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Abstract
There is a widespread interest among institutions and economic agents for a reduction
of the environmental impact of the production system. An important role seems to
be played by the ability of public institutions to push the transition toward a green
economy also through the application of fiscal policies that envisage a system of
rewards and penalties, respectively, for those companies which adopt green strategies
and those which do not. It is clear that readjusting older production systems to new
pollution regulations can lead in the short term to profitability reductions for the
companies implementing them, even though it is possible to assume increases in
profitability over medium-long time horizons. One possible approach to this issue is
the classical econometric one, which analyzes the effect of different parameters of
multivariate models, that influence the level of pollution due to production systems
with different propensity for environmental protection. Optimal control models have
been also considered with control variables relating to the technologies of production
systems and public incentive policies for the green economy: see for example (Tan et
al. in J Syst Sci Inf 9(1):61–73, 2021). In recent years, many scholars have studied the
relationship between environmental regulation and enterprise technological innovation
using evolutionary games, involving mainly economic incentives and fiscal strategies
(see see Suyong et al. in Appl Math Comput 355(15):343–355, 2019; Zhang and Li in
Appl Math Model 63:577–590, 2018). In our article, we propose a dynamical model
where the public administration uses pollution penalties as a control variable in order to
push a production sector toward better performances concerning two targets, pollution
level and profitability. To this end, we consider the effects of competitiveness among
firms and technology innovation.
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1 Introduction

In a vast part of the geopolitical context, there is an increasing demand of production
systems that reduce the environmental impact and there exist many public finance
instruments, decided by national and international authorities, pushing the so-called
transition to a green economy, such as the financial recovery and resilience plan at the
European level for the post-pandemic restart phase.

It is clear that readjusting older generation productions to the new pollution reg-
ulations can lead in the short term to profitability reductions for the companies that
implement them, even though it is possible to assume increases in profitability over
medium-long time horizons. In a recent paper (Darvas andWolff 2021) byZsoltDarvas
and Guntram Wolff presented at ECOFIN 2021, the authors highlight the importance
of an international tax pact, which supports the transition to a green economy.

Analogously a European Commission publication of June 2021 (Incentives to boost
the circular economy—aguide for public authorities) argues that the optimal incentives
to increase the weight of the green economy are linked to strategies related to the tax
system, which together with direct funding are the most common policy instruments
to drive sustainable development.

In Kozhevina (2015) andAleksejeva (2016), the role of the transformation of indus-
trial production is underlined as a crucial factor for the achievement of a really whole
green economy.

Therefore, a dynamical model addressing the problem of the transition to a greener
economy, that is to an economy with a lower level of pollution than the initial one,
can investigate the efficiency of public incentive policies as far as they can act on
the assumed gap between profitability of a classic and a lower environmental impact
production system. The use of incentive policies (and/or penalties for those who do not
proceed in this direction) for the transition to a greener economy, considering aspects
related to competition, which can make it not convenient to convert one’s production
system if competitors do not, must be such as to achieve virtuous balances of the
production system, that is high profitability associated with low levels of pollution.

The work is organized as follows. The second section proposes a review of the
literature, recalling the different approaches to the economic-financial evaluation of
green production strategies compared to non-green ones. The third section is dedicated
to the presentation of our model. In the concluding section, we propose comments and
hints at possible future research.
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Green economy with efficient public incentives 669

2 Literature review

In the literature, there exist multiple quantitative approaches to the topic of green
economy analysis compared to classic profitability maximization approach.

An existing field of literature has faced the problem of achieving the objectives of
the successive protocols for driving a transition to less polluting production systems
(Kyoto 1997, Paris 2015, Sharm el-Sheikh 2022) from the point of view of game
theory, using both cooperative and non-cooperative games (see for example Wood
2011; Ciano et al. 2021).

One approach concerns the possibility of investing in financial instruments sup-
porting the green economy, which can be reconducted to the theory of portfolio, as
it offers opportunities for diversification with respect to classic financial instruments.
In Cheema-Fox et al. (2021), the authors show that “decarbonizing” a portfolio of US
and European-listed equities generates better returns compared to not-decarbonized
portfolios in the period 2009–2018.

In Habel and Scholz (2020), the yield differential in terms of share price between
companies with and without ESG purposes is analyzed, showing an over performance
of no-ESG-driven companies.

In Hang et al. (2019), the crucial importance of time horizon for evaluating the
profitability of companies investing in a green direction is developed, highlighting
how in the short term the “green conversion” is not convenient, while it can become
so over longer time horizons.

Another approach is the classic econometric one, which analyzes the effect of dif-
ferent parameters of multivariate models, influencing the measurement of the level
of pollution for production systems with different propensity to environmental pro-
tection. For example, in Gawrycka and Szymczak (2021) the impact of the green
transition on the Gross Domestic Product of several national economies is studied.

Optimal control models have been also considered, with control variables related
to technologies of production systems and green economy public incentive policies:
see, for example, Tan et al. (2021) and the explanatory flowchart of the production
cycle, object of these authors’ investigation.

Moreover, green economy can be considered as playing a role in mitigating envi-
ronmental damages, especially the impact of climate change on economic system and
human society. The magnitude of the climate change problem is emphasized by sev-
eral analyses and forecasts, and specific plans involving financial support have been
discussed.

Finally, in recent years, many scholars have studied the relationship between envi-
ronmental regulation and enterprise technological innovation using evolutionary game
models, which involve mainly economic incentives and fiscal strategies (see Suyong
et al. 2019; Zhang and Li 2018; Liang and Weijun 2020).

3 Amodel of investment return and pollution

This section is devoted to describing our dynamical model and how its equilibria can
depend on different public incentives policies for green economy.
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We consider two variables:

• x is the current total return of a given industrial sector, measured by a normalized
numerical scale, with minimum value 0;

• p is the current total pollution produced by a given industrial sector, measured by
a normalized numerical scale, with minimum value 0.

Hence, we set p = 0 to indicate the minimal polluting contribution attainable by
that sector.

Wewill consider a continuous time dynamics. On one hand, that allows to transform
any time horizon T into infinity, through the change of the time variable t ′ = t

T−t (see
Hartman 1982). On the other hand, we can assume the adjustments of x and p to be
instantaneous, which can be justified by a high frequency data pattern of observations.

The dynamical system is defined in the non-negative quadrant Q = {x, p ≥ 0},
while we pose Q = {x, p > 0}. We assume x to increase when x and p stay below
certain thresholds, whereas p increases if x and p are sufficiently high (in particular,
when x is high, we can think of a flux of investments in the sector which, with the
given technology, will make its contribution to pollution grow). However, we assume
that, when p is possibly high but x is very low, the investments in that sector will fall,
thus leading to a lower pollution.

Translating the above considerations into a formal dynamical system, we require,
first of all, x ≥ 0 and p ≥ 0. Then, the condition that x increases when both x
and p stay under a certain threshold is formalized by requiring that a suitable linear
combination of x and p is lower than a quantity h.

Next, the evolution of the pollution p is considered.Herewe assume that p increases
when a combination of x and px is higher than a quantity k: in fact, aswe observed, one
can argue that when x is very low the investment in the sector falls, leading, therefore,
to a decrease in the pollution produced. Finally, we propose an economic interpretation
of all the coefficients involved. Hence, the system we choose as a description of the
evolution of x and p is the following:

{ ·
x = x (−ax − bp + h)
·
p = p (cx + dpx − k)

(1)

where the parameters a, b, c, d, h, k > 0 depend both on technical (industrial and
financial) and political (e.g., fiscal) factors. In fact, we can interpret the system
parameters as follows.

For the first equation, e.g., return dynamics, we observe that:

• a denotes the rate of contribution to return decreasing, in the productive sector,
of the current level of return: the higher is a, the more competition contributes to
return decreasing.

• b can be considered the unitary penalty for the pollution generated by the sector:
the higher is the pollution, the more the return decreases.

• h is the upper limit (when x, p → 0) of the return increasing rate.
For the second equation, pollution dynamics, we observe that:
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Green economy with efficient public incentives 671

• c measures the contribution to pollution increasing due to the profitability of the
sector: the higher is the return, the more numerous will be the firms operating in
the sector, making the pollution increase.

• d measures the contribution to pollution increasing due to the combined effect of
the current levels of return and pollution (the effect of such a combination is small
if either x or p is sufficiently small).

• k is the upper limit (when x, p → 0) of the pollution decreasing rate.

As we have said, the technology is assumed not to change in any considered period
of time (i.e., in (0,+∞) in a continuous model).

The first observation concerns the equilibria (or fixed points) of the system, which
are of two types:

• boundary equilibria, lying on {x = 0} ∪ {p = 0}
• internal equilibria, lying in the positive quadrant Q = {x, p > 0}.
The former are two: E0 = (0, 0) and E1 = ( h

a , 0
)
. It is easily checked that E0 is

a saddle, while E1 can be either a saddle or a sink (i.e., an attractor). On the other
hand, the internal equilibria can be one, zero or two. In fact, by suitable choices of the
parameters, several dynamical scenarios can occur.

3.1 Scenario 1

Let us consider the condition k
c < h

a , where

• k
c can be interpreted as a ratio between technical improvements for pollution reduc-
tion and the return appetite due to the current level of return, which implies more
pollution;

• h
a can be interpreted as a ratio between cost rationalization for increasing returns
and economic competition in the sector, which implies return reduction.

So, the condition can be interpreted in this way: effects on returns are “more reactive”
than ones on pollution.

Theorem 1 If k
c < h

a , system 1 exhibits exactly one internal equilibrium, E2 =
(x2, p2), x2 < x1, 0 < p2 < h

b . Precisely, E1 is a saddle, while E2 is an attractor
(sink) if dp2 < a, or is a repellor (source) surrounded by an attracting periodic orbit
(limit cycle) if dp2 > a. In any case, all the internal orbits (that is, those starting in
the positive quadrant Q) converge, as t → +∞, to the internal attractor (equilibrium
or limit cycle).1

Proof See “Appendix A”.
Figure1 a provides a graphical representation of the isoclines of the system for

Scenario 1, while the next figures illustrate the convergence to E2 or to a limit cycle
around it.

1 The above stability change is known as Hopf bifurcation (see Guckenheimer and Holmes 1997). Its
consequence is that all the orbits lying in a certain region (the basin of attraction of the limit cycle) will
have an oscillating (asymptotically periodic) behavior.
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672 M. Galeotti, E. Vannucci

Fig. 1 a: Scenario 1 isoclinesb: Convergence to the poverty trap from starting point (h/a, 0.1) c: Convergence
to the poverty trap from starting point (h/a, 0.1) d Convergence to a limit cycle around the poverty trap
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In particular, it follows from the proof of Theorem 1 that a globally attracting limit
cycle appears when, fixed a, b, c, d, h ∈ ( bd a, b

d (a + c)) and k < ( ha − b
d (a + c)).

We consider the following values of the parameters
a = 0.092, b = 0.39, h = 0.08, c = 0.09, d = 0.4, k = 0.49
where k

c = 0.05444 < 0.8695 = h
a

Then we can take an orbit from any point of the half-line ( ha , ·)with · > 0, for instance
( ha , 0.1) and ( ha , 0.8), generating, respectively, the orbits of Fig. 1b, c, converging to
the attractor E2
Vice-versa, if we vary the parameter h, so as to remain in Scenario 1 but with the
condition dp2 > a, e.g., setting
a = 0.092, b = 0.39, h = 0.2, c = 0.09, d = 0.4, k = 0.49,
an orbit starting from any point of the half-line ( ha , ·) with · > 0, for instance from
( ha , 0.1), converges to a limit cycle around E2, as shown by Fig. 1d. �	

3.2 Scenario 2

Assume k
c > h

a holds, which is the opposite condition with respect to Scenario 1,
meaning that effects on returns are “less reactive” than ones on pollution.
Assume, moreover, that the curves (isoclines)

γ1, p = a

b

(
h

a
− x

)
and γ2, p = k − cx

dx

do not intersect in Q. Then the following theorem holds.

Theorem 2 Under the above assumptions, no internal equilibrium exists. Then E1 is
an attractor and all the orbits starting in Q converge to E1.

Proof By writing the Jacobian matrix J1 at E1, E1 is checked to be an attractor.
Moreover, by Poincaré–Bendixson theorem (Hartman 1982), E1 is the only attractor

in Q. Then, following the vector field
( ·
x,

·
p
)
, it is easily seen that all the orbits of Q

converge to E1. �	

Figure2 a provides a graphical representation of the isoclines of the system for
Scenario 2, while Fig. 2b, c shows the convergence of the internal orbits to the virtuous
equilibrium E1 respectively, from (h/a, 0.1) and (h/a, 0,8).
We consider the following values of the parameters, generating Scenario 2,
a = 0.092, b = 0.39, h = 0.08, c = 0.09, d = 0.4, k = 0.079
where k

c = 0, 8777 > 0, 8695 = h
a .

We can consider orbits from any point of the half-line ( ha , ·) with · > 0, for instance
from ( ha , 0.1) and ( ha , 0.8), which are represented by orbits in Fig. 2b, c, converging
to the attractor E1
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Fig. 2 a: Scenario 2 isoclines b: Convergence to the virtuous equilibrium from starting point (h/a, 0.1) c:
Convergence to the virtuous equilibrium from starting point (h/a, 0.8)

3.3 Scenario 3

Assume k
c > h

a and two internal equilibria exist, which requires the further conditions
dh > bc and (dh + bc)2 > 4abdk. Let us denote such equilibria as E2 = (x2, p2)
and E3 = (x3, p3), x2 < x3, p2 > p3. Then, the following theorem holds.

Theorem 3 Under the above assumptions, E1 is a sink (attractor), E3 is a saddle
and E2 is a sink if dp2 < a (higher competition, expressed by the value of a), or
is a source (repellor) surrounded by an attracting limit cycle if dp2 > a (lower
competition). In any case, there exist two basins of attraction, which are separated by
the stable manifold of E3 (that is, by the union of the two orbits converging to E3).

Proof See “Appendix B”.
In fact, it can be seen that the above separatrix has the shape of an unbounded

loop (the closure of the loop is at the point (x, p) = (+∞, 0)). Hence, orbits starting
inside the loop converge to the internal attractor (equilibrium or limit cycle), while
orbits starting in Q outside the loop converge to E1.
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Green economy with efficient public incentives 675

Fig. 3 a: Scenario 3 isoclines b: Poverty trap attracting basin c: Convergence to the poverty trap from
starting point (h/a, 0.0127) d: Convergence to the virtuous equilibrium from starting point (h/a, 0.8)

In fact R, the region bounded by the loop, can be described as a “poverty trap” (see
Antoci et al. 2011), since orbits lying in R converge to an attractor performing worse
than E1, both in terms of pollution level and profitability.

From an economic point of view, we are interested in the strip bounded by the
half-lines x = 0 and x = h

a , which represents the maximum attainable return. Hence,
in order to describe the attracting basins of Scenario 3, we should find the segment(
pmin, pmax

)
on x = h

a , from whose points depart the orbits lying in the poverty trap
R.

In fact, it is easily observed that pmin = 0 implies pmax = +∞, while, when the

isocline
·
p = 0 is tangent to ax + bp = h, so that (dh + bc)2 = 4abdk, and hence

pmin = pmax.
Actually, when pmin increases, pmax decreases. This justifies the fact that we seek

an approximation of pmin, which also allows to find an upper limit, starting from
p = 0, for orbits from x = h

a tending to the optimal equilibrium E1.
In fact, in “Appendix C” a lower and an upper approximation of pmin are calculated.
Figure3 a provides a graphical representation of the isoclines of the system for

Scenario 3, while Fig. 3b illustrates the shape of the poverty trap, bounded by the
orbits starting from

( h
a , pmin

)
and

( h
a , pmax

)
.
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The generic orbits in Q are divided in two classes: those lying in the poverty trap and
those converging to the virtuous equilibrium E1. �	

We consider the following set of values of the parameters generating Scenario 3
a = 0.092, b = 0.39, h = 0.05, c = 0.09, d = 0.8, k = 0.049
In fact, k

c = 0.05444 < 0.5434 = h
a , dh = 0.04 > 0.0351 = bc and (dh + bc)2 =

0.00564 > 0.00562 = 4abdk.
If the orbit starts from ( ha , 0.0127), it converges to the attractor E2 as shown by Fig. 3c.
and this implies that the point ( ha , 0.0127) lies in ( ha , pmin), (

h
a , pmax), that is within

the poverty trap represented in Fig. 3b. Moreover, in this case dp2 < a and there is no
limit cycle.
Vice-versa, the orbit starting from ( ha , 0.8) converges to the attractor E1 (see Fig. 3d).
which implies ( ha , 0.8) lying outside the poverty trap represented in Fig. 3b.

3.4 Comments

Several comments can be made, in particular concerning the equilibrium E2 =
(x2, p2), when it exists.
We recall that, when the quantity dp2 crosses the value a, a change of stability occurs:
E2 is an attractor as long as dp2 < a, whereas when dp2 > a the attractiveness
migrates from E2 to a limit cycle surrounding the equilibrium.
So, it is interesting to investigate the role played by a, which can measure the effect of
competition. In particular, assumingScenario 3, since,when a increases, p2 → p3, our
model implies that the higher is the level of competition, in a given industrial sector,
the easier is its transition toward a greener production and even, in the long-term,
toward a steady profitability.

A second comment concerns the policy to be implemented in order to reduce the
poverty trap. In fact, it follows from formula (2) that pmin is so much higher, and
thus the poverty trap is so more narrow, as the absolute value of the integral in the
formula 3 (see “Appendix C”) is smaller. Then, increasing b—the unitary penalty for
pollution—contributes to this goal.

Finally, the Scenario 3 shows an apparent paradox. In fact, with the same initial
return, h

a , an orbit with a higher initial pollution can escape the poverty trap, while
another one, with a lower initial pollution, cannot, as shown by Fig. 3c, d.
However, such an apparent paradox can be mathematically explained, with an impor-
tant consequence from an application point of view. In fact, starting from a higher level
of pollution, the penalty, given by −bp, produces a higher reduction of the investment
profitability, so that, when the return approaches the value zero, that sector can be
induced to change policy, reducing its pollution impact and therefore, in the long
run, improving also its profitability. Vice-versa, when the initial point belongs to the
poverty trap, that can be interpreted as the case of a productive sector which, being
less penalized by its current pollution, can settle for a long-run lower profitability.
In fact, the analysis of such apparent paradox emphasizes even more the crucial role
of an incentive-punishment policy (which is expressed, in particular, by the value of
the parameter b).
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4 Conclusions

The aim of the present work is to introduce a dynamical model that describes the
problem of the transition toward a production system with lower emissions, through
a system of penalties and incentives, on the basis of the current level of emissions.
The dynamics is described in continuous time, thus obtaining asymptotic resultswhich,
through a discrete re-reading of the dynamics, can be transferred to any time horizon.
Although it was not possible to give full confirmation of the setting of the model
parameters, not having information databases for some of them, the numerical sim-
ulations allow to extrapolate some important considerations in terms of sensitivity
analysis of the results, which confirm what can be observed through the analysis of
the theoretical dynamical model.
One of the lines of research that we intend to carry on will be related to improve even
the theoretical model, relying on parameters derived from observable data.
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Appendices

Appendix A: Proof of Theorem 1

In order to find the local stability of E1 and E2, we have to examine the Jacobian
matrices J1 and J2 of the two equilibria (see e.g., Hartman 1982). Then, it is easily
calculated that det (J1) < 0 < det (J2). Hence, E1 is a saddle, while E2 is a sinkif
if trace (J2) < 0, i.e., if dp2 < a, while it is a source if trace (J2) > 0, i.e., if
dp2 > a. Now, we want to show that, when dp2 < a, E2 is a global attractor for all
the orbits lying in Q, whereas the global attractor in Q, when dp2 > a, becomes a
limit cycle surrounding E2, generated through a Hopf supercritical bifurcation (see
e.g., Guckenheimer and Holmes 1997).

In order to develop our argument, let us start from the limit case p2 = 0, when
k
c = h

a , E2 being the only intersection of the isoclines in Q. Then, following the

oriented directions of the vector field
( ·
x,

·
p
)
, it is easily checked that E2 is a global

attractor for the orbits in Q, and so it remains when k lies in a sufficiently small
left neighborhood of k2 = hc

a . In fact, choosing k as bifurcation parameter, we can
consider k ∈ [k1, k2], where k1 = ( h

a − b
d

)
(a + c)corresponds, as it is easily checked,

to the bifurcation condition dp2 = a. If E2 were no more globally attracting in Q for
k ∈ [

k1,k
]
, k < k2, then there would exist (at least) two limit cycles for k ∈ (

k1,k
)
, an

123

http://creativecommons.org/licenses/by/4.0/


678 M. Galeotti, E. Vannucci

exterior one attracting and an internal one repelling. In fact, the inner (or innest) one
would shrink, and in particular, when E2 changes stability, as dp2 = a, the repelling
cycle should collapse onto the equilibrium point. Actually, that corresponds to a Hopf
subcritical bifurcation (see Guckenheimer and Holmes 1997).

However, the nature of the Hopf bifurcation can be established through straightfor-
ward (although lengthy) computations. So, we limit to summarize the main steps of
the computation. First of all, consider the change of coordinates u = ln x, v = ln p.
Then, for k = k1, the system becomes

{ ·
u = −aeu − bev + h
·
v = ceu + deu+v − k1

and we can consider the Taylor developments of eu and ev . Next, we move the origin
of the coordinates in E2, through the translation u′ = u− ln

( h
a − b

d

)
, v′ = v− ln

( a
d

)
.

Finally, by rescaling and rotating, we can express the system in coordinates z, w such
that { ·

z = −λw + f (z, w)
·
w = λz + g (z, w)

(2)

where λ > 0. Then the nature of the Hopf bifurcation is (generically) decided by the
sign of a quantity α, which is an expression of second and third partial derivatives of
the functions f and g in (0, 0). Namely (Guckenheimer and Holmes 1997),

α = 1

16
( fzzz + fzww + gzzw + gwww) +

+ 1

16λ
( fzw ( fzz + fww) − gzw (gzz + gww) − fzzgzz + fwwgww])

Then, the Hopf bifurcation is supercritical (an attracting limit cycle is generated) if
α < 0, while it is subcritical (a repelling limit cycle disappears) if α > 0. In fact,
computations show that in our case α < 0, which proves, by our previous arguments,
that no limit cycle exists around E2 when E2 is a sink. Hence, E2 is a global attractor
in Q for dp2 < a, whereas for dp2 > a the global attractor in Q becomes the limit
cycle surrounding E2.

Appendix B: Proof of Theorem 3

The stability of the three equilibrium points E1, E2, E3 is determined by the Jacobian
matrices J1, J2, J3. In fact, it is easily calculated that E1 is a sink (trace(J1) < 0 <

det (J1)), while det(J3) < 0 < det (J2). Hence, E3 is a saddle, whereas, analogously
to what happened in Theorem 1, E2 is a sink, if dp2 < a, or a source, if dp2 > a.

In any case, the union of the orbits converging to E3, which are seen, through
observation of the vector field, to originate from x = +∞ and p = 0 (in other words,
they tend to (+∞, 0) as t → −∞), separates the basin of attraction of E1 from a
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region, having the shape of an unbounded loop, where the orbits converge to some
sub-optimal attractor (point or cycle).

As is the case in macroeconomic literature (see e.g., Antoci et al. 2011), we denote
such a region as a poverty trap. In order to investigate the dynamical behavior inside
the poverty trap, we proceed similarly to the proof of Theorem 1. Namely, we can
choose k as the bifurcation parameter and let k vary in an interval [k1, k2], where k1
corresponds to the change of stability of E2, i.e., dp2 = a, while for k = k2 we assume

the two isoclines to be tangent, which yields k2 = (dh+bc)2

4abd Hence, if k1 < k2, when
k = k2 the equilibria E2 and E3 coincide in E = (x, p), satisfying d p < a. This way
E is a saddle-node and, taking k in a sufficiently small left neighborhood of k2, E2
is a global attractor in the poverty trap. Then, arguments similar to those employed in
the proof of Theorem 1 allow to conclude that all the orbits lying in the poverty trap
converge to E2 when dp2 < a and to a limit cycle surrounding E2 when dp2 > a.

Appendix C: Approximation of pmin

Consider the intersection of the isocline
·
p = 0 with x = h

a . We find the point

Q̃ = ( h
a , p̃

)
, p̃ = ka−ch

dh . It is easily checked that, along the arc E3 Q̃ of
·
p = 0,

sgn
( ··
p
)

= sgn
( ·
x
)
is negative, so that p (t) has a maximum and the relative orbit

converges to E1Ḣence, p̃ < pmin.
Now, setting Q = ( h

a , pmin
)
, let us approximately calculate p3 − pmin along the

orbit joining E3 and Q, which bounds from below the poverty trap. Posing u = ln x
and v = ln p and inverting the time, we get

ln pmin − ln p3=
∫ ln h

a

u3

−ceu − deu+v + k

aeu + bev − h
du (3)

Since it is easily calculated that the negative integrand function decreases with ev , it
follows that, replacing in the integral ev by p3, we find a further lower approximation
of pmin, say p1min, whereas, replacing ev by p̃ we find an upper approximation, say
p2min.

From there on, we can improve our approximations and construct an algorithm
converging to the actual pmin. In fact, consider the segment joining E3 with

( h
a , p2min

)
and along it the value p (u), u = ln x . Then, replacing in the above integral ev by
p(u), we find a lower approximation of pmin, p3min > p1min, whereas, replacing ev by
p1min, we find an upper approximation, p4min < p2min. This way we can continue as
long as we want.
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