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Abstract
We present a geometric approach to portfolio theory with a focus on risk-adjusted
returns, in particular Jensen’s alpha. We find that while the alpha/beta approach has
severe limitations, especially in higher dimensions, only minor conceptual modifica-
tions (e.g., using orthogonal Sharpe ratios rather than risk-adjusted returns) are needed
to identify the efficient trading strategies. We further show that, in a complete market,
the so-called market price of risk vector is identical to the growth optimal Kelly vec-
tor, albeit expressed in coordinates of a different basis. This implies that a derivative,
having an orthogonal Sharpe ratio of zero, has a price given by the minimal martingale
measure.

Keywords Jensen’s alpha · Kelly criterion · Market price of risk · Option pricing ·
Geometry

JEL Classification G11 · G12 · G13

1 Introduction

In this paper,we argue that it ismore important for an investor to consider an orthogonal
Sharpe ratio than a risk-adjusted return when evaluating how to blend opportunity sets.
The reason is that the former (contrary to the latter) provides sufficient information
on how to form a mean-variance efficient portfolio. To state our case, we present a
geometric approach to portfolio theory, in part based on the framework outlined in
Bermin and Holm (2021b). More precisely, we consider an opportunity set consisting
of N primary assets and a numéraire asset, such that a self-financing trading strategy
can, for a fixed point in time, be seen as an element in R

N . This vector space is
further endowed with a natural inner product, through the instantaneous covariance
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matrix of logarithmic excess returns, which thus forms a Hilbert space. As shown in
Bermin andHolm (2021b), the instantaneous rate of excess portfolio return can then be
represented as the inner product of the corresponding trading strategy and the growth
optimal Kelly trading strategy. It is this unique feature that allows us to formulate a
geometric approach to portfolio theory by means of a single vector (i.e., the growth
optimal Kelly vector) and the inner product in our Hilbert space.

Since the growth optimal Kelly vector (or equally called the Kelly criterion) plays a
central role to this study, we pay homage to the original contributors Kelly (1956) and
Latané (1959). Kelly stressed that the important quantity to look at is the logarithmic
excess return (rather than the excess return) and argued: “The reason has nothing to
do with the value function which [the investor] attached to his money, but merely with
the fact that it is the logarithm which is additive in repeated bets and to which the
law of large numbers applies”. While early promoters of the optimal growth theory
existed, see for instance (Hakansson andZiemba1995;Thorp 2011), and the references
therein, the Kelly criterion was nonetheless subject to severe criticism over the years,
see MacLean et al. (2011) and Ziemba (2015) for a historical recount. The main
arguments against Kelly’s result relate to the riskiness of the trading strategy and to the
deviation from the expected utility approach in vonNeumann andMorgenstern (1947).
To address the former, MacLean et al. (1992) introduced the so-called fractional Kelly
strategies, in which a constant fraction of the wealth is invested in the growth optimal
Kelly strategy and the remaining fraction in the bank account. This definition was later
extended in a serious of papers (Bermin and Holm 2021a, b, 2023) to allow for more
general leverage; with the authors defining Kelly strategies simply as those trading
strategies for which the instantaneous Sharpe ratio, see Nielsen and Vassalou (2004),
is maximal. Hence, by design, all Kelly strategies lie on the efficient (local) frontier in
the sense of Markowitz (1952) and Tobin (1958), but have different risk. When further
combinedwith the observation in Platen (2006) that an investorwho, for a fixed level of
volatility, prefers higher rate of excess return to lower chooses to allocate the wealth
proportional to the growth optimal Kelly strategy, it becomes apparent that Kelly
strategies can be seen as the natural extension of the single-period mean–variance
efficient portfolios. The main difference is that, in a multi-period setting, it is never
efficient to leverage more than the Kelly criterion as shown in, for instance, Bermin
and Holm (2023), Davis and Lleo (2021).

Another interesting aspect of the growth optimal Kelly strategy is that the recipro-
cal of the wealth process can be regarded as an admissible stochastic discount factor,
see Long (1990). We refine this result by showing that the corresponding market
price of risk vector is identical to the growth optimal Kelly vector, albeit expressed
in coordinates of a different basis, when the market is complete. Hence, an imme-
diate consequence of our geometrical approach is that we strengthen the connection
between these, sometimes, separate fields of research. It also provides new means to
use portfolio theory in order to value derivatives in incomplete markets.

The main motivation, though, for writing this paper is to explain and clarify the
geometrical principles behind risk-adjusted returns, in particular Jensen’s alpha as
introduced in Jensen (1964) and the corresponding beta parameter. The first obser-
vation we make is that given any trading strategy with nonzero alpha, we can apply
leverage to reach any targeted alpha. In fact, we argue that neither a higher alpha, for
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a fixed beta, nor a lower beta, for a fixed alpha, is strictly better for an investor. While
alpha describes the excess return of a particular portfolio, formed in such a way that
it is locally uncorrelated with the reference asset, this portfolio does not tell us how
best to trade in order to reach the maximal instantaneous Sharpe ratio, or equivalently
to be on the efficient (local) frontier. We circumvent the problems with alpha and beta
by rather studying the Sharpe ratio of the alpha-generating trading strategy. With the
knowledge of the orthogonal Sharpe ratios, we can easily construct any trading strategy
on the efficient frontier. Overall, we find that while the alpha/beta approach has severe
limitations (especially in higher dimensions), only minor conceptual modifications
are needed to complete the picture. However, these minor modifications (e.g., using
orthogonal Sharpe ratios rather than risk-adjusted returns) can only be appreciated
once a full geometric approach to portfolio theory is developed.

In addition, we derive a number of intermediate results that are of interest by
themselves. We show that the growth optimal Kelly vector on a subspace equals the
orthogonal projection of the growth optimal Kelly vector onto that subspace. We also
show that the length of any growth optimalKelly vector equals its instantaneous Sharpe
ratio. A financial interpretation, of these two results, is that the maximal Sharpe ratio
decreases as we reduce the opportunity set. We further show that the instantaneous
correlation between an arbitrary trading strategy and its corresponding growth optimal
Kelly strategy can be expressed as the ratio between their Sharpe ratios. Additionally,
we derive a general bound for the correlation between two arbitrary trading strategies
in terms of their Sharpe ratios and the Sharpe ratio of the corresponding growth optimal
Kelly strategy. By analyzing the level sets of various financial quantities, we also find
that points in the mean–variance space cannot, in general, be associated with a unique
trading strategy. Only the points on the efficient frontier (that is those with maximal
Sharpe ratio) can uniquely be identified. For such trading strategies, collinear to the
growth optimal Kelly vector, we formalize the notion of relative value trading that
is implicit in Platen (2006), Bermin and Holm (2021a). This allows us to explicitly
quantify the additional return an investor can obtain for a fixed level of risk. Thereafter,
we apply geometric principles to derivative pricing and introduce the concept of pricing
by means of No Added Relative Value (NARV, for short). We say that this concept
applies to a given asset, relative an initial portfolio, when no value can be added by
augmenting the initial opportunity set with the given asset. It follows that the NARV
price of a derivative is defined such that its orthogonal Sharpe ratio equals zero and
that this price further corresponds to the no-arbitrage price of the, so-called, minimal
martingale measure (Föllmer and Schweizer 1991); a result first derived in Bermin and
Holm (2021a), albeit withmuch different methods. Finally, we show how to extend the
geometric approach such that risk can be measured against an arbitrary asset, different
from the numéraire, as described in Bermin and Holm (2021b).

In order to derive our result, we use tensor analysis. While this is not a standard
approach in the financial literature, it greatly simplifies the notation and geometri-
cal understanding, compared to a formalism based on matrix algebra. Hopefully, the
readers agree with us once passed the initial hurdle.

The paper is organized as follows: In Sect. 2, we briefly recap the framework
laid out in Bermin and Holm (2021b). In Sect. 3, we introduce basic notations from
geometric algebra, after which we establish the portfolio framework in a number of
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subsections. In Sect. 4, we investigate Jensen’s alpha; starting with the simple case of
how to efficiently trade in two assets and following up with the general case of how
to efficiently trade in two opportunity sets. Section5 deals with relative value trading
and its connection to derivative pricing, while in Sect. 6 we briefly explain how to
adjust risk against an asset different from the numéraire.

2 Basic portfolio theory

We consider a capital market consisting of a number of primary assets
(P0, P1, . . . , PN ) expressed in some common numéraire unit, say US dollar. An asset
related to a dividend paying stock is seen as a fund with the dividends re-invested.
All assets are assumed to be positive adapted continuous processes living on a fil-
tered probability space (�,F ,F,P), where F = {F(t) : t ≥ 0} is a right-continuous
increasing family of σ -algebras such that F(0) contains all the P-null sets of F . As
usual we think of the filtration F as the carrier of information and henceforth we
assume that the filtration is generated by a standard Brownian motionW of dimension
M ≥ N . We further let P0 be the numéraire asset of the economy, describing how
the value of the numéraire unit changes over time, and introduce the relative prices
P0|n = Pn/P0 according to

dP0|n(t)
P0|n(t)

= b0|n(t)dt +
M∑

m=1

�0|n,m(t)dWm(t), n ∈ {1, . . . , N },

for someF-adapted,RN -valued, excess return process b0 and someF-adapted,RN×M -
valued, volatility process �0. We also require P0 > 0 a.s. and impose the mild
regularity condition

∫ T

0
(‖b0(t)‖RN +

N∑

n=1

M∑

m=1

�2
0|n,m(t))dt < ∞, a.s.,

such that the relative asset prices are well defined over the horizon [0, T ].
An investor can trade in the assets, and throughout this paper we assume that

there are no transaction fees, that short-selling is allowed, that trading takes place
continuously in time, and that trading activity does not impact the asset prices. We
define a trading strategy as an F-predictable vector process w = (w1, . . . , wN )′,
representing the proportion of wealth invested in each asset, and we let Xw denote the
corresponding wealth process. We also set X0|w = Xw/P0. In order to analyze the
performance of a trading strategy, we further let Xu|w = Xw/Xu refer to the ratio of
portfolios using the trading strategies w and the reference strategy u, respectively. Of
course, only reference strategies u satisfying the constraint Xu > 0 a.s. over some time
horizon [0, T ] are considered admissible. In this setup, the self-financing condition,
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see Geman et al. (1995), and the asset dynamics reads

dXu|w(t)

Xu|w(t)
= w0(t)

dPu|0(t)
Pu|0(t)

+
N∑

n=1

wn(t)
dPu|n(t)
Pu|n(t)

, w0(t) = 1 −
N∑

n=1

wn(t),

dPu|n(t)
Pu|n(t)

= bu|n(t)dt +
M∑

m=1

�u|n,m(t)dWm(t), n ∈ {0, 1, . . . , N },

for some F-adapted, RN+1-valued, excess return process bu and some F-adapted,
R

N+1×M -valued, volatility process �u . Note that, by setting u, w to 0 = (0, . . . , 0)′,
X0 is seen to be proportional to the market numéraire asset P0. Hence, the local
characteristics of X0|w and X0|w are identical. The instantaneous rate of return of the
trading strategy w, in excess of the reference strategy u, can be expressed as:

bu|w(t) = w0(t)bu|0(t) +
N∑

n=1

wn(t)bu|n(t), (1)

such that bu|0 = bu|0 and bu|en = bu|n , for en = (0, . . . , 0, 1, 0, . . . , 0)′ being the n’th
coordinate vector corresponding to the investable assets. Note that when u = 0 and the
numéraire asset is taken to be locally risk-free (i.e., a bank account), we measure the
rate of excess return relative to the interest rate. We further define the instantaneous
covariance process (by means of the quadratic covariation process, see Karatzas and
Shreve 1988) and the corresponding instantaneous correlation and variance processes

Vu|v,w(t) = d

dt
[log Xu|v, log Xu|w](t),

ρu|v,w(t) = Vu|v,w(t)

σu|v(t)σu|w(t)
, σ 2

u|w(t) = Vu|w,w(t).

We also let μu|w denote the rate of logarithmic excess return and claim that a simple
application of Itô’s formula yields

μu|w(t) = bu|w(t) − 1

2
σ 2
u|w(t). (2)

Additionally, we followBermin andHolm (2021b) and introduce a fewmore important
concepts. First, we define the generalized instantaneous Sharpe ratio

su|w(t) = bu|w(t)

σu|w(t)
, (3)
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Second we define the relative leverage risk processes ku|w and the relative drawdown
process Ru|w according to

ku|w(t) = σ 2
u|w(t)

bu|w(t)
, Ru|w(t) = R (

ku|w(t)
)
, R(k) = k

2 − k
. (4)

As shown in Bermin and Holm (2021b), any bankruptcy-avoiding trading strategy
holding the relative leverage risk process ku|w constant over time, at say a level k ∈
(0, 2), has a maximal drawdown distribution given by the simple analytical formula

P

(
inf

0≤t<∞ log
Xu|w(t)

Xu|w(0)
≤ −nR (k)

)
= e−n, n ≥ 0.

While the formula provides an intuitive interpretation for the relative drawdown risk,
we do not necessarily require that the relative leverage risk process is kept constant
over time. Instead, we directly associate drawdown risk with the process Ru|w and
recall from Bermin and Holm (2021b) that this process shares many of the properties
seen in coherent and convex risk measures, see Artzner et al. (1999), Föllmer and
Schied (2002) for further details.

What makes the proposed framework compelling is that all quantities can be com-
puted from the instantaneous covariance and rate of excess return processes. The
dependency on the reference strategy can further be removed as explained below.
Define the covariance matrix process of the investable assets, relative to the market
numéraire, by V0 = �0�

′
0. Assume that the matrix V0 is a.s. positive definite such

that it generates an inner product of the form 〈v,w〉V0 = v′V0w. It now follows, from
the self-financing property and Eq. (1), that

V0|v,w(t) = 〈v(t), w(t)〉V0(t), b0|w(t) = 〈w∗(t), w(t)〉V0(t), (5)

where the particular trading strategy w∗ = V−1
0 b0 is commonly known as the growth

optimal Kelly strategy. Moreover, using Eqs. (2) and (5), it is easily seen that the
growth optimal Kelly strategy can be characterized as

w∗(t) = argmax
w(t)

μ0|w(t) = argmax
w(t)

μu|w(t), ∀u.

The observation that w∗ is independent of the reference strategy follows from the
alternative representation Xu|w = X0|w/X0|u , which implies thatμu|w = μ0|w −μ0|u .
Finally, we extend Eq. (5) to an arbitrary reference strategy as described below

Proposition 1 For every reference strategy u, the instantaneous covariance process
Vu and the rate of excess return process bu equal

Vu|v,w(t) = V0|v−u,w−u(t), bu|w(t) = V0|w∗−u,w−u(t).

Proof The proof follows from straightforward calculations, see Bermin and Holm
(2021b). �
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Hence, theminimal representation of the framework is givenby the quantities (w∗, V0).
Once these terms are specified everything else is computable. Having established the
connection between an arbitrary reference strategy and the market numéraire, we now
focus on the case where the latter is used as the reference strategy and provide details,
at a later stage, on how to generalize the results derived.

Kelly’s approach toportfolio allocation is fundamentally different from the expected
utility approach of von Neumann and Morgenstern (1947) and consequently different
from the (single period) mean–variance approach of Markowitz (1952). Yet, the final
results are very similar to those obtained by Markowitz. Kelly started by considering
the long-term performance of a trading strategy in conjunction with the law of large
numbers. In our settings, and with appropriate technical regularity conditions (Bermin
and Holm 2021b), this means that

lim
T→∞

1

T
log

X0|w(T )

X0|w(0)
= lim

T→∞
1

T

∫ T

0
μ0|w(t)dt, a.s. (6)

Hence, by applying the growth optimal Kelly strategy w∗ = argmaxw μ0|w, such that
μ0|w∗ = 1

2 s
2
0|w∗ , Kelly noted that "our gambler’s capital will surpass, with probability

one, that of any other gambler apportioning his money differently". It also showed that
w∗ was (locally) a mean–variance efficient strategy, since its instantaneous Sharpe
ratio was maximal. The fact that optimal long-term capital growth requires optimal
instantaneous Sharpe ratio allocations is an interesting property.

This brings us to the core of the paper: howcan an investor increase the instantaneous
Sharpe ratio of a portfolio. In order to answer such a question, we follow Nielsen and
Vassalou (2004) and apply a Taylor expansion to the term s0|w+εv . By the use of
Proposition 1, we compute

s0|w+εv(t) = s0|w(t) + α0|v,w(t)

σ0|w(t)
ε + O(ε2), (7)

α0|v,w(t) = b0|v(t) − β0|v,w(t)b0|w(t), β0|v,w(t) = σ0|v(t)ρ0|v,w(t)

σ0|w(t)
. (8)

We recognize α0|v,w as Jensen’s alpha, see Jensen (1964), describing how the instanta-
neous excess return of the trading strategy v is risk-adjusted with respect to the trading
strategyw. The adjustment equals the product between the risk parameter beta and the
instantaneous excess return of the trading strategy w. It is apparent from Eq. (7) that
for ε sufficiently small we can always improve the Sharpe ratio if Jensen’s alpha is
different from zero. While theoretically interesting this observation has, as explained
in Nielsen and Vassalou (2004), limited practical applicability since only infinitesimal
contributions are considered.

In this paper, we show how to calculate the optimal instantaneous Sharpe ratio when
the opportunity set is enlarged. In doing so, we emphasize on the non-trivial geometry
governing risk adjustments. The main conclusion is that an investor who wants to run
a locally efficient trading strategy cares more about the orthogonal Sharpe ratio than
the risk-adjusted return. We stress that this is a static analysis, carried out for a given
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and fixed point in time, and consequently we often suppress the time dimension to
facilitate the reading.

3 Basic geometry

We start by giving a very brief introduction to geometry, including tensors and tensor
notation. For additional details, see for instance (Dodson and Poston 1991). The rea-
son for choosing this path is that we sometimes need to study the geometry from the
viewpoint of different coordinate systems. Consequently, it is beneficial to work with a
coordinate-free representation. The tensor notation further offers superior understand-
ing, compared to the linear algebra matrix notation, in describing how the components
transform with respect to linear transformations of the basis vectors. In order to easily
distinguish components from basis vectors (and tensors), we write the latter ones in
bold.

Throughout this paper, letU be an N -dimensional vector space overR such thatU is
isomorphic toRN . A typical element ofU is denoted byw and corresponds to a trading
strategy at a given point in time. Expressed in terms of the standard basis {e1, . . . , eN }
this means that w = w1(t)e1 + · · · + wN (t)eN for some vector of components w(t).
Similarly, we let w∗ denote the growth optimal Kelly vector with components w∗(t)
in the standard basis. We also fix the inner product V0(v,w) = 〈v(t), w(t)〉V0(t),
representing the random variable V0|v,w(t), and note that H = (U ,V0) is a Hilbert
space.

We further let U∗ denote the dual vector space containing all linear forms on
U . The elements of the dual space are referred to as covectors, or 1-forms, and a
typical example is the instantaneous rate of excess return. We define the covector
b0(w) = V0(w∗,w) such that it represents the random variable b0|w(t). Hence, b0(en)
corresponds to the n’th term of the component vector b0(t) = (b0|1(t), . . . , b0|N (t))′
for the investable assets. The notion of the dual space is important throughout this
work, and from linear algebra we know that the dual space U∗ is itself a vector space
of the same dimension as U . Moreover, as U is finite-dimensional the map into its
double dual space U∗∗ is a natural isomorphism; whence U∗∗ can be identified with
the original vector space. This means that we can also regard w as the linear form
w(b0) = b0(w).

For any vector basis {u1, . . . ,uN } ofU , there exists a dual vector basis {u1, . . . ,uN }
for which U∗ = span(u1, . . . ,uN ). We express the canonical dual basis, using the
Kronecker delta, according toui (u j ) = δij . One notes that in the special casewhere the
vector basis {u1, . . . ,uN } is orthonormal the canonical dual basis takes the same form
as the vector basis, which consequently allows for considerable simplifications. In our
situation, however, this is not the case. The standard basis is related to the investable
assets, which are assumed to be correlated with each other. To further explain the
relationship, we apply a linear transformation to the standard basis. It follows, using
Einstein summation for repeated indices, that if ēi = A j

i e j then ēi = (A−1)ije
j . We

verify this statement using the linearity of covectors

ēi (ē j ) = (A−1)ike
k(Al

jel) = Al
j (A

−1)ikδ
k
l = Al

j (A
−1)il = δij ,
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Table 1 Summary of main
tensors

T T ∈ (p, q)

b0 U∗ (0, 1)

w U (1, 0)

V0 U∗ ⊗U∗ (0, 2)

V−1
0 U ⊗U (2, 0)

P0 U ⊗U∗ (1, 1)

Note that other financial quantities, such as the relative leverage risk
k0(w) = V0(w,w)/b0(w), are typically not tensors due to the lack
of multilinearity. For instance, although k0(λw) = λk0(w), we have
k0(v + w) �= k0(v) + k0(w)

Similarly, we see that vector components also transform inversely to the coordinates:
w = wi (t)ei = w̄i (t)ēi = w̄i (t)A j

i e j implies that w̄i (t) = (A−1)ijw
j (t). For a

covector, though, the components transform similar to the vector basis, that is with
b0 = b0|i (t)ei = b̄0|i (t)ēi we obtain b̄0|i (t) = A j

i b0| j (t). Furthermore, the asset–
asset covariance matrix V0(t) generating the inner product V0 = V0|i, j (t)ei ⊗ e j =
V̄0|i, j (t)ēi ⊗ ē j transforms as V̄0|i, j (t) = Ak

i A
l
j V0|k,l(t).

The framework briefly outlined above is that of tensor analysis. The takeaway is
that a tensor is always independent of the chosen basis but that the components change
in such a way as to reflect the basis used. More formally, we regard a (p, q)-tensor T
as an element of the space

U ⊗ · · · ⊗U︸ ︷︷ ︸
p

⊗U∗ ⊗ · · · ⊗U∗
︸ ︷︷ ︸

q

,

such that T maps p covectors (recall that we identify U∗∗ with U ) and q vectors to R
in a coordinate-free and multilinear way. It is important to understand, however, that
in order to compute the function value in R we must always choose a particular basis
and identify the corresponding components.

In Table 1, we highlight the main tensors used in this paper. With the abstract
tensor notation, we observe that the instantaneous rate of excess return covector b0 =
V0(w∗) is the metric dual of the growth optimal Kelly vector. In other words, w∗ ∈
H = (U ,V0) is the Riesz representation of b0 ∈ H∗ = (U∗,V−1

0 ), where the inner
product V−1

0 = (V−1
0 (t))i jei ⊗ e j is generated by the inverse covariance matrix

V−1
0 (t) of the investable assets, such that ‖w∗‖H = ‖b0‖H∗ . Similarly, we can also

write w∗ = V−1
0 (b0), with the interpretation that w∗ is an element of the double dual

spaceU∗∗ ∼= U , such that w∗(en) = en(w∗) equals the n’th component of w∗(t). The
(1, 1)-tensor P0 = Pi

0| j (t)ei ⊗ e j is a projection operator mapping a covector and a
vector to R. More commonly, though, we regard it as a map from either U onto U
or from U∗ onto U∗. Finally, let us mention that we have chosen to represent other
financial key quantities with the same notation, although they are not tensors. For
instance, we let s0(w) = b0(w)/

√
V0(w,w) denote the instantaneous Sharpe ratio
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and note that this quantity is truly speaking not a tensor due to the nonlinear scaling
s0(λw) = sign(λ)s0(w).

Next we present additional results related to the growth optimal Kelly vector, with
the purpose both to motivate the use of tensors and to present a framework suitable
for geometric analysis.

3.1 Absence of arbitrage

In order to highlight the power of tensor analysis, we provide an enlightening exam-
ple of when it is important to consider vectors rather than simply components for a
particular basis.

Recall that in Sect. 2 we presented the basic portfolio theory directly in terms of
the components corresponding to the standard basis, such that the components of
the asset–asset covariance matrix V0(t) equaled �0(t)�′

0(t). It is well known that the
absence of arbitrage implies the existence of an F-adapted process θ = (θ1, . . . , θM )′,
see for instance (Karatzas and Shreve 1999), satisfying

�0|n,m(t)θm(t) = b0|n(t).

We call θ the market price of risk process and notice that in a complete market, where
M = N , this process equals θ(t) = �−1

0 (t)b0(t). Consequently, in a complete market
it follows, from Eq. (5), that we can express the growth optimal Kelly strategy as

w∗ = wi∗(t)ei = θa(t)(�−1
0 (t)) jae j = θa(t)ēa .

Moreover, since {ē1, . . . , ēN } is a basis of U we see that θa(t)ēa naturally describes
the market price of risk vector � ∈ U . We summarize the observations below.

Theorem 2 In a complete market, where M = N, the market price of risk vector �

is identical to the growth optimal Kelly vector w∗. That is, with � = θa(t)ēa, the
components and the basis vectors relate according to

θa(t) = w
j∗(t)(�0(t))aj , ēa = (�−1

0 (t)) jae j ,

wi∗(t) = θa(t)(�−1
0 (t))ia, ei = (�0(t))ai ēa,

such that

s0(w∗) = ‖w∗‖H = ‖�‖H = ‖θ(t)‖RN .

Note further that we can always choose a neworthonormal basis {ě1, . . . , ěN }, through
a standard orthogonal coordinate transformation, such that

� = s0(w∗)ě1, ě1 = w∗
‖w∗‖H .
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Proof Given that w∗ = � we need to show that ‖w∗‖H = s0(w∗) and ‖�‖H =
‖θ(t)‖RN . Direct calculations using Eqs. (3) and (5) yield

s20(w∗) = b20(w∗)
V0(w∗,w∗)

= V0(w∗,w∗) = ‖w∗‖2H.

Furthermore, since the components of w, with respect to the standard basis, satisfy
w′∗(t) = θ ′(t)�−1

0 (t) and V0(t) admits the decomposition �0(t)�′
0(t) it follows that

‖w∗‖2H = 〈w∗(t), w∗(t)〉V0(t) = w′∗(t)V0(t)w∗(t) = θ ′(t)θ(t),

which we recognize as the square of the Euclidean norm in R
N . �

By taking a geometric approach, we identify the growth optimal Kelly vector with
the market price of risk vector in a complete market. The key observation is that in
algebra and analysis the latter vector is typically expressed using components from a
basis different from the standard basis, which muddies the water and hides the fact that
the length of the vector equals its instantaneous Sharpe ratio. With this introduction
to Kelly trading, we proceed by investigating how to characterize the growth optimal
Kelly vector on subspaces.

3.2 The opportunity set and projections

So far we have considered the opportunity set to consist of N numéraire-based
investable assets. The first observation to be made is that this dimension is local
in time since new assets might be available for investment in the future, while other
assets might cease to exist for various reasons. However, for a given point in time, the
dimension of the opportunity set can also vary from investor to investor and below we
aim to clarify the geometry governing such reductions or expansions.

The approach we follow is to consider a subspaceU1 ⊆ U . Any vectorw ∈ U1 can
be expressed as w = w

j
v(t)v j for a given basis {v1, . . . , vN1}, N1 ≤ N , ofU1. Hence,

the N1 investable assets of the opportunity set U1 are linear combinations of the N
investable assets inU . We can further translate the representation to the standard basis
of U , by setting v j = vijei , such that w = wi (t)ei with wi (t) = w

j
v(t)vij . Below we

show how to characterize the growth optimal Kelly vector on U1, defined by

w∗[U1] = argmax
w∈U1

μ0(w),

in terms of w∗. However, first we introduce a technical result.

Lemma 3 Given a subspace H1 ⊆ H. The orthogonal projection of a vector w ∈ H
onto H1 = (U1,V0) is unique and satisfies

V0(w,P0|U1(x)) = V0(P0|U1(w), x) = V0(P0|U1(w),P0|U1(x)), ∀x ∈ H.
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Furthermore, the orthogonal projection admits the representation

P0|U1(w) =
∑

i≥1

V0(w, vi )
V0(vi , vi )

vi ,

for any orthogonal sequence {vi }i≥1 spanning U1.

Proof For details about the proof, we refer to Luenberger (1997). �
It is worth mentioning that the functional representation of the orthogonal projection
is more complicated when expanded in a non-orthogonal basis; a topic we return to
later in this paper. With that being said, we now return to the growth optimal Kelly
vector and highlight the financial connection.

Theorem 4 For H1 = (U1,V0), let H1 ⊆ H. Then,

w∗[U1] = P0|U1(w∗), ‖w∗[U1]‖H = s0(w∗[U1]).

Proof Let {vi }i≤N1 , N1 = dim(U1), be an orthogonal sequence spanningU1 such that
any vector w in U1 takes the form w = λ jv j . It now follows from Eqs. (2) and (5)
that

μ0(λ
jv j ) = λ jV0(w∗, v j ) − 1

2
λ jλkV0(v j , vk).

Hence, the rate of excess logarithmic return is maximal when

0 = ∂

∂λi
μ0(λ

jv j ) = V0(w∗, vi ) − λkV0(vi , vk).

Since {vi }i≤N1 is an orthogonal sequence, we see that λi = V0(w∗, vi )/V0(vi , vi ).
The first part of the proof follows by identifying the terms with those in Lemma 3.
Having identified the growth optimal Kelly vector on a subspace as a projection, we
again apply Lemma 3 to obtain

b0(w∗[U1]) = V0(w∗,P0|U1(w∗)) = V0(P0|U1(w∗),P0|U1(w∗)) = ‖w∗[U1]‖2H,

from which the proof concludes. �
A different explanation can be seen from the expression μ0(v) = 1

2 (‖w∗‖2H −
‖w∗−v‖2H), which shows that the local maximum is attained at the point withminimal
distance to the growth optimal Kelly vector. Hence, for any subspace, the line from
this unique point to w∗ is orthogonal to the subspace and therefore coincides with the
orthogonal projection of w∗ onto the subspace.

Remark 1 By setting b0[U∗
1 ] = V0(w∗[U1]) one notes, from Lemma 3, that

b0[U∗
1 ](v) = V0(P0|U1(w∗), v) = V0(w∗,P0|U1(v)) = b0(v), v ∈ H1 ⊆ H.
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The interpretation is thatb0[U∗
1 ] can be expressed in any dual basis spanningU∗

1 , while
b0 must be expanded in any dual basis spanning U∗. Similarly, we sometimes write
V0[U∗

1 ] when to emphasize that the inner product can be expanded using a dual basis
spanningU∗

1 . While the components of the expansions change for every chosen basis,
it is important to remember that the mapping to the real numbers do not. Consequently,
we often omit the notion of subspace for ease of readability.

We further see that we can regard the Hilbert space H, corresponding to the
investable assets for a given investor, as a subspace of the Hilbert space H̄ = (Ū ,V0)

representing all the world’s assets. What this means is that when analyzing optimal
portfolio allocations, for a particular investor, we only have to consider the covariance
structure of the investable assets for that investor. This follows as, restricted to a sub-
space U1, we only need to find the components of V0 for a given basis (meaning the
investable assets) of U1. It is quite remarkable that we can equate the growth optimal
Kelly vector on any subspace with a projection of the worldwide growth optimal Kelly
vector. This feature further implies that a growth optimal Kelly vector can be expressed
as a nested sequence of projections w∗[UK ] = P0|UK · · ·P0|U1(w∗), UK ⊂ · · · ⊂ U1.
The financial interpretation of such a nested sequence is best understood by a simple
application of Cauchy–Schwarz inequality, stating that ‖P0|Uk (w)‖H ≤ ‖w‖H for all
w ∈ H. Consequently, ‖w∗[Uk]‖H ≤ ‖w∗[Uk−1]‖H, which implies (see Theorem
4) that s0(w∗[Uk]) ≤ s0(w∗[Uk−1]). Hence, at each time we reduce the dimension
of the investable assets, for instance, by replacing some assets by a mutual fund, the
maximal instantaneous Sharpe ratio is reduced.

3.3 Level sets, correlations, and reflections

Modern portfolio theory is largely based on the geometric principle that the level
sets of the instantaneous Sharpe ratio are cones. In other words, if we set Cs =
{w ∈ R

N : s0(w) = s}, then for each w ∈ Cs , and positive scalar λ > 0, we have
λw ∈ Cs . Markowitz (1952) and Tobin (1958) used this property to derive the well-
known efficient mean–variance frontier, characterized by the set of trading strategies
for which the Sharpe ratio is maximal. Kelly (1956) and Latané (1959), however,
argued that by leveraging too hard (that is using a too high λ) the logarithmic excess
return, as opposed to the excess return, eventually becomesnegative. FollowingBermin
and Holm (2021b), we illustrate this feature using the concept of relative leverage (or
drawdown) risk

b0(w) = 1

k0(w)
σ 2
0(w), μ0(w) =

(
1

k0(w)
− 1

2

)
σ 2
0(w). (9)

As can be seen, the instantaneous excess return is strictly positive if and only if
k0(w) > 0, while the instantaneous logarithmic excess return is strictly positive if and
only if 0 < k0(w) < 2.

In order to visualize the framework geometrically, we first claim that, for w ∈ H,
the level sets of σ 0(w), μ0(w) and k0(w) are spheres of dimension N − 1, while the
level sets of b0(w) are hyperplanes of dimension N − 1. Furthermore, there exists a
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sphere of dimension N −2, for which all trading strategies are equivalent with respect
to the quantities just mentioned.

Proposition 5 The various level sets can be characterized

Level Topology Center Radius

b0(w) = b R
N−1 b

s2∗
w∗ −

σ0(w) = σ SN−1 0 σ

μ0(w) = μ SN−1 w∗ s∗

√
1 − 2μ

s2∗

k0(w) = k SN−1 1

2
kw∗

1

2
ks∗

b0(w) = b
σ 0(w) = σ

SN−2 b

s2∗
w∗ σ

√

1 −
(

b

σ s∗

)2

where we have set s∗ = s0(w∗) for convenience. Note further that the joint levels sets
of (b0, σ0) imply level sets for (μ0,k0).

Proof We, unconventionally, express the quantities using the norm onH according to

σ 2
0(w) = ‖w‖2H, μ0(w) = 1

2
‖w∗‖2H − 1

2
‖w − w∗‖2H,

k20(w) = 4

‖w∗‖2H
‖w − 1

2
k0(w)w∗‖2H.

We also note from Lemma 3 that

w‖ = P0| span(w∗)(w) = V0(w,w∗)
V0(w∗,w∗)

w∗ = b0(w)

‖w∗‖2H
w∗,

such that, with w⊥ = w − w‖, we have

‖w⊥‖2H = ‖w − w‖‖2H = σ 2
0 (w) − b20(w)

‖w∗‖2H
.

Finally, we identify the center point and the radius of the expressions. We also recall
that the norm of the growth optimal Kelly vector equals its instantaneous Sharpe ratio
as shown in Theorem 4. The proof concludes from the observation that (μ0,k0) can
be expressed in terms of (b0, σ0). �

The importance of the growth optimal Kelly vector can be explained from the
observation that the instantaneous excess return is invariant with respect to trading
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Fig. 1 This figure shows the vectors v = kv̂ and vr = kv̂r , where the latter is a reflection of the first through
the line spanned by the growth optimal Kelly vector w∗. We also highlight the level sets of k0 (black), b0
(blue), μ0 (green) and those of σ 0 (red)

strategies orthogonal to w∗. That is, with v = v‖ + v⊥, where v‖ and w∗ are collinear
while v⊥ and w∗ are perpendicular, one sees that

b0(v) = V0(w∗, v‖ + v⊥) = V0(w∗, v‖) + V0(w∗, v⊥) = b0(v‖).

However, since the volatility increaseswith v⊥, through the formulaσ 2
0(v) = σ 2

0(v‖)+
σ 2
0(v⊥), it is clear that the instantaneous Sharpe ratio is maximal for trading strategies

collinear to w∗. Hence, as can be seen from Fig. 1, the instantaneous efficient mean–
variance frontier (minimal variance for a fixed excess return) consists of all vectors
collinear to the growth optimal Kelly vector. These vectors can, however, equally be
represented by different constraint optimization problems, such as minimal relative
leverage risk for a fixed (logarithmic) excess return, to give an example. Thus, the
risk measures introduced in Bermin and Holm (2021b) fit well with the (local) mean–
variance approach.

We proceed by considering the projection of the growth optimal Kelly vector on
the subspace spanned by a single vector v. By the use of Eq. (4) and Lemma 3, we
define

v̂ = 1

k0(v)
v = V0(w∗, v)

V0(v, v)
v = P0| span(v)(w∗) = w∗[span(v)]. (10)

Bermin and Holm (2021b) call trading strategies generated in this way for generalized
growth optimal Kelly strategies and show that these strategies have the same relative
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drawdown/leverage risk as the growth optimal Kelly strategy. Their proof is a direct
consequence of the simple relationships k0(λv) = λk0(v) and k0(w∗) = 1. Since v̂
is the orthogonal projection of the growth optimal Kelly vector onto U1 = span(v),
the vector w∗ − v̂ is further perpendicular to v̂. Consequently, as shown in Fig. 1,
the angle between the vectors w∗ and v̂ satisfies cosϕw∗,v̂ = ‖v̂‖H/‖w∗‖H. The
financial interpretation of the angle between vectors is the correlation and through the
relationship ρ0(v,w) = cosϕv,w we obtain Roll’s result, see Roll (1977), that any
efficient trading strategy (i.e., collinear to the growth optimal Kelly vector) satisfies
the CAPM equation.

Theorem 6 For H1 = (U1,V0) let v ∈ H1 ⊆ H. Then,

s0(v) = ρ0(v, λw∗[U1])s0(λw∗[U1]), λ > 0.

Proof Without loss of generality, we set λ = 1. Lemma 3 then yields

ρ0(v,w∗[U1]) = V0(v,P0|U1(w∗))
‖v‖H‖w∗[U1]‖H = V0(P0|U1(v),w∗)

‖v‖H‖w∗[U1]‖H = b0(P0|U1(v))
σ0(v)‖w∗[U1]‖H .

Hence, for v ∈ H1 ⊆ H, the proof concludes by the use of Theorem 4. �
Since the correlation between any vector and the growth optimalKelly vector equals

the ratio of their instantaneous Sharpe ratios, we again see that |s0(v)| ≤ s0(w∗[U1])
for any vector v ∈ U1. Furthermore, the correlation is in fact bounded by the various
Sharpe ratios as shown below.

Corollary 7 For H1 = (U1,V0) let v,w ∈ H1 ⊆ H. Then

∣∣∣∣∣ρ0(v,w) − s0(v)s0(w)

s20(w∗[U1])

∣∣∣∣∣ ≤
√√√√

(
1 − s20(v)

s20(w∗[U1])

) (
1 − s20(w)

s20(w∗[U1])

)
,

with equality if dim(U1) = 2.

Proof Define v⊥ = v − P0| span(w∗[U1])(v) and w⊥ = w − P0| span(w∗[U1])(w). Direct
calculations, using Lemma 3, then show that

V0(v⊥,w⊥) = σ0(v)σ0(w) (ρ0(v,w) − ρ0(w∗[U1], v)ρ0(w∗[U1],w)) ,

which yields

ρ0(v⊥,w⊥) = ρ0(v,w) − ρ0(w∗[U1], v)ρ0(w∗[U1],w)√
1 − ρ2

0 (w∗[U1], v)
√
1 − ρ2

0 (w∗[U1],w)

.

Since |ρ0(v⊥,w⊥)| ≤ 1 the first part of the proof follows from Theorem 6.
We further note that if dim(U1) = 2 then v,w and w∗[U1] lie in the same plane.

This means that the angle ϕv,w = ϕw∗[U1],v + ϕw∗[U1],w, or ϕv,w = 2π − ϕw∗[U1],v −
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ϕw∗[U1],w, or ϕv,w = ±(ϕw∗[U1],v −ϕw∗[U1],w), such that ϕv,w ∈ [0, π ]. By inspecting
each case, we find that

cosϕv,w = cosϕw∗[U1],v cosϕw∗[U1],w ∓ sin ϕw∗[U1],v sin ϕw∗[U1],w,

where the sign preceding the sine functions is negative for the first two representations
of ϕv,w and positive for the latter two. The proof now follows from Theorem 6. �

In Fig. 1, we also plot the reflection of the vector v with respect to the growth
optimal Kelly vector. Hence, by setting vr = v‖ − v⊥, such that

vr = 2v‖ − v = 2P0| span(w∗)(v) − v = 2
V0(w∗, v)
V0(w∗,w∗)

w∗ − v,

straightforward calculations yield

b0(vr ) = b0(v), V0(vr , vr ) = V0(v, v).

From these expressions, it follows that also the instantaneous: excess logarithmic
return, Sharpe ratio and relative drawdown/leverage risk are invariant when the vector
v is replaced by the reflection vector vr . The fact that we can, in general, identify
two distinct trading strategies with identical local characteristics is a result of great
importance in order to fully understand the widely used mean–variance framework.
By construction, we also note that

V0(vr ,w) = V0(wr , v) = 2
V0(w∗, v)V0(w∗,w)

V0(w∗,w∗)
− V0(v,w),

which, together with Theorems 4 and 6, implies the identity

ρ0(vr ,w) = ρ0(wr , v) = 2
s0(v)s0(w)

s20(w∗)
− ρ0(v,w).

Hence, for every pair of correlated trading strategies (v,w) we can always find new
pairs (vr ,w) and (v,wr ) with modified correlation but with otherwise identical char-
acteristics, see Bermin and Holm (2023) for additional details related to this result.
Note also that in the particular case where w = v, we obtain

ρ0(vr , v) = 2ρ2
0(w∗, v) − 1 = 2 cos2 ϕw∗,v − 1 = cos 2ϕw∗,v,

which confirms that the angle ϕvr ,v = 2ϕw∗,v as illustrated in Fig. 1.
We have shown that the only trading strategies which are locally unique, in the

sense mentioned above, are the so-called (fractional) Kelly strategies, w = kw∗, first
introduced in MacLean et al. (1992). For these trading strategies, characterized by
having maximal instantaneous squared Sharpe ratio, one easily verifies that

μ0(kw∗) = 1

2
k(2 − k)s20(w∗), σ 2

0(kw∗) = k2s20(w∗). (11)
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Consequently, we notice that a Kelly strategy is efficient if the relative leverage risk
k0(kw∗) = k ∈ [0, 1], since otherwise we can always lower the volatility without
reducing the logarithmic excess return, see also Bermin and Holm (2023), Davis and
Lleo (2021). Finally, we briefly discuss how the geometric framework can be used to
visualize trade-offs between risk and return. For instance, fromFig. 1wededuce how to
lower the relative leverage/drawdown risk of an arbitrary trading strategy, at no expense
on the logarithmic excess return, by employing an efficient Kelly strategy.We illustrate
the approach by calculating the fraction k ∈ [0, 1] such that μ0(kw∗) = μ0(v̂), using
geometric principles only. One sees that the radius of the circle describing the level
sets of the logarithmic excess return can be expressed in the two different ways:
sin ϕw∗,v̂‖w∗‖H and (1 − k)‖w∗‖H. Hence, with

k = 1 − sin ϕw∗,v̂ = 1 −
√
1 − cos2 ϕw∗,v̂ = 1 −

√
1 − ρ2

0(w∗, v̂),

the relative leverage/drawdown risk is reduced from k0(v̂) = 1 to k0(kw∗) = k ≤ 1,
without affecting the excess logarithmic return. In much the same way it follows that,
for a fixed logarithmic excess return, the trading strategies with lowest volatility are
the Kelly strategies. This observation is a direct consequence of Proposition 5, stating
that the level sets of the volatility are spheres centered at origo.

4 Risk-adjusted returns

We are now ready to apply the geometric approach to study the concept of risk-
adjusted returns. That is we quantify the excess (logarithmic) return an investor can
achieve by augmenting the opportunity set and, at the same time, we provide geometric
interpretations of Jensen’s alpha and the beta parameter. While these quantities are
considered fundamental for many portfolio managers, the amount of information they
carry is rather limited. In fact, as pointed out in Eqs. (7) and (8), the only information
contained in Jensen’s alpha is the sign, indicating whether to add a long or short
infinitesimal position of an asset, to an existing portfolio, in order to increase the
instantaneous Sharpe ratio. However, the knowledge of alpha and beta is, by itself, not
enough to determine how to form the portfolio with maximal instantaneous Sharpe
ratio. The reason why alpha and beta fail to be self-contained is due to the easily
verifiable scaling properties

α0(λ1w1, λ2w2) = λ1α0(w1,w2), β0(λ1w1, λ2w2) = λ1

λ2
β0(w1,w2).

In other words, given arbitrary trading and reference strategies, represented by
(w1,w2), we can apply leverage (λ1w1, λ2w2) to achieve any targeted alpha and
beta. Moreover, even when the reference strategy is held fixed, λ2 = 1, one sees that
Jensen’s alpha scales similarly to the instantaneous excess return b0, thus ignoring
the fact that by increasing the leverage the instantaneous logarithmic excess return μ0
eventually turns negative.We therefore suggest a slightly modifiedmeasure, which we
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call the orthogonal Sharpe ratio, that instead quantifies how much the instantaneous
Sharpe ratio can be improved.

In order to formulate our approach we first introduce some terminology. Given two
subspaces U1,U2 with trivial intersection, U1 ∩U2 = {0}, we let U1 ⊕U2 denote the
direct sum and recall the similar concept for Hilbert spaces

H1 ⊕ H2 = (
U1,V0

[
U∗
1

]) ⊕ (
U2,V0

[
U∗
2

]) = (
U1 ⊕U2,V0

[
U∗
1

] ⊕ V0
[
U∗
2

])
.

Hence, H = H1 ⊕ H2 if U = U1 ⊕ U2 and U1 ⊥ U2. As mentioned in Remark
1, there is no real conceptual gain in explicitly expressing the space for which the
inner product can be expanded in some basis. Consequently, from here and onward,
we simply write V0 ⊕ V0 unless there is ambiguity. We also write w∗ when referring
tow∗[U ] andU = U1 ⊕U2. The following results show the importance of the Hilbert
space direct sum decomposition.

Proposition 8 Let H = H1 ⊕ H2. Then

w∗ = w∗[U1] + w∗[U2],
s20(w∗) = s20(w∗[U1]) + s20(w∗[U2]),
b0(w∗) = b0(w∗[U1]) + b0(w∗[U2]).

Proof Since H = H1 ⊕ H2, there is a unique decomposition w∗ = w1 + w2, such
that wi ∈ Hi . Because U1 ⊥ U2, we can further identify wi with P0|Ui (w∗), from
which the first result follows by Theorem 4. The second result also follows from
Theorem 4, sinceU1 ⊥ U2, while the third result follows from the dual representation
H∗ = H∗

1 ⊕ H∗
2. �

Consequently, for a growth optimal Kelly trader the (logarithmic) excess return
related to an augmentation of the opportunity set is directly linked to finding the
Hilbert space direct sum decomposition of two arbitrary (and thus not necessarily
orthogonal) vector spacesU1,U2 ⊆ U . Henceforth, we letU⊥

2|1 denote the orthogonal
subspace to U1 in U , while U⊥

1|2 denotes the orthogonal subspace to U2 in U , such
that

P0|U⊥
2|1

= 1U − P0|U1 , P0|U⊥
1|2

= 1U − P0|U2 . (12)

This shows that H = H1 ⊕ H⊥
2|1 = H⊥

1|2 ⊕ H2, where

H1 ⊕ H⊥
2|1 =

(
U1 ⊕U⊥

2|1,V0 ⊕ V0

)
, H⊥

1|2 ⊕ H2 =
(
U⊥
1|2 ⊕U2,V0 ⊕ V0

)
.

The financial interpretation is that a growth optimal Kelly trader in U1 should add
the orthogonal vector w∗[U⊥

2|1] to be growth optimal in U , while a growth optimal

Kelly trader in U2 should add the orthogonal vector w∗[U⊥
1|2]. In order to establish a

connection to the alpha and beta parameters, we further show that the instantaneous
excess return covectorsb0[U⊥∗

2|1 ] andb0[U⊥∗
1|2 ] are related to alpha,while the orthogonal

123



H. Bermin, M. Holm

projection operators P0|U⊥
2|1

and P0|U⊥
1|2

are linked to beta. We also stress that while the

primary market might consist of, say, N numéraire based assets, we generally assume
that only some mutual funds are available for investment. Consequently, dim(U ) =
dim(U1) + dim(U2) ≤ N . For ease of readability, we choose to present our results
in two steps: first we consider the simple case where dim(U1) = dim(U2) = 1 and
thereafter we consider the general case. As always, most of the results carry over to
higher dimensions albeit with some modifications.

4.1 Kelly solution in two dimensions

Consider a market with only two investable assets such that dim(U ) = 2. We stress
that each asset can be thought of as a mutual fund, with positions in a much larger
asset universe. Let further v1, v2 ∈ U be two linearly independent vectors (each
corresponding to a particular trading strategy) and set Ui = span(vi ), for i = 1, 2.
Then, as U1 ∩ U2 = {0}, we have U = U1 ⊕ U2. However, since the vectors v1, v2
are typically not orthogonal, we cannot yet form the Hilbert space direct sum. For this
reason, we also consider the alternative decompositions U = U1 ⊕ U⊥

2|1 and U =
U⊥
1|2 ⊕ U2. It should come as no surprise that calculating the risk-adjusted quantities

can be greatly simplified if we use orthogonal basis vectors but that eventually we
want to represent the risk adjustments using the natural basis vectors (v1, v2). Hence,
our first goal is to construct basis vectors (v1, v2|1) and (v1|2, v2), where v2|1 is some
vector spanningU⊥

2|1 and similarly for v1|2. Below we show how to use the projection
operators to construct three such sets of basis vectors and in doing so we derive a
geometrical interpretation of alpha and beta.

Given the non-orthogonal natural basis (v1, v2), we recall the canonical dual basis
(v1, v2). By the use of Lemma 3, we immediately get

P0|U1 = V0(v1)
V0(v1, v1)

v1 = β0(·, v1)v1, P0|U2 = V0(v2)
V0(v2, v2)

v2 = β0(·, v2)v2,

which identifies beta as being linked to the component of a projection tensor. Since
the latter are (1,1)-tensors, we can further expand them using the canonical dual basis,
and from Eq. (12) we further obtain

P0|U⊥
2|1

=
2∑

i=1

(
vi − P0|U1 (vi )

)
vi = (

v2 − β0(v2, v1)v1
)
v2,

P0|U⊥
1|2

=
2∑

i=1

(
vi − P0|U2 (vi )

)
vi = (

v1 − β0(v1, v2)v2
)
v1.

We can now easily identify orthogonal vectors by setting

v2|1 = P0|U⊥
2|1

(v2) = v2 − β0(v2, v1)v1,

v1|2 = P0|U⊥
1|2

(v1) = v1 − β0(v1, v2)v2.
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Fig. 2 This figure shows the orthogonal decompositions U = U1 ⊕ U⊥
2|1 = U⊥

1|2 ⊕ U2 for two separate

cases. The growth optimal Kelly vector w∗ = v̂1 + v̂2|1 = v̂1|2 + v̂2, which implies a representation w∗ =
w1∗v1+w2∗v2 in the non-orthogonal decompositionU = U1⊕U2.We use the notations: ρ1,2 = ρ0(v1, v2),
β2
1 = β0(v1, v2), β

1
2 = β0(v2, v1) and also highlight the level sets of k0(w) = k, for k ∈ {1, 2, ±∞}

In Fig. 2, we display the geometry of the orthogonal decompositionsU1 ⊕U⊥
2|1 and

U⊥
1|2⊕U2, indicating the role of beta as being the components of a projection operator.

From the degenerate case, plot (b), we further notice that, say, v̂2|1 = w∗[U⊥
2|1] = 0 is

not equivalent to v̂2 = w∗[U2] = 0. Having constructed the two auxiliary coordinate
systems (v1, v2|1) and (v1|2, v2), we proceed by investigating their local properties.

Proposition 9 The characteristics of the vectors v2|1 and v1|2 are given by:

b0(v2|1) = α0(v2, v1), σ 2
0(v2|1) = σ 2

0(v2) − β2
0(v2, v1)σ

2
0(v1),

b0(v1|2) = α0(v1, v2), σ 2
0(v1|2) = σ 2

0(v1) − β2
0(v1, v2)σ

2
0(v2).

Proof We illustrate the proof for the vector v2|1.

b0(v2|1) = V0(w∗, v2|1) = V0(w∗, v2) − β0(v2, v1)V0(w∗, v1),
= b0(v2) − β0(v2, v1)b0(v1) = α0(v2, v1),

V0(v2|1, v2|1) = V0(v2, v2) + β2
0(v2, v1)V0(v1, v1) − 2β0(v2, v1)V0(v1, v2),

= V0(v2, v2) − β2
0(v2, v1)V0(v1, v1).

The proof for v1|2 is done analogously and is thus omitted. �
It follows that the new strategies v2|1 and v1|2 have different relative lever-

age/drawdown risk than the original strategies v2 and v1, respectively. It is also
important to notice that the knowledge of alpha and beta alone is not sufficient to
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calculate the corresponding Sharpe ratios s0(v2|1) and s0(v1|2), since these quanti-
ties additionally depend on the volatility of each trading strategy. We paraphrase this
observation as:

Larger alpha with fixed beta is not necessarily better.

Smaller beta with fixed alpha is not necessarily better.

Furthermore, while it is pleasant to be able to interpret the excess return of the vectors
v2|1 and v1|2 in terms of alpha, we must remember that the only purpose of these
vectors is to span the spaces U⊥

2|1 and U⊥
1|2. Hence, any linear scaling of these vectors

would serve equally well since the ultimate goal is to find v̂2|1 and v̂1|2. For this reason,
we rather prefer to express any risk adjustment in terms of Sharpe ratios as described
below. This approach further reduces the number of free variables.

Definition 1 We call s0(v2|1) the orthogonal Sharpe ratio of v2 given U1 and define
the corresponding orthogonal Sharpe ratio of v1 given U2 analogously.

Theorem 10 The growth optimal Kelly vector admits the representation

w∗ = s0(v1|2)

σ 0(v1)
√
1 − ρ2

0(v1, v2)
v1 + s0(v2|1)

σ 0(v2)
√
1 − ρ2

0(v1, v2)
v2,

where the instantaneous orthogonal Sharpe ratios equal

s0(v2|1) = s0(v2) − ρ0(v1, v2)s0(v1)√
1 − ρ2

0(v1, v2)
, s0(v1|2) = s0(v1) − ρ0(v1, v2)s0(v2)√

1 − ρ2
0(v1, v2)

.

Furthermore, the squared Sharpe ratio of the growth optimal Kelly strategy satisfies

s20(w∗) = s20(v1) + s20(v2|1) = s20(v1|2) + s20(v2),

s20(w∗) = s20(v1) + s20(v2) − 2ρ0(v1, v2)s0(v1)s0(v2)

1 − ρ2
0(v1, v2)

.

Proof By applying Proposition 8 and the notation in Eq. (10), we have

w∗ = v̂1 + v̂2|1 = 1

k0(v1)
v1 + 1

k0(v2|1)
v2|1,

w∗ = v̂1|2 + v̂2 = 1

k0(v1|2)
v1|2 + 1

k0(v2)
v2.

We then transform these results to the coordinates (v1, v2). Straightforward calcula-
tions yield

w∗ = 1

k0(v1|2)
v1 + 1

k0(v2|1)
v2.
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The proof now follows from Propositions 8 and 9. �
The importance of this result lies in the fact that any trading strategy with maximal
instantaneous Sharpe ratio is proportional to the growth optimal Kelly vector, or in
other words all efficient trading strategies are of the form w = kw∗, k ≥ 0. Below we
provide two examples highlighting the behavior of the growth optimal Kelly vector in
the degenerate cases.

Example 1 Suppose that s0(v2) = 0, such that s0(w∗[U2]) = 0. Then, as shown in
Theorem 4, ‖w∗[U2]‖H = 0, or equallyw∗[U2] = 0. But this does not imply that one
should not invest in v2 when the opportunity set equalsU1 ⊕U2. Rather, Theorem 10
gives

w∗ = s0(v1)

σ 0(v1)(1 − ρ2
0(v1, v2))

v1 − ρ0(v1, v2)s0(v1)

σ 0(v2)(1 − ρ2
0(v1, v2))

v2.

Example 2 Suppose that v2 = kw∗, such that s20(v2) = s20(w∗). Then, as shown in
Theorem 10, s0(v1|2) = 0, or equally s0(v1) = ρ0(v1, v2)s0(v2). But this implies that

w∗ = s0(v2|1)

σ 0(v2)
√
1 − ρ2

0(v1, v2)
v2 = s0(v2)

σ 0(v2)
v2 = w∗[U2].

Hence, an investor who enlarges his opportunity set from U1 to U1 ⊕ U2 may well
trade in the new asset even if it has zero Sharpe ratio. Moreover, such an investor may
also fully discard his existing trading strategy in favor of only trading the asset in U2
(even though the initial portfolio has nonzero Sharpe ratio). Finally, we take advantage
of the two-dimensional framework and present a pure geometric approach to identify
the maximal Sharpe ratio and implicitly, thereby, the orthogonal Sharpe ratios.

Example 3 From Fig. 3 and Ptolemy’s formula, we know that

BD · ‖w∗‖H = ‖v̂2|1‖H‖v̂2‖H + ‖v̂1‖H‖v̂1|2‖H,

where BD represents the distance between the vectors v̂1 and v̂2. We divide both sides
with ‖w∗‖2H and identify the ratios on the right-hand side with angles according to

BD

‖w∗‖H = sin ϕw∗,v̂1 cosϕw∗,v̂2 + cosϕw∗,v̂1 sin ϕw∗,v̂2 = sin(ϕw∗,v̂1 + ϕw∗,v̂2).

Since ϕw∗,v̂1 + ϕw∗,v̂2 = ϕv̂1,v̂2 , it now follows from the law of cosines that

‖w∗‖2H = BD2

sin2 ϕv̂1,v̂2

= ‖v̂1‖2H + ‖v̂2‖2H − 2 cosϕv̂1,v̂2‖v̂1‖H‖v̂2‖H
1 − cos2 ϕv̂1,v̂2

,

which is the form presented in Theorem 10.
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Fig. 3 This figure shows that the orthogonal decompositions U = U1 ⊕ U⊥
2|1 = U⊥

1|2 ⊕ U2 form a
cyclic quadrilateral. The circle, in which the quadrilateral is inscribed, corresponds to the level set of
k0(w) = 1, that is centered at w∗/2 with a radius of AC/2. The quadrilateral is cyclic because opposite
angles sum to π . Furthermore, the diagonals relate to the sides by Ptolemy’s celebrated formula BD · AC =
CD · AB + AD · BC

4.2 Kelly solution in arbitrary dimensions

Here we provide the solution of adding one opportunity set to another. The main
difficulty lies in the fact that both opportunity sets consist of correlated assets; both
among themselves but also among each other. In order to understand how the new
assets affect the portfolio allocation, we orthogonalize the covariance matrix, seen
as a block matrix of the two sets of assets, in a way much similar to what was done
previously where the two sets only held one asset each. Although computing inverses
of block matrices is well understood, using matrix formalism to solve our problem is,
if not impossible, at least very difficult.

In order to formulate the approach mathematically, we consider two subspaces U1
andU2 of dimension N 1 and N 2, respectively. Each subspace is spanned by some lin-
early independent trading strategies and we use the notationUn = span(v1n , . . . , vNn

n
)

to describe them.We further assume, without loss of generality, thatU1∩U2 = {0} and
form the direct sum U = U1 ⊕ U2, such that dim(U ) = N 1 + N 2. For convenience,
we also introduce the notation

i1 = i, i2 = N 1 + i, (13)

such that we can identify the trading strategies inU when needed. Having defined our
usage of multi-indices, we proceed by expanding the projection tensors, see Eq. (12),
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according to

P0|U⊥
2|1

=
2∑

n=1

Nn
n∑

in=1n

(
vin − P0|U1(vin )

)
vin =

N2
2∑

i2=12

(
vi2 − P0|U1(vi2)

)
vi2 ,

P0|U⊥
1|2

=
2∑

n=1

Nn
n∑

in=1n

(
vin − P0|U2(vin )

)
vin =

N1
1∑

i1=11

(
vi1 − P0|U2(vi1)

)
vi1 ,

where the canonical dual basis vectors satisfy v jk (vil ) = δ
jk
il
. In order to further

highlight the similarities with the two-dimensional case, we use Einstein summation
and write: P0|U1(vi2) = β

k1
i2
vk1 , P0|U2(vi1) = β

k2
i1
vk2 , in terms of some generalized

beta parameters. However, before we show how to compute the components of these
projections, we first introduce some notation.

Definition 2 For every subspace H0 = (U0,V0) of H, let {Vi, j
0|U0

} denote the inverse
of the Gram matrix on H0 ⊆ H, such that for any chosen basis {vk}k≤K of U0, with
dim(U0) = K , we have

V0(vi , vk)V
j,k
0|U0

= δ
j
i , i, j ∈ {1, . . . , K },

Similarly, we let {ρi, j
0|U0

} denote the inverse of the corresponding correlation matrix
onH0, such that

ρ
i, j
0|U0

= σ0(vi )V
i, j
0|U0

σ0(v j ), ρ0(vi , vk)ρ
j,k
0|U0

= δ
j
i , i, j ∈ {1, . . . , K }.

Lemma 11 LetH0 = (U0,V0) be an arbitrary K -dimensional subspace ofH and let
{vk}k≤K be a basis of U0. Then, the projection

P0|U0(w) = V0(w, v j )V
j,k
0|U0

vk,

of w ∈ H onto H0 ⊆ H is orthogonal.

Proof We first show that P0|U0 is indeed a projection.

P0|U0(P0|U0(w)) = V0(w, v j )V
j,k
0|U0

V0(vk, va)V
a,b
0|U0

vb,

= V0(w, v j )V
j,k
0|U0

δbkvb = V0(w, v j )V
j,k
0|U0

vk = P0|U0(w).

Next, we show that the projection is orthogonal

V0(P0|U0(w),P0|U0(x)) = V0(w, v j )V
j,k
0|U0

V0(x, va)V
a,b
0|U0

V0(vk, vb),

= V0(w, v j )V
j,k
0|U0

V0(x, va)δak ,

= V0(w, v j )V
j,k
0|U0

V0(x, vk) = V0(P0|U0(w), x).
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Hence, P0|U0(w) ⊥ x − P0|U0(x) which concludes the proof. �
We stress that the above result generalizes Lemma 3 by allowing the basis vectors to

be non-orthogonal. Hence, rather than working with a non-observable abstract vector
basis, we can directly consider the investable assets. Having identified the generalized
beta parameters, we now construct the vectors

vi2|1 = P0|U⊥
2|1

(vi2) = vi2 − β
k1
i2
vk1 , β

k1
i2

= V0(vi2 , v j1)V
j1,k1
0|U1

,

vi1|2 = P0|U⊥
1|2

(vi1) = vi1 − β
k2
i1
vk2 , β

k2
i1

= V0(vi1 , v j2)V
j2,k2
0|U2

,

such that span(v12|1, . . . , vN2
2 |1) = U⊥

2|1 ⊥ U1 and span(v11|2, . . . , vN1
1 |2) = U2 ⊥

U⊥
1|2. The local properties of these orthogonal vectors are summarized below.

Proposition 12 The characteristics of the vectors {vi2|1} and {vi1|2} are summarized
by their instantaneous Sharpe ratios

s0(vi2|1) = s0(vi2) − ρ0(vi2 , v j1)ρ
j1,k1
0|U1

s0(vk1)√
1 − ρ2

0(vi2 ,P0|U1(vi2))
,

s0(vi1|2) = s0(vi1) − ρ0(vi1 , v j2)ρ
j2,k2
0|U2

s0(vk2)√
1 − ρ2

0(vi1 ,P0|U2(vi1))
,

and their instantaneous volatilities

σ 0(vi2|1) = σ 0(vi2)
√
1 − ρ2

0(vi2 ,P0|U1(vi2)),

σ 0(vi1|2) = σ 0(vi1)
√
1 − ρ2

0(vi1 ,P0|U2(vi1)).

Furthermore, the instantaneous correlation between the vectors, in each basis, equal

ρ0(vi2|1, v j2|1) = ρ0(vi2 , v j2) − ρ0(vi2 , v j1)ρ
j1,k1
0|U1

ρ0(vk1 , v j2)√
1 − ρ2

0(vi2 ,P0|U1(vi2))
√
1 − ρ2

0(v j2 ,P0|U1(v j2))

,

ρ0(vi1|2, v j1|2) = ρ0(vi1 , v j1) − ρ0(vi1 , v j2)ρ
j2,k2
0|U2

ρ0(vk2 , v j1)√
1 − ρ2

0(vi1 ,P0|U2(vi1))
√
1 − ρ2

0(v j1 ,P0|U2(v j1))

,

where

ρ2
0(w,P0|Un (w)) = ρ0(w, v jn )ρ

jn ,kn
0|Un

ρ0(vkn ,w), n ∈ {1, 2}.
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Proof We only show how to compute the terms for vi2|1 since vi1|2 is treated similarly.
First note that

β
k1
i2
V0(vk1 , vl1) = V0(vi2 , v j1)V

j1,k1
0|U1

V0(vk1 , vl1) = V0(vi2 , v j1)δ
j1
l1

= V0(vi2 , vl1).

We therefore obtain

V0(vi2|1, v j2|1) = V0(vi2 − β
k1
i2
vk1 , v j2 − β

l1
j2
vl1),

= V0(vi2 , v j2) − β
k1
i2
V0(vk1 , v j2) − β

l1
j2
V0(vl1 , vi2)

+ β
l1
j2
β
k1
i2
V0(vk1 , vl1),

= V0(vi2 , v j2) − β
k1
i2
V0(vk1 , v j2),

= V0(vi2 , v j2) − V0(vi2 , v j1)V
j1,k1
0|U1

V0(vk1 , v j2).

We also calculate the generalized alpha representation

b0(vi2|1) = b0(vi2) − β
k1
i2
b0(vk1) = b0(vi2) − V0(vi2 , v j1)V

j1,k1
0|U1

b0(vk1).

The proof concludes by replacing V0|U1 with ρ0|U1
, as in Definition 2. �

It is of course a matter of taste which financial quantities to use when describing the
local characteristics and here we deviate from Proposition 9 by focusing on orthog-
onal Sharpe ratios, correlations and volatilities. The main reason for choosing these
quantities is that the magnitude of both the Sharpe ratio and the correlation does not
depend on leverage. The drawback is that neither quantity is a tensor, whichmeans that
sometimes it is easier to work with (b0,V0). We now present the multi-dimensional
version of Theorem 10.

Theorem 13 The growth optimal Kelly vector admits the representation

w∗ = s0(vi1|2)ρ
i1, j1
0|U⊥

1|2
σ−1
0 (v j1|2)v j1 + s0(vi2|1)ρ

i2, j2
0|U⊥

2|1
σ−1
0 (v j2|1)v j2 .

Furthermore, the squared Sharpe ratio of the growth optimal Kelly strategy satisfies

s20(w∗) = s20(w∗[U1]) + s20
(
w∗[U⊥

2|1]
)

= s20
(
w∗[U⊥

1|2]
)

+ s20(w∗[U2]),

where

s20(w∗[Uk]) = s0(vik )ρ
ik , jk
0|Uk

s0(v jk ), k ∈ {1, 2},
s20

(
w∗[U⊥

2|1]
)

= s0(vi2|1)ρ
i2, j2
0|U⊥

2|1
s0(v j2|1),

s20
(
w∗[U⊥

1|2]
)

= s0(vi1|2)ρ
i1, j1
0|U⊥

1|2
s0(v j1|2).
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Proof From Theorem 4 and Proposition 8, we have

w∗ = P0|U1(w∗) + P0|U⊥
2|1

(w∗) = P0|U⊥
1|2

(w∗) + P0|U2(w∗).

Consequently, Lemma 11 gives us the equivalent expressions

w∗ = V0(w∗, vi1)V
i1, j1
0|U1

v j1 + V0(w∗, vi2|1)V
i2, j2
0|U⊥

2|1
v j2|1,

w∗ = V0(w∗, vi1|2)V
i1, j1
0|U⊥

1|2
v j1|2 + V0(w∗, vi2)V

i2, j2
0|U2

v j2 ,

such that straightforward calculations yield

‖w∗‖2H = V0(w∗, vi1)V
i1, j1
0|U1

V0(w∗, v j1) + V0(w∗, vi2|1)V
i2, j2
0|U⊥

2|1
V0(w∗, v j2|1),

‖w∗‖2H = V0(w∗, vi1|2)V
i1, j1
0|U⊥

1|2
V0(w∗, v j1|2) + V0(w∗, vi2)V

i2, j2
0|U2

V0(w∗, v j2).

Next, we representw∗ in terms of the basis vectors {vi1} and {vi2}. Similar to the proof
of Theorem 10, we pick terms from each of the two representations to arrive at

w∗ = V0(w∗, vi1|2)V
i1, j1
0|U⊥

1|2
v j1 + V0(w∗, vi2|1)V

i2, j2
0|U⊥

2|1
v j2 .

Finally, we use Definition 2 to express the results in terms of correlations rather than
covariances. �

In order to verify that the above formula collapses to Theorem 10when N 1 = N 2 =
1, we notice that in this casew∗ = k−1

0 (v11|2)v11 +k−1
0 (v12|1)v12 . The correspondence

then follows from converting the index references for each subspace U1,U2 to index
references in U , as explained in Eq. (13). We continue with an example highlighting
the benefits of diversification seen in higher dimensions. Loosely speaking, we can
think of the example as adding an asset to a trading strategy in, say S&P500, versus
adding the asset to the opportunity set of the index.

Example 4 Let N 1 > 1 and N 2 = 1. In this example, we study the difference in trading
the assets {v11 , . . . , vN1

1
, v12} versus trading only in {w∗[U1], v12}. For the sake of

simplicity, we introduce a new orthogonal basis {ěi1} on U1 = span(v11 , . . . , vN1
1
),

such that

ě11 = w∗[U1]
‖w∗[U1]‖H .

The inverse correlationmatrix corresponding to the newGrammatrix onU1 then takes
the form ρ̌

j1,k1
0|U1

= δ j1,k1 . Moreover, since s0(ěi1) = s0(w∗[U1]), if i = 1, and zero
otherwise, Proposition 12 yields

s20(w∗[U⊥
2|1]) = s20(v12|1) =

(
s0(v12) − ρ0(v12 , ě11)s0(ě11)

)2

1 − ∑N1

i=1 ρ2
0(v12 , ěi1)

.
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We now compare this result with a growth optimal Kelly strategy on Ǔ = Ǔ1 ⊕ U2,
where Ǔ1 = span(w∗[U1]) = span(ě11). Consequently, we have s0(w∗[Ǔ⊥

2|1]) =
s0(w∗[U⊥

2|1])|N1=1, and from Theorem 13 we calculate

s20(w∗[U ]) − s20(w∗[Ǔ ])
(
s0(v12 ) − ρ0(v12 ,w∗[U1])s0(w∗[U1])

)2 = 1

1 − ∑N1

i=1 ρ2
0(v12 , ěi1 )

− 1

1 − ρ2
0(v12 , ě11 )

.

This positive quantity equals zero if and only if ρ0(v12 , ěi1) = 0, for 21 ≤ i1 ≤ N 1
1 .

In general, though, diversification has a positive effect on the maximal Sharpe ratio
and thereby on the (logarithmic) excess return for any Kelly trader.

Without going into details, we mention that the previous example can easily be
generalized to the situation where both N 1, N 2 > 1. Here, one finds that

s20(w∗[U ]) = s20(w∗[Ũ ]), Ũ = span(w∗[U1]) ⊕ span(w∗[U2]),

if and only if w∗[U1] ⊥ ě22 , . . . , ěN2
2
and w∗[U2] ⊥ ě21 , . . . , ěN1

1
, where {ěik }i≥1

denotes an orthogonal basis in Uk , k ∈ {1, 2}, such that ě1k = w∗[Uk]/‖w∗[Uk]‖H.
We conclude by noting that Jensen’s alpha, as a risk-adjusted return, has a num-

ber of shortcomings. First, it does not specify the risk metric under which we can
quantify adjusted excess return for a given risk level. Second, it does not answer the
question how to form mean–variance efficient trading strategies, and third, it does not
readily generalize to higher dimensions since the diversification effect is not taken
into account. In contrast, we argue that the Kelly approach, in combination with the
orthogonal Sharpe ratio, brings clarity to the picture, and in Sect. 5 we provide further
evidence supporting this claim.

5 Relative value trading

We investigate the connection between relative value trading and option pricing as
highlighted in Bermin and Holm (2021a). As shown in Sect. 3.3, for a fixed level of
logarithmic excess return, it is always favorable to use an efficient Kelly strategy, both
in terms of relative leverage/drawdown risk and in terms of volatility. These properties
follow from the fact that a Kelly strategy, by design, hasmaximal instantaneous Sharpe
ratio and that it is never optimal to leveragemore than thegrowthoptimalKelly strategy.
We therefore choose to study the transformation of one efficient Kelly strategy to
another as we enlarge the opportunity set. In other words, we start with a trading
strategy w1 = k1w∗[U1], k1 ∈ [0, 1] and investigate the impact of extending the asset
universe to U = U1 ⊕ U2, when the new Kelly strategy w = kw∗ is used. From
Eq. (11), we then have

μ0(w1) = 1
2k1(2 − k1)s20(w∗[U1]), μ0(w) = 1

2k(2 − k)s20(w∗),

σ 2
0 (w1) = k21s

2
0(w∗[U1]), σ 2

0 (w) = k2s20(w∗),

k0(w1) = k1, k0(w) = k.
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Hence, for a fixed relative leverage risk, k = k1, the logarithmic excess return increases
as

μ0(w) − μ0(w1) = 1

2
k1(2 − k1)

(
s20(w∗) − s20(w∗[U1])

)
≥ 0.

If, instead, we keep the volatility fixed by setting k = k1s0(w∗[U1])/s0(w∗), then

μ0(w) − μ0(w1) = k1s0(w∗[U1]) (s0(w∗) − s0(w∗[U1])) ≥ 0.

Conversely, for a fixed logarithmic excess return we find that

k = 1 ±
√

1 − k1(2 − k1)
s20(w∗[U1])
s20(w∗)

.

By choosing the efficient strategy with lowest variance (that is the one for which
k ∈ [0, 1]), we obtain after some algebraic manipulations

k0(w) − k0(w1)

1 − k1
= 1 −

√

1 + k1(2 − k1)

(1 − k1)2
(s20(w∗) − s20(w∗[U1]))

s20(w∗)
≤ 0,

σ 0(w) − σ 0(w1)

s0(w∗) − k1s0(w∗[U1]) = 1 −
√

1 + 2k1
s0(w∗[U1])(s0(w∗) − s0(w∗[U1]))

(s0(w∗) − k1s0(w∗[U1]))2 ≤ 0.

The conclusion to be drawn is thatwhen restricted to trading strategieswithmaximal
instantaneous Sharpe ratio it is almost always beneficial to enlarge the opportunity set.
By doing so, we can either increase the logarithmic excess return for a given relative
leverage risk (or volatility) level or reduce the relative leverage risk (or volatility) for
a given logarithmic excess return level. The only time when no value can be added,
relative the initial portfolio, is when s0(w∗) = s0(w∗[U1]). Here, the direct sum
representation degenerates, see Fig. 2, and below we provide a number of equivalent
conditions for when this happens.

Proposition 14 Let H = (U1 ⊕ U⊥
2|1,V0 ⊕ V0). The following conditions are

equivalent

w∗ = w∗[U1], w∗[U⊥
2|1] = 0,

b0(w∗) = b0(w∗[U1]), b0(w∗[U⊥
2|1]) = 0,

s0(w∗) = s0(w∗[U1]), s0(w∗[U⊥
2|1]) = 0,

and

b0(w) = b0(P0|U1(w)), ∀w ∈ H,

s0(w) = ρ0(w,w∗[U1])s0(w∗[U1]), ∀w ∈ H.
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Proof Since w∗ = w∗[U1] + w∗[U⊥
2|1], b0(w∗) = b0(w∗[U1]) + b0(w∗[U⊥

2|1]), and
s20(w∗) = s20(w∗[U1])+s20(w∗[U⊥

2|1]), the first set of conditions are trivially equivalent.
Next, we prove that

s20
(
w∗[U⊥

2|1]
)

= 0 ⇔ b0(w) = b0(P0|U1(w)), ∀w ∈ H.

We first note, since the projection operator P0|U⊥
2|1

is orthogonal, that

V0

(
P0|U⊥

2|1
(w∗),P0|U⊥

2|1
(w∗)

)
= V0

(
w∗,P0|U⊥

2|1
(w∗)

)
= b0

(
P0|U⊥

2|1
(w∗)

)
.

Hence, s20(w∗[U⊥
2|1]) = ‖w∗[U⊥

2|1‖2H = 0 if and only if the covector b0 ◦ P0|U⊥
2|1

= 0.

But this is equivalent to b0(w) = b0(P0|U1(w)), for all w ∈ H, since

b0 ◦ P0|U⊥
2|1

(w) = b0
(
P0|U⊥

2|1
(w)

)
= b0

(
w − P0|U1(w)

) = b0(w) − b0
(
P0|U1(w)

)
,

which proves the statement. Finally, we notice that

b0(w) = b0(P0|U1(w)) = V0(w∗,P0|U1(w)) = V0(P0|U1(w∗),w),

is equivalent to

s0(w) = ρ0(P0|U1(w∗),w)‖P0|U1(w∗)‖H,

from which the proof concludes by Theorem 4. �
Below we explain how the concept s0(w∗) = s0(w∗[U1]) can be applied to the

pricing of derivatives. We call the pricing rule No Added Relative Value (NARV, for
short), with the meaning that the price of an asset is set such that there is no added
value, relative to an existing Kelly portfolio, in trading the asset.

5.1 Derivative pricing

Belowwe explain how to price a derivative on one or several assets in a spaceU1.We let
vπ denote a trading strategy that only takes positions in the derivative. As previously
explained, a Kelly trader with opportunity set U1 can add value to his portfolio by
extending the opportunity set if U1 ∩ span(vπ ) = {0} and s0(w∗[U1 ⊕ span(vπ )]) �=
s0(w∗[U1]). Below, we analyze the meaning of these two conditions and highlight the
connection with derivative pricing by means of no-arbitrage.

First, we observe that if vπ ∈ U1 thenU1 ∩ span(vπ ) �= {0}, with the interpretation
thatU1 is instantaneously a complete market for valuing the derivative. FromTheorem
6, we then have

s0(vπ ) = ρ0(vπ ,w∗[U1])s0(w∗[U1]). (14)
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Note that when the derivative is written on one asset only, such that vπ = λv11 , a
repeated use of Theorem 6 verifies the well-known expression s0(vπ ) = ±s0(v11),
with the sign depending on whether we are, for instance, considering a call or a
put option. If we further require Eq. (14) to hold for each fixed point in time until
the expiry of the derivative, the corresponding price is uniquely defined once we
specify the terminal payoff of the derivative. We identify the price as the no-arbitrage
price of Merton (1973), allowing for a synthetic replication of the terminal payoff by
dynamically trading in the underlying assets.

Next, let us assume that U1 ∩ span(vπ ) = {0}, such that vπ /∈ U1. In this case,
we say thatU1 is instantaneously an incomplete market with respect to the derivative.
From Proposition 14, it then follows that the No Added Relative Value (NARV) price
is characterized by

s0(w∗[U1 ⊕ span(vπ )]) = s0(w∗[U1]) ⇔ s0(vπ ) = ρ0(vπ ,w∗[U1])s0(w∗[U1]).

Hence, the local characteristics of the NARV price are identical to those of the no-
arbitrage price in a complete market.

In order to further explain the properties of NARV pricing, we let vπ ∈ U1⊕U2, for
some setU2. The interpretation is thatU1⊕U2 is instantaneously a complete market or
equally that the instantaneously incomplete marketU1 has been completed by adding
the opportunity set U2. The unique price of the derivative then satisfies s0(vπ ) =
ρ0(vπ ,w∗[U1 ⊕ U2])s0(w∗[U1 ⊕ U2]), as shown in Theorem 6. Consequently, the
market completion adds no value, relative U1, if w∗[U1 ⊕ U2] = w∗[U1]. But, as
shown in Proposition 14, this is equivalent to

s0(w) = ρ0(w,w∗[U1])s0(w∗[U1]), ∀w ∈ U1 ⊕U2.

Hence, in this case, the functional form of the local characteristics is similar for the
derivative w = vπ and for the assets w ∈ U2. In order to explain the significance of
this observation let us consider a market exhibiting stochastic volatility. We assume
that U1 consists of only one asset and that we want to value, say, a call option with
strike K1. Moreover, we further assume that the price of the derivative (represented by
vπ1 ) is uniquely defined once we augment the opportunity set with another call option
(represented by vπ2 ) with, say, strike K2. Then it is reasonable to claim, since we a
priori do not know the price of either derivative, that it should not matter in which
order we complete the market and this is exactly what NARV pricing achieves.

Another way to characterize the NARV prices is by recalling Theorem 2, where it
was proved that in a complete market the market price of risk vector is identical to the
growth optimal Kelly vector. Consequently, if w∗[U1 ⊕ U2] = w∗[U1], Proposition
14 alternatively states that the NARV prices can be computed using a market price of
risk process satisfying

�[U1 ⊕U2] = w∗[U1 ⊕U2] = w∗[U1] ⇒ �[U⊥
2|1] = w∗[U⊥

2|1] = 0,

for every fixed point in time. In the finance literature, the probability measure associ-
ated with such a market price of risk process is called the minimal martingale measure
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and was first introduced in Föllmer and Schweizer (1991). While the connection
between Kelly trading and derivative pricing has been derived in Bermin and Holm
(2021a), we believe our geometrical approach provides additional insights; notably
by realizing that the market price of risk vector and the growth optimal Kelly vector
are identical in a complete market.

Finally, we stress that should the market price of a derivative not equal the minimal
martingale measure price, a Kelly trader can always add value to his portfolio by
enlarging the opportunity set with the derivative.

6 Comment on risk relativity

Here we briefly outline how our framework can be extended to cover the situation
where risk is measured relative an asset different from the numéraire. As an illustrative
example, we may consider a fund manager who benchmarks his performance against,
say, bitcoin but reports his earnings in dollars. This leads us to develop a Kelly-like
theory for hyperplanes, which are not necessarily going through origo and, hence,
are not vector spaces but merely affine spaces. We proceed as follows: given that
U = span(v1, . . . , vN ), we consider a K -dimensional hyperplane A, with K ≤ N ,
defined such that for any point w ∈ A one can find coefficients {λi }1≤i≤K satisfying
w = v0 + λi (vi − v0), for some arbitrary point v0. With u denoting the reference
vector two situations can now occur. Either u belongs to A or the reference vector
lies outside of the hyperplane. In this paper we only consider the first case, which
allows us to choose v0 = u. It follows that we can translate the hyperplane to origo
by subtracting the reference vector and form the vector space Au = A − u. We then
define the Hilbert spaceHu = (Au,Vu), where the inner product in Au relates to that
in U according to

Vu(vu,wu) = V0(v − u,w − u), vu,wu ∈ Au. (15)

One notes that the zero vector is the origo in each vector spaceU and Au, respectively,
but when expressed in terms ofU the origo of Au equals the point associated with the
reference vector. Following the notation in Bermin and Holm (2021b), we then define,
in accordance with Proposition 1, the financial quantities

bu(w) = V0(w∗ − u,w − u), σ 2
u(w) = V0(w − u,w − u), (16)

ρu(v,w) = V0(v − u,w − u)√
V0(v − u, v − u)V0(w − u,w − u)

, (17)

where, as usual, w∗ = w∗[U ]. We also set μu(w) = bu(w) − 1
2σ

2
u(w), su(w) =

bu(w)/σ u(w), and ku(w) = σ u(w)/su(w). Note that while these definitions are
natural from a financial point of view they come with the drawback that the ten-
sor properties of bu and σ 2

u are lost. One way to overcome this issue is to define
bu(wu) = V0(w∗ − u,wu) and σ 2

u(wu) = V0(wu,wu). Whichever notation that is
most convenient to use may vary from application to application. With that being said,
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we continue by defining the growth optimalKelly vector on the hyperplane A = u+Au
according to

w∗[A] = argmax
w∈A

μu(w) = u + argmax
wu∈Au

μu(u + wu), (18)

such that w∗[A] = w∗ if Au and U share the same point space. Similar to affine sub-
spaces, we then define subspaces of the hyperplane A as being generated by subspaces
of the corresponding vector space Au. Moreover, for any subspace Au1 ⊆ Au we let
Pu|Au1 denote the orthogonal projection of Au onto Au1, see Lemma 11 for related
details. This allows us to generalize Theorems 4 and 6 as below.

Corollary 15 For Hu1 = (Au1,Vu) ⊆ Hu, let A1 = u + Au1 be the associated
subspace of A. Then,

w∗[A1] − u = Pu|Au1(w∗ − u), ‖w∗[A1] − u‖Hu = su(w∗[A1]).

Proof Straightforward calculations, setting w∗u = w∗ − u and assuming wu ∈ Au1,
yield

μu(u + wu) = Vu(w∗u,wu) − 1

2
Vu(wu,wu),

= Vu(Pu|Au1(w∗u),wu) − 1

2
Vu(wu,wu),

= 1

2
‖Pu|Au1(w∗u)‖2Hu

− 1

2
‖wu − Pu|Au1(w∗u)‖2Hu

.

Hence, argmaxwu∈Au1
μu(u + wu) = Pu|Au1(w∗u), from which the first part of the

proof follows. The second part is a direct consequence of Pu|Au1 being an orthogonal
projection. �
Corollary 16 For Hu1 = (Au1,Vu) ⊆ Hu, let A1 = u + Au1 be the associated
subspace of A. Then, for v ∈ A1, we have

su(v) = ρu(v, λw∗[A1])su(λw∗[A1]), λ > 0.

Proof The proof follows similarly to that of Theorem 6 and is thus omitted. �
In fact, all the results derived throughout this paper are presented in such a way that
they can be modified by simply changing the reference vector. For instance, simple
calculations, assuming dim(Au) = 2, yield

s2u(w∗) = s2u(v1) + s2u(v2|1) = s2u(v1|2) + s2u(v2), (19)

where the orthogonal Sharpe ratios equals

su(v2|1) = su(v2) − ρu(v1, v2)su(v1)√
1 − ρ2

u(v1, v2)
,
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Fig. 4 This figure shows the orthogonal decompositions of the translated vector space Au (black) and
those of the initial vector space U (gray). The growth optimal Kelly vector is invariant with respect to the
translation vectoru, that isw∗ = u+wu∗, which implies thatKelly strategies in Au correspond to the trading
strategies wu = k(w∗ − u). The growth optimal Kelly vector wu∗ = v̂u1 + v̂u2|1 = v̂u1|2 + v̂u2, further

admits a representationwu∗ = w1
u∗vu1 +w2

u∗vu2 in the non-orthogonal decomposition Au = Au1 ⊕ Au2.
We use the notations: ρ1,2 = ρu(v1, v2), β2

1 = βu(v1, v2), β1
2 = βu(v2, v1) and also highlight the level

sets of ku(w) = k, for k ∈ {1, 2, ±∞}

su(v1|2) = su(v1) − ρu(v1, v2)su(v2)√
1 − ρ2

u(v1, v2)
.

We visualize the role of what is considered to be the risk-free asset in Fig. 4. Although
the lines (Au1, Au2), spanned by u + λ1(v1 − u) and u + λ2(v2 − u), respectively,
are very different from the lines (U1,U2), spanned by λ1v1 and λ2v2, the direct sums
Au1 ⊕ Au2 and U1 ⊕ U2 have the same point space. Consequently, w∗[A] = w∗ and
the trading strategies with maximal Sharpe ratio (i.e., the Kelly strategies) are now of
the form w = u + k(w∗ − u). For such trading strategies one easily verifies that

μu(w) = 1

2
k(2 − k)s2u(w∗), σ 2

u(w) = k2s2u(w∗), ku(w) = k. (20)

Hence, we recover the well-known Kelly expressions. For higher dimensions, Eq. (19)
must, however, be modified as described in Theorem 13. We leave the details to the
reader. Finally, we stress that the restricted growth optimal Kelly vectors w∗[A1],
A1 ⊆ A, can change considerably with respect to the chosen reference vector u, even
though w∗[A] is invariant.
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7 Conclusions

In this paper, we present a geometric approach to portfolio theory, with the aim to
explain the geometrical principles behind risk-adjusted returns, in particular Jensen’s
alpha. We find that while the alpha/beta approach has severe limitations (especially
in higher dimensions), only minor conceptual modifications are needed to com-
plete the picture. However, these minor modifications (e.g., using orthogonal Sharpe
ratios rather than risk-adjusted returns) can only be appreciated once a full geometric
approach to portfolio theory is developed. In particular, we show how to create trading
strategies on the efficient (local) frontier, in the sense of Markowitz (1952) and Tobin
(1958), having maximal instantaneous Sharpe ratio. The approach taken is strongly
linked to the Kelly criterion and the growth optimal Kelly vector.

Additionally, we derive a number of intermediate results that are of interest by
themselves. For instance, we show that in a complete market the so-called market
price of risk vector is identical to the growth optimal Kelly vector, albeit expressed
in coordinates of a different basis. We further show that the instantaneous correlation
between an arbitrary trading strategy and its corresponding growth optimal Kelly
strategy can be expressed as the ratio between their Sharpe ratios. By analyzing the
level sets of various financial quantities, we also find that points in the mean–variance
space cannot, in general, be associated with a unique trading strategy. Only the points
on the efficient frontier (that is those with maximal Sharpe ratio) can uniquely be
identified. For such trading strategies, collinear to the growth optimal Kelly vector, we
formalize the notion of relative value trading that is implicit in Platen (2006), Bermin
andHolm (2021a).We then apply geometric principles to investigate derivative pricing
and introduce the concept of pricing by means on No Added Relative Value (NARV,
for short). We say that this concept applies when the orthogonal Sharpe ratio of the
derivative equals zero.Using simple geometric arguments,we show thatNARVpricing
is identical to no-arbitrage pricing with the so-called minimal martingale measure
(Föllmer and Schweizer 1991), a result first derived in Bermin and Holm (2021a),
albeit with much different methods. We further show that should the market price of a
derivative not equal the minimal martingale measure price, a Kelly trader can always
add value to his portfolio by enlarging the opportunity set with the derivative.
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