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Abstract
We consider a Cramér–Lundberg model representing the surplus of an insurance com-
pany under a general reinsurance control process. We aim to minimise the expected
time during which the surplus is bounded away from its own running maximum by at
least d > 0 (discounted at a preference rate δ > 0) by choosing a reinsurance strat-
egy. By analysing the drawdown process (i.e. the absolute distance of the controlled
surplus model to its maximum) directly, we prove that the value function fulfils the
corresponding Hamilton–Jacobi–Bellman equation and show how one can calculate
the value function and the optimal strategy. If the initial drawdown is critically large,
the problem corresponds to the maximisation of the Laplace transform of a passage
time. We show that a constant retention level is optimal. If the drawdown is smaller
than d, the problem can be expressed as an element of a set of Gerber–Shiu optimi-
sation problems. We show how these problems can be solved and that the optimal
strategy is of feedback form. We illustrate the theory by examples of the cases of light
and heavy tailed claims.

Keywords Drawdowns · General optimal reinsurance · Classical risk model ·
Hamilton–Jacobi–Bellman equation

JEL Classification C61 · D81 · G22

1 Introduction

The drawdown of the surplus of a company is the distance of the current surplus to its
last record high and can therefore be interpreted as a relative loss. In the literature of
financial mathematics and economics, it serves as a performance-adjusted indicator
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of risk and is also widely used in practice, e.g. to measure and evaluate the success of
funds (see, for example, Goldberg and Mahmoud (2017); Burghardt et al. (2003) or
the series of papers Chekhlov et al. (2005); Zabarankin et al. (2014); Ding and Urya-
sev (2022) on portfolio optimisation under drawdown-based constraints). Controlling
drawdowns of the surplus is generally favourable as it promotes stability. Especially
for insurance companies, this is a valuable aspect because establishing and signalling
reliability towards potential customers, investors and regulatory institutions is the basis
of operation. An important tool for insurance companies to control the surplus (and,
thus, its drawdown) is reinsurance.

Based on a Cramér–Lundberg risk process, we model the net surplus X B =
(XB

t )t≥0 of an insurance portfolio under a general reinsurance form by

XB
t = x0 +

∫ t

0
c(Bs) ds −

Nt∑
i=1

r(BTi−,Yi ) , t ≥ 0 , (1)

and its running maximum MB = (MB
t )t≥0 and (absolute) drawdown DB = (DB

t )t≥0
by

MB
t = max

{
x̄, sup

0≤s≤t
X B
s

}
, DB

t = MB
t − XB

t , t ≥ 0 .

Here, x0 ≤ x̄ is a constant representing the initial capital. Correspondingly, x̄ ∈ R is
the historical maximum at the beginning of the observation period and x = x̄ − x0
is the initial drawdown. N = (Nt )t≥0 is a Poisson process with rate λ > 0 marking
the claim arrivals. The sequence (Yi )i∈N of iid random variables models the sizes
of the respective claims and is independent of N . We assume that their distribution
function G is continuous with G(0) = 0 and mean μ < ∞. We focus on continuous
claim distribution functions in order to simplify the presentation. In the following,
we work on a complete probability space (�,F , IIP) on which the process N and
the claim size sequence (Yi )i∈N are defined. The information available at time t is
given by Ft ; (Ft )t≥0 is the smallest complete and right continuous filtration such
that (

∑Nt
k=1 Yi )t≥0 is adapted. We express the reinsurance strategy in terms of the

retention level process B = (Bt )t≥0 that is assumed to be càdlàg and adapted with
values in [0, 1]. By Bt− we denote the limit from the left of t �→ Bt . We note that,
by rescaling the functions introduced below, one could also consider processes with
values in a general, non-empty, compact interval J = [b, b] ⊆ R

+
0 . For example,

r(b, x) = min{x, tan({b0 +b(1−b0)}π/2)} denotes excess of loss reinsurance where
theminimal allowed retention level is tan(b0π/2).We call a process with these proper-
ties admissible and denote the set of admissible strategies byB. The retention function
r : [0, 1] × (0,∞) → R

+
0 represents the part r(b, y) paid by the first insurer for a

claim of size y if the retention level b is chosen. The reinsurer takes over the remaining
I (b, y) = y − r(b, y). We assume that r(b, y) is increasing and continuous in both
components with r(1, y) = y. This means, the larger the retention level (and the larger
the risk), the more the insurer has to pay and that it is not possible to increase the risk
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by reinsurance.Moreover, the strategy of ‘not buying reinsurance’ is allowed. The pre-
mium rate function c : [0, 1] → R

+
0 represents the premium income after reinsurance

and is assumed to be continuous and strictly increasing with 0 = c(0) < c(1) < ∞.
We choose the function to be strictly increasing because it is not sensible to assume
that the reinsurance company would offer different levels of coverage at the same
price. Moreover, we assume that reinsurance is more expensive than first insurance,
i.e. full reinsurance would cause a negative premium rate. In particular, we have
IIE[r(0,Y )] > 0. Otherwise, selling all risk would be a trivial solution to the problem
stated below. The condition c(1) > 0 implies that the insurer has a positive premium
income before purchasing reinsurance. The condition c(0) = 0 implies that it is pos-
sible to use the full premium income to purchase reinsurance. Alternatively, one could
require a positive net profit for the admissible strategies, i.e. c(b) ≥ λIIE[r(b,Y )]
for all b ∈ [0, 1], which would be a stronger condition. Another important aspect of
our model assumptions is that, with r(b, y) increasing and r(1, y) = y, I (b, y) ≥ 0
is always fulfilled. This is a reasonable assumption because the costs of a reinsured
claim should not exceed the claim settlement costs without reinsurance (otherwise,
the reinsurance contract would be hard to sell). However, we do not need to assume
that I (b, y) is non-decreasing in y. In practice, if the latter is not true, there is a risk
of moral hazard on behalf of the first insurer. In our numerical analysis and in many
other realistic examples, r(b, y) is thus chosen so that I (b, y) increasing. With the
above construction, we implicitly assume that the Cramér–Lundberg model is already
adapted to inflation, such that the premium rate and the claim size distribution with-
out reinsurance can be kept constant over time. In particular, the functions c(b) and
r(b, y), in comparison with their real-world counterparts, include an inflation cor-
rection. Moreover, even though in the definition of the surplus process (1) it might
seem as if c(b) only depends on the chosen retention level, it is a general function that
naturally also depends on fixed parameters like the claim size distribution, the claim
intensity and costs associated to the reinsurancemarket and economic environment (or
estimations thereof). For example, c(b) can correspond to an expected value premium
calculation principle (i.e. the reinsurance premium corresponds to the expected costs
of accumulated claims reported by the insurer plus a safety loading).

The target of our optimisation is the weighted occupation time of the drawdown
process in the critical set (d,∞)

v(x) = inf
B∈B

vB(x) = inf
B∈B

IIEx
[∫ ∞

0
e−δt1{DB

t >d} dt
]

, (2)

where we write IIEx [ · ] = IIE[ · | DB
0 = x]. Here, d > 0 is a predetermined parameter

indicating the size of drawdowns acceptable for the company and δ > 0 is a preference
rate. The consideration of this model can be motivated as follows. Simply speaking,
drawdowns of an insurer’s surplus occur naturally whenever a claim follows a new
record. If the size and frequency of claim payments do not surpass the estimation
of the insurer, a drawdown can be unproblematic. However, there are events which
lead to an unexpectedly high number of reported claims or to extraordinarily large
claim settlements. Even if these payments do not force the company out of business,
the drawdown in this case is a large relative loss. Moreover, because the company
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will not let the surplus become infinitely large (for example by paying dividends) a
severe drawdown can, in some cases, be associated with undercapitalisation. Thus,
a critically large drawdown sends a bad signal to other market participants and can
have a negative effect on the credit rating and the share prices. The parameter d
introduced above could therefore, for example, be a target solvency level in the case
the company follows a barrier dividend strategy.We call (d,∞) the ‘critical’ and [0, d)

the ‘uncritical’ area. We assume here that d is fixed, which leads to a discontinuous
penalisation of drawdowns in line with the above application. Besides the size of the
drawdown, a second influential factor is the duration of the drawdown phases. If the
surplus needs a long time to ‘recover’ from a large drawdown, investors may lose
confidence in the company. Hence, frequently occurring and prolonged drawdowns
can damage the manager’s and/or the company’s reputation. In the value function (2),
this effect is included by measuring the time with critical drawdown. For the model
introduced above, it follows from the Borel–Cantelli Lemma that it is not possible to
stay in the uncritical area for all times. But, in reality, one has a preference to postpone
inevitable large drawdowns for as long as possible. We assume that this is reflected in
an exponential preference ‘discounting’ of the time at rate δ > 0, giving more weight
to drawdowns today than to drawdowns tomorrow. Mathematically, this also ensures
well-posedness of the optimisation problem.

An important strength of drawdown as a risk measure is that it depends on the
history of the surplus. It is a one-sided and path-dependent (i.e. performance-adjusted)
indicator of risk. In this regard, it is important to note that, in the way the optimisation
problem in (2) is stated, there is only one state variable (the drawdown x inv(x)) instead
of two state variables (the surplus x0 and its maximum x in v(x0, x)). By basing the
value function on the controlled drawdown process (instead of the surplus and its
running maximum), we overcome the difficulty of working with the path-dependent
optimisation problem (and path-dependent strategies) directly. We note that this is
possible because the surplus process can be recovered from the controlled drawdown
and its local time at zero due to the uniqueness of solutions to the Skorohod problem
for spectrally positive càdlàg paths (compare Chaleyat-Maurel et al. 1980).

Note that our value function, like ruin probabilities, is a technical tool for manage-
ment decisions. A natural idea might be to stop at ruin of the surplus process. This
(and other types of possibly finite time horizons) could lead to an optimal strategy of
’deliberately’ sending the surplus into the ruin barrier in order to avoid future draw-
downs. Such a strategy is not reasonable in applications of the presented problem.
That means, a sensibly chosen penalty payment of Gerber–Shiu type would have to be
introduced to the value function. The present model could be interpreted as a model
with dividends paid according to a barrier strategy. The running maximum takes the
role of the accumulated dividend payments. Thus, indirectly, ruin and the severity of
ruin are included in the sense that the penalty becomes the future value of the draw-
downs. Directly introducing the ruin time of X to the value function would prevent
the reduction to one state variable. A mathematically more tractable alternative with
implications similar to bankruptcy would be to stop at the first ’catastrophic’ draw-
down of size dτ 	 d. dτ could, for example, correspond to the company’s equity at
the beginning of the observation. However, in reality, drawdowns can be unfavourably
large in the sense that they lead to severe reputational damage without substantially
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threatening the financial survival of a company. In our notation, this corresponds to Xt

being much larger than d. In this regard, a strength of our model is that it enables opti-
misation of ’soft’ objectives (such as stabilising the process at a high level and, thus,
reducing reputational risks). In this way, it complements known results on decision
making driven by the evaluation of existential risks, e.g. survival probabilities.

Drawdowns and their distributional properties have been extensively studied in the
literature of financial mathematics and stochastic processes (see, for example, Mija-
tović and Pistorius 2012 and Landriault et al. 2017). In recent years, stochastic control
of drawdowns has become increasingly popular. In Bäuerle and Bayraktar (2014), a
generalised stochastic control problem in a diffusion model is analysed by stochastic
ordering techniques. As a result, the authors derive that the probability of a large ‘pro-
portional’ drawdown (i.e. events of the type {Xt < αMt } for α ∈ [0, 1)) occurring in
finite time is minimised by the same constant strategy as the ruin probability. In par-
ticular, they show for different types of controls (e.g. proportional reinsurance, excess
of loss reinsurance, investments in an independent asset and combinations thereof)
that it is optimal to maximise the ratio of drift to volatility squared. The minimisation
of the probability of a large proportional drawdown of an investment portfolio in a
Black Scholes market is analysed in Angoshtari et al. (2016a). In Chen et al. (2015)
and Angoshtari et al. (2016b), variants of the investment problem are considered with
an exponential lifetime and consumption. In Angoshtari et al. (2015), the authors con-
sider optimal investment strategies to minimise the expected (exponential) lifetime
spent with proportional drawdown in a Black Scholes model. The authors prove that
the optimal strategy is composed of the optimal strategy one uses to minimise the
probability of a large drawdown (when currently in the state Xt ≥ αMt ) and the opti-
mal strategy used to minimise the expected occupation time (when in the unfavourable
state Xt < αMt ). The optimisation of reinsurance strategies to minimise the prob-
ability of large proportional drawdowns was studied in Han et al. (2018) (diffusion
approximation of a model with thinning dependence structure) and Han et al. (2019)
(diffusion approximation of a model with common shock dependence). In both arti-
cles, the reinsurance cover is assumed to be proportional. Among other results, the
authors derive conditions underwhich large proportional drawdowns can be prevented,
in which case the optimal strategy is again the one minimising the ruin probability. In
Arun (2012), Angoshtari et al. (2019) and very recently in Albrecher et al. (2023), div-
idend maximisation problems are studied, where drawdown constraints are imposed
on the payout strategies (i.e. the rate of consumption may decrease but only below a
certain fraction of its maximum rate).

Brinker (2021), Brinker and Schmidli (2022) and Brinker and Schmidli (2021)
deal with the minimisation of absolute drawdowns for a diffusion risk model. As
an absolute drawdown occurs in finite time with probability 1, it is not sensible to
consider drawdown probabilities in this context. Instead, variants and extensions of
the diffusion-analogue to (2) are solved. As an alternative concept to stopping the
observation after an exponentially distributed time as in Angoshtari et al. (2015), the
authors propose an infinite time horizon with exponential preference. This means,
the time in drawdown is weighted in the sense explained above. The approach to
solving these problems is based on the Hamilton–Jacobi–Bellman (HJB) equations.
In the cases of optimal reinsurance treated in Brinker and Schmidli (2022) and Brinker
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and Schmidli (2021), the optimal controls are calculated explicitly. In particular, the
optimal strategies turn out to be strictly increasing with the drawdown in the uncritical
area, so that the methods of Bäuerle and Bayraktar (2014) do not apply. Similarities
to the cases of proportional drawdowns exist in the sense that, under some conditions,
growth of the running maximum is ‘sacrificed’ for the sake of controlling drawdowns
(compare, e.g. Angoshtari et al. 2016a and Brinker and Schmidli 2022) and that, in
the critical area, the optimal control is to re-enter the uncritical area as fast as possible
(compare, e.g. Brinker 2021 and Angoshtari et al. 2015).

In comparisonwith the literature on the optimisationof drawdown-related quantities
for diffusionmodels, articles with jump surplusmodels (such as the Cramér–Lundberg
or Lévy risk process) are scarce. Exceptions include Wang and Xu (2021) (maxi-
mal dividends with transaction costs, stopped at a generalised drawdown time) and,
recently, Azcue et al. (2022). In Azcue et al. (2022), the problem of finding an optimal
reinsurance strategy to minimise the probability of a large proportional drawdown is
analysed for a Cramér–Lundberg model with a Mean-Variance Premium.

This paper contributes to the existing literature by introducing an optimisation
problem with the target of minimising the duration of absolute, critical drawdowns.
Different from the minimisation of drawdown probabilities, this approach takes the
(absolute and lasting) severity of drawdowns into account. In contrast to Brinker and
Schmidli (2022) and Brinker and Schmidli (2021), we consider a model with jumps
and generalised expressions for the retention level and reinsurance premium. This
changes the mathematical techniques and results. Parts of this paper are included in
the PhD thesis ‘Stochastic Optimisation of Drawdowns via Dynamic Reinsurance
Controls’ of the first author.

The remainder of this paper is organised as follows. In Sect. 2, we prove a verifica-
tion theorem based on the HJB equation. In particular, we derive general conditions
for existence of the drawdown process under a feedback control induced by a solution
to the equation. A dynamic programming principle shows that the problem can be split
at the critical line into the problems of

i) minimising the weighted time in critical drawdown
ii) maximising theweighted time in the uncritical areawith a penalty for the overshoot

at the exit time.

In Sect. 3, we solve subproblem i) explicitly in terms of the value at the boundary v(d).
We show that the optimal strategy is constant up to the first passage of the drawdown
through d and that it minimises a quantity related to the Lundberg coefficient. We use
these results to construct a set of Gerber–Shiu-type optimisation problems containing
ii). We solve this general version of the problem and reconnect solutions to charac-
terise the minimal expected time in critical drawdown in (2). In Sect. 4, we consider
a discrete version of the problem that can be solved numerically. We illustrate the
theory with examples of light and heavy tailed claims for proportional and excess of
loss reinsurance. In these examples, we compare the performance of the optimal strat-
egy to certain alternative strategies and comment on the influence of the reinsurance
premium. We finish with concluding remarks on economic implications, applicability
and possible extensions in Sect. 5.
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2 General results

We denote the occurrence times of the claims by Ti , i ∈ N, and write �Y (s) =
IIE[e−sY1 ] for the Laplace-transform of the claim size distribution. As we will see, the
solution depends on the times at which the drawdown process crosses the boundary
between the critical and uncritical area.

Notation 1 For a strategy B ∈ B and y ≥ 0, we define the stopping times

τy(B) = inf{t ≥ 0 : DB
t ≤ y} , τ y(B) = inf{t ≥ 0 : DB

t > y} ,

and, for the special case y = d,

τ(B) = max{τd(B), τ d(B)}.

Note that min{τd(B), τ d(B)} = 0. For b ∈ [0, 1], we write 	b(z) := c(b)z − λ(1 −
�r(b,Y )(z)). For b > 0, we denote by γ (b) > 0 the unique non-negative solution
z = γ (b) to

	b(z) = δ. (3)

That there exists, indeed, a unique non-negative solution to Eq. (3) is a consequence
of the properties of the Laplace transform. In particular, z �→ 	b(z) is defined on
[0,∞) and strictly convex with 	b(0) = 0 and limz→∞ 	b(z) = ∞ by c(b) > 0 for
b > 0.

Lemma 1 The function v is increasing with 0 ≤ v(x) ≤ δ−1 for all x ∈ [0,∞), fulfils
limx→∞ v(x) = δ−1 and is Lipschitz continuous with

|v(x) − v(y)| ≤ 2
λ + δ

δc(1)
|x − y| .

In particular, v is absolutely continuous and differentiable almost everywhere.

Proof The boundedness is clear because the integrand always is an element of
{0, e−δt }. One can show that the function increases by choosing the same strategy
for different initial drawdowns. Let 0 ≤ y < x . Let h = (x − y)/c(1) and choose
ε > 0. By the definition of v(y), there exists a strategy B̃ such that v B̃(y) < v(y)+ ε.
Now we consider a compound strategy for initial drawdown x chosen in the following
way.We define Bt = 1 ·1{T1∧t<h} + B̃t−h1{T1∧t≥h} for t ≥ 0. For D0 = x this means,
we start with a strategy that is constant and equal to one up to the time h ∧ T1, i.e.
until y is reached or the first claim occurs. The set {T1 < h} and its complement are
Fh-measurable. On the set {T1 ≥ h}, we have DB

h = y almost surely and we continue
from this new starting point with the strategy B̃. In the definition of B, B̃ is therefore
shifted by the deterministic time h. If the first jump is observed before time h, the
constant strategy is kept. In particular, this means that if no claim occurs in (0, h), one
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uses the strategy B̃ from time h, and the strategy of ‘no reinsurance’ in all other cases.
Then

v(x) − v(y) ≤ vB(x) − v B̃(y) + ε

≤
∫ h

0
e−δt dt − (1 − e−(λ+δ)h)v B̃(y) + (1 − e−λh)δ−1 + ε

≤ 2(1 − e−λh)δ−1 + ε ≤ 2(λ + δ)h/δ + ε = 2
λ + δ

δc(1)
(x − y) + ε,

where we used 1{DB
t >d} ≤ 1 and v(DB

T1
) ≤ δ−1 in the case T1 < h. Because the

left-hand side does not depend on ε, we can let ε → 0 and Lipschitz continuity
follows.

For x > d, the time to reach d is at least (x − d)/c(1), yielding v(x) > δ−1(1 −
exp{−δ(x − d)/c(1)}. Therefore, limx→∞ v(x) = δ−1. ��

Lipschitz continuity of the value function enables us to choose ‘universally’ ε-
optimal strategies. This will enable us to prove the dynamic programming equation
(4).

Lemma 2 For every ε > 0, a strategy Bε ∈ B can be chosen such that vBε
(x) <

v(x) + ε holds for all x ≥ 0 and that the choice is measurable in x.

Proof Choose ε > 0. Because v(x) is Lipschitz continuous, we have |v(x) − v(y)| <

ε/2 for any x, y ≥ 0 with |x − y| < ε/(2L), where L denotes the Lipschitz constant
of Lemma 1. Let xk = kε/(2L). For each k ∈ N, we can choose a strategy Bε,k ∈ B
such that vBε,k

(xk) < v(xk)+ε/2. In general, this strategy depends on ε and k. Letting
Bε
t = Bε,0

t 1{x=0} + ∑∞
k=1 B

ε,k
t 1{x∈(xk−1,xk ]} for all t ≥ 0 defines a strategy for initial

capital x . Note that this choice is measurable and that Bε is again adapted and càdlàg
with values in [0, 1] and, hence, admissible. For x ∈ (xk−1, xk], we have

vBε

(x) ≤ vBε

(xk) < v(xk) + ε

2
− v(x) + v(x) < v(x) + ε .

This means, the strategy Bε as defined above is ε-optimal for all x > 0. For x = 0,
the inequality holds by the definition of Bε,0. ��

We next show that we can split the problem at x = d.

Lemma 3 (Dynamic Programming). The value function v(x) fulfils

v(x) =
⎧⎨
⎩

inf
B∈B

IIEx
[
e−δτ d (B)v(DB

τ d (B)
)
]
, x ∈ [0, d] ,

δ−1 − (δ−1 − v(d)) sup
B∈B

IIEx [e−δτd (B)] , x > d.
(4)

Proof Considering an arbitrary strategy B for initial drawdown x , we write B̃ for the
strategy B̃t = Bτ(B)+t . This is the strategy B after time τ(B) and thus a strategy for
initial drawdown DB

τ(B) conditional on Fτ(B). We have
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vB(x) = IIEx
[1{x>d}(1 − e−δτ(B))

δ
+ e−δτ(B)v B̃(DB

τ(B))
]

≥ IIEx
[1{x>d}(1 − e−δτ(B))

δ
+ e−δτ(B)v(DB

τ(B))
]

and taking the infimum over all admissible strategies B yields

v(x) ≥ inf
B∈B

IIEx

[
1{x>d}(1 − e−δτ(B))

δ
+ e−δτ(B)v(DB

τ(B))

]
. (5)

Now consider a strategy that is arbitrary up to time τ(B) and then ε-optimally chosen
as in Lemma 2. Similarly as above, we have

v(x) ≤ vB(x) ≤ IIEx
[1{x>d}(1 − e−δτ(B))

δ
+ e−δτ(B)v(DB

τ(B))
]

+ ε.

Taking the infimum over all strategies B, the right-hand side becomes independent of
ε. Thus, we can let ε → 0,

v(x) ≤ inf
B∈B

IIEx

[
1{x>d}(1 − e−δτ(B))

δ
+ e−δτ(B)v(DB

τ(B))

]
. (6)

Combining (5) and (6) and noting that DB
τ(B) = d for x > d, we obtain the dynamic

programming equation. ��
The dynamic programming lemma implies that we can split the problem in two

subproblems. We deal with each case separately in the next two subsections. The
following verification theorem will help to ‘reconnect’ the cases thereafter. The veri-
fication theorem uses the Hamilton–Jacobi–Bellman equation

inf
b∈[0,1]A

b f (x) = −1{x>d} , (7)

where we write

Ab f (x) = −c(b) f ′(x) − (λ + δ) f (x) + λ

∫ ∞

0
f (x + r(b, y)) dG(y) ,

for an absolutely continuous function f with density f ′. On (0,∞), note that Ab

corresponds to the generator of the process (t, DB
t )t≥0 (following a constant strategy

B ≡ b ∈ [0, 1]) applied to a function of the form e−δt f (x). Intuitively, the first term
originates from the drawdownprocessmoving into the opposite direction as the surplus
with premium income function c. Additionally, λ is the rate at which upward jumps
of this process occur, where G denotes the claim size distribution. In the appendix,
we provide a detailed motivation of this equation. Related to any solution to this
equation is a feedback strategy, given by the respective pointwise minimiser of the
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equation. We firstly state conditions for the existence of the drawdown process with
this type of feedback control. In particular, we characterise the controlled drawdown
process as a piecewise deterministic Markov process, see Davis (1984), only using
the properties of the integro-differential equation. An important part is the existence
of the deterministic integral curves, which depend on the measurability and structure
of the pointwise optimiser.

Lemma 4 Let f : [0,∞) → IR be an absolutely continuous, bounded and increasing
solution to Eq. (7) with density f ′. Denote by b(x) : [0,∞) → [0, 1] the pointwise
minimiser. There exists a measurable version of b(x) such that the drawdown process
D∗ under the feedback strategy B∗ given by B∗

t = b(D∗
t ), t ≥ 0, exists and B∗ is

admissible. Moreover, f is strictly increasing.

Proof Since [0, 1] is compact and the left-hand side of (7) is continuous, there is a
function b(x) such thatAb(x) f (x) = infb∈[0,1] Ab f (x). ByWagner (1977, Thm. 7.4),
we can choose the minimiser b(x) in a measurable way. We first show that f (x) is
strictly increasing. Suppose that f (a2) = f (ā2) for some a2 < ā2. We can assume
that we have chosen the interval maximally. In particular, d /∈ (a2, ā2) by (7). Then
f ′(x) = 0 and hence b(x) = 0 can be chosen for any x ∈ (a2, ā2). This implies

∫ ∞

0
f (x + r(0, y)) dG(y) =

∫ ∞

0
f (ā2 + r(0, y)) dG(y).

Since f (z) is increasing, f (x + r(0, y)) = f (ā2 + r(0, y)) at all points of increase of
G(y). In particular, this would imply ā2 = ∞, which is not possible. Now we prove
existence of the process. Firstly, we assume that the starting point x of the drawdown
process lies within [0, d]. A necessary condition for b(x) = 0 is H0(x) = 0 with

H0(x) = −(δ + λ) f (x) + λ

∫ ∞

0
f (x + r(0, y)) dG(y). (8)

On the other hand, (7) implies that H0(x) ≥ 0. It is no loss of generality to choose
b(x) = 0 whenever H0(x) = 0. Note that the set {x : H0(x) = 0} is measurable
because f and thus H0 are continuous.

If b(x) = 0, the process exists and is constant until the next jump. By continuity
of H0, there exists for any x1 with H0(x1) > 0 an open interval Ix1 = (a1, ā1) with
H0(x) > 0 for all x ∈ Ix1 . In particular, we have b(x) > 0 for all x ∈ Ix1 . We can
choose this interval maximally, such that H0(a1) = 0 or a1 = 0 is fulfilled.

If H0(d) > 0, we analogously find a half-open interval (a1, d]. Now for a fixed x1,
the function

ξ(u) =
∫ u

x1

1

−c(b(s))
ds ,

defined for u ∈ Ix1 , is absolutely continuous with a strictly negative density and
fulfils ξ(x1) = 0. Hence, there exists a unique, absolutely continuous and decreasing
inverse g(t) defined on (ξ(ā1), ξ(a1)) with values in Ix1 . g(t) fulfils g(0) = x1 and
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limt→ξ(a1) g(t) = a1. g(t) exists for all t ∈ [0, ξ(a)), that is, until g(t) reaches the
next point a1 with b(a1) = 0. In particular, by differentiating t = ξ(g(t)), we get that
the density of g is given by g′(t) = −c(b(g(t))) for almost all t ∈ (0, ξ(a)). This
means, the path of the controlled drawdown process starting from x1 with H0(x1) > 0
is (up to the next jump or until the next point a1 with H0(a1) = 0 is reached) uniquely
defined as solution to the equation

g(t) = x1 −
∫ t

0
c(b(g(s))) ds.

One may treat the cases of x > d with H0(x) = −1 and H0(x) > −1 using the same
arguments. If H0(x) > −1 holds on an interval (d, x1), the above integral equation
determines the behaviour of the paths up to the point in time when it reaches d.
Clearly the feedback strategy B∗ is adapted because b(x) is measurable. Moreover,
by c(b) ≥ 0 for all b ∈ [0, 1], the critical area is entered by a jump, so t �→ B∗

t is
càdlàg and, thus, B∗ is admissible. ��
Remark On every interval (a, b) with b(x) > 0 for any x ∈ (a, b), we get the repre-
sentation

f ′(x) = inf
β∈(0,1]

1{x>d} + λ
∫ ∞
0 f (x + r(β, y)) dG(y) − (δ + λ) f (x)

c(β)
. (9)

As the term we minimise is continuous for (β, x) in [0, 1]] × ([0,∞)\{d}) and [0, 1]
is compact, f ′(x) is continuous for x ∈ (a, b) if (a, b) ⊂ [0, d] or (a, b) ⊂ (d,∞). If
the pointwise minimiser of the HJB-equation is unique for every x ∈ (a, b), one can
use continuity of f ′(x) to prove that b(x) is continuous for x ∈ (a, b) as well. Note,
however, that the general formulation of Lemma 4 does not require that the arg inf is
unique.

Theorem 1 (Verification for the Optimal Control Problem) Let f : [0,∞) → IR be an
increasing, absolutely continuous and bounded solution to (7)with density f ′. Denote
by b(x) : [0,∞) → [0, 1] the measurable pointwise optimiser chosen as in Lemma 4.
Assume that either b(0) = 0 or f ′(0) = 0. Then f (x) = vB∗

(x) = v(x) for all x ≥ 0.
That is, f is the value function and B∗ is an optimal strategy.

Proof We have seen in Lemma 4 that the process D∗ following the feedback strategy
exists. For every strategy B ∈ B, the process

(
e−δt f (DB

t ) − f (DB
0 ) −

∫ t

0
e−δs f ′(0) dMB

s −
∫ t

0
e−δsABs f (DB

s ) ds
)
t≥0

(10)

is a martingale by Dynkin’s theorem (Theorem 4.6.1 of Jacobsen (2006)). This means
that

f (x) = IIEx[e−δt f (DB
t )

] − IIEx
[∫ t

0
e−δs f ′(0) dMB

s +
∫ t

0
e−δsABs f (DB

s ) ds
]

≤ IIEx[e−δt f (DB
t )

] + IIEx
[∫ t

0
e−δs1{DB

s >d} ds
]
.
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Letting t → ∞, the first term goes to zero by the boundedness of f . The second term
converges to vB(x). Thus, taking the infimum, we get f (x) ≤ v(x). On the other hand,
under the strategy B∗ we get equality and by the conditions given, the integral with
respect to the running maximum disappears, implying that f (x) = vB∗

(x). Since B∗
is an admissible strategy, the assertion follows. ��

3 The optimal solution

Theorem 1 implies uniqueness of a bounded increasing solution to the HJB-equation.
Our next goal is therefore to prove existence of a solution. In view of Lemma 3,
we distinguish the cases of large initial drawdown, that is x > d, and small initial
drawdown, that is x ≤ d.

3.1 Minimising the time in the critical area

We look for a solution for large initial drawdown, x > d. That is, we have to find

V (x) = sup
B∈B

IIEx [e−δτd (B)].

Since x �→ e−δx is decreasing, one could interpret this as minimising the weighted
time until (re-)entering the uncritical area. We note that the set B remains the same
as for the original problem. Strategies that are equal up to time τd(B) lead to the
same return. We start with some heuristics. Because all the jumps of the drawdown
process are upwards, it has to pass through every y ∈ (d, x) before reaching d. The
function V thus fulfils V (x) = V (d+x− y)V (y). This means that V is an exponential
function. Splitting the interval (d, x) in 2n equal parts, we observe that the problem
is the same as maximising IIEd+(x−d)2−n [e−δτd (B)] in each of the intervals. For this
reason, also the same strategy is optimal in each of the intervals. This holds true for
every n ∈ N, which implies that the optimal strategy in (d,∞) must be constant. For
a strategy constant and equal to b > 0, the Laplace transform of the passage time is
an exponential function depending on γ (b) as defined in Notation 1. It is well known
that IIEx [e−δτd (B)] = e−γ (b)(x−d) for a constant strategy Bt = b for t < τd(B), see for
example Rolski et al. (1999) or Schmidli (2017). That means, we expect the optimal
strategy to minimise the coefficient γ (b). In the following, we give a rigorous proof.

Lemma 5 There exist constants γ̃ > 0 and b̃ ∈ (0, 1] satisfying

c(b̃)γ̃ − λ
(
1 − IIEx[e−γ̃ r(γ̃ ,Y1)

]) = max
b∈[0,1]

(
c(b)γ̃ − λ

(
1 − IIEx[e−γ̃ r(γ̃ ,Y1)

])) = δ.

(11)

γ̃ is the unique positive value fulfilling the last equality. Moreover, b̃ minimises γ (b)
over (0, 1].
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Proof Since 	b(z) is convex, also 	(z) = maxb∈[0,1] 	b(z) is convex and therefore
continuous, with 	(0) = 0 and limx→∞ 	(z) = ∞. Hence, there must be a positive
solution γ̃ to 	(γ̃ ) = δ. Uniqueness follows from the convexity. Because r(b, y) and
c(b) are continuous, also	b(γ̃ ) is continuous in b. Because [0, 1] is compact, b̃ exists
such that	b̃(γ̃ ) = δ. Because for any b,	b(γ̃ ) ≤ δ, we find γ (b) ≥ γ̃ = γ (b̃). Since
	0(x) < 0 for all x > 0, b̃ = 0 is not possible. ��
Remark As stated in Lemma 5, γ̃ is uniquely defined by Eq. (11). In many practical
examples, the optimiser b̃ is also unique. For example, if c(b) is convex, then there
exists at most one solution b ∈ [0, 1] with 	b(z) = δ for every z > 0 for which
f1(b) = λ(1 − IIE[e−r(b,Y1)z]) is concave (by f1(0) > 0 > c(b)z − δ). In particular,
this is fulfilled if c(b) and r(b, y) are linear functions of b and for the example of the
expected value premium presented in the remark below Proposition 1. However, the
general conditions imposed on c(b), r(b, y) and the claim distribution function G(y)
also allow for cases in which 	b(z) = δ has more than one solution b ∈ [0, 1] for a
fixed z > 0. For example, we assume c(b) = C1b and r(b, y) = [(1 − b0)b2 + b0]y
(for some C1 > 0, b0 ∈ (0, 1)). This choice of a convex b �→ r(b, y) and linear c(b)
can be interpreted in the way that increases in the reinsurance cover become cheaper if
more reinsurance is bought. For the claim distribution G(y) = ∫ y

0 [w1[0,1](w) + (2−
w)1(1,2](w)] dw, the parameter set C1 = 1.7, b0 = 0.1, λ = 1.7, δ = 0.1 produces
	0.52(0.3) = 	0.81(0.3) = δ.

Proposition 1 For γ̃ and b̃ defined as in Lemma 5, we have V (x) = e−(x−d)γ̃ and the
value function fulfils

v(x) = δ−1 − (δ−1 − v(d))e−(x−d)γ̃ , x > d. (12)

The optimal strategy in both cases is constant and equal to b̃ up to the first passage
through d.

Proof The process (QB
t )t≥0 with

QB
t =

Nt∧τd∑
k=1

(e
−γ̃ DB

Ti − e
−γ̃ DB

Ti−)e−δTi −
∫ t∧τd

0
λe−γ̃ DB

s −δs(�r(Bs ,Y )(γ̃ ) − 1) ds

is a martingale. From Lemma 5, it follows that

e−γ̃ DB
t∧τd

−δ(t∧τd ) =e−γ̃ x+QB
t∧τd

+
∫ t∧τd

0
[	Bs (γ̃ ) − δ]e−γ̃ DB

s −δs ds≤e−γ̃ x+QB
t∧τd

.

Taking expectation and letting t → ∞ shows IIE[e−γ̃ DB
τd

−δτd ] ≤ e−γ̃ x . With the
constant strategy bt = b̃, we obtain equality. The last statement follows fromLemma3.

��
Remark If the premium rate functions of the insurer and reinsurer are calculated via the
expected value principle with parameters η and θ , respectively, Proposition 1 implies
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that the optimal strategy is the one of maximal drift (and maximal risk) B ≡ 1. Indeed,
in order to maximise e−(x−d)γ (b), we have to minimise γ (b) over the set of b with
c(b) > 0. We denote the mean claim size (before reinsurance) byμ = IIE[Y1] and note
that

	b(z) = λ(1 + θ)IIE[r(b,Y1)]z + λμ(η − θ)z − λ(1 − IIE[e−r(b,Y1)z])
= λ(IIE[r(b,Y1)z + e−r(b,Y1)z]) + λθ IIE[r(b,Y1)]z + λμ(η − θ)z − λ (13)

which is increasing in b ∈ (0, 1] for z ≥ 0, because b �→ r(b,Y ) is non-negative and
increasing and x �→ xz + e−xz is increasing. Thus, b �→ γ (b) must be decreasing in
b, meaning that it is minimised for b̃ = 1 at γ̃ = γ (1).

3.2 Maximising the time to entering the critical area with a penalty

Next, we consider the expected time in drawdown for an initial drawdown below
the critical value. In view of Lemma 3, this function depends on the time of exiting
the uncritical area and the overshoot at that time. The overshoot is penalised with
the function given in Eq. (12) of Proposition 1 for initial drawdowns larger than d.
However, v(x) for x > d is given in terms of the unknown value v(d). To overcome
this problem, we define a broader class of related optimal control problems. We again
minimise over the set B of admissible strategies and let for C ∈ [0, δ−1]

vC (x) = inf
B∈B

IIEx[e−δτ(B) pC (DB
τ(B))

]
, x ∈ [0, d] , (14)

where pC : [d,∞) → [0, δ−1] is given by

pC (x) = 1

δ
−

(1
δ

− C
)
e−(x−d)γ̃ .

This means that pC serves as a penalty function in the definition of (14), weighing the
size of the overshoot. We first observe that the statement of Lemma 1 remains true for
the function vC on [0, d] with a modified Lipschitz constant. For this reason, we also
know that vC is differentiable almost everywhere. We have vv(d)(x) = v(x) for x ≤ d
and pv(d) = v(x) for x > d. In particular, the composition of these functions should
be continuous at x = d. Similarly as in the proof of Proposition 1, one can show that
pC fulfils infb∈[0,1] Ab pC (x) = −1 for x ≥ d with pC (d) = C . Hence, the aim of
this subsection is to derive that vC solves a modified version of Eq. (7) and that there
exists a unique, ‘appropriate’ constant Cd such that vCd solves (7).

Remark Considering the original process X with a dividend barrier strategy, initial
capital d − x and dividend barrier d, our problem is equivalent to minimising the
Gerber–Shiu function IIE[{δ−1 − (δ−1 − C)eγ̃ X τ̃ }e−δτ̃ ], where τ̃ denotes the time of
ruin. Gerber–Shiu functions under a dividend barrier strategy are discussed in Lin
et al. (2003) and Gerber et al. (2006).

123



Optimisation of drawdowns by generalised reinsurance… 649

Lemma 6 There exists Cd ∈ (0, δ−1) such that vCd (d) = Cd, vC (d) ≤ C for all C ≥
Cd and vC (d) ≥ C for all C ≤ Cd. Moreover, the function wC (x) = vC (x)1{x≤d} +
pC (x)1{x>d} is increasing in x for all C ≥ Cd.

Remark From Proposition 3, we can conclude that Cd is unique, v(d) = Cd and
v(x) = vCd (x). The assumptions of the proposition will be proven in the following.

Proof That wC (x) is increasing in x follows readily. For C (1) < C (2) and arbitrary
B ∈ B, we have

vB
C(1) (x) − C (1) − (vB

C(2) (x) − C (2)) =
(
1 − IIEx [e−δτ d (B)e

−(DB
τd (B)

−d)γ̃ ])
(C (2) − C (1)) .

The right-hand side is positive which means that C �→ vB
C (x) − C is decreasing in C

for every B ∈ B. Hence, C �→ vC (x) −C is also decreasing. Moreover, the functions
{C �→ vB

C (x) − C}B∈B are Lipschitz continuous with a common Lipschitz constant

L . Now, let Bε,2 be an ε-optimal strategy, such that vBε,2

C(2) (x) < vC(2) (x) + ε. We get

vC(1) (x) − C (1) − (vC(2) (x) − C (2)) ≤ vC(1) (x) − C (1) − (vBε,2

C(2) (x) − C (2)) + ε

< L(C (2) − C (1)) + ε .

By letting ε → 0, we conclude that C �→ vC (x) − C is Lipschitz continuous. Lastly,
we consider the values C = 0 and C = δ−1 on the boundary. We have

v0(x) − 0 = δ−1 inf
B∈B

IIEx[e−δτ d (B)(1 − e
−(DB

τd (B)
−d)γ̃

)
]

> 0 ,

because Dτ d (B) > d almost surely and τ d(B) < ∞ with positive probability. The
latter holds because, by r(0, y) > 0 for all y > 0, there is a strictly positive prob-
ability that

∑N1
k=1 r(0,Yk) > d + c(1) and, thus, by the Borel–Cantelli theorem

{∑Nn
k=Nn−1

r(0,Yk) > d + c(1)} happens infinitely often. On the other hand,

vδ−1(x) − δ−1 = δ−1 inf
B∈B

IIEx[e−δτ d (B)
] − δ−1 < 0 ,

because τ d(B) ≥ T1 almost surely. There exists at least oneCx , so that vCx (x)−Cx =
0 by the continuity of vC (x)−C . SinceC �→ vC (x)−C is decreasing inC , the assertion
follows. ��

We write

yb(x) = inf{y ≥ 0 : x + r(b, y) > d}

with the convention that inf ∅ = ∞ and for an absolutely continuous function f :
[0, d] → IR with density f ′

Ab
C f (x) = −(δ + λ) f (x) − c(b) f ′(x) + λ

∫ yb(x)

0
f (x + r(b, y)) dG(y)

+ λ

∫ ∞

yb(x)
pC (x + r(b, y)) dG(y).
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We note that for f = vC , the last two terms add up to the integral with integrand
wC (x + r(b, y)). Next, we show in several steps that vC is a solution to

inf
b∈[0,1]A

b
CvC (x) = 0 , (15)

(Lemmata 7 and 8 and Proposition 2). We further give conditions to distinguish vC
from other possible solutions, similarly as in Theorem 1 (see Proposition 3). We start
with the initial condition.

Lemma 7 vC fulfils

vC (0) = inf
b∈[0,1]

λ

λ + δ

∫ ∞

0
wC (r(b, y)) dG(y) (16)

For C ≥ Cd, the infimum is attained at b = 0.

Proof For all strategies, starting in zero the process DB
t remains in zero until the first

jump. The value is thus (λ + δ)−1λ
∫ ∞
0 wC (r(b, y)) dG(y), showing (16). The value

for C ≥ Cd follows from the fact that wC is increasing in this case. ��
Remark The case C ≥ Cd is of particular interest as it includes our original control
problem. An easy argument for optimality of 0 for x = 0 is that, because of the
reflecting boundary, the only influential factor is the size Y1 of the first claim, penalised
by the increasing function wC . Hence, the optimal strategy is to choose the smallest
claim size possible, r(0,Y ). We comment on efficiency and consequences of this
choice in Sect. 5.

In the case C < Cd , wC is not necessarily increasing, which means that one could
favour a large jump into the area above (but close to) d over a jump into the area below
and close to d.

Lemma 8 The function vC fulfils infb∈[0,1] Ab
CvC (x) ≥ 0 for all x ∈ (0, d] at which

a one-sided derivative exists or the infimum is attained at b = 0. If at x = 0 either
the infimum is attained at b = 0, or the derivative from the right exists and is equal to
zero, then infb∈[0,1] Ab

CvC (0) = 0.

Proof For x ∈ (0, d], we let 0 < h < x/c(1), so zero is not reached in (0, T1 ∧ h).
Let ε > 0. We choose b ∈ [0, 1] and consider the strategy Bt = b for t < T1 ∧ h and
Bt = Bε

t−(T1∧h)(D
B
T1∧h) for t ≥ T1 ∧ h, provided DB

T1∧h ≤ d. Bε(z) is a strategy as
defined in Lemma 2. We find

vC (x) ≤ vB
C (x)

= IIEx [e−δhvBε

C (x − c(b)h)1{T1>h}] + IIEx [e−δT1vBε

C (DB
T1)1{T1≤h}1{DB

T1
≤d}]

+IIEx [e−δT1 pC (DB
T1)1{T1≤h}1{DB

T1
>d}]

≤ e−(δ+λ)h{vC (x − c(b)h) + ε} + IIEx [e−δT1{wC (DB
T1) + ε}1{T1≤h}] .
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Letting ε → 0 yields

vC (x) ≤ e−(δ+λ)hvC (x − c(b)h) + IIEx [e−δT1wC (DB
T1)1{T1≤h}] .

Consider first the case b = 0. We have

0 ≤ (e−(δ+λ)h − 1)vC (x) + IIEx [e−δT1wC (x + r(0,Y1))1{T1≤h}].

Dividing by h and letting h → 0 shows

0 ≤ −(δ + λ)vC (x) + λIIEx [wC (x + r(0,Y1))],

which shows the desired inequality in this case.
Now suppose b > 0; that is, c(b) > 0. Then

0 ≤ vC (x − c(b)h) − vC (x) + (e−(δ+λ)h − 1)vC (x − c(b)h)

+IIEx [e−δT1wC (x − c(b)T1 + r(b,Y1))1{T1≤h}].

Dividing by h and letting hn ↓ 0 in such a way that the limit below exists we find

0 ≤ − lim
n→∞

vC (x) − vC (x − c(b)hn)

hn
− (δ + λ)vC (x) + λIIE[wC (x + r(b,Y1))] ,

showing the inequality for the derivative from the left. For x̃ = x + c(b)h and x ∈
[0, d), we get analogously

0 ≤ − lim
n→∞

vC (x + c(b)hn) − vC (x)

hn
− (δ + λ)vC (x) + λIIE[wC (x + r(b,Y1))],

(17)

which shows the assertion for the derivative from the right. The result for x = 0
follows from (17) combined with (16). ��

Verifying also the converse inequality, we obtain:

Proposition 2 vC fulfils the HJB-equation infb∈[0,1] Ab
CvC (x) = 0.

Proof Choose a strategy B(h) = (Bt (h))t≥0, such that v
B(h)
C (x) < vC (x) + h2. Since

we have chosen the filtration in a minimal way and B(h) is adapted, t �→ Bt (h) must
be deterministic as long as no claim occurs. We consider x ∈ (0, d], h < x/c(1) and
let �B(h)

t = x − ∫ t
0 c(Bs(h)) ds denote the (deterministic) path of DB(h)

t on {T1 > h}.
Stopping at T1 ∧ h gives

vC (x) > v
B(h)
C (x) − h2

= e−(λ+δ)hv
B̃(h)
C (�

B(h)
h ) + IIEx [e−δT1w

B̃(h)
C (DB(h)

T1
)1T1≤h] − h2
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≥ e−(λ+δ)hvC (�
B(h)
h ) + IIEx [e−δT1wC (DB(h)

T1
)1T1≤h] − h2.

If �
B(h)
h = x on {T1 > h} for some h > 0, we find,

−1 − e−(λ+δ)h

h
vC (x) + h−1IIEx [e−δT1wC (DB(h)

T1
)1T1≤h] − h < 0.

For �
B(h)
h = x to hold, Bt (h) = 0 must be fulfilled for almost all t ≤ h. Therefore,

letting hn ↓ 0 for an appropriate subsequence gives

−(λ + δ)vC (x) + λIIE[wC (x + r(0,Y1))] ≤ 0.

If there exists no such h, we have �
B(h)
h < x and rearranging the terms gives

0 > −vC (x) − vC (�
B(h)
h )

x − �
B(h)
h

x − �
B(h)
h

h
− 1 − e−(λ+δ)h

h
vC (�

B(h)
h )

+h−1IIEx [e−δT1wC (DB(h)
T1

)1T1≤h] − h.

Because c(b) is a bounded function, there is a subsequence {hn} such that h−1
n (x −

�
B(hn)
hn

) = h−1
n

∫ hn
0 c(Bs(hn)) ds converges. In particular, there is b̃ ∈ [0, 1], such

that the limit is c(b̃). Then, also h−1
n

∫ hn
0 Bs(hn) ds and Bt (hn)1{t≤hn} converge to b̃.

Note that IIE[wC (x + r(b,Y1))] is continuous in b because the claim size distribution
and y �→ r(b, y) are continuous. Letting n → ∞ yields Ab̂

CvC (x) ≤ 0, where in the
case that vC (x) is not differentiable at x , we may have to take a subsequence of {hn}
to get convergence (which exists by the Lipschitz continuity). From Lemma 8, we

conclude that Ab̂
CvC (x) = 0. Because the limit does not depend on the subsequence,

the assertion is shown. ��
The following verification result implies uniqueness of solutions to the modified

HJB-equation (15).

Proposition 3 Let f : [0, d] → IR beanabsolutely continuous bounded solution to the
equation infb∈[0,1] Ab

C f (x) = 0with f ′(0) ≥ 0.Denote by b(x) : [0,∞) → [0, 1] the
measurable pointwise optimiser chosen as in Lemma 4. Assume that either b(0) = 0
or f ′(0) = 0. The drawdown process D∗ under the feedback strategy B∗

t = b(D∗
t )

exists and f (x) = vB∗
C (x) = vC (x) for all x. That is, f is equal to vC and B∗ is an

optimal strategy. �

This can be shown analogously to the proof of Theorem 1.

Remark Lemma 7 and Propositions 2 and 3 together imply that vC defined as in (14)
is completely characterised as the unique absolutely continuous and bounded solution
to the equation infb∈[0,1] Ab

CvC (x) = 0 for x ∈ [0, d] fulfilling the initial condition
given in (16).
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By Lemma 7, the pointwise optimiser in the HJB-equation for vC (withC ≥ Cd ) at
zero is 0. This means that the running maximum of the controlled process is constant.
We are now able to give the complete characterisation of the minimal expected time
in drawdown v, as well.

Theorem 2 There is a unique Cd ∈ (0, δ−1) with vCd (d) = pCd (d). It holds

v(x) =
{
inf
B∈B

IIEx
[
e−δτ(B) pCd (D

B
τ(B))

]
, x ∈ [0, d] ,

δ−1 − (δ−1 − Cd)e−(x−d)γ̃ , x > d.
(18)

v|[0,d] is the unique bounded solution to infb∈[0,1] Ab
Cd

v(x) = 0 with v′(0) ≥ 0 and

(16) for C = Cd. An optimal strategy B∗ is of feedback form with B∗
t = b̃1{D∗

t >d} +
b(D∗

t )1{D∗
t ≤d}, where b : [0, d] → [0, 1] denotes the pointwise minimiser in the

HJB-equation infb∈[0,1] Ab
Cd

v(x) = 0. Additionally, b(0) = 0.

Proof From Lemma 6, we know that there exists at least one Cd ∈ (0, δ−1) so that
vCd (d) = Cd , where vC is the function defined in Eq. (14). We define now a candidate
f for the function v by setting f (x) = vCd (x) for x ∈ [0, d] and f (x) = pCd (x) for
x > d. This corresponds to the right-hand side of Eq. (18). For x > d, this function
is continuously differentiable and solves

inf
b∈[0,1]

{
−(δ + λ) f (x) − c(b) f ′(x) + λ

∫ ∞

0
f (x + r(b, y)) dG(y)

}

= −1 − (δ−1 − Cd)e
−(x−d)γ̃ max

b∈[0,1]

{
c(b)γ̃ − λ

(
1 − IIEx[e−γ̃ r(γ̃ ,Y1)

])} = −1

(19)

by Lemma 5. By γ̃ > 0, f is also bounded for x > d. By Proposition 2, f is absolutely
continuous on [0, d) (and therefore bounded everywhere) with f (d−) = f (d+) and
fulfils

inf
b∈[0,1]

{
−(δ + λ) f (x) − c(b) f ′(x) + λ

∫ ∞

0
f (x + r(b, y)) dG(y)

}

= inf
b∈[0,1]

{
−(δ + λ)vCd (x) − c(b)v′

Cd
(x) + λ

∫ yb(x)

0
vCd (x + r(b, y)) dG(y)

+λ

∫ ∞

yb(x)
pCd (x + r(b, y)) dG(y)

}
= 0 . (20)

In particular, f solves (7) with the pointwise optimiser stated above and b(0) = 0. By
Lemma 4, the associated feedback strategy B∗ is admissible. Thus, the conditions of
Theorem 1 are fulfilled and f (x) = v(x) for all x and B∗ is optimal. Assuming there
was C̃d �= Cd leading to vCd (d) = Cd , repeating this argument and inspecting the
case x > d in (19) shows that Cd is unique. ��
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This characterisation of the value function implies that an optimal retention-level
strategy can be constructed by observing the current drawdown and evaluating the
feedback function induced by the equation at this point. As we have seen in Sect. 3.1,
this means that the constant retention level maximising the relation of drift and jump
size with regard to a quick recovery (i.e. (11)) is optimal when the current drawdown
is critical. If the drawdown is uncritical, the strategy depends on its exact level in a
non-trivial way, as the examples of the next section show. In particular, the shape of the
feedback function depends heavily on the claim size distribution, type of reinsurance
treaty and the tolerance for drawdowns. As stated in the remark following Lemma
7, the optimality of the zero-drift strategy at the maximum is a direct consequence
of the choice of the value function. It should be noted that this strategy prevents the
running maximum from increasing. This can be viewed as an anti-cyclic strategy
which promotes stability close to the initial maximum. We comment on the economic
implications in Sect. 5.

4 Numerical illustration

In the following, we compare return functions of optimal strategies to alternative
strategies for exponentially and Pareto-distributed claims. For our numerical illus-
tration, we consider a discrete version of the problem. We assume that there is a
partition (xk)k=0,...n of [0, d] and write Ik = (xk−1, xk]. This corresponds to the cau-
tious approach of rounding up changes in the drawdown not ’seen’ by the partition or,
respectively, the monetary unit. Alternatively, one could consider a general rounding
mechanism casting drawdown values to a grid, see Brinker (2022). Correspondingly,
we consider a discrete value function v̂ (i.e. minimal time in drawdown casted to
the grid with respect to the set of discrete admissible strategies) and a discrete feed-
back strategy b̂, given in terms of the values {(v̂k, b̂k)}k=0,...,n at the grid points for
x ∈ [0, d]. Similarly to Eqs. (4), (11) and (18), it can be derived that an optimal pair
(v̂, b̂) should solve the equation system

v̂(x) = inf
b∈R

IIExk
[
e−δT v̂(Db

T ) · 1{Db
T ≤d} + e−δT pv̂n (D

b
T ) · 1{Db

T >d}
]

= IIExk
[
e−δT v̂(Db̂k

T ) · 1{Db̂k
T ≤d} + e−δT pv̂n (D

b̂k
T ) · 1{Db̂k

T >d}

]
, x ∈ Ik , k = 0, . . . , n ,

(21)

where T denotes the time of the first exit from Ik and Db
T the drawdown at that time

when following a constant strategy equal to b chosen from a finite set R of admissible
retention levels. The numerical illustrations considered below are calculated by a
policy-iteration-algorithm resulting in a solution to (21). It should be noted that, a
priori, it is not clear that a (unique) solution to the equation system exists. In particular,
this depends on the coefficients in the equation and their linear (in-)dependence. These
are determined by the claim size distribution and the functions c and r . However, if
there exist vectors v̂ and b̂ so that both equations of (21) are fulfilled, then v̂ is the
discrete return of b̂ and b̂ is an ’optimiser’ in the second equation at every point.
Then the dynamic programming principle implies that b̂ induces an optimal feedback
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Table 1 Parameters of the
numerical study

δ λ d η θ

0.3 1 1.5 0.2 0.33

1.1

strategy and v̂ is the value function. A detailed description of the algorithm and further
comments on the validity of its solution are found in the second chapter and appendix
of Brinker (2022).

Remark Our ’infinitesimal’ results targeting the HJB-equation (7) alternatively allow
for a finite-difference-algorithm based on Eq. (9). However, the specific characteristics
of the presented, drawdown-based problem lead to strategies fundamentally different
frommany other optimisation objectives. In particular, we showed in Lemma 7 that the
strategy of zero drift (and positive claims) can be an optimal choice. In computational
experiments, this caused significant problems with the convergence of the numerical
schemes. Moreover, the strategies obtained in this way would have to be discretised
again in order to apply them to an insurance portfolio.We comment on this issue in the
last section of this article. Our approach presented above overcomes these problems.

The basic parameter set is given in Table 1. The relatively small preference factor
δ = 0.3 reflects a long-term oriented optimisation. λ = 1 means that we expect
one claim in a unit interval. In the examples below, we consider a mean claim size
μ = IIE[Y1] of μ ≈ 0.5. This means, three average sized claims in short period of time
lead to a critically large drawdown Dt > d = 1.5. We now assume that reinsurance
strategies take values in a compact interval [b, b], where b corresponds to the strategy
of ’not purchasing reinsurance’ and b is determined by the zero-drift condition c(b) =
0. As mentioned in the introduction, this corresponds to an appropriate rescaling
of the premium and the retention function. We change here the notation for easier
interpretation of the result. For example, for proportional reinsurance, Bt− is the
actual proportional retention level at time t , and for excess-of-loss reinsurance, Bt−
corresponds to the deductible of the first insurer at time t . Further, we assume that both
premia are calculated by an expected value principle, leading to c(b) = (1+ η)λμ −
(1+θ)λ(E[Y1−r(b,Y1)]), compare (13). η = 0.2 is the safety loading charged by the
insurer. θ ∈ {0.33, 1.1} quotes the cost (in terms of diminished proceeds from premia)
of reduced claim payments. Therefore, the size of θ is an important external factor in
the trade-off between earning and keeping premia as a risk-buffer and passing on risk
to the reinsurance company.

For the case of r(b, y) = by (proportional reinsurance), we let b = 1 and compare
discrete versions of

i) the optimal strategy b∗,
ii) the ‘no reinsurance’ strategy bmax with bmax(x) = b1{x≥0},
iii) the linearly increasing strategy bi with bi (x) = [b+(b−b)x/d]1{x≤d} +b1{x>d},
iv) region dependent switching bs with bs(x) = b1{x≤d} + b1{x>d}.

123



656 L. V. Brinker, H. Schmidli

Fig. 1 Exponential claims with proportional reinsurance for θ = 0.33 (top) and θ = 1.1 (bottom)

For excess of loss reinsurance with r(b, y) = min{b, y}, ‘no reinsurance’ corresponds
to b = ∞. In the examples below, we assume b ≈ 1010. We compare the strategies i),
ii) and iv) as defined above to

iii’) the increasing strategy bi with bi (x) = [b+(d−x)−1/4−d−1/4]1{x≤d}+b1{x>d}.

The two rows of Figs. 1, 2 and 4, 5 correspond to the different values of θ , with θ = 0.33
in the top and θ = 1.1 in the bottom row. The respective leftmost graph of every row
displays the optimised expected time in drawdown (solid line) in comparison with the
return functions of the three alternative strategies bmax (dashed line), bi (dotted line)
and bs (dash-dotted line), displayed on the right. The middle graph shows the optimal
strategy.
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Fig. 2 Exponential claims with excess of loss reinsurance for θ = 0.33 (top) and θ = 1.1 (bottom)

Fig. 3 Excess of loss reinsurance for exponential claims and different values of d ∈ {0.75, 1.5, 3}

4.1 Exponentially distributed claim sizes

We assume that claims are exp(α)-distributed with α = 2. The parameter set given in
Table 1 leads to γ̃ ≈ 1.0868. Figure1 displays the case of proportional reinsurance.
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Fig. 4 Pareto distributed claims with proportional reinsurance for θ = 0.33 (top) and θ = 1.1 (bottom)

For θ = 0.33, the numerical approximation indicates that the optimal retention level is
close to bwhen the drawdown is small and then shoots up towards 1when it approaches
the boundary d of the uncritical area. Out of the considered alternative strategies, the
switching strategy resembles this behaviour the most. Its return function lies closest
to the return of the optimal strategy. Moreover, both functions are very steep in this
area. This means that the cases of small initial drawdown and ‘almost critical’ initial
drawdown differ significantly. This allows the interpretation that for ‘almost critical’
drawdown, the strategy of (approximately) maximal drift is chosen in order to quickly
reduce the drawdown again because the area close to the boundary is too dangerous.
For the case of θ = 1.1, the general size of the return and value functions increases
(except for the return in the absence of reinsurance plotted as the dashed line). One
reason for this is that the same proportional claim reduction now leads to a larger drift
of the drawdown process. Another reason is that the set of policies to choose from is
narrowed because b = (1+θ)−1(θ −η) increases. Moreover, we observe that the area
where large retention levels are chosen grows. Figure2 displays the case of excess of
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Fig. 5 Pareto distributed claims with θ = 0.33 (top), θ = 1.1 (bottom) and excess of loss reinsurance

loss reinsurance. Considering the value and return functions, we notice that the dashed
line, i.e. the return of operating without reinsurance, remains the same as in the graphs
of Fig. 1.Using this function as a reference,we canobserve that theminimised expected
time in drawdown (solid line) is smaller than in the case of proportional reinsurance.
Thus, excess of loss reinsurance is more effective at reducing the time in drawdown in
this example. This is achieved by alternating lower and larger retention levels (as seen
in the middle graphs of Fig. 2). Instead of an increasing optimal strategy as in Fig. 1,
the interval [0, d] is divided into ‘risk bands’, where the optimal strategy is either to
remain in the current band (i.e. to choose a lower retention level) or to aim at reaching
the band below before a claim occurs (larger retention level). For example, in the case
θ = 0.33, it is optimal not to buy reinsurance close to d in order to quickly leave the
critical boundary. For x ≈ 1.45, b∗ has a peak, which can be interpreted as trying to
reach the area below 1.45, where one can guarantee that the drawdown process will
not exit the uncritical area at the next jump by choosing the retention level accordingly.
The influence of the critical size of drawdowns d is illustrated in Fig. 3. The graphs
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show value functions (leftmost graph) and optimising functions for the parameter set
of Table 1 with θ = 1.1 and three different values d = 0.75 (dotted), d = 1.5 (solid)
and d = 3 (dashed). Comparing the value functions in the left graph, we observe that
the smaller d, the larger the time in critical drawdown (the dotted line corresponding
to d = 0.75 lies above the solid line for d = 1.5 which lies above the dashed line for
d = 3). This is not surprising because if the uncritical area is smaller, all admissible
strategies lead to a longer time spent in the critical area. This effect is particularly
strong for small values of x . This can be interpreted as a result of the discounting e−δt :
the value function puts more weight on early critical drawdowns. For small values
of x , there is a significant chance to stay in the uncritical area for d = 3 with the
first jump. To stay below d = 0.75 is less likely, leading to a higher value v(0). This
’benefit’ of the higher tolerance for drawdowns disappears for larger initial values
x ≤ d — in the sense that ’early’ exits happen in any case if the drawdown is already
almost critical. In particular, in all cases of the example, the respective values v(d)

on the critical lines are approximately equal to 0.86. For x > d, the value functions
converge to δ−1 ≈ 3.3333. Regarding the optimal strategies, we see that the general
structure of peaks and troughs of the optimisers b∗ is similar in the three cases. As
stated above, this corresponds to controlling (via excess of loss reinsurance) in such
a way, that either the surplus cannot exit the uncritical area or increases quickly to a
higher level. In the case d = 0.75, the highpoint of the ’spike’ is approximately at
(0.15, 0.6), lower than in the cases d = 1.5, 3, in which it goes up to 0.67. With the
lower retention level in the case d = 0.75, a part of the drift is ’sacrificed’ in order to
guarantee that an immediate claim would not cause a critical drawdown.

4.2 Pareto distributed claim sizes

We assume that the claim size distribution is given by G(y) = 1 − βα(β + y)−α for
y > 0 for α = 2 and β = 0.45. With the parameters of Table 1, one can numerically
calculate γ̃ ≈ 1.0304. α and β are chosen such that the expected claim size μ = β

α−1
is slightly smaller than in the previous example. However, α = 2 indicates that the
variance is infinite.

Figure 4 shows the case of proportional reinsurance and Fig. 5 corresponds to the
case of excess of loss reinsurance. Again the dashed line representing the valuewithout
reinsurance is not affected by changes of θ or the reinsurance type. In Fig. 4, the graphs
of the function b∗(x) indicate that the retention level is chosen as low as possible if the
drawdown is small. Moreover, there is an area where the drawdown is uncritical, but
in order to push the drawdown down, almost no reinsurance is bought and the largest
part of the premium payments is withheld in the company. A ‘ramp’ connects the low
and the high retention levels, such that the reinsurance level rapidly decreases as the
drawdown grows larger. This effect intensifies if the price of reinsurance is raised.

Comparing Figs. 4 and 5, we see that excess of loss reinsurance is again more
effective than proportional reinsurance, especially in the case of θ = 1.1. The strategy
is again to alternate lower and higher retention levels but the shape of the optimiser
differs from the case of exponential claims.
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5 Concluding remarks

We analysed the optimisation problem of minimising the expected time during which
the drawdown is critically large discounted by a preference factor with respect to
dynamic, general reinsurance. A drawdown of zero corresponds to a surplus at the
maximum or, if one considers the surplus ex-dividend for a barrier dividend strategy,
to paying dividends. For different reasons, for example the reputational risk connected
to prolonged drawdown phases leading to operational losses, insurers have a natural
interest in minimising the time with a large drawdown. Our approach to the optimi-
sation problem was to examine the cases of critical and uncritical initial drawdown
separately. In the former case, we calculated the value function explicitly. As it turned
out, the optimal strategy is the one minimising the coefficient γ (b) associated to the
Laplace transform of the upper exit time of a classical risk model. If the drawdown
starts below the critical line, reflection at the boundary and dependence on the over-
shoot complicate the problem. Using the explicit solutions from the other subproblem,
we solved this by constructing a set of optimisation problems of Gerber–Shiu type
containing our original problem.We proved that the value functions are uniquely char-
acterised as solutions to the connected HJB-equations with certain properties, thus,
also obtaining the corresponding result for the expected minimal time in drawdown.
Moreover, we have seen that the optimal strategy is of feedback form whenever the
drawdown is uncritical.

As we have seen in our numerical examples, the shape of the optimal strategy for
uncritical initial drawdown is highly influenced by the type of reinsurance contract
and the choice of the claim distribution. As expected, the results on the optimiser in
the uncritical area differ strongly from those in Brinker and Schmidli (2022), where
a continuous diffusion model is considered. For example, if claims follow a Pareto
distribution, a single claim is more likely to cause a large drawdown than a single,
exponentially distributed claim. One therefore will prefer smaller jumps over a larger
drift. If the claim size is bounded or with excess of loss reinsurance is available, the
insurer can sensitively control the maximal size of the next claim. This leads to an
optimal strategy of alternating small and large retention levels. We see in all of the
numerical examples that one tries to leave the critical line rather quickly, in particular,
if reinsurance is expensive.

Our analytical and numerical approaches to the problem showed that if the draw-
down is equal to zero, the retention level which eliminates the drift is optimal. This fits
the intuition since the reflection barrier absorbs the drift and claim payments are the
only decision-making parameter. This policy stabilises the process close to its max-
imum. This increased stability is favourable for insurers, especially in an uncertain
economic setting. However, it also prevents growth of the maximum of the surplus
process. This can be seen as a drawback of the optimisation criterion (when used on
its own) because it impedes the insurer from increasing profits. These results com-
plement previous, similar findings for the diffusion model (e.g. Brinker and Schmidli
2022 and Angoshtari et al. 2016a). However, in reality, a company cannot increase
its surplus unboundedly. If the maximum surplus is large, shareholders are going to
demand dividends, customers to participate in profits and taxation makes infinitely
large surpluses unfavourable. Thus, we expect that drawdown minimising strategies
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work inmost realistic scenarios, when applied to ex-dividend surpluses (as a secondary
optimisation criterion) or if growth is naturally bounded (for example due to statutory
regulations).

A ‘quick fix’ to implement growth of the runningmaximum in our setting is to define
a lower limit for the rentention level and thus to define a lower bound for the increase
of the running maximum. Additionally, one could use the inclusion of ‘incentives
to grow’ as a starting point to construct interesting extensions to the problem. We
discuss some possibilities in Brinker and Schmidli (2022). An approach preserving
the properties of pure drawdown control would be to consider the optimisation of
general drawdown-based Gerber–Shiu functions (i.e. a discounted penalty of the first
critical drawdown). These can be analysed similarly as in Sect. 3.2. Another aspect
worth examining is the applicability of optimal strategies: assuming that the insurer
can adjust the retention level continuously in time is unrealistic. As an extension, one
could therefore introduce discrete (random or deterministic) decision times leading
to piecewise constant strategies or transaction costs associated with changes of the
insurance coverage.
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Appendix

In the following, we show a heuristic derivation of the HJB-equation (7). By the
same arguments as in the proof of Lemma 3, one can prove a dynamic programming
equation

v(x) = inf
B∈B

IIEx
[∫ T

0
e−δt1{DB

t >d} dt + e−δT v(DB
T )

]
(22)

for an arbitrary stopping time T . We consider the stopping time τ̃h = h∧T1 for h > 0.
If x > d, we assume that h is sufficiently small such that d is not reached before time
h, i.e. h ∈ (0, |x − d|[2c(1)]−1). Note that we have 1{DB

t >d} = 1 for all t ≤ τ̃h if
x > d and 1{DB

t >d} = 0 for all t ≤ τ̃h if x ≤ d, independent of the strategy chosen.
Then, dividing by h and rearranging the terms of (22), we find

0 = inf
B∈B

IIEx

[
h−1

∫ τ̃h

0
e−δt1{DB

t >d} dt
]

+ IIEx

[
e−δτ̃hv(DB

τ̃h
) − v(x)

h

]

= IIEx
[
h−1δ−1(1 − e−δτ̃h )

]
1{x>d} + inf

B∈B
IIEx

[
e−δτ̃hv(DB

τ̃h
) − v(x)

h

]

The first term fulfils

IIEx
[
h−1δ−1(1 − e−δτ̃h )

]
1{x>d} = h−1δ−1e−λh(1 − e−δh)1{x>d}

+
(
h−1δ−1

∫ h

0
λe−λt (1 − e−δt ) dt

)
1{x>d}

→ 1{x>d} ,

as h → 0. For an optimal solution, if it exists, we expect the controlled drawdown
process to be a piecewise deterministic Markov process. That is, the set B can be
restricted to the set B̃ of adapted, càdlàg feedback controls of the form Bt = b(DB

t ),
t ≥ 0, for a measurable function b such that DB exists. In Sects. 2 and 3 we prove
that this is, indeed, the case. For arbitrary B ∈ B̃, Theorem 11.1.3 combined with
Corollary 11.2.1 of Rolski et al. (1999) implies that

IIEx

[
e−δτ̃hv(DB

τ̃h
) − v(x)

h

]

→ −δv(x) − c(b(x))1{x>0}v′(x) + λ

∫ ∞

0
[v(x + r(b(x), y)) − v(x)] dG(y) ,

as h → 0, provided that h(t, x) = e−δtv(x) is in the extended domain of the generator
of the process (t, DB

t )t≥0.Here, v′ denotes a version of the density of v. The occurrence
of an indicator function1{x>0} is caused by the absorption of the drift of the drawdown
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process on the t-axis. That the function is in the domain of this generator is shown in
Sect. 2, where we prove that v is bounded and absolutely continuous. That means, we
obtain for all possible choices b(x) ∈ [0, 1]:

−δv(x) − c(b(x))1{x>0}v′(x) + λ

∫ ∞

0
[v(x + r(b(x), y)) − v(x)] dG(y) ≥ −1{x>d}.

For an optimal strategy, we expect equality. This implies

inf
b∈[0,1]

{
−δv(x) − c(b)1{x>0}v′(x) + λ

∫ ∞
0

[v(x + r(b, y)) − v(x)] dG(y)

}
= −1{x>d}.

(23)

From these heuristics, we expect that v is a solution to (7), that also fulfils the initial
condition

inf
b∈[0,1]

{
−δv(x) + λ

∫ ∞

0
[v(x + r(b, y)) − v(x)] dG(y)

}
= 0.

The latter implies that the integrands of the last two integrals of the martingale in (10)
(defined with v instead of f ) combined yield the term to minimise in (23). To see this,
note that dMB

t = c(b(0)) dt for the piecewise deterministic DB . In Theorem 3, we
state conditions under which a solution to (7) is equal to v. In Sect. 3, we prove that
there exists such a solution.
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