Q, Q̂t )

)

(22)
where α̂ ∈ R satisfies the martingale condition:

EQα̂ [Idt ] = x0 (23)

for
dQα

d Q̂
:= exp(−ϕt (xt ) − αxt )

Ê[exp(−ϕt (xt ) − αxt )]
, (24)

using the notation Ê = EQ̂ , H(Q, Q̂) for the relative entropy and Mart(K0 × Kt ) =
{Q ∈ Prob(Kt ) | EQ[Idt ] = x0} (see Propositions 5.4 and 5.5 for details).

When we consider stock additive functionals S0, . . . , ST that induce the functional
S as explained in (20), we can focus our attention to the optimization problem (18)
or (19), that will be referred to as our primal problem. We mention at this point
that different formulations of nonlinear subhedging prices can be already found in
the literature, see Föllmer and Schied (2016), Cheridito et al. (2017), Pennanen and
Perkkiö (2019). We refer to Doldi and Frittelli (2023) Sect. 2.3 for further discussion
of this related literature.
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3.3 Entropymartingale optimal transport duality

It was proved in Doldi and Frittelli (2023) Theorem 3.4 that under fairly general
assumptions if

Dt (Qt ) := sup
ϕt∈Et

(
St (ϕt ) −

∫

Kt

ϕt dQt

)
for Qt ∈ Prob(Kt ), t = 0, . . . , T ,

then D(c) = P(c), namely

inf
Q∈Mart(�)

(

EQ [c] +
T∑

t=0

Dt (Qt )

)

= sup

{
T∑

t=0

St (ϕt ) | ∃� ∈ H s.t.
T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀x ∈ �

}

.

(25)

In the particular case of S0, . . . , ST induced by utility functions, as explained in
Example 3.3, this yields the duality

inf
Q∈Mart(�)

(

EQ [c] +
T∑

t=0

DFt ,Q̂t
(Qt )

)

= sup

{
T∑

t=0

UQ̂t
(ϕt ) | ∃� ∈ H s.t.

T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀x ∈ �

}

.

(26)

The functions Ft appearing inDFt ,Q̂t
, defined in (11), are associated with the utility

functions ut appearing in UQ̂t
via the conjugacy relation:

Ft (y) := v∗
t (y) = sup

xt∈R
{xt y − v(y)} = sup

xt∈R
{ut (xt ) − xt y} , y ∈ R,

where v(y) := −u(−y). Thus, depending on which utility function u is selected
in the primal problem in the RHS of (26) to evaluate the options through UQ̂t

, the
penalization term DFt ,Q̂t

in (26) has a particular form induced by Ft = v∗
t . In the

special case of linear utility functions ut (xt ) = xt , we recover the sublinear MOT
theory. Indeed, in this case, v∗

t (y) = +∞, for all y �= 1 and v∗
t (1) = 0, so that

DFt ,Q̂t
(·) = δQ̂t

(·),

and thus, we obtain the robust pricing-hedging duality (9) of the classical MOT. For
the exponential utility ut (x) = 1−e−x , one can verify thatDFt ,Q̂t

(Qt ) = H(Qt , Q̂t )

(see (59)).
In this work, we focus on the case of compact underlying space which allows us

to provide an alternative, simpler proof of the duality (25).
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To achieve this, we first need to present a more general setting (which will lead
to the duality (28)), and then, we show how to recover (25) from (28). Following
Doldi and Frittelli (2023), we start by introducing two general functionals U and DU

that are associated through a Fenchel–Moreau-type relation (see (31)). The functional
U : E → [−∞,+∞) is defined on the vector space E ⊆ Cb(�;RT+1) consisting of
continuous and bounded functions defined on some Polish space � and with values in
R
T+1, while DU : ca(�) → (−∞,+∞] with ca(�) being the set of all finite signed

Borel measures on�. As better discussed later, we can think at E as the set of financial
instruments that can be used for hedging, while at U as the evaluation functional of
the hedging instruments.

The map U is not necessarily cash additive. In order to turn U in a cash additive
functional, we then rely on the notion of the optimized certainty equivalent (OCE)
that was introduced in Ben-Tal and Teboulle (1986) and further analyzed in Ben Tal
and Ben-Tal and Teboulle (2007). We introduce the generalized optimized certainty
equivalent associated with U as the functional SU : E → [−∞,+∞] defined by

SU (ϕ) := sup
ξ∈RT+1

(

U (ϕ + ξ) −
T∑

t=0

ξt

)

, ϕ ∈ E . (27)

As it is easily recognized, any OCE is, except for the sign, a particular convex risk
measure, and so, it is cash additive. The cash additivity SU (ϕ+ξ) = SU (ϕ)+∑T

t=0 ξt
of the map SU will ensure that in the problem (10) the elements μ ∈Meas(�) are
normalized, i.e., are probability measures. A family of examples of SU can be built
by considering U (ϕ) = ∑T

t=0UQ̂t
(ϕt ), with Q̂t being the marginal of Q̂ ∈ Mart(�)

and UQ̂t
as in Example 3.3. In particular, for a linear utility function ut (x) = x ,

U (ϕ) = SU (ϕ) = ∑T
t=0 EQ̂t

[ϕt ] since U already satisfies cash additivity.
In Theorem 4.4, we then prove the following duality

inf
Q∈Mart(�)

(
EQ [c(X)] + DU (Q)

) = sup
ϕ∈Ssub(c)

SU (ϕ) (28)

where

Ssub(c) :=
{

ϕ ∈ dom(U ) | ∃� ∈ H s.t.
T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀ x ∈ �

}

.

(29)
Observe that

sup
ϕ∈Ssub(c)

SU (ϕ)

= sup
�∈H

{

sup

{

SU (ϕ) | ϕ ∈ dom(U ),

T∑

t=0

ϕt (xt ) + I�(x) ≤ c(x) ∀ x ∈ �

}}

,

which is equal to the RHS of (43). Referring to the class of the above examples and
for a fixed Q̂, we have for a linear utility function DU (Q) = ∑T

t=0 δQ̂t
(Q) where
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δA = ∞1Ac , corresponding to the classical MOT problem, while for an exponential
utility DU (Q) = ∑T

t=0 H(Qt , Q̂t ).
Note that the aforementioned Theorem 4.4, which in principle could be consid-

ered as a corollary of Doldi and Frittelli (2023) Theorem 2.4 (see Doldi and Frittelli
(2023) Corollary 2.5), is obtained by a different technique, which allows for avoiding
much of the technicalities involved in the noncompact case. Indeed, we first show
a Kantorovich-type duality result for a generalization of the EOT problem (10) (see
Theorem 4.3).We then deduce (28) following closely Beiglböck et al. (2013) bymeans
of a minimax argument. The duality (25) is then deduced in Sect. 4.3, Theorem 4.8. In
Sect. 5.1, we provide an example of application, obtaining a nonlinear pricing-hedging
duality for the stock additive pricing functionals of the type in Example 3.3. Finally, in
Sect. 5.2 we show the flexibility of our previous result beyond subhedging and super-
hedging dualities. Indeed, we prove a dual robust representation of the generalized
optimized certainty equivalent associated with the indirect utility function. A recap on
the EMOT problem is contained in row 8 of Table 1.

4 Main results

The main duality in Theorem 4.4 is obtained applying a preparatory result stated in
Theorem 4.3 that we now illustrate.

4.1 A generalized optimal transport duality

We introduce some notations used in the sequel. For unexplained concepts on measure
theory, we refer to Appendix A.1. We let � be a Polish Space, B(�) its Borel sigma
algebra and define the following sets:

ca(�) := {γ : B(�) → (−∞, +∞) | γ is a finite signed Borel measure on �} ,

Meas(�) := {μ : B(�) → [0, +∞) | μ is a nonnegative finite Borel measure on �},
Prob(�) := {Q : B(�) → [0, 1] | Q is a probability Borel measure on �}.

Cb(�,RM ) := (Cb(�))M = {ϕ : � → R
M | ϕ is bounded and continuous on �}.

We let E ⊆ Cb(�;RM+1) be a vector subspace, U : E → [−∞,+∞) be a proper
concave functional and set

dom(U ) := {ϕ ∈ E | U (ϕ) > −∞} (30)

and
V (ϕ) := −U (−ϕ).
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We define D : ca(�) → (−∞,+∞] by

D(γ ) := sup
ϕ∈E

ϕ=(ϕ1,...,ϕM )

(

U (ϕ) −
M∑

m=0

∫

�

ϕmdγ

)

= sup
ϕ∈E

(
M∑

m=0

∫

�

ϕmdγ − V (ϕ)

)

, γ ∈ ca(�). (31)

D is a convex functional and is σ(ca(�), E)- lower semicontinuous, even if we do
not require that U is σ(E, ca(�))-upper semicontinuous.

The following assumption will hold throughout all the paper without further men-
tion.

Standing Assumption 4.1 D is proper, i.e.,dom(D) = {γ ∈ ca(�) | D(γ ) < +∞} �=
∅.

Remark 4.2 So far, we have introduced the functionals U and D by fixing U and
then defining D by duality. As already discussed in Doldi and Frittelli (2023), an
alternative approach could be to do the converse. Let D : ca(�) → (−∞,+∞] be a
proper convex functional that is σ(ca(�), E) -lower semicontinuous for some vector
subspace E ⊆ Cb(�,RM+1). Set now V the Fenchel–Moreau (convex) conjugate of
D, i.e.,

V (ϕ) := sup
γ∈ca(�)

(
M∑

m=0

∫

�

ϕm d γ − D(γ )

)

, ϕ ∈ E, (32)

and
U (ϕ) := −V (−ϕ), ϕ ∈ E . (33)

By the Fenchel–Moreau theorem, it holds that D if of the form (31).

Theorem 4.3 Let c : � → (−∞,+∞] be proper lower semicontinuous with compact
sublevel sets and assume the following condition on U holds1:

∃ a sequence (kn)n ⊆ R
M+1 with lim sup

n

M∑

m=0

knm = +∞ and U (−kn) > −∞ ∀ n .

(34)
Then

inf
μ∈Meas(�)

(∫

�

c dμ + D(μ)

)
= sup

ϕ∈�(c)
U (ϕ) ,

where

�(c) :=
{

ϕ ∈ dom(U ) |
M∑

m=0

ϕm(x) ≤ c(x) ∀x ∈ �

}

. (35)

1 The condition (34) is a finiteness requirement. It is straightforwardly satisfied if the functional U is
real-valued on the whole E .
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Proof We start applying (31) to get that

∫

�

c dμ + D(μ) =
∫

�

c dμ + sup
ϕ∈E

(

U (ϕ) −
M∑

m=0

∫

�

ϕm dμ

)

.

We then consider L : Meas(�) × dom(U ) → (−∞,+∞] defined by

L(μ, ϕ) :=
∫

�

(

c −
M∑

m=0

ϕm

)

dμ +U (ϕ),

and we set M := {μ ∈ Meas(�) | ∫
�
c dμ < +∞}. We observe that L is real-valued

on M × dom(U ), and for any μ ∈ Meas(�)\M , we have L(μ, ϕ) = +∞ for all
ϕ ∈ dom(U ) (since c is bounded from below). We also see that setting C := dom(U )

inf
μ∈Meas(�)

(∫

�

cdμ + D(μ)

)
= inf

μ∈Meas(�)
sup
ϕ∈C

L(μ, ϕ) = inf
μ∈M sup

ϕ∈C
L(μ, ϕ). (36)

The aim is now to interchange sup and inf in RHS of (36), using Theorem A.5.
To this end, without loss of generality we can assume α := supϕ∈C infμ∈Meas(�)

L(μ, ϕ) < +∞ and we have to find ϕ ∈ C and C > α such that the sublevel
set μC := {μ ∈ Meas(�) | L(μ, ϕ) ≤ C} is weakly compact. The functional c is
proper, lower continuous and has compact sublevel sets; hence, it attains a minimum
on �. Therefore, for any ε > 0 we can choose, by Assumption (34), a deterministic
vector ϕ ∈ C having all components ϕm equal to some constant −knm < 0, such that
ϕ ∈ dom(U ) and

inf
x∈�

(

c(x) −
M∑

m=0

ϕm(x)

)

> ε > 0.

For such choice of ϕ and for a sufficiently big constant C > α, there exists another
constant D := C −U (ϕ) ≥ 0, independent of μ, such that

μC =
{

μ ∈ Meas(�) |
∫

�

(

c −
M∑

m=0

ϕm

)

dμ ≤ D

}

(37)

=
{

μ ∈ Meas(�) |
∫

�

(

c −
M∑

m=0

ϕm − ε

)

dμ + εμ(�) ≤ D

}

. (38)

Consequently, the set μC is:

1. Nonempty, as the measure μ ≡ 0 belongs to μC .
2. Weakly closed. Indeed, for each ϕ ∈ C the function c − ϕ is lower semicon-

tinuous on �, and so, it is the pointwise supremum of bounded continuous
functions (cn)n ⊆ Cb(�). For each n, μ �→ ∫

�
cn dμ is weakly continuous

on Meas(�), by definition. Hence, by monotone convergence theorem the map
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μ �→ ∫
�

(
c −∑M

m=0 ϕm

)
dμ is the pointwise supremum of weakly continuous

functions and is then lower semicontinuous with respect to the weak topology. We
conclude that for each ϕ ∈ C the functional L( · , ϕ) is weakly lower semicontin-
uous, and has closed sublevel sets. This implies that in particular μC is weakly
closed, using (37).

3. Bounded: having a sequence of measures in μC with unbounded total mass would
result in a contradiction with the constraint in (38), taking into account that c −∑M

m=0 ϕm − ε ≥ 0 and ε > 0.
4. Tight: let 0 ≤ f := c − ∑M

m=0 ϕm − ε. Since εμ(�) ≥ 0 for all μ ∈ Meas(�),
by (37) the inclusion μC ⊆ {μ ∈ Meas(�) | ∫

�
f dμ ≤ D} holds. Now it is easy

to check that for all μ ∈ μC and α > 0

D ≥
∫

�

f dμ ≥
∫

f >α

f dμ ≥ αμ({ f > α}) .

Observing that the sublevels of f are compact, by lower semicontinuity of c and
compactness of its sublevel sets, we see that { f > α} are complementaries of
compact subsets of � and can be taken with arbitrarily small measure, just by
increasing α, uniformly in μ ∈ μC . Thus, tightness follows.

5. A subset of M .

These properties in turn yield σ( Meas(�), Cb(�))-compactness by Prohorov theo-
rem (e.g., Föllmer and Schied (2016) TheoremA.45). As a consequence, by Item 5,μC

is compact in the relative topology induced on M , namely σ(Meas(�), Cb(�))|M . We
nowmay apply TheoremA.5. Indeed,L is real-valued onM×C. Items 1 and 2 of The-
oremA.5 are fulfilled for: A = M endowed with the topology σ(Meas(�), Cb(�))|M ;
B = C; and C taken as above. We only justify explicitly lower semicontinuity
σ(Meas(�), Cb(�))|M for Item 1, which can be obtained arguing as in Item 2. Hence,
we may interchange sup and inf in RHS of (36), obtaining

inf
μ∈M sup

ϕ∈C
L(μ, ϕ) = sup

ϕ∈C
inf

μ∈M L(μ, ϕ) = sup
ϕ∈C

inf
μ∈Meas(�)

L(μ, ϕ) (39)

where the last equality follows from the fact that L(μ, ϕ) = +∞ on the comple-
mentary of M in Meas(�) for every ϕ ∈ C. It is now easy to check that for every
ϕ ∈ C

inf
μ∈Meas

L(μ, ϕ) =
{
U (ϕ) if

∑M
m=0 ϕm(x) ≤ c(x)∀ x ∈ �

−∞ otherwise;

thus,
sup
ϕ∈C

inf
μ∈Meas(�)

L(μ, ϕ) = sup
ϕ∈�(c)

U (ϕ)

which concludes the proof, given (36) and (39). ��
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4.2 The entropymartingale optimal transport duality

In order to describe a suitable theory to develop the entropy optimal transport duality
in a dynamic setting, in this section we will adopt a particular product structure of the
set �.

To this end, in addition to the notations already introduced at the beginning of
Sect. 4.1, we consider a finite horizon T ∈ N, T ≥ 1, and

� := K0 × · · · × KT (40)

for K0, . . . , KT ⊆ R, with K0 = {x0}, x0 ∈ R. We denote with X0, . . . , XT the
canonical projections Xt : � → Kt , and we set X = [X0, . . . , XT ] : � → R

T+1,
to be considered as discrete-time stochastic process X representing the price of an
underlying asset. We denote with:

Mart(�) := {Martingale probability measures for the canonical process of �}.
(41)

When μ ∈ Meas(K0 × · · · × KT ), its marginals will be denoted with: μ0, . . . , μT .
We recall, respectively, from (7) and (8), that H is the set of admissible trading

strategies and I is the set of elementary stochastic integral. We take E = E0×· · ·×ET
where Et ⊆ Cb(K0 ×· · ·×Kt ) is a vector subspace, for every t = 0, . . . , T . Then E is
clearly a vector subspace of Cb(�;RT+1), and in the stochastic process interpretation,
its elements are processes adapted to the natural filtration of the process X .

We suppose that U : E → [−∞,+∞) is proper and concave, D : Meas(�) →
(−∞,+∞] is defined in (31), and as in (27),

SU (ϕ) := sup
ξ∈RT+1

(

U (ϕ + ξ) −
T∑

t=0

ξt

)

, ϕ ∈ E .

The following result establishes the duality in (43). The result here presented can be
obtained as a corollary of Theorem 2.4 of Doldi and Frittelli (2023) where, differently
from below, there is no assumption on the compactness of the sets K0, . . . , KT . We
provide, however, a proof that is different from Doldi and Frittelli (2023) and simpler,
yet holding under the compactness assumption.

Theorem 4.4 Assume that � := K0 × · · · × KT for compact sets K0, . . . , KT ⊆ R,
that c : � → (−∞,+∞] is lower semicontinuous, thatD : Meas(�) → (−∞,+∞]
is lower bounded on Meas(�) and proper. Suppose also U satisfies (34), and that

N :=
{
μ ∈ Meas(�) ∩ dom(D) |

∫

�

c dμ < +∞
}

�= ∅
and dom(U ) + R

T+1 ⊆ dom(U ). (42)
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Then the following holds:

inf
Q∈Mart(�)

(
EQ [c(X)] + D(Q)

) = sup
�∈H

sup
ϕ∈��(c)

SU (ϕ) (43)

where for each � ∈ H

��(c)

:=
{

ϕ ∈ dom(U ) |
T∑

t=0

ϕt (xt )+
T−1∑

t=0

�t (x0, . . . , xt )(xt+1−xt )≤c(x) ∀ x ∈�

}

.

(44)

Proof The first part of the proof is inspired by Beiglböck et al. (2013) Equations
(3.4)–(3.3)–(3.2)–(3.1).

inf
Q∈Mart(�)

(
EQ [c(X)] + D(Q)

)
(45)

= inf
Q∈Mart(�)

sup
�∈H

(

EQ

[

c(X) −
T−1∑

t=0

�t (X0, . . . , Xt )(Xt+1 − Xt )

]

+ D(Q)

)

(46)

= inf
Q∈Prob(�)

sup
�∈H

(

EQ

[

c(X) −
T−1∑

t=0

�t (X0, . . . , Xt )(Xt+1 − Xt )

]

+ D(Q)

)

(47)

= inf
Q∈Prob(�)

sup
�∈H
λ∈R

(

EQ

[

c(X) −
T−1∑

t=0

�t (X0,. . ., Xt )(Xt+1−Xt )+λ

]

− λ+D(Q)

)

(48)

= inf
μ∈Prob(�)

sup
�∈H
λ∈R

(∫

�

[
c(x) − I�(x) + λ

]
dμ(x) − λ + D(μ)

)
(49)

= inf
μ∈Meas(�)

sup
�∈H
λ∈R

(∫

�

[
c − I� + λ

]
dμ − λ + D(μ)

)
(50)

= inf
μ∈Meas(�)

sup
�∈H

λ∈RT+1

(∫

�

[

c − I� +
T∑

t=0

λt

]

dμ −
T∑

t=0

λt + D(μ)

)

. (51)

The above equality chain is justified as follows: (45) = (46) is trivial; (46) = (47)
follows using the same argument as in Beiglböck et al. (2013) Lemma 2.3, which
yields that the inner supremum explodes to +∞ unless Q is a martingale measure on
�; (47) = (48) and (48) = (49) are trivial; (49) = (50) follows observing that the inner
supremum over λ ∈ R explodes to +∞ unless μ(�) = 1; (50) = (51) is trivial.
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We define now K : Meas(�) × (H × R
M ) → (−∞,+∞] as

K(μ,�, λ) :=
∫

�

[

c − I� +
T∑

t=0

λt

]

dμ −
T∑

t=0

λt + D(μ) .

From (42),we observe thatK is real-valued onN×(H×R
T+1) and that K (μ,�, λ) =

+∞ ifμ ∈ Meas(�)\N , for all (�, λ) ∈ H×R
T+1. This, together with our previous

computations, provides

inf
Q∈Mart(�)

(
EQ [c(X)] + D(Q)

)

= inf
μ∈Meas(�)

sup
�∈H

λ∈RT+1

K(μ,�, λ) = inf
μ∈N

sup
�∈H

λ∈RT+1

K(μ,�, λ). (52)

As in the proof of Theorem 4.3, we wish to apply the minimax theorem A.5 in order
to interchange inf and sup in RHS of (52), and without loss of generality, we can
assume that α := sup �∈H

λ∈RT+1
infμ∈N K(μ,�, λ) < +∞. The functional K is real-

valued on N × (H × R
T+1) and convexity in Item 1, concavity in 2 of Theorem

A.5 are clearly satisfied. We have to find � ∈ H, λ ∈ R
T+1 and C > α such that

the sublevel set MC := {μ ∈ Meas(�) | K(μ,�, λ) ≤ C} is weakly compact. Fix a
ε > 0. As the functional c is lower semicontinuous on the compact �, it is lower
bounded on � and we can take � = 0 and λ sufficiently big in such a way that
infx∈�(c(x) +∑T

t=0 λt ) > ε. For such a choice of (�, λ), we have that MC satisfies

MC ⊆
{

μ ∈ Meas(�) |
∫

�

[

c +
T∑

t=0

λt − ε

]

dμ(x) + εμ(�)

≤ C + λ − inf
μ∈Meas(�)

D(μ) =: D
}

where D ∈ R sinceD(·) is lower bounded by hypothesis. By (42) and for large enough
C, the set MC is nonempty, and the same arguments in Items 2, 3 and 4 of the proof
of Theorem 4.3 can be applied to conclude that the set MC is σ(Meas(�), Cb(�))-
compact. Moreover, we see that MC ⊆ N ; hence, it is also compact in the topology
σ(Meas(�), Cb(�))|N . We finally verify σ(Meas(�), Cb(�))|N -lower semicontinu-
ity ofK(·,�, λ) onN for every (�, λ) ∈ (H×R

T+1). To see this, observe that arguing

as in Item2of the proof ofTheorem4.3weget thatμ �→ ∫
�

[
c − I� +∑T

t=0 λt

]
dμ−

∑T
t=0 λt is σ(Meas(�), Cb(�))|N -lower semicontinuous, while D is by definition

σ(ca(�), E)|N lower semicontinuous (being supremum of linear functionals each
continuous in such a topology). Since sum of lower semicontinuous functions is
lower semicontinuous, the desired lower semicontinuity of K(·,�, λ) follows. All
the hypotheses of Theorem A.5 are now verified, and we may then interchange sup
and inf in RHS of (52) and obtain
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inf
μ∈N

sup
�∈H

λ∈RT+1

K(μ,�, λ) = sup
�∈H

λ∈RT+1

inf
μ∈N

K(μ,�, λ)
(�)= sup

�∈H
λ∈RT+1

inf
μ∈Meas(�)

K(μ,�, λ)

= sup
�∈H

λ∈RT+1

inf
μ∈Meas(�)

(∫

�

[

c − I� +
T∑

t=0

λt

]

dμ + D(μ)

)

−
T∑

t=0

λt , (53)

where in (�) we used the fact that K(μ,�, λ) = +∞ on the complementary ofN in
Meas(�), for every (�, λ) ∈ H × R

T+1.
We apply now Theorem 4.3 to the inner infimum with the cost functional c− I� +∑T
t=0 λt , observing that, since we are assuming dom(U ) + R

T+1 = dom(U ) (see
(42)), the condition (34) is satisfied. We get that

(53) = sup
�∈H

λ∈RT+1

sup
ϕ∈��,λ(c)

(

U (ϕ) −
T∑

t=0

λt

)

where ��,λ(c), which depends on �,λ ∈ H×R
T+1, is defined according to (35) by

��,λ(c) =
{

ϕ ∈ dom(U ),

T∑

t=0

ϕt (x) ≤ c(x) − I�(x) +
T∑

t=0

λt ∀ x ∈ �

}

.

From (42), (ϕt − λt )t ∈ dom(U ) and we can absorb λ in ϕ obtaining ��,λ(c) =
��(c) + λ, ∀ λ ∈ R

T+1, � ∈ H , with ��(c) given in (44), so that

(53) = sup
�∈H

λ∈RT+1

sup
ϕ∈��(c)

(

U (ϕ + λ) −
T∑

t=0

λt

)

= sup
�∈H

sup
ϕ∈��(c)

sup
λ∈RT+1

(

U (ϕ + λ) −
T∑

t=0

λt

)

.

We now recognize the expression in (27) and we conclude that

inf
μ∈Meas(�)

sup
�∈H

λ∈RT+1

K(μ,�, λ) = (53) = sup
�∈H

sup
ϕ∈��(c)

SU (ϕ) ,

and consequently, recalling our minimax argument,

inf
Q∈Mart(�)

(
EQ [c(X)] + D(Q)

) Eq.(52)= (53) = sup
�∈H

sup
ϕ∈��(c)

SU (ϕ) .

��
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Remark 4.5 (i) The assumptions ofTheorem4.4 are reasonablyweak and are satisfied,
for example, if: dom(U ) = E , there exists a μ̂ ∈ Meas(�) ∩ ∂U (0) such that
c ∈ L1(μ̂), and c is lower semicontinuous. Indeed, for all μ ∈ Meas(�),D(μ) ≥
U (0) − 0 > −∞. Clearly dom(U ) +R

T+1 = dom(U ). Finally, μ̂ ∈ N , because
c ∈ L1(μ̂) and −∞ < U (0) ≤ D(μ̂) ≤ 0, by definition of D.

(ii) The step (46) = (47) is the crucial point where compactness of the sets
K0, . . . , KT ⊆ R is necessary for a smooth argument, since integrability of the
underlying stock process is in this case automatically satisfied for all Q ∈ Prob(�),
not only for Q ∈ Mart(�). Also, compactness is key in guaranteeing that the cost
functional c− I� +∑

t λt is bounded from below, in order to apply Theorem 4.3.

The following result guarantees that, under suitable assumptions, the infimum in
(43) is attained. A similar result can be also found in Corollary 2.5 of Doldi and Frittelli
(2023).

Proposition 4.6 Suppose that LHS of (43) is finite and that D|Meas(�) is σ(Meas(�),

Cb(�))-lower semicontinuous. Then, under the same the assumptions of Theorem 4.4,
the problem in LHS of (43) admits an optimum.

Proof Similarly to what we argued in Item 2 of the proof of Theorem 4.3, the map
μ �→ ∫

�
c dμ is σ(Meas(�), Cb(�))-lower semicontinuous, and we deduce the lower

semicontinuity of

Q �→ J (Q) := EQ [c] +
T∑

t=0

D(Q), Q ∈ Mart(�).

Moreover, forC big enough the sublevel {Q ∈ Mart(�) | J (Q) ≤ C} is nonempty
(since we are assuming LHS of (43) is finite); hence, J is proper on Mart(�). Since
K0, ..., KT are compact, Prob(�) is σ(Meas(�), Cb(�))-compact (see Aliprantis and
Border (2006) Theorem 15.11), and Mart(�) is σ(Meas(�), Cb(�))-closed because,
arguing as in Beiglböck et al. (2013) Lemma 2.3,

Mart(�) =
⋂

�∈H

{

Q ∈ Prob(�) |
∫

�

(
T−1∑

t=0

�t (x0, . . . , xt )(xt+1 − xt )

)

dQ(x) ≤ 0

}

.

We conclude that Mart(�) is σ(Meas(�), Cb(�))-compact, and J is lower semicon-
tinuous and proper on it; hence, it attains a minimum. ��

In view of our discussion of Sect. 5, we now rephrase the results of Theorem 4.4
as formulated in Corollary 4.7. In particular, this reformulation will come in handy
when dealing with subhedging and superhedging dualitites in Corollary 5.3.

For a given proper concave U : E → R, we consider the corresponding V (·) =
−U (−·) and define

SV (ϕ) := inf
λ∈RT+1

(

V (ϕ + λ) −
T∑

t=0

λt

)

= −SU (−ϕ), ϕ ∈ dom(V ),
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where dom(V ) := {ϕ ∈ E | V (ϕ) < +∞} = −dom(U ) and SU is defined as in (27).
Furthermore, given two functionals c : � → (−∞,+∞], d : � → [−∞,+∞)

we introduce the sets

Ssub(c) :=
{

ϕ ∈ dom(U ) | ∃� ∈ H s.t.
T∑

t=0

ϕ(xt ) + I�(x) ≤ c(x) ∀ x ∈ �

}

(54)

Ssup(d) :=
{

ϕ ∈ dom(V ) | ∃� ∈ H s.t.
T∑

t=0

ϕ(xt ) + I�(x) ≥ d(x) ∀ x ∈ �

}

(55)
and observe that Ssup(�) = −Ssub(−�).

Corollary 4.7 Suppose that the assumptions in Theorem 4.4 are satisfied, that d : � →
[−∞,+∞) is upper semicontinuous and that {μ ∈ Meas(�) ∩ dom(D) | ∫

�
d dμ >

−∞} �= ∅. Then the following hold

inf
Q∈Mart(�)

(
EQ [c(X)] + D(Q)

) = sup
ϕ∈Ssub(c)

SU (ϕ) , (56)

sup
Q∈Mart(�)

(
EQ [d(X)] − D(Q)

) = inf
ϕ∈Ssup(d)

SV (ϕ) . (57)

Proof Equation (56) is an easy rephrasing of the corresponding (43). As to (57), we
observe that for c := −d we get from (56)

sup
ϕ∈Ssub(−d)

SU (ϕ)

= inf
Q∈Mart(�)

(
EQ [−d(X)] + D(Q)

) = − sup
Q∈Mart(�)

(
EQ [d(X)] − D(Q)

)
.

Observing that
Ssup(d) = −Ssub(−d)

and that SV (·) = −SU (−·) on dom(V ) we get supϕ∈Ssub(−d) S
U (ϕ) = − infϕ∈Ssup(d)

SV (ϕ). This completes the proof. ��

4.3 Duality in an additive setting

Differently from Sect. 4.1, we will now assume an additive structure of U and D. In
the whole Sect. 4.3, we consider for each t = 0, . . . , T a vector subspace Et ⊆ Cb(Kt )

such that R ⊆ Et and set E = E0 × · · · × ET . Note that this automatically implies
that E + R

T+1 = E . Furthermore, E can be seen as a subspace of Cb(�,RT+1) once
E0, . . . , ET can be interpreted as subspaces of Cb(�).

The following result provides the form of the penalization in an additive setup and
the duality P(c) = D(c).
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Theorem 4.8 Suppose that, for each t = 0, . . . , T , Et ⊆ Cb(Kt ) is a vector subspace
satisfying Idt ∈ Et and R ⊆ Et and that St : Et → R is a concave, cash additive
functional null in 0. Consider for every t = 0, . . . , T the penalizations

Dt (Qt ) := sup
ϕt∈Et

(
St (ϕt ) −

∫

Kt

ϕt dQt

)
for Qt ∈ Prob(Kt ),

and set D(Q) := ∑T
t=0 Dt (Qt ). Let c : � → (−∞,+∞] be lower semi-

continuous and let D(c) and P(c) be defined, respectively, in (13) and (18). If
N := {

μ ∈ Meas(�) ∩ dom(D) | ∫
�
c dμ < +∞} �= ∅ then

P(c) = D(c).

Proof Set E = E0 × · · · × ET andU (ϕ) := ∑T
t=0 St (ϕt ), for ϕ ∈ E , and letD defined

as in (31) for M = T . For any μ ∈ Meas(�), we have D(μ) ≥ ∑T
t=0 St (0) − 0 = 0;

hence, D is lower bounded on Meas(�). Observe that dom(U ) = E , which implies
dom(U )+R

T+1 = dom(U ), and that we are in Setup 3.2 of Doldi and Frittelli (2023).
By Doldi and Frittelli (2023) Lemma 3.3 SU (ϕ) = ∑T

t=0 S
Ut
t (ϕt ) = ∑T

t=0 St (ϕt ),
since S0, . . . , ST are CashAdditive, andD coincides onMart(�)with the penalization
term Q �→ ∑T

t=0 Dt (Qt ), as provided in the statement of this theorem. Since all the
assumptions of Theorem 4.4 are fulfilled, we can apply Corollary 4.7, which yields
exactly D(c) = P(c). ��

Assumption 4.9 Weconsider concave, upper semicontinuous nondecreasing functions
u0, . . . , uT : R → [−∞,+∞) with u0(0) = · · · = uT (0) = 0, ut (x) ≤ x ∀ x ∈ R

(that is 1 ∈ ∂u0(0) ∩ · · · ∩ ∂uT (0)). For each t = 0, . . . , T we define vt (x) :=
−ut (−x), x ∈ R, and its convex conjugate

v∗
t (y) := sup

x∈R
(xy − vt (x)) = sup

x∈R
(ut (x) − xy), y ∈ R . (58)

By Fenchel–Moreau theorem,we recall that vt (y) = v∗∗
t (y) = supx∈R(xy−v∗

t (y))
for all y ∈ R and that v∗

t is convex, lower semicontinuous and lower bounded on R.

Example 4.10 Assumption 4.9 is satisfied by awide range of functions. Just tomention
a few with various peculiar features, we might take ut of the following forms: ut (x) =
1−exp(−x), whose convex conjugate is given by v∗

t (y) = −∞ for y < 0, v∗
t (0) = 0,

v∗
t (y) = (y log(y) − y + 1) for y > 0; ut (x) = αx1(−∞,0](x) for α ≥ 1, so that

v∗
t (y) = +∞ for y < 0, v∗

t (y) = 0 for y ∈ [0, α], v∗
t (y) = +∞ for y > α;

ut (x) = log(x + 1) for x > −1, ut (x) = −∞ for x ≤ −1, so that v∗
t (y) = +∞ for

y ≤ 0, v∗
t (y) = y − log(y) − 1 for y > 0; ut (x) = −∞ for x ≤ −1, ut (x) = x

x+1
for x > −1 so that v∗

t (y) = −∞ for y < 0, v∗
t (y) = y − 2

√
y + 1 for y ≥ 0;

ut (x) = −∞ for x < 0, ut (x) = 1 − exp(−x) for x ≥ 0, so that v∗
t (y) = +∞ for

y < 0, v∗
t (y) = y log(y) − y + 1 for 0 ≤ y ≤ 1, v∗

t (y) = 0 for y > 1.
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Fix μ̂t ∈ Meas(Kt ). For μ ∈ Meas(Kt ), we define

Dv∗
t ,μ̂t (μ) :=

{∫
Kt

v∗
t

(
dμ
dμ̂t

)
dμ̂t if μ � μ̂t

+∞ otherwise.
(59)

The next proposition, whose proofs can be found in Liero et al. (2018), Theorem 2.7
and Remark 2.8, or (Doldi and Frittelli 2023), provides the dual representation of the
divergence terms.

Proposition 4.11 Take u0, . . . , uT satisfying Assumption 4.9, and suppose dom(u0) =
· · · = dom(uT ) = R. Let μ̂t ∈ Meas(Kt ) and vt (·) := −ut (−·), t = 0, . . . , T . Then

Dv∗
t ,μ̂t (μ) = sup

ϕt∈Cb(Kt )

(∫

Kt

ϕt (xt ) dμ(xt ) −
∫

Kt

vt (ϕt (xt )) dμ̂t (xt )

)
. (60)

5 Applications of themain theorems of Sect. 4

In this section, we suppose the following requirements are fulfilled:

Standing Assumption 5.1 � := K0 × · · · × KT for compact sets K0, . . . , KT ⊆ R

and K0 = {x0}; the functional c : � → (−∞,+∞] is lower semicontinuous and
d : � → [−∞,+∞) is upper semicontinuous; Mart(�) �= ∅; Q̂ ∈ Mart(�) is a
given probability measure with marginals Q̂0, . . . , Q̂T ; c, d ∈ L1(Q̂).

5.1 Subhedging and superhedging

As it will become clear from the proofs, in all the results in Sect. 5.1 the functional U
is real-valued on the whole E , that is, dom(U ) = E . Thus, we will exploit Theorem 4.4
and Corollary 4.7, in particular (54) and (55), in the case dom(U ) = dom(V ) = E .

We recall from (21) that

UQ̂t
(ϕt )

= sup
α,λ∈R

(∫

Kt

ut (ϕt (xt ) + αIdt (xt ) + λ)dQ̂t (xt ) − (αx0 + λ)

)
, ϕt ∈ Cb(Kt ),

VQ̂t
(ϕt ) = −UQ̂t

(−ϕt )

= inf
α,λ∈R

(∫

Kt

vt (ϕt (xt ) + αIdt (xt ) + λ)dQ̂t (xt ) + (αx0 + λ)

)
. (61)

In Sects. 4.1 and 4.2 of Doldi and Frittelli (2023), a counterpart to (61) was inves-
tigated, without the additional supremum over α above. Thus, the following results
generalize those in Doldi and Frittelli (2023), establishing at the same time stock
additivity of U and of V .
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We observe that Assumption 4.9 does not impose that the functions ut are real-
valued on the whole R. Nevertheless, for the functionals UQ̂t

, VQ̂t
we have:

Lemma 5.2 Under Assumption 4.9, for each t = 0, . . . , T

1. UQ̂t
and VQ̂t

are real-valued on Cb(Kt ) and null in 0.
2. UQ̂t

and VQ̂t
are concave and convex, respectively, and both nondecreasing.

3. UQ̂t
and VQ̂t

are stock additive on Cb(Kt ), namely for every αt , λt ∈ R and
ϕt ∈ Cb(Kt )

UQ̂t
(ϕt + αt Idt + λt ) = UQ̂t

(ϕt ) + αt x0 + λt ,

VQ̂t
(ϕt + αt Idt + λt ) = VQ̂t

(ϕt ) + αt x0 + λt .

Proof Since VQ̂t
(ϕt ) = −UQ̂t

(−ϕt ), w.l.o.g. we prove the claims only for UQ̂t
.

Clearly UQ̂t
(ϕt ) > −∞, as we may choose λt ∈ R so that (ϕt + 0Idt + λt ) ∈

dom(u) ⊇ [0,+∞). Furthermore,

UQ̂t
(ϕt )

1∈∂Ut (0)≤ sup
α,λ∈R

(∫

Kt

(ϕt + αIdt + λ) dQ̂t − (αx0 + λ)

)

Q̂∈Mart(�)= sup
α,λ∈R

(∫

Kt

ϕt dQ̂t + (αx0 + λ − αx0 − λ)

)
≤ ‖ϕt‖∞ .

Finally, 0 = ∫
Kt

u (0) dQ̂t ≤ UQ̂t
(0) ≤ ‖0‖∞.

Item 2: trivial from the definitions. Item 3: we see that

UQ̂t
(ϕt + αt Idt + λt )

= sup
α,λ∈R

(∫

Kt

ut (ϕt (xt ) + (α + αt )xt + (λ + λt )) dQ̂t (xt ) − (αx0 + λ)

)

= sup
α,λ∈R

(∫

Kt

ut (ϕt (xt ) + (α + αt )xt + (λ + λt )) dQ̂t (xt ) − ((αt + α)x0 + (λt + λ))

)

+αt x0 + λt ,

in which we recognize the definition of UQ̂t
(ϕt ) + αt x0 + λt . ��

As in Beiglböck et al. (2013), in the next two Corollaries we suppose that the
elements in Et represent portfolios obtained combining deterministic amounts, units
of the underlying stock at time t (xt ), and call options with maturity t , that is, Et
consists of all the functions in Cb(Kt ) with the following form:

ϕt (xt ) = a + bxt +
N∑

n=1

cn(xt − Kn)
+, for a, b, cn, kn ∈ R, xt ∈ Kt

and take E = E0 × · · · × ET . As shown in the proof, one could as well take E =
Cb(K0)×· · ·×Cb(KT ) preserving validity of (62), (63), (68) and (69). As for Lemma
5.2, the following result extends Corollary 4.3 of Doldi and Frittelli (2023) to cover
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the stock additive case: Indeed, the definition of UQ̂t
(ϕt ) used in the next corollary is

different from the one in Corollary 4.3 of Doldi and Frittelli (2023).

Corollary 5.3 Take u0, . . . , uT satisfying Assumption 4.9, and suppose dom(u0) =
· · · = dom(uT ) = R. Then the following equalities hold:

inf
Q∈Mart(�)

(

EQ [c(X)] +
T∑

t=0

Dv∗
t ,Q̂t

(Qt )

)

= sup

{
T∑

t=0

UQ̂t
(ϕt ) | ϕ ∈ Ssub(c)

}

(62)

sup
Q∈Mart(�)

(

EQ [d(X)] −
T∑

t=0

Dv∗
t ,Q̂t

(Qt )

)

= inf

{
T∑

t=0

VQ̂t
(ϕt ) | ϕ ∈ Ssup(d)

}

(63)

Proof We prove (62), since (63) can be obtained in a similar fashion. Set U (ϕ) =∑T
t=0UQ̂t

(ϕt ) for ϕ ∈ E . We observe that Et consists of all piecewise linear functions
on Kt , which are norm dense in Cb(Kt ). By Lemma 5.2 for each t = 0, . . . , T , the
monotone concave functional ϕt �→ UQ̂t

(ϕt ) is actually well defined, finite-valued,
concave and nondecreasing on the whole Cb(Kt ). Hence, by the extended Namioka–
Klee theorem (see Biagini and Frittelli (2009)) it is norm continuous on Cb(Kt ) and
we can take E = Cb(Kt ) × · · · × Cb(KT ) in place of E0 × · · · × ET in the RHS of (62)
and prove equality to LHS in this more comfortable case (notice that Ssub(c) depends
on E). We also observe that in this case we are in Setup of Sect. 4.3. Define D as in
(31) with M = T . Using the facts that if ϕt ∈ Et , α, λ ∈ R then (ϕt + αIdt + λ) ∈ Et ,
that Q ∈Mart(�) and that vt (·) := −ut (−·) one may easily check that

D(Q) := sup
ϕ∈E

(

U (ϕ) −
T∑

t=0

∫

Kt

ϕt dQt

)

= sup
ϕ∈E

(
T∑

t=0

∫

Kt

ut (ϕt (xt )) dQ̂t (xt ) −
T∑

t=0

∫

Kt

ϕt dQt

)

=
T∑

t=0

sup
ψt∈Et

(∫

Kt

ψt dQt −
∫

Kt

vt (ψt (xt )) dQ̂t (xt )

)

=
T∑

t=0

Dv∗
t ,Q̂t

(Qt ), ∀Q ∈ Mart(�) (64)

where the last equality follows from Proposition 4.11 Eq. (60). The standing assump-
tion 4.1 is satisfied. Indeed, from Assumption 4.9 we have v∗

0(1), . . . , v
∗
T (1) < +∞;

hence,Dv∗
t ,Q̂t

(Q̂t ) = ∫
Kt

v∗
t

(
dQ̂t
dQ̂t

)
dQ̂t < +∞, and therefore, Q̂ ∈ dom(D). Recall-

ing that c ∈ L1(Q̂), this in turns yields Q̂ ∈ N =
{
μ ∈ Meas(�) ∩ dom(D) |

∫
�
c dμ < +∞

}
. Moreover, by Lemma 5.2 Item 1, dom(U ) = E , and for every
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μ ∈ Meas(�) D(μ) ≥ U (0) − 0 = 0; hence, D is lower bounded on the whole
Meas(�). We conclude that U and D satisfy the assumptions of Theorem 4.4.

Using Lemma 3.3 of Doldi and Frittelli (2023) and the fact thatUQ̂0
, . . . ,UQ̂T

are

cash additive, we get SU (ϕ) = ∑T
t=0 S

UQ̂t (ϕt ) = ∑T
t=0UQ̂t

(ϕt ) = U (ϕ), and by
Corollary 4.7 Eq. (56), we obtain

inf
Q∈Mart(�)

(

EQ [c(X)] +
T∑

t=0

Dv∗
t ,Q̂t

(Qt )

)

= sup

{
T∑

t=0

UQ̂t
(ϕt ) | ϕ ∈ Ssub(c)

}

.

��
We stress the fact that in Corollary 5.3 we assume that all the functions u0, . . . , uT

are real-valued on the whole R.

Proposition 5.4 The following dual representations hold:

VQ̂t
(ϕt ) = max

Q∈Mart(K0×Kt )

(
EQ[ϕt ] − Dv∗

t ,Q̂t
(Q)

)
,

UQ̂t
(ϕt ) = min

Q∈Mart(K0×Kt )

(
EQ[ϕt ] + Dv∗

t ,Q̂t
(Q)

)
,

(65)

where, with a slight abuse of notation and consistently with (41), Mart(K0 × Kt ) =
{Q ∈ Prob(Kt ) | EQ[Idt ] = x0}.
Proof We prove the dual representation for VQ̂t

as the other one follows by a change
of signs. By extended Namioka–Klee theorem (Biagini and Frittelli (2009)), together
with the compactness of the underlying canonical space we have that

VQ̂t
(ϕt ) = max

γ∈(Cb(Kt ))∗

(∫

Kt

ϕtdγ − (VQ̂t
)∗(γ )

)

where the conjugate (VQ̂t
)∗(γ ) is given as usual by (VQ̂t

)∗(γ )=supψt∈Cb(Kt )

( ∫
Kt

ψtd

γ − VQ̂t
(ψt )

)
. We show that (VQ̂t

)∗(γ ) < +∞ implies γ ∈ Mart(K0 × Kt ). By

standard monotonicity and cash additivity arguments (see, e.g., Föllmer and Schied
(2016) Remark 4.18), it can be seen that (VQ̂t

)∗(γ ) implies that γ is a nonnegative
normalized element of the dual space (Cb(Kt ))

∗. Since Kt is compact, γ is then
identified with an element of Prob(Kt ). We show that the martingale property must
hold: For any γ ∈ Prob(Kt ),

(VQ̂t
)∗(γ ) ≥ sup

αt∈R

(∫

Kt

αt Idtdγ − VQ̂t
(αt Idt )

)

L.5.2.3≥ sup
αt∈R

(∫

Kt

αt Idtdγ − αt x0

)
= sup

αt∈R
αt

(∫

Kt

Idtdγ − x0

)
.
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Now, the last term in RHS is finite if and only if
∫
Kt

Idtdγ = x0. To conclude,
observe that arguing as we did to obtain (64), we can also show here that for any
Q ∈ Mart(K0 × Kt ) we have

(VQ̂t
)∗(Q) = sup

ψt∈Cb(Kt )

(∫

Kt

ψt dQt −
∫

Kt

vt (ψt ) dQ̂t

)
= Dv∗

t ,Q̂t
(Qt )

by Proposition 4.11 Eq. (60). ��
Proposition 5.5 For the exponential utility function ut (x) = 1 − e−x , there exists
α̂ ∈ R satisfying (23) and for which (22) holds.

Proof One can verify that Dv∗
t ,Q̂t

(Qt ) = H(Qt , Q̂t ) (see (59)). Hence, from (65),

UQ̂t
(ϕt ) = min

Q∈Mart(K0×Kt )

(
EQ[ϕt ] + H(Q, Q̂t )

)
.

Set Ê[·] := EQ̂t
[·] and

f (α, λ) := Ê[ut (ϕt + αIdt + λ)] − (αx0 + λ), α ∈ R, λ ∈ R.

The first-order conditions for UQ̂t
(ϕt ) := supα,λ f (α, λ) are:

Ê[Idt exp(−ϕt − αIdt − λ)] = x0, (66)

Ê[exp(−ϕt − αIdt − λ)] = 1. (67)

Assuming there exists α̂ ∈ R satisfying (23), and taking λ̂ = log Ê(exp(−ϕt − α̂Idt )),
we easily get that (66) and (67) are satisfied, and we compute

UQ̂t
(ϕt ) = sup

α,λ

f (α, λ) = f (̂α, λ̂) = −α̂x0 − λ̂ = −α̂x0 − ln(Ê[exp(−ϕt (xt ) − α̂xt )]).

From the definition of dQα̂

dQ̂t
in (24), we obtain:

Ê[exp(−ϕt (xt ) − α̂xt )] = exp(−ϕt (xt ) − α̂xt )
dQα̂

dQ̂t

,

so that

UQ̂t
(ϕt ) = −α̂x0 − ln(Ê[exp(−ϕt (xt ) − α̂xt )]) = −α̂x0+ϕt (xt ) + α̂xt + ln

(
dQα̂

dQ̂t

)
.

Since UQ̂t
(ϕt ) = f (̂α, λ̂) ∈ R, we conclude:

UQ̂t
(ϕt ) = EQα̂ [UQ̂t

(ϕt )] = EQα̂ [ϕt (xt )] + EQα̂

[
ln

(
dQα̂

dQ̂t

)]
,
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as EQα̂ [Idt ] = x0, which concludes the proof of (22) because H(Qα̂, Q̂t ) :=
EQα̂

[
ln
(
dQα̂

dQ̂t

)]
. We are only left with proving that such an α̂ ∈ R exists. Since

Q̂ ∈ Mart(�), EQ̂[Idt ] = x0 and wemust have x0 ∈ [ess inf Q̂(Idt ), ess supQ̂(Idt )]. If
either x0 = ess inf Q̂(Idt )or x0 = ess supQ̂(Idt ), thenwemust have Q̂t = δ{x0} (the lat-
ter being a Dirac delta at the point x0) by the martingale property and a solution to (23)
exists trivially. Otherwise, assume x0 ∈ (ess inf Q̂(Idt ), ess supQ̂(Idt )). By Lemma
A.4 we have that limα→+∞ EQα̂ [Idt ] = ess inf Q̂(Idt ) and limα→−∞ EQα̂ [Idt ] =
ess supQ̂(Idt ). Furthermore, by dominated convergence theorem α �→ EQα̂ [Idt ] is
continuous, and the existence of a solution α̂ for (23) follows. ��

We now take ut (x) = x for each t = 0, . . . , T , and get UQ̂t
(ϕt ) = VQ̂t

(ϕt ) =
EQ̂t

[ϕt ]. Hence, with an easy computation we have

Dv∗
t ,Q̂t

(Qt ) =
{
0 if Qt ≡ Q̂t

+∞ otherwise.
for all Q ∈ Mart(�).

Recalling that Mart(Q̂1, . . . , Q̂T ) = {Q ∈ Mart(�) | Qt ≡ Q̂t ∀ t = 0, . . . , T },
from Corollary 5.3 we can recover the following result of Beiglböck et al. (2013)
(under the more stringent compactness assumption).

Corollary 5.6 (Beiglböck et al. 2013 Theorem 1.1 and Corollary 1.2) The following
equalities hold:

inf
Q∈Mart(Q̂1,...,Q̂T )

EQ [c] = sup

{
T∑

t=0

EQ̂t
[ϕt ] | ϕ ∈ Ssub(c)

}

(68)

sup
Q∈Mart(Q̂1,...,Q̂T )

EQ [d] = inf

{
T∑

t=0

EQ̂t
[ϕt ] | ϕ ∈ Ssup(d)

}

(69)

5.2 Dual representation for generalized OCE associated with the indirect utility
function

We now explore the versatility of Corollary 4.7, which can be used beyond the
semistatic subhedging and superhedging problems in Sect. 5.1. Note that in Sect. 5.1
we chose for static hedging portfolios the sets Et , t = 0, . . . , T consisting of deter-
ministic amounts, units of underlying stock at time t and call options with the same
maturity t but different strike prices. This affected the primal problem in the fact
that the penalty D turned out to depend solely on the (one dimensional) marginals
of Q̂. Nonetheless, Theorem 4.4 allows to choose for each t = 0, . . . , T a subspace
Et ⊆ Cb(K0×· · ·×Kt ), potentially allowing to consider alsoAsian and path dependent
options in the sets Et .We expect that this would translate in the penaltyD depending no
more only on the one dimensional marginals of Q̂. The study of these less restrictive,
yet technically more complex cases is left for future research.
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In the following, we will treat a slightly different problem, which, however, helps
understanding how also the extreme case Et = Cb(K0 × · · · × Kt ), t = 0, . . . , T , is
of interest.

Theorem 4.4 yields the following dual robust representation of the generalized
optimized certainty equivalent associated with the indirect utility function. We stress
here the fact that, again, Q̂ ∈ Mart(�) is a fixed martingale measure, but we will not
focus anymore on its marginals only, as will become clear in the following.

Theorem 5.7 Take u : R → R such that u0 = . . . , uT := u satisfy Assumption
4.9 and let v∗ be defined in (58) with u in place of ut . Let Û : Cb(�) → R be the
associated indirect utility

Û (ϕ) := sup
�∈H

∫

�

u(ϕ + I�) dQ̂

and SÛ be the associated optimized certainty equivalent defined according to (27),
namely

SÛ (ϕ) := sup
ξ∈R

(
Û (ϕ + ξ) − ξ

)
ϕ ∈ Cb(�) .

Then for every c ∈ Cb(�)

SÛ (c) = inf
Q∈Mart(�)

(∫

�

c dQ + DQ̂(Q)

)

where for μ ∈ Meas(�)

DQ̂(μ) :=
{∫

�
v∗
(
dμ
dQ̂

)
dQ̂ ifμ � Q̂

+∞ otherwise
.

Proof TakeEt = Cb(K0×· · ·×Kt ) for t = 0, . . . , T .Define, forψ ∈ E = E0×...×ET ,
U (ψ) := Û

(∑T
t=0 ψt

)
. Clearly, U (ψ) > −∞ for any ψ ∈ E , and since Q̂ ∈

Mart(�) and u(x) ≤ x for all x ∈ R we also have U (ψ) ≤ ∑T
t=0 ‖ϕt‖∞ < +∞.

Moreover, it is easy to verify that definingD as in (31) for any Q ∈ Mart(�) we have

D(Q) := sup
ψ∈E

(

U (ψ) −
∫

�

(
T∑

t=0

ψt

)

dQ

)

= sup
ϕ∈Cb(�)

(∫

�

u(ϕ) dQ̂ −
∫

�

ϕ dQ

)

and arguing as in Proposition 4.11, we getD(Q) = DQ̂(Q). From the fact that u(x) ≤
x for every x ∈ R, we have v∗(1) < +∞; hence, from Assumption 5.1 Q̂ ∈ dom(D).
This and c ∈ L1(Q̂) in turns yields Q̂ ∈ N (see (42)). Moreover, dom(U ) = E , and
by definition of D for any μ ∈ Meas(�), we have D(μ) ≥ U (0) − 0 = 0; hence,
D is lower bounded on the whole Meas(�). We conclude that U and D satisfy the
assumptions of Theorem 4.4. We then get
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inf
Q∈Mart(�)

(
EQ [c(X)] + DQ̂(Q)

)
= inf

Q∈Mart(�)

(
EQ [c(X)] + D(Q)

)

= sup
�∈H

sup
ψ∈��(c)

SU (ψ) .

Observe now that SU satisfies

SU (ψ) := sup
λ∈RT+1

(

U (ψ + λ) −
T∑

t=0

λt

)

= sup
λ∈RT+1

(

Û

(
T∑

t=0

ψt +
T∑

t=0

λt

)

−
T∑

t=0

λt

)

= sup
ξ∈R

(

Û

(
T∑

t=0

ψt + ξ

)

− ξ

)

=: SÛ
(

T∑

t=0

ψt

)

.

SÛ : Cb(�) → R is (IA) and is nondecreasing; thus,

sup
�∈H

sup
ψ∈��(c)

SÛ
(

T∑

t=0

ψt

)

= sup
�∈H

sup
ψ∈��(c)

SÛ
(

T∑

t=0

ψt + I�

)

= SÛ (c)

by definition of ��(c) and since c ∈ Cb(�). ��

6 Conclusion and future research

This work provides a detailed insight on entropy martingale optimal transport theory,
introduced in Doldi and Frittelli (2023) as an extension and application of the EOT
theory by Liero et al. (2018). We describe how EMOT can be naturally embedded
in the current literature in Mathematical Finance, building a bridge between robust
pricing-hedging dualities and the theory of convex risk measures. We introduce the
concept of stock additivity, which allows for mimicking, in a typically nonlinear setup,
some of the key motivating arguments in the formulation of the subhedging problem.
Considering a compact underlying canonical space, we obtain two main results. The
first one extends to general penalty functions the divergence-based EOT duality in
Liero et al. (2018).We then deduce theEMOTduality from theEOTduality, replicating
the core minimax argument yielding the MOT duality in Beiglböck et al. (2013)
from the classical Kantorovich duality, thus giving an alternative and simpler proof
of a similar result obtained in Doldi and Frittelli (2023). Two main applications are
discussed: First, we consider the valuation induced by expected utility, modifying
the well-known optimized certainty equivalent to account for stock additivity. In this
case, divergence functionals, as those in Liero et al. (2018), appear in the EMOT dual
problem. Secondly, we provide a dual representation for the generalized optimized
certainty equivalent associated with the indirect utility function.

The EMOT theory we have presented opens up a wide range of possible general-
izations and applications. From a theoretical perspective, the challenge remains open
regarding extending the results to a continuous-time setup. Issues of stability and con-
vergence in EMOT can also be further investigated, starting from a preliminary study
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in Doldi and Frittelli (2023). Among other potential developments, we include the
analysis of the impact of penalty functions on numerical approximation, following in
spirit Cuturi (2013), for example, and considering the convergence results in Doldi
and Frittelli (2023). Finally, it is worth noting that the problem of actually developing
algorithms for computing primal/dual values in EMOT is challenging, and is currently
under investigation.
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A Appendix

A.1 Setting

A.1.1 Measures

We start fixing our setup and some notation. Let� be a Polish space and endow it with
theBorel sigma algebraB(�) generated by its open sets. A set functionμ : B(�) → R

is a finite signed measure if μ(∅) = 0 and μ is σ -additive. A finite measure μ is
a finite signed measure such that μ(B) ≥ 0 for all B ∈ B(�). A finite measure μ

such that μ(�) = 1 will be called a probability measure. Recall from Sect. 4.1 the
notations for ca(�),Meas(�), Prob(�). The following result is well known, see, e.g.,
Billingsley (1999) Theorem 1.1 and 1.3.

Proposition A.1 Every finite measure μ on B(�) is a Radon measure, that is for every
B ∈ B(�) and every ε > 0 there exists a compact Kε ⊆ B such that μ(B \ Kε) ≤ ε.

We also introduce for M ∈ N, M ≥ 1 the sets

Cb(�) := Cb(�,R) = {ϕ : � → R | ϕ is bounded and continuous on �},
Cb(�,RM ) := (Cb(�))M = {ϕ : � → R

M | ϕ is bounded and continuous on �}.

Given a vector subspace E ⊆ Cb(�,RM+1), we will consider the dual pair
(ca(�), Cb(�,RM+1)) with pairing given by the bilinear functional (γ, ϕ) �→

123

http://creativecommons.org/licenses/by/4.0/


On EMOT duality

∫
�

(∑M
m=0 ϕm

)
dγ . We will induce on ca(�) the topology σ(ca(�), E), which is

the coarsest topology on ca(�) making the functional γ �→ ∫
�

(∑M
m=0 ϕm

)
dγ con-

tinuous for eachϕ ∈ E . Similarly, wewill induce on E the topology σ(E, ca(�))which

is the coarsest topology on E making the functional γ �→ ∫
�

(∑M
m=0 ϕm

)
dγ continu-

ous for each γ ∈ ca(�). TheWeak Topology on Meas(�) is the coarsest (Hausdorff)
topology for which all maps μ �→ ∫

�
ϕ dμ are continuous, for all ϕ ∈ Cb(�).

Remark A.2 The weak topology on Meas(�) is the topology σ( Meas(�), Cb(�,R),
which is the relative topologyσ(ca(�), Cb(�,R)|Meas(�) inducedbyσ(ca(�), Cb(�,R)

on Meas(�) ⊆ ca(�) (see Aliprantis and Border (2006) Lemma 2.53).

A.2 Auxiliary results and proofs

Lemma A.3 Take compact K1, . . . , KT ⊆ R, suppose that K0 = {x0} and that if Kt is
a singleton for some 0 ≤ t ≤ T , so is Ks, 0 ≤ s ≤ t . Take E = E0×· · ·×ET for vector
subspaces Et ⊆ Cb(Kt ) with R ⊆ Et and Idt ∈ Et , t = 0, . . . , T . Suppose there exist
ϕ,ψ ∈ E and � ∈ H, whereH is defined in (7), such that

∑T
t=0 ϕt = ∑T

t=0 ψt + I�.
Then there exist constants k0, . . . , kT , h0, . . . , hT ∈ R such that for each t = 0, . . . , T
ψt (xt ) = ϕt (xt ) + kt xt + ht , ∀xt ∈ Kt . In particular for St : Et → R, t = 0, . . . , T
Stock Additive functionals we have

T∑

t=0

St (ϕt ) =
T∑

t=0

St (ψt ) .

and for V := ∑T
t=0 Et + I (see (8)) the map

v =
T∑

t=0

ϕt + I� �→ S(v) :=
T∑

t=0

St (ϕt )

is well defined on V , (CA) and (IA).

Proof Step 1we prove that if
∑T

t=0 ϕt = ∑T
t=0 ψt + I� then� = [�0, . . . , �T−1] ∈

H is a deterministic vector � ∈ R
T . If KT is a singleton then the claim is trivial.

Otherwise,

ϕT (xT ) − ψT (xT )

=
T−1∑

t=0

(ψ(xt ) − ϕt (xt )) +
T−2∑

t=0

�t (x0, . . . , xt )(xt+1 − xt )

+�T−1(x0, . . . , xT−1)(xT − xT−1)

= f (x0, . . . , xT−1) + �T−1(x0, . . . , xT−1)xT

for some function f . If�T−1 were not constant, on two points it would assume values
a �= b, with corresponding values of f that we call fa, fb. Then fa +axT = fb+bxT
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has a unique solution, contradicting the fact that all the equalities need to hold on the
whole K0, . . . , KT and in particular for two different values of xT . We proceed one
step backward. If KT−1 is a singleton the claim trivially follows, given our previous
step. Otherwise, similarly to the previous computation,

123



On EMOT duality

ϕT−1(xT−1) − ψT−1(xT−1) =
∑

s �=T−1

(ψs(xs) − ϕs(xs))

+
T−3∑

t=0

�t (x0, . . . , xt )(xt+1 − xt ) +

+�T−2(x0, . . . , xT−2)(xT−1 − xT−2) + �T−1(xT − xT−1)

= f (xs, s �= T − 1) + (�T−2(x0, . . . , xT−2) − �T−1)xT−1.

An argument similar to the one we used in the previous time step shows that
�T−2(x0, . . . , xT−2) − �T−1 is constant, hence so is �T−2. Our argument can be
clearly be iterated up to �0.
Step 2 we prove existence of the vectors k, h ∈ R

T+1, as stated in the lemma. From
Step 1, it is clear that there exist constants k0, . . . , kT such that I�(x) = ∑T

t=0 kt xt .
Hence,

∑T
t=0 ϕt (xt ) = ∑T

t=0(ψt (xt ) + kt xt ) for all x ∈ �, which yields for each
t = 0, . . . , T that ϕt (xt ) − (ψt (xt ) + kt xt ) does not depend on xt , hence is constant,
call it −ht . Then k0, . . . , kT , h0, . . . , hT ∈ R satisfy our requirements. The last claim∑T

t=0 St (ϕt ) = ∑T
t=0 St (ψt ) is then an easy consequence of stock additivity.

Step 3 well-posedness and properties of S. Observe that whenever ϕ,ψ ∈ E, �, H ∈
H are given with

∑T
t=0 ϕt + I� = ∑T

t=0 ψt + I H we have by Steps 1-2 that
∑T

t=0 St (ϕt ) = ∑T
t=0 St (ψt ) . As a consequence, S is well defined. Cash additiv-

ity is inherited from S0, . . . , ST while integral additivity is trivial from the definition.
��

Lemma A.4 Fix a probability space (�,F , P) and take X , Z ∈ L∞(�,F , P). Then

lim
α→+∞

E[X exp(Z + αX)]
E[exp(Z + αX)] = ess supP (X) lim

α→−∞
E[X exp(Z + αX)]
E[exp(Z + αX)] = ess inf P (X)

(70)

Proof We only show the former equality, as the latter follows by replacing X with−X .
Observe that α �→ �(α) := E[X exp(Z+αX)]

E[exp(Z+αX)] is nondecreasing: By taking derivatives,
we get

d

dα
�(α) = E

[
X2 exp(Z + αX)

E[exp(Z + αX)]
]

−
(
E

[
X

exp(Z + αX)

E[exp(Z + αX)]
])2

= VarPα (X) ≥ 0,

where the changeofmeasure is givenby rmdPα

dP = exp(Z+αX)
E[exp(Z+αX)] . Thus, limα→+∞ �(α)

=: L ∈ (−∞,+∞] exists. Since we may rewrite �(α) as

�(α) = d

dα
log (E[exp(Z + αX)]) =

d
dα log (E[exp(Z + αX)])

d
dα α

,

we deduce, by a version of l’Hôpital’s rule (see (Rudin 1976), Theorem 5.13), that

lim
α→+∞

log (E[exp(Z + αX)])
α

=
d
dα log (E[exp(Z + αX)])

d
dα α

= lim
α→+∞ �(α).
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From

−‖Z‖∞+log (E[exp(αX)])≤ log (E[exp(Z+αX)])≤‖Z‖∞+log (E[exp(αX)]) ,

we conclude:

lim
α→+∞ �(α) = lim

α→+∞
log (E[exp(Z + αX)])

α

= lim
α→+∞

1

α
log (E[exp(αX)]) = ess supP (X),

where the last equality is well known, see, e.g., Carmona (2009) Sect. 3.2.3. ��

A.3 Onminimax duality theorem

The following theorem is stated, without the proof, in Liero et al. (2018), Th. 2.4. For
the sake of completeness and without claiming any originality, we here provide the
short proof.

Theorem A.5 (Minimax Duality Theorem) Let A, B be nonempty convex subsets of
some vector spaces and suppose A is endowed with a Hausdorff topology. Let L :
A × B → R be a function such that

1. a �→ L(a, b) is convex and lower semicontinuous in A for every b ∈ B.
2. b �→ L(a, b) is concave in B for every a ∈ A

When α := supb∈B infa∈A L(a, b) < +∞, suppose that there exist C > α and
b� ∈ B such that {a ∈ A | L(a, b�) ≤ C} is compact in A. Then

inf
a∈A

sup
b∈B

L(a, b) = sup
b∈B

inf
a∈A

L(a, b) . (71)

Proof Westart observing that in general infa∈A supb∈B L(a, b) ≥ supb∈B infa∈A L(a, b);
hence, if α = +∞ then (71) trivially holds. We then assume α < +∞ and modify
the proof of Simons (1998) Theorem 3.1. Let b1, . . . , bN ∈ B be given and set
b0 = b�. By Simons (1998) Lemma 2.1.(a), using fi (·) := L(·, bi ) we get constants
λ0, . . . , λN ≥ 0 with

∑N
i=0 λi = 1 such that

inf
a∈A

(
max

i=0,...,N
L(a, bi )

)
= inf

a∈A

(
N∑

i=0

λi L(a, bi )

)

≤ inf
a∈A

L

(

a,

N∑

i=0

λi bi

)

≤ sup
b∈B

inf
a∈A

L(a, b) = α,
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where we used the concavity in B to obtain the first inequality. We now observe that
for all ε > 0 there exists an a ∈ A such that

a ∈
{

max
i=0,...,N

L(a, bi ) ≤ α + ε

}
=

N⋂

i=0

{L(a, bi ) ≤ α + ε} =
N⋂

i=1

{L(a, bi )

≤ α + ε} ∩ {
L(a, b�) ≤ α + ε

}
.

Hence, for A� = {L(a, b�) ≤ α + ε} the family Aε
b := {a ∈ A� | L(a, b) ≤ α + ε} is

a collection of closed subsets of A� having the finite intersection property. Now take
ε > 0 such that α + ε < C . Then A� is Hausdorff and compact, being a closed subset
of the compact set {a ∈ A | L(a, b�) ≤ C}. As a consequence, ⋂b∈B Aε

b �= ∅. This
yields the existence of an a� such that a� ∈ A� and L(a�, b) ≤ α + ε ∀ b ∈ B. Hence,

inf
a∈A

sup
b∈B

L(a, b) ≤ sup
b∈B

L(a�, b) ≤ ε + α,

and letting ε ↓ 0, we get

inf
a∈A

sup
b∈B

L(a, b) ≤ sup
b∈B

inf
a∈A

L(a, b) ≤ inf
a∈A

sup
b∈B

L(a, b) .

��

A.4 Summary of symbols

To ease readability, we provide the following table that summarizes the relevant sym-
bols and notations introduced in the paper.

P(P): set of all probability measures on � that are absolutely continuous wrt P
Mart(�): set of all probability measures on � under which X is a martingale (pg.

5)
M(P) = P(P) ∩ Mart(�)

K0, . . . , KT : subsets of R with � := K0 × · · · × KT (pg. 5)
M(Q̂0, Q̂1, ...Q̂T ) = {

Q ∈ Mart(�) | Xt ∼Q Q̂t for each t = 0, . . . , T
}
(pg. 5)

H: set of admissible trading strategies (see (7))
I: set of stochastic integrals of trading strategies in H (see Eq. (8))
I�,� ∈ H: the stochastic integral corresponding to � (see Eq. (8))

DFt ,Q̂t
(μt ) = ∫

Kt
Ft
(
dμt

dQ̂t

)
dQ̂t : divergence functional (see Eq. (11))

D(c) = infQ∈Mart(�)(EQ [c] +∑T
t=0 Dt (Qt )) (see Eq. (13))

P(c) = sup{∑T
t=0 St (ϕt ) | ∃� ∈ H s.t.

∑T
t=0 ϕt + I� ≤ c on �} (see Eq. (18))

SU (ϕ) = supξ∈RT+1

(
U (ϕ + ξ) −∑T

t=0 ξt

)
: generalized OCE (see Eq. (27))

D(γ ) = sup ϕ∈E
ϕ=(ϕ1,...,ϕM )

(
U (ϕ) −∑M

m=0

∫
�

ϕmdγ
)
: penalty function, conjugate

of U (see Eq. (31))
��(c): see Eq. (44)
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Ssub(c),Ssup(c): static parts of sub/super replicating semistatic strategies (see Eqs.
(54) and (55))

ut , vt , v∗
t : utility functions onR and corresponding convex functions and conjugates

(see Assumption 4.9)
Dv∗

t ,μ̂t (μ): divergence functional associated with v∗
t and μ̂t (see Eq. (59))

UQ̂t
(ϕt ), VQ̂t

(ϕt ): stock additive functionals induced by utility functions (see Eq.
(61)).
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