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Abstract
Referring to a standard context of voting theory, and to the classic notion of voting
situation, here we show that it is possible to observe any arbitrary set of elections’
outcomes, nomatter howparadoxical itmay appear. In this respect, we consider a set of
candidates 1, 2, . . . ,m and, for any subset A of {1, 2, . . . ,m}, we fix a ranking among
the candidates belonging to A. Wewonder whether it is possible to find a population of
voters whose preferences, expressed according to the Condorcet’s proposal, give rise
to that family of rankings. We will show that, whatever be such family, a population
of voters can be constructed that realize all the rankings of it. Our conclusions are
similar to those coming from D. Saari’s results. Our results are, however, constructive
and allow for the study of quantitative aspects of the wanted voters’ populations.

Keywords Majority graphs · Ranking patterns · Paradoxes of voting theory ·
Load-sharing models
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1 Introduction

In this paper we consider a standard scenario of voting theory that will be briefly
described as follows. For more complete descriptions and presentations, Readers are
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addressed, e.g., to Nurmi (1999), Gehrlein and Lepelley (2017), Montes et al. (2020),
Stearns (1959) and bibliography cited therein.

We think of a system of possible elections, based on a fixed set of potential can-
didates, labeled as 1, 2, ...,m, and on a fixed set of voters, v1, v2, ..., vn . Denote by
[m] ≡ {1, 2, ...,m} the set of candidates and by V ≡ {v1, v2, ..., vn} the set of voters.

Each voter is supposed to cast one and only one vote, at any election. On the other
hand different elections can be considered, respectively, characterized by the differ-
ent subsets A ⊆ [m] of participating candidates. The differences among elections’
outcomes, encountered at varying the subsets of candidates, are just at the core of the
questions considered here.

Concerning the mechanism determining the vote of the single voter vl (vl ∈ V , l =
1, ..., n) in any of such elections, it is assumed that the individual preferences, among
candidates, of vl are complete, transitive, and also antisymmetric, coherently with the
assumption that indifference is not allowed between any two candidates. Thus, individ-
ual preferences give rise to a linear preference ranking. In other words the preference
ranking of vl is described by a permutation rl over the set [m]. Such a permutation
is to be viewed as a piece of a-priori information, established independently of the
special subsets of candidates which will be encountered in the elections. Thus, in an
election characterized by a subset A ⊆ [m] of candidates, the vote expressed by vl is
definitely addressed to the one who is the preferred candidate among the elements of
A, according to the permutation rl , for l = 1, ..., n.

As a further feature of ourwork,we concentrate attention on objects of the following
type. For any subset A ⊆ [m] (A containing two or more elements of [m]), we fix an
arbitrary ranking among the elements of A. Then we consider the collection σ of all
such rankings, obtained by browsing all the subsets A. Such a collection gives rise to
the notion of ranking pattern (see Definition 2 in the next section) which extends the
one of majority graph, or preference pattern.

Coming back to the above scenario of Voting Theory, we now remind the notion of
voting situation.

On this purpose we look at the collective of all the n voters and denote by
N (m)( j1, . . . , jm) the number of the voters who share the same linear preference
ranking ( j1, . . . , jm), where j1 is the most preferred candidate and jm is the least pre-
ferred one. The family of numbers N (m) ≡ {N (m)( j1, . . . , jm)}, is typically referred
to as the voting situation.

Maintaining the assumption that, for any A ⊆ [m], any voter casts a single vote
addressed to the preferred candidate in A, and comparing the numbers of votes so
obtained by any single candidate j ∈ A, a voting situation N (m) determines a cor-
responding ranking pattern σ , that will be termed ranking pattern q-concordant with
N (m) (see Definition 2 in the next section).

The problems solved in this paper can be simply formulated as follow:
Fixed, for given m, an arbitrary ranking pattern σ on the subsets of [m], can we

guarantee the existence of some q-concordant voting situations N (m)?
If so, is it possible to construct at least one of such N (m)? What can be said about

the number of voters needed to realize such an N (m)?
The above questions can be connected to the literature about the paradoxes studied

in the voting theory.
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An arbitrary ranking pattern may exhibit several types of surprising behavior. In
particular one can observe different forms of Condorcet-type paradoxes. It is well
known that the latter topic is related to non-transitivity of collective voting outcomes
and is one of the starting points of voting theory.

The literature related to voting paradoxes has a long history (see e.g. Alon 2002;
Fishburn 1981; Mala 1999; Saari 1989, 1995, 2018a). Along such literature a very
wide catalogue of, more or less complex, special cases has been thoroughly analyzed
to show the possibility of different types of paradoxes. In particular, important contri-
butions have arisen as direct extensions of the original Condorcet observation which
shows the possibility of the phenomenon of non-transitivity, in the presence of three
candidates. Considering the case of an arbitrary number m of candidates, the basic
result by McGarvey shows, for any preference pattern, the existence of a voting sit-
uation triggering that pattern. Also the mathematical results by Saari can be seen as
extensions on the same line of the McGarvey’s theorem in McGarvey (1953). Several
other important contributions in the same direction have been given in more recent
times. See e.g. Nurmi (1999), Saari (2018b), Mala (1999) and references therein.

As also well known a somehow different literature, starting from the controversy
between Borda and Condorcet, is concerned with the comparison among voting sys-
tems and, on the basis of a fixed voting situation, with different definitions of the
election winners. See e.g. Fishburn (1981), Nurmi (1999), Perez-Fernandez and De
Baets (2019), Klamler (2005), Van Newenhizen (1992) and references cited therein.
Other parts of the literature have been devoted to analyzing the probability that
paradoxes can manifest, in the case of random voting situations and under different
stochastic models (see e.g. Kalai 2004; Hazla et al. 2020).

Following the same direction of Condorcet, McGarvey, Saari, our results actually
lead to conclusions very similar to those of the results given by the latter Author. They
are however constructive and provide some quantitative information about the number
of voters needed to constructing concordant voting situations.

Within the family of all the ranking pattern, we distinguish the subclass of strict
ranking patterns. In such particular case our solutions can be presented in closed forms.

In De Santis and Spizzichino (2023), the definition was given of ranking pattern
p-concordant with a multivariate survival model and it has been proven that, for any
strict ranking pattern, there exist p-concordant survival models (see Theorem 2 in De
Santis and Spizzichino (2023), recalled here as Theorem 7 in “Appendix”). Starting
from this result, here we prove the existence of q-concordant voting situations for any
(strict or weak) ranking pattern (Theorems 1, 2).

Results proven here, however, also allow us to solve a problem that was left open
in the paper (De Santis and Spizzichino 2023). In fact, concerning with weak ranking
patterns, Theorem 2 leads to a general existence result about p-concordant voting
situations (Corollary 1). Such a generalization of the results presented in De Santis
and Spizzichino (2023) would not be smooth without the passage through the logic
and the language of voting theory.

More precisely, the plan of the paper is as follows.
In Sect. 2, we recall notation, definitions, and preliminary results. In particular, we

recall the definition of ranking pattern p-concordant with a probability model for a
m-tuple of random variables. Based on this material we detail the identity between the

123



132 E. De Santis, F. Spizzichino

considered voting-theory scenario and the study of probability distributions, induced
by them-tuples of randomvariables, over the space of the permutations of the elements
of [m] (Proposition 2).

Section 3 is devoted to presenting results concerning the construction of q-
concordant voting situations. By exploiting and extending results presented in De
Santis and Spizzichino (2023), we in particular single out a method to construct vot-
ing situations concordantwithweak ranking patterns, by starting fromvoting situations
concordant with strict ranking patterns (see Theorem 2).

Distinguishing between the two cases of strict and weak ranking patterns, the issue
of possible values of the number of voters required for obtaining q-concordant voting
situations is studied in Sect. 4.We in particular exhibit a universal value θm (depending
on m, the total number of candidates) such that, for an arbitrary strict ranking pattern
σ , a q-concordant voting situation exists and can be produced with θm voters. Such a
voting situation can be constructed explicitly (Theorems 4, 5).

In Sect. 5 we present a discussion based on some concluding remarks.
For the sake of self-consistency, in the Appendix we review definitions and main

results on load-sharing models, which have been used in De Santis and Spizzichino
(2023) for the construction of survival models p-concordant with strict ranking
patterns.

2 Notation, definitions, and preliminary results

We start this section by introducing some concepts and notation which will be used
next and which concern non-negative random variables.

Let [m] := {1, ...,m} and denote by �m the set of permutations of the elements of
[m].
Let X1, . . . , Xm be non-negative random variables satisfying the no-tie condition

P(Xi �= X j ) = 1, (1)

for i, j ∈ [m] with i �= j . Let the symbols X1:m, . . . , Xm:m denote the order statistics
of X1, . . . , Xm and let J ≡ (J1, . . . , Jm) denote the discrete random vector defined
by the position

Jr = i ⇔ Xi = Xr :m (2)

for any i, r ∈ [m]. For ( j1, . . . , jm) ∈ �m , we set

pm( j1, . . . , jm) := P(J1 = j1, J2 = j2, . . . , Jm = jm), (3)

and by PJ we briefly denote the collection of all the m! probabilities in (3). Clearly,
PJ is determined by the joint probability distribution of X1, . . . , Xm and, in its turn,
it determines a probability distribution over the finite set �m .

In view of our study, an object of central interest is the family
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Construction of voting situations concordant with ranking… 133

A(m) := {α j (A); A ⊆ [m], j ∈ A},

where α j (A) denotes the probability defined by

α j (A) := P(X j = min
i∈A

Xi ). (4)

In some contexts it is useful to look at α j (A) as a winning probability.

Remark 1 Clearly, it may also be natural to alternatively consider situations where it
is needed to single out the random variable with highest probability to be a maximum
among a given set of other lifetimes. However the position in (4) is convenient in view
of our proofs (see e.g. Proposition 1).

Remark 2 The family A(m) is determined by PJ. In this respect a detailed formula is
shown in Proposition 1 of De Santis and Spizzichino (2023).

Notice that the random variables X1, . . . , Xm can be interpreted as waiting times,
respectively, associated tom different objects. In this respect, one can think of various
contexts where it is needed to single out the lifetime (or the time-to-event) maximizing
the probability to be aminimum among a given set of other lifetimes or times-to-event.
Thus we are generally interested in comparisons of the type

αi (A) > α j (A), for A ⊆ [m] , i, j ∈ A. (5)

In order to describe preference rankings among the elements of the subsets A ⊆ [m],
we introduce ranking functions σ(A, ·) : A → {1, 2, . . . , |A|}. For i, j ∈ A, it
will be σ(A, i) < σ(A, j) if i precedes j in A whereas σ(A, i) = σ(A, j) when
they are equivalent inA. More precisely σ(A, i) is equal to 1 plus the number of
elements belonging to A and preceding i . Consider for example the case m = 10,
A = {3, 4, 6, 8, 9}, where 6 is the favorite element, followed by 4 and 8 with equal
merit, then followed by 3 and finally with 9 as the less favorite element in A. Then

σ(A, 6) = 1; σ(A, 4) = σ(A, 8) = 2;
σ(A, 3) = 4; σ(A, 9) = 5.

By using this notation we now give more formally the following

Definition 1 For A ⊆ [m], a mapping σ(A, ·) : A → {1, 2, . . . , |A|} is a ranking
function if it satisfies the following condition

σ(A, i) = 1 +
∑

j∈A

1[σ(A,i)−1](σ (A, j)) (6)

for each i ∈ A.

In the above definition the symbol 1[σ(A,i)−1](·) obviously denotes the indicator
function of the set [σ(A, i) − 1] = {1, . . . , σ (A, i) − 1}.
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134 E. De Santis, F. Spizzichino

The above definition is also termed standard competition ranking. Other analogous
definitions have been considered in the literature, e.g. modified competition ranking,
dense ranking. We point out that all such definitions are however equivalent as to the
order relation between any two elements. Definition 4 below, in fact, is not affected
by the special choice considered.

When some equivalence holds between two elements of A, we say that σ(A, ·) is
a weak ranking function. When, on the contrary, the values σ(A, j), j ∈ A, are all
different then σ(A, ·) : A → {1, 2, . . . , |A|} is a bijective function, namely σ(A, ·)
describes a permutation of the elements of A. This case will be designated by the term
strict ranking function.

Definition 2 For m ≥ 2, a ranking pattern over [m] is a family of ranking functions
σ ≡ {σ(A, ·) : A ⊆ [m] , |A| ≥ 2}. A ranking pattern is said to be strict when it does
not contain any weak ranking function. The symbols �(m) and �̂(m) ⊂ �(m) denote
the collections of all the ranking patterns over [m] and of all the strict ranking patterns,
respectively.

The symbol σ(A, i) has a two-fold meaning: on the one hand it has the basic
meaning of ordinal number. On the other hand it is necessary, in our formulas, to treat
it as a natural number.

A ranking pattern will be associated in a natural way to the familyA(m) as follows

Definition 3 The ranking pattern σ ≡ {σ(A, ·) : A ⊆ [m] , |A| ≥ 2} and the m-tuple
(X1, . . . , Xm) are p-concordant whenever, for any A ⊆ [m] and i, j ∈ A with i �= j

σ(A, i) < σ(A, j) ⇔ αi (A) > α j (A), (7)

σ(A, i) = σ(A, j) ⇔ αi (A) = α j (A). (8)

Notice that the quantities σ(A, i) are natural numbers belonging to [|A|], whereas
the quantities α j (A) are real numbers belonging to [0, 1]. Obviously for any m-tuple
(X1, . . . , Xm) there exists one and only one p-concordant ranking pattern.

Let us now come back to the voting scenario described in the Introduction and fix
a voting situation

N (m) = {N (m)( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}. (9)

For i ∈ [m] and j ≡ ( j1, . . . , jm) ∈ �m , the symbol φ j (i) will be used to denote the
position of i within the vector j :

φ j (i) = h ⇔ jh = i . (10)

Thus φ j (·) is a bijection on [m].
As anticipated in the Introduction, we are assuming that the voters’ individual

behavior is á la Condorcet. Namely, in an election where A ⊆ [m] is the set of the
participating candidates, all the voters who share the same linear preference ranking
j will cast their individual vote in favor of i ∈ A if i is the favorite candidate within
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Construction of voting situations concordant with ranking… 135

the set A, i.e. whenever φ j (i) < φ j (h), for any h ∈ A, with h �= i . More concisely,
we can write the number of votes in favor of i as

ni (A) =
∑

j∈�m

N (m)( j)
∏

h∈A:h �=i

1[φ j (h)−1](φ j (i)). (11)

We focus attention on the family

N := {n j (A) : A ⊆ [m] , j ∈ A}, (12)

associated to N (m). We also look at the total number of voters:

n =
∑

( j1,..., jm )∈�m

N (m)( j1, . . . , jm). (13)

Sometime we use the notation n(N (m)) in place of n in order to stress the dependence
on the voting situation N (m). This notation will be essentially used in the case of
comparisons between different voting situations with different total number of voters.

Furthermore we point out that also the family N gives rise to a ranking pattern in
analogy with the above Definition 3. For any A ⊆ [m], such a ranking pattern will
assign smaller values to those candidates who receive larger numbers of votes.

Definition 4 A ranking pattern σ ≡ {σ(A, ·); A ⊆ [m] , |A| ≥ 2} and a voting
situation N (m)are q-concordant whenever, for any A ⊆ [m] and i, j ∈ A with
i �= j

σ(A, i) < σ(A, j) ⇔ ni (A) > n j (A), (14)

σ(A, i) = σ(A, j) ⇔ ni (A) = n j (A). (15)

We notice that the definitions of ranking function, ranking pattern, and q-
concordance concern with very natural concepts, already considered in the literature
under different notation. However, we have introduced special terms and symbols on
the purpose of concise formulation of our results.

Keeping in mind that any voting situation N (m) triggers a corresponding family
N and in order to detail the relation tying N to N (m), we now single out a discrete
probability model, strictly related toN (m) and defined as follows. Consider the finite
probability space (�m,PN ) with

P
N ( j1, . . . , jm) = N (m)( j1, . . . , jm)

n
,

for any ( j1, . . . , jm) ∈ �m and n given in (13).
On the space (�m,PN ) we define the no-tie, discrete, random variables

X̂i ( j1, . . . , jm) = φ( j1,..., jm )(i) (16)

for i ∈ [m] and where φ( j1..., jm )(i) is defined in (10).
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Under such a position and recalling (2), the related discrete random variables
( Ĵ1, . . . , Ĵm) are such that, for any ( j1, . . . , jm) ∈ �m ,

pNm ( j1, . . . , jm) = P
N (( Ĵ1, . . . , Ĵm) = ( j1, . . . , jm))

= P
N ( j1, . . . , jm) = N (m)( j1, . . . , jm)

n
. (17)

For what concerns the family Â(m), associated with the random variables defined in
(16), one has

α̂i (A) = P
N (X̂i = min

j∈A
X̂ j )

=
∑

( j1,..., jm )∈�m

N (m)( j1, . . . , jm)

n

∏

j∈A: j �=i

1{φ( j1,..., jm )(i)<φ( j1,..., jm )( j)} = ni (A)

n
.

(18)

The above identity allows us to compare the two settings of voting theory and
survival models, respectively, concerning a voting situation N (m) with m candidates
and the m discrete random variables X̂1, ..., X̂m . We can thus summarize as follows

Proposition 1 LetN (m) be a voting situation and X̂1, ..., X̂m be the random variables
defined in (16). Then

α̂i (A) = ni (A)

n
. (19)

for A ⊆ [m] and i ∈ A.

In view of the above Remark 2, we notice that two models sharing the same PJ also
give rise to the sameA(m). By combining Definitions 3 and 4 with Proposition 1, one
obtains an interesting conclusion concerning a voting situationN (m) and any random
m-tuple (X1, . . . , Xm) satisfying the relation

pm( j1, . . . , jm) = N (m)( j1, . . . , jm)

n
, ∀( j1, . . . , jm) ∈ �m (20)

More precisely, we can state the following result

Proposition 2 Let N (m) be a voting situation and let X1, . . . , Xm be no-tie, non-
negative, random variables such that the condition (20) holds. Then, for any ranking
pattern σ ∈ �(m), the following two statements are equivalent:

(a) the m-tuple (X1, . . . , Xm) is p-concordant with σ ;
(b) the voting situation N (m) is q-concordant with σ .

Even though an obvious remark, it is important to note that the condition
(20) requires that all the probabilities pm( j1, . . . , jm) are rational numbers, for
( j1, . . . , jm) ∈ �m .
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Example 1 Consider a triple of random variables X1, X2, X3 satisfying the following
conditions

p(1, 2, 3) = 1

21
, p(2, 1, 3) = 2

21
, p(3, 2, 1) = 6

21
,

p(3, 1, 2) = 4

21
, p(2, 3, 1) = 3

21
, p(1, 3, 2) = 5

21
.

By a few simple computations (see Example 2 in [6] for details) one obtains

α1([3]) = 6

21
, α2([3]) = 5

21
, α3([3]) = 10

21
;

α1({1, 2}) = 10

21
, α2({1, 2}) = 11

21
; α1({1, 3}) = 8

21
, α3({1, 3}) = 13

21
;

α2({2, 3}) = 6

21
, α3({2, 3}) = 15

21
.

(X1, X2, X3) are p-concordant with the ranking pattern σ described as follows

σ([3], 3) = 1, σ ([3], 1) = 2, σ ([3], 2) = 3.

σ ({1, 3}, 3) = 1, σ ({1, 3}, 1) = 2, σ ({2, 3}, 3) = 1, σ ({2, 3}, 2) = 2,

σ ({1, 2}, 2) = 1, σ ({1, 2}, 1) = 2.

As a direct application of Proposition 2, we can immediately realize that a voting
situation q-concordant with σ can be obtained from the above quantities p( j1, j2, j3),
by considering a population of n = 21 voters and by simply imposing the condition

N (3)( j1, j2, j3) = 21 · p( j1, j2, j3).

3 Existence of q-concordant voting situations

This section is devoted to obtaining two different results about existence of voting
situations that are q-concordant with a given ranking pattern σ . In the first result
(Theorem 1) we consider the special case where σ is a strict ranking pattern (i.e.
σ ∈ �̂(m)). Such a result, on its turn, will provide us with a basis to also prove the
existence of q-concordant voting situations in the general case when σ is a weak
ranking pattern (σ ∈ �(m)) (Theorem 2).

As first we address to Theorem 1, whose proof is obtained by combining the above
Proposition 2 with Theorem 6 in Appendix. We point out that Theorem 6 immediately
follows from Theorem 2 in De Santis and Spizzichino (2023). Since the proof of the
latter result is rather complex, we have preferred here to present an independent proof
for the qualitative, and weaker, Theorem 6.

Theorem 1 For any m ∈ N and for any σ ∈ �̂(m), there exists a voting situationN (m)

which is q-concordant with σ .
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Proof ByTheorem6 inAppendix, one can select a probabilitymodel (a survivalmodel
of the type LS(ε, σ )) that is p-concordant with σ and such that all the elements of the
set

PJ = {pm( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}

are rational. Let us now consider the numbers

N (m)( j1, . . . , jm) = npm( j1, . . . , jm), ∀( j1, . . . , jm) ∈ �m, (21)

where n ∈ N is a suitable constant such that all the N (m)( j1, . . . , jm)’s are integers.
The voting situation N (m) defined by

N (m) = {N (m)( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}.

is q-concordant with σ by Proposition 2. ��
We can now turn to considering the case of weak ranking patterns. In the next

Theorem 2 we extend Theorem 1 to the set �(m) of all ranking patterns (both strict
andweak). The proof is obtained by starting fromTheorem1 and by applying a suitable
induction procedure.

On the space of voting situations, we now consider the following operations, which
also appear in other contexts of social choice theory:

1. (Multiplication) For any � ∈ N and for any voting situationN (m) we consider the
new voting situation defined as:

� × N (m) = {� · N (m)( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}.

2. (Addition) For any � ∈ N and for any voting situation N (m) we consider the new
voting situation defined as:

� +©N (m) = {� + N (m)( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}.

3. (Internal addition) For any two voting situation N (m) and N ′(m) we consider the
new voting situation defined as:

N (m) + N ′(m) = {N (m)( j1, . . . , jm) + N ′(m)
( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}.

Such operations will in fact be useful in the formulation and in the proofs of the
next results

We notice that the total number of voters for the above voting situations are,
respectively, given by

n(� × N (m)) = � · n(N (m)); n(� +©N (m)) = (� · m!) + n(N (m));
n(N (m) + N ′(m)

) = n(N (m)) + n(N ′(m)
).
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Construction of voting situations concordant with ranking… 139

For our purposes it is also useful to recall the attention on the following simple
result.

Proposition 3 Let � ∈ N,N (m) be a voting situation and let σ ∈ �(m) be the ranking
pattern q-concordant with N (m). Then σ is also q-concordant with � × N (m) and
� +©N (m).

Proof Firstwe notice that, when A is the set of candidates, the voting situation �×N (m)

assigns � · ni (A) votes to candidate i , see (11). Thus the proportion of votes assigned
to each candidate remains the same as in the original voting situation N (m). Hence
� × N (m) and N (m) are q-concordant with the same ranking pattern σ .

We now prove that N (m) and � +©N (m) are q-concordant with the same σ ∈ �(m).
Let us consider A ⊆ [m] and two distinct elements a, b ∈ A. For any given
( j1, . . . , jm) ∈ �m let us consider the position of a and b, i.e. φ( j1,..., jm )(a) and
φ( j1,..., jm )(b). We construct a new vector (i1, . . . , im) ∈ �m by just interchanging the
position of a and b and leaving unchanged the positions of all the other components
of the vector. By (11), one has that N (m)( j1, . . . , jm) gives a positive contribution
to na(A) if and only if N (m)(i1, . . . , im) gives a positive contribution to nb(A). We
conclude the proof by observing that, under the voting situation � +©N (m), the num-
bers na(A) and nb(A) are incremented by the same amount, i.e. � multiplied by the
cardinality of the set

{( j1, . . . , jm) ∈ �m : φ( j1,..., jm )(a) ≤ φ( j1,..., jm )(i), for all i ∈ A}.
��

It is also useful to state the following result, whose proof is obvious.

Proposition 4 Let N (m) and N ′(m) be two voting situations. Then, for any A ⊆ [m]
and i ∈ A, the number of votes for i , under the voting situation N (m) + N ′(m) and
when A is the set of candidates, is equal to ni (A) + n′

i (A).

Now we proceed by proving that the result in Theorem 1 can be extended to the set
�(m) of all possible ranking patterns.

On this purpose, we associate to a ranking pattern σ ∈ �(m) the index I(σ ) to be
defined as follows.

For σ ∈ �(m), A ⊆ [m] with |A| ≥ 2 and � ∈ [|A|], consider the subset of A
defined by

S(σ , A, �) = { j ∈ A : σ(A, j) = �}
and put

r(σ , A, �) =
{ |S(σ , A, �)| − 1, if S(σ , A, �) �= ∅,

0, otherwise.

Now set

η(σ , A) =
∑

�∈[|A|]
r(σ , A, �),
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I(σ ) =
∑

A⊆[m]:|A|≥2

η(σ , A). (22)

Notice that for given σ the index η(σ , A) counts the number of ties among the
elements of A and I(σ ) counts the total number of ties among elements when all
the sets A ⊆ [m] are considered. I(σ ) can then be called index of weakness of σ .
Concerning the possible values for I(σ ), notice that I(σ ) = 0 if and only if σ ∈ �̂(m)

and I(σ ) = ∑m
�=2

(m
�

)
(� − 1) when all the candidates in A are equivalent for any

A ⊆ [m].
In view of the proof of next theorem, we partition the set �(m) as the union of the

subsets

�(m)
c = {σ ∈ �(m) : I(σ ) = c}, c = 0, 1, ...,

m∑

�=2

(
m

�

)
(� − 1).

Theorem 2 For any m ∈ N and for any σ ∈ �(m), there exists a voting situationN (m)

which is q-concordant with σ .

Proof The theorem will be proven by induction on the index c. As first step of the
induction, where �

(m)
0 = �̂(m), the validity of the claim is guaranteed by Theorem 1.

As an inductive hypothesiswe assume, for k ∈ N∪{0}, the existenceof q-concordant
voting situations for any σ ∈ �

(m)
k and we aim to prove the existence of q-concordant

voting situations for any σ ∈ �
(m)
k+1.

In what follows this task will be achieved by constructing, for any σ ∈ �
(m)
k+1,

two ranking patterns σ ′, σ ′′ ∈ �
(m)
k suitably constructed in terms of σ . We can

consider voting situations N (m)
1 , N (m)

2 , respectively, q-concordant with σ ′ and σ ′′

whose existence is guaranteed by the inductive hypothesis. Starting fromN (m)
1 ,N (m)

2
we will construct a voting situation N (m) in such a way to be q-concordant with σ .

Wenowproceedby constructingσ ′ andσ ′′ as announced above. For fixedσ ∈ �
(m)
k+1

select a set A ⊆ [m] and an � ∈ [|A|] such that S(σ , A, �) has cardinality larger or
equal than two. The existence of such a set S(σ , A, �) is guaranteed by the condition
I(σ ) = k + 1 ≥ 1. Fix j ∈ S(σ , A, �) and construct σ ′ and σ ′′ as follows. For
B ⊆ [m] with B �= A set

σ ′(B, h) = σ ′′(B, h) = σ(B, h), ∀h ∈ B.

For any h ∈ A such that σ(A, h) �= � we again require

σ ′(A, h) = σ ′′(A, h) = σ(A, h).

For any i ∈ S(σ , A, �) \ { j} we set
σ ′(A, i) = �,

and
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σ ′(A, j) = � + |S(σ , A, �)| − 1.

Similarly, for any i ∈ S(σ , A, �)\{ j}, we set

σ ′′(A, i) = � + 1,

and

σ ′′(A, j) = �.

Notice that such a construction guarantees the condition I(σ ′) = I(σ ′′) = k and, in
view of the inductive hypotheses, it is possible to find out two voting situationsN (m)

1

andN (m)
2 such thatN (m)

1 is q-concordant with σ ′ andN (m)
2 is q-concordant with σ ′′.

Denote by n′
i (A), n′′

i (A) the number of votes obtained by i ∈ A, respectively, under

N (m)
1 and N (m)

2 , when A is the set of candidates. The above construction guarantees
the conditions n′

i (A) > n′
j (A) and n′′

i (A) < n′′
j (A). In their turn, such conditions

allow us, for those i, j ∈ S(σ , A, �) with σ(A, i) = � and i �= j , to consider the
position

N (m) = (n′′
j (A) − n′′

i (A)) × N (m)
1 + (n′

i (A) − n′
j (A)) × N (m)

2 , (23)

which defines a bona-fide voting situation. It remains to prove that N (m) is
q-concordant with σ , as required.

As in the proof of Proposition 3 and by Proposition 4, the number of votes obtained
by i , under N (m), when A is the set of candidates, is given by

ni (A) = (n′′
j (A) − n′′

i (A)) · n′
i (A) + (n′

i (A) − n′
j (A)) · n′′

i (A)

= n′′
j (A)n′

i (A) − n′
j (A)n′′

i (A);

analogously

n j (A) = (n′′
j (A) − n′′

i (A)) · n′
j (A) + (n′

i (A) − n′
j (A)) · n′′

j (A)

= −n′
j (A)n′′

i (A) + n′′
j (A)n′

i (A).

Therefore all the candidates belonging to S(σ , A, �) obtain, according to N (m), the
same number of votes when the set of candidates is A.

By construction ofN (m), all the other relations of equality or inequality within pairs
of candidates, respectively, coincidewith those induced byN (m)

1 andN (m)
2 . Therefore,

by Propositions 3 and 4, N (m) is q-concordant with σ . ��
By recalling the Proposition 2 of Sect. 2, one can immediately obtain the following

consequence of the above result concerning with the notion of ranking pattern p-
concordant with a m-tuple of random variables.

Corollary 1 For any ranking pattern σ ∈ �(m), one can find a m-tuple of random
variables X1, ..., Xm such that σ is p-concordant with (X1, ..., Xm).
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In the next example we employ the method, developed in the above proof, to build
a voting situation q-concordant with a weak ranking pattern by applying suitable
operations over voting situations q-concordant with strict ranking patterns.

Example 2 Let m = 3 and consider the weak ranking pattern σ̃ defined as follows:

σ̃ ([3], i) = i, for i ∈ [3]
σ̃ ({1, 2}, 1) = 1, σ̃ ({1, 2}, 2) = 1,

σ̃ ({1, 3}, 1) = 2, σ̃ ({1, 3}, 3) = 1,

σ̃ ({2, 3}, 2) = 2, σ̃ ({2, 3}, 3) = 1.

Consider furthermore the two strict ranking pattern σ ′ and σ ′′ that coincide with σ̃

everywhere except for the following values

σ ′({1, 2}, 1) = 2, σ ′({1, 2}, 2) = 1,

and

σ ′′({1, 2}, 1) = 1, σ ′′({1, 2}, 2) = 2.

A voting situation N ′ q-concordant with σ ′ is

N ′(1, 2, 3) = 0, N ′(1, 3, 2) = 4, N ′(2, 1, 3) = 0, N ′(2, 3, 1) = 3, N ′(3, 1, 2) = 0,

N ′(3, 2, 1) = 2.

A voting situation N ′′ q-concordant with σ ′′ is

N ′′(1, 2, 3)=0, N ′′(1, 3, 2)=4, N ′′(2, 1, 3)=0, N ′′(2, 3, 1)=3, N ′′(3, 1, 2)=1,

N ′′(3, 2, 1) = 1.

A voting situation Ñ q-concordant with σ̃ can be obtained by operating over the
afore-mentioned voting situations N ′ and N ′′, according to the method developed in
the proof of Theorem 2. More precisely, we apply the formula (23) to the special case
A = {1, 2}, j = 1, i = 2. Noticing that

n′
1({1, 2}) = 4, n′

2({1, 2}) = 5, n′′
1({1, 2}) = 5, n′′

2({1, 2}) = 4,

from formula (23) one obtains

Ñ ( j1, j2, j3) = N ′( j1, j2, j3) + N ′′( j1, j2, j3), ( j1, j2, j3) ∈ �m,

whence

Ñ (1, 2, 3) = 0, Ñ (1, 3, 2) = 8, Ñ (2, 1, 3) = 0, Ñ (2, 3, 1) = 6, Ñ (3, 1, 2) = 1,

Ñ (3, 2, 1) = 3.

123



Construction of voting situations concordant with ranking… 143

4 On the number of voters for q-concordant voting situations

A classical issue in voting theory is the analysis of the number of voters required for
obtaining voting situations which may give rise to selected types of voting paradoxes
(see in particular Erdos and Moser 1964; Stearns 1959). In this section we point out
some general aspects concerning numbers n(N (m)) (as defined by (13) above) for
voting situations N (m) q-concordant with ranking patterns. Still in this analysis, it is
convenient to separate between the two cases of strict or general ranking patterns. The
latter case will be considered first and a related result will be based on Theorem 2.
Later on we turn to considering the case of strict ranking patterns, where one can rely
on Theorem 2 of De Santis and Spizzichino (2023) (see also the Appendix). As it may
be expected, more precise and stronger results will be obtained in such a case. In order
to formulate our results we need the following notation. Let m ∈ N be fixed. In other
words, we fix the set [m] of possible candidates and define the sets 
m and 
̂m as
follows.


m = {θ ∈ N : ∀σ ∈ �(m) ∃N (m) q-concordant with σ with n(N (m)) = θ},
(24)

analogously


̂m = {θ ∈ N : ∀σ ∈ �̂(m) ∃N (m) q-concordant with σ with n(N (m)) = θ}.
(25)

Let σ ∈ �(m) be an arbitrary ranking pattern and assume the presence of θ voters,
with θ belonging to 
m . It is assured, in this case, that the different linear preference
rankings (i.e. the different elements of�m) can be distributed in such a way to produce
a voting situation q-concordant with σ . One can then wonder if such an integer θ can
really exist. We are going to check that 
m is a non-empty set, containing infinite
elements. It is furthermore obvious from the above definition that 
m ⊆ 
̂m .

Theorem 3 For any m ∈ N the following claims hold

(i) 
m is non-empty;
(ii) any θ ∈ 
m is a multiple of lcm{2, . . . ,m};
(iii) if θ ∈ 
m then (θ + m!) ∈ 
m.

Proof We start by proving (i). By Theorem 2, for σ ∈ �(m) one can select a voting
situation N (m)

σ q-concordant with σ and, by recalling the position (13), set nσ :=
n

(
N (m)

σ

)
. Set furthermore

a(m) := lcm{nσ ∈ N : σ ∈ �(m)}.

By Proposition 3, the voting situation a(m)
nσ

× N (m)
σ is q-concordant with σ as well.

Moreover,

n

(
a(m)

nσ
× N (m)

σ

)
= a(m)

nσ
· n

(
N (m)

σ

)
= a(m).

Thus a(m) ∈ 
m and 
m is non-empty.
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Proof of (ii). Let A ⊆ [m] with |A| = k ∈ {2, . . . ,m} and consider the special
ranking pattern σ̂ ∈ �(m) such that σ̂ (A, i) = 1 for any i ∈ A. Therefore, for any
voting situation N (m)

σ̂
q-concordant with σ̂ , the integer nσ̂ should be a multiple of k.

Thus all the elements of 
m are multiples of lcm{2, . . . ,m}.
Proof of (iii). In view of (i) we can fix θ ∈ 
m . For σ ∈ �(m), letN (m)

σ be a voting
situation q-concordant with σ and such that nσ = θ . By Proposition 3, 1 +©N (m)

σ

is q-concordant with σ , as well. The proof can thus be concluded by noticing that
n(1 +©N (m)

σ ) = m! + n(N (m)
σ ) = m! + θ . ��

As a consequence of items (i) and (iii) of Theorem 3 it is seen that, for whatever
m ∈ N, the set 
m contains infinite natural numbers.

We now turn to specifically consider the set 
̂m . As next Theorem 4 shows, it is
possible in this case to explicitly determine an element θ̄m ∈ 
̂m and, furthermore,
to check that all the integers large enough are eventually contained in 
̂m . On this
purpose it is necessary, once again, to rely on Theorem 2 of De Santis and Spizzichino
(2023) and on the arguments contained in Appendix. Set

θ̄m :=
m∏

h=2

[h · zh−1
m − h(h − 1)

2
], (26)

where

zm := 17 · m · m!. (27)

We notice that the integer zm is such that, for the quantities ε(2), ..., ε(m) introduced
in (46) of Appendix one has ε(h) = z−h+1

m .

Theorem 4 For any m ∈ N one has

(i) the integer θ̄m belongs to 
̂m;
(ii) each integer θ ≥ θ̄m · m! belongs to 
̂m.

Proof ByTheorem2ofDeSantis andSpizzichino (2023) andCorollary 2 inAppendix,
for a given σ ∈ �̂(m) the LS(ε, σ ) model with

ε =
(
0, z−1

m , z−2
m , . . . , z−m+1

m

)

is p-concordant with σ . By (41), (44) and (48), we can write an explicit formula for the
probabilities pm( j1, . . . , jm)’s related to such a model. For any ( j1, . . . , jm) ∈ �m ,

pm( j1, . . . , jm) = 1 − (σ ([m], j1) − 1)z1−m
m

M̂0
· 1 − (σ ([m] \ { j1}, j2) − 1)z2−m

m

M̂1

·1−(σ ([m] \ { j1, j2}, j3)−1)z3−m
m

M̂2
· · ·

1−(σ ([m] \ { j1, j2, . . . , jm−2}, jm−1)−1)z−1
m

M̂m−2
. (28)
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By (48), the k-th term of the previous product is

1 − (σ ([m] \ { j1, . . . , jk−1}, jk) − 1)zk−m
m

M̂k−1

= 1 − (σ ([m] \ { j1, . . . , jk−1}, jk) − 1)zk−m
m

m + 1 − k + (m+1−k)(m−k)
2 zk−m

m

= zm−k
m − σ([m] \ { j1, . . . , jk−1}, jk) + 1

zm−k
m (m + 1 − k) + (m+1−k)(m−k)

2

. (29)

The numerator and denominator of (29) are integers. Thus, multiplying by the
denominator

(
zm−k
m (m + 1 − k) + (m + 1 − k)(m − k)

2

)
(30)

the ratio (29), one obtains an integer number. Noticing that

m−1∏

k=1

(
zm−k
m (m + 1 − k) + (m + 1 − k)(m − k)

2

)
=

m∏

h=2

[
hzh−1

m − h(h − 1)

2

]
,

the Eq. (28) yields for ( j1, . . . , jm) ∈ �m

pm( j1, . . . , jm) ·
m∏

h=2

[
hzh−1

m − h(h − 1)

2

]
= pm( j1, . . . , jm) · θ̄m ∈ N. (31)

The integer θ̄m := ∏m
h=2[hzh−1

m − h(h−1)
2 ] does not depend on σ , hence θ̄m ∈ 
̂m , by

Proposition 2.
We now prove (ii). Let us label by j1, j2, . . . , jm! the elements in �m . For a given

σ ∈ �̂(m) we consider the voting situationsN (m)

σ ,θ̄m
q-concordant with σ and such that

n(N (m)

σ ,θ̄m
) = θ̄m . For c ∈ Nwe now consider the voting situationN (m)

σ ,c·θ̄m = c×N (m)

σ ,θ̄m
.

Thus the following condition

∀A ⊆ [m], with i, j ∈ A and i �= j then |ni (A) − n j (A)| ≥ c (32)

is satisfied when the quantities ni (A) and n j (A) are those related to N (m)

σ ,c·θ̄m . For
θ > θ̄m · m! we will construct a voting situation

N (m)
σ ,θ =

{
N (m)

σ ,θ (ji ) : i ∈ [m!]
}

q-concordant with σ and such that n(N (m)
σ ,θ ) = θ . Let
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N (m)
σ ,θ (ji ) = m! · N (m)

σ ,θ̄m
(ji ) +

⌊
θ

m!
⌋

− θ̄m + χi , (33)

where

χi =
{
1, if [θ mod (m!)] − i ≥ 0,
0, otherwise.

Let us check that n(N (m)
σ ,θ ) = θ :

n(N (m)
σ ,θ ) =

m!∑

i=1

N (m)
σ ,θ (ji ) =

m!∑

i=1

[
m! · N (m)

σ ,θ̄m
(ji ) +

⌊
θ

m!
⌋

− θ̄m + χi

]

= m! · n(N (m)

σ ,θ̄m
) +

⌊
θ

m!
⌋

· m! − θ̄m · m! +
m!∑

i=1

χi

= m! · θ̄m +
⌊

θ

m!
⌋

· m! − θ̄m · m! + [θ mod (m!)] = θ.

Now fix θ as a multiple of m! and such that θ ≥ θ̄m · m!. In such a case the voting
situation N (m)

σ ,θ (defined by (33)) coincides with

(
θ

m! − θ̄m

)
+©

[
(m!) × N (m)

σ ,θ̄m

]
.

Thus, by Proposition 3, N (m)
σ ,θ is q-concordant with σ as well.

We now consider a θ ′ > θ̄m · m! which is not a multiple of m!. We consider

θ =
⌊

θ ′

m!
⌋
m!

The condition (32), with c = m!, is satisfied with ni (A) and n j (A) that are quantities

related to N (m)
σ ,θ . In order to conclude the proof it is enough to notice that, being

∑m!
i=1 χi ≤ m! − 1, all the inequalities between ni (A) and n j (A) are maintained for

the voting situation N (m)

σ ,θ ′ . ��

For a strict ranking pattern σ ∈ �̂(m) not only we know that voting situations exist
which are q-concordant and are based on θ̄m voters, as guaranteed by the preceding
result, but we can also produce explicitly one of such voting situations by letting

N (m)( j1, . . . , jm) :=
[
zm−1
m − σ([m], j1) + 1

]
×

[
zm−2
m − σ([m] \ { j1}, j2) + 1

]

×
[
zm−3
m − σ([m] \ { j1, j2}, j3) + 1

]

× · · · × [
zm−σ([m] \ { j1, j2, . . . , jm−2}, jm−1)+1

]
. (34)
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As a matter of fact, the next result will be proven by just rephrasing arguments
contained in the proof of Theorem 4.

Theorem 5 For any integer m ≥ 2, for any σ ∈ �̂(m), the voting situation N (m)

σ ,θ̄
:=

{N (m)( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m} with N (m)( j1, . . . , jm) defined by (34) is
q-concordant with σ and n(N (m)

σ ,θ̄m
) = θ̄m.

Proof For any ( j1, . . . , jm) ∈ �m the quantity N (m)( j1, . . . , jm) in (34) coincides
with the product pm( j1, . . . , jm) · θ̄m in (31). By Theorem 7 in the Appendix and by
(47)we know that themodel LS(ε, σ ) is p-concordantwithσ . By applyingProposition
2we obtain thatN (m)

σ ,θ̄m
is q-concordant with σ . The claim n(N (m)

σ ,θ̄m
) = θ̄m immediately

follows by (31). ��
The above result then suggests a procedure, for constructing a q-concordant voting

situation starting from a strict ranking pattern. Such a procedure will be applied in the
next example. For the resulting voting situation, the corresponding number of voters is
typically very large. One can however carry out some procedure to pass to a different q-
concordant voting situation, in which the number of voters can be drastically reduced.
On this purpose the operations on the voting situations, as defined in Sect. 3, can be
conveniently used.

Example 3 For m = 3 consider the strict ranking pattern σ defined as follows:

σ([3], 1) = 1, σ ([3], 2) = 2, σ ([3], 3) = 3,

σ ({1, 2}, 1) = 2, σ ({1, 2}, 2) = 1,

σ ({1, 3}, 1) = 2, σ ({1, 3}, 3) = 1,

σ ({2, 3}, 2) = 2, σ ({2, 3}, 3) = 1.

Starting from above result and from the operations defined in Sect. 3, one can single
out the following voting situation with n = 43 voters:

N (1, 2, 3) = 2, N (1, 3, 2) = 15, N (2, 1, 3) = 1,

N (2, 3, 1) = 13, N (3, 1, 2) = 0, N (3, 2, 1) = 12.

5 Discussion and concluding remarks

In this paper we have considered a standard context of voting theory based on a family
of possible electionswith afixed set of voters and afixed set of potential candidates. The
different elections are, respectively, characterized by different subsets of participating
candidates and, looking at the differences among their respective outcomes, attention
has been focused on the concept of voting situation q-concordant with a ranking
pattern. For such voting situations we have obtained results concerning with the issues
of existence and construction and with cardinalities of the related voters’ populations.
Such results aim to show that it is possible to observe any arbitrary set of elections’
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outcomes and they thus lead to conclusions in the same direction of classical results
by Saari (see e.g. Saari 1989).

For our developments we have used results based on the concept of ranking pattern
p-concordant with probability models for non-negative random variables and on a
special class of load-sharingmodels, as presented inDe Santis and Spizzichino (2023).

In our analysis we have distinguished between the two cases of weak or strict
ranking patterns, aiming to highlight the differences between the two cases. Obviously,
the cardinality |�̂(m)| of the set of all the strict ranking patterns is smaller than |�(m)|.
In particular we point out the following relations:

m∏

h=2

(h!)(mh) = |�̂(m)| < |�(m)| <

m∏

h=2

hh(
m
h).

where the last inequality can be explained by noticing that the term
(m
h

)
denotes the

number of subsets of [m] with cardinality h and hh is the total number of functions
σ(A, ·) : A → {1, 2, . . . , |A|}, which are not necessarily ranking functions.

Constructive and quantitative results have been given in a closed form in the case of
strict ranking patterns, whereas the results for the weak case are not in a closed form.

In this respect, however, a main implication of our work is shown in the above
Corollary 1 and concerns with the existence of probability models p-concordant with
weak ranking patterns. In fact, the passage to the setting of voting theory allows us
to extend an existence result, given in De Santis and Spizzichino (2023), from the
strict case to the weak case. More in details this issue will be discussed in the next
Remark 3. Such an extension may have interesting applications also to the analysis of
paradoxes arising in different fields of probability such as the context of intransitive
dice, the classic games based on the occurrence of competing events in a sequence of
trials, times of first occurrence for different words in random sampling of letters from
an alphabet (see e.g. De Santis 2021; De Santis and Spizzichino 2012; Guibas and
Odlyzko 1981).

Remark 3 For given m ≥ 2, let σ ∈ �(m) be a given weak ranking pattern. By
means of Theorems 1 and 2, existence has been proven for a voting situationN (m)

σ ≡
{N (m)

σ ( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m} q-concordant with σ . In view of Proposition
2,we know that a probabilitymodel p-concordantwithσ is one satisfying the condition
(20).

The existence of a load-sharing model satisfying such a condition, on the other
hand, is guaranteed by Theorem 1 in the previous article (De Santis and Spizzichino
2023). We can thus conclude that, for any σ ∈ �(m), there exists a (order dependent)
load-sharing model p-concordant with σ .

Such a conclusion then fills a gap, present in De Santis and Spizzichino (2023),
where the existence of a survival model p-concordant with σ was only guaranteed for
the case of a strict ranking pattern.

A few examples, which illustrate other aspects of our results have been presented in
the previous sections.More precisely, Example 1 presents an application of Proposition
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2 and illustrates how the latter establishes a bridge between the two notions of p-
concordance and q-concordance. We remind that p-concordance refers to m-tuples of
lifetimes, whereas q-concordance refers to voting situations.

The method developed in the proof of Theorem 2 has been employed in Example
2 to build a voting situation q-concordant with a weak ranking pattern by applying
suitable operations over voting situations q-concordant with strict ranking patterns.

In Example 3 a strict ranking pattern σ is considered and Theorem 5 is applied for
constructing a q-concordant voting situation.

In the following example we construct a q-concordant voting situation in corre-
spondence with anyweak ranking patternmanifesting a very special set of equivalence
relations.

Example 4 Here we consider the class of the weak ranking patterns σ such that, for
any A ⊆ [m] with |A| ≥ 3,

σ(A, i) = 1, ∀i ∈ A

and, for the rest, presenting arbitrary behavior on the subsets A with |A| = 2.
In other words, this class of ranking patterns gives rise to an extreme case where

arbitrary outcomes are admitted as far as elections with exactly two candidates are
considered, whereas all the candidates are perfectly equivalent in all the elections with
more than two candidates. For any such σ we aim to determine a q-concordant voting
situation. Notice that the solution of this problem might be seen as a reinforcement
of the classical result by McGarvey (1953). A simple solution is given by the voting
situation

N (m) = {N ( j1, . . . , jm) : ( j1, . . . , jm) ∈ �m}

with

N ( j1, . . . , jm−1, jm)=
⎧
⎨

⎩

2, if σ({ jm−1, jm}, jm−1)=1 and σ({ jm−1, jm}, jm)=2;
1, if σ({ jm−1, jm}, jm−1) = σ({ jm−1, jm}, jm) = 1;
0, if σ({ jm−1, jm}, jm−1)=2 and σ({ jm−1, jm}, jm)=1.

(35)

Notice that the total number of voters here is n(N (m)) = m!. In particular, by taking
m = 4 and

σ({1, 2}, 1) = 1, σ ({1, 2}, 2) = 2, σ ({3, 4}, 3) = 1, σ ({3, 4}, 4) = 2,

σ ({1, 3}, 1) = 1, σ ({1, 3}, 3) = 1, σ ({2, 4}, 2) = 1, σ ({2, 4}, 4) = 1,

σ ({1, 4}, 4) = 1, σ ({1, 4}, 1) = 2, σ ({2, 3}, 2) = 1, σ ({2, 3}, 3) = 2,

we obtain a q-concordant voting situation N (4) such that n(N (4)) = 24 and

N (1, 2, 3, 4) = N (2, 3, 4, 1) = N (3, 2, 4, 1) = N (3, 4, 1, 2) = N (2, 1, 3, 4)

= N (4, 1, 2, 3) = N (1, 4, 2, 3) = N (4, 3, 1, 2) = 2;
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N (1, 3, 2, 4) = N (1, 3, 4, 2) = N (3, 1, 2, 4) = N (3, 1, 4, 2)

= N (2, 4, 1, 3) = N (2, 4, 3, 1) = N (4, 2, 1, 3) = N (4, 2, 3, 1) = 1;
N (1, 2, 4, 3) = N (2, 3, 1, 4) = N (3, 2, 1, 4) = N (2, 1, 4, 3)

= N (1, 4, 3, 2) = N (4, 1, 3, 2) = N (3, 4, 2, 1) = N (4, 3, 2, 1) = 0.
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Appendix

In this Appendix we consider random variables X1, . . . , Xm that admit an absolutely
continuous joint probability distribution. Such a joint distribution can be also described
in terms of the family of theMultivariate ConditionalHazardRate (m.c.h.r.) functions,
defined as follows: for 1 ≤ k < m, i1 �= i2 �= ... �= ik ∈ [m] , 0 ≤ t1 < t2 < ... <

tk ≤ t ,

λ j (t |i1, . . . , ik; t1, . . . , tk)
: = lim

�t→0+
1

�t
P(X j ≤ t+�t |Xi1=t1, . . . , Xik=tk, Xk+1:m > t). (36)

λ j (t |∅) := lim
�t→0+

1

�t
P(X j ≤ t + �t |X1:m > t). (37)

For definitions and properties of m.c.h.r. functions see in particular (Shaked and
Shanthikumar 1994), the review paper (Shaked and Shanthikumar 2015) and, e.g.,
(Spizzichino 2019) and other references cited therein.

As pointed out in De Santis et al. (2021) and De Santis and Spizzichino (2023), the
system of the m.c.h.r. functions is convenient to analyze some aspects of the quantities
α j (A) defined in (4).

We focus on the special cases when them-tuple (X1, . . . , Xm) is distributed accord-
ing to a order dependent load-sharing model, i.e. when, for k ∈ [m − 1], for distinct
i1, . . . , ik, j ∈ [m] and for an ordered sequence 0 < t1 < · · · < tk < t, one has

λ j (t |i1, . . . , ik; t1, . . . , tk) = μ j (i1, . . . , ik), λ j (t |∅) = μ j (∅), (38)

123

http://creativecommons.org/licenses/by/4.0/


Construction of voting situations concordant with ranking… 151

where μ j (i1, . . . , ik) and μ j (∅) are non-negative quantities.
It is in particular interesting the case when the functions μ j (i1, . . . , ik) do not

depend on the order of the components of the vector (i1, . . . , ik). Such a case has been
designated by the term non-order dependent load sharing and, with a minor abuse of
notation, sometime we write μ j (I ), with I = {i1, . . . , im}, in place of μ j (i1, . . . , ik).

For a fixed family M of parameters μ j (∅) and μ j (i1, . . . , ik) as in (38), for k ∈
[m − 1] and for i1 �= . . . �= ik , set

M(i1, . . . , ik) : =
∑

j∈[m]\{i1,...,ik }
μ j (i1, . . . , ik) and M(∅)=

∑

j∈[m]
μ j (∅). (39)

As a relevant property of the corresponding load sharing model, one has P(J1 =
j) = μ j (∅)

M(∅)
and

P(Jk+1 = j |J1 = i1, J2 = i2, . . . , Jk = ik) = μ j (i1, . . . , ik)

M(i1, . . . , ik)
. (40)

(see alsoSpizzichino2019;DeSantis et al. 2021).Concerningwith the joint probability
distribution of J ≡ (J1, ..., Jm) one immediately obtains the following consequence,
for h = 2, ...,m:

P(J1=i1, J2=i2, . . . , Jh=ih)=μi1(∅)

M(∅)

μi2(i1)

M(i1)

μi3(i1, i2)

M(i1, i2)
. . .

μik (i1, i2, . . . ih−1)

M(i1, i2, . . . ih−1)
.

(41)

See also Spizzichino (2019). Now we need to introduce the following notation.
For B ⊂ [m] and k = 1, . . . ,m − |B| let us define

D(B, k) := {(i1, . . . , ik) : i1, . . . , ik /∈ B and i1 �= i2 �= . . . �= ik}. (42)

When k = m − |B|, D(B, k) is then the set of all the permutations of the elements of
Bc. In particular the set D(∅,m) becomes �m .

Concerning with the probabilities α j (A) in the case of a load-sharing models, the
following equation is readily obtained by combining relation (41) with Proposition 1
in De Santis and Spizzichino (2023):

α j (A) = P(X j = min
i∈A

Xi ) = μ j (∅)

M(∅)

+
m−�∑

k=1

∑

(i1,...,ik )∈D(A,k)

μi1(∅)

M(∅)

μi2(i1)

M(i1)
. . .

μik (i1, i2, . . . ik−1)

M(i1, i2, . . . ik−1)

μ j (i1, i2, . . . ik)

M(i1, i2, . . . ik)
.

(43)

Let now σ ∈ �̂(m) be an assigned strict ranking pattern and let ε(2), ..., ε(m) be
positive quantities such that (σ (A, i) − 1)ε(|A|) < 1 for all A ⊆ [m] and i ∈ A.
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Starting from σ , in De Santis and Spizzichino (2023) a special class of load-sharing
models has been defined by imposing parameters of the following form

μi ([m] \ A)=1−(σ (A, i)−1)ε(|A|), A ⊆ [m] , with |A| ≥ 2, i ∈ A. (44)

For A = {i} we finally set μi ([m] \ A) = 1 and ε(1) = 0. The load-sharing model
corresponding to such a choice of parameters is designated by the symbol LS (ε, σ ).

The interest in such a special class is justified by the following existence result.

Theorem 6 For m ∈ N, let σ ∈ �̂(m) be a ranking pattern. Then there exist constants
ε(2), ..., ε(m) such that a m-tuple (X1, . . . , Xm) distributed according to the model
LS (ε, σ ), where ε = (0, ε(2), ..., ε(m)), has the following two properties:

(1) it is p-concordant with σ

(2) all the probabilities pm( j1, . . . , jm) are rational numbers, for ( j1, . . . , jm) ∈ �m.

As a matter of fact, the above claim may be obtained as a consequence of the
following quantitative result proven inDeSantis andSpizzichino (2023).However also
a qualitative and autonomous proof will be provided in order to show the possibility
of wider choices for ε = (0, ε(2), ..., ε(m)) (see below). Such a proof also points out
the conceptual reasons way solutions can be found within the class of models of type
LS (ε, σ ).

Theorem 7 For any σ ∈ �̂ and any ε = (0, ε(2), . . . , ε(m)) such that, for � =
2, ...,m − 1,

(m − �)!(� − 1)!
2 · m! ε(�) > 8�ε(� + 1) (45)

the model LS(ε, σ ) is p-concordant with σ .

The inequalities in (45) can be in particular obtained by letting, for h = 2, ...,m,

ε(h) = (17 · m · m!)−h+1. (46)

For a given σ ∈ �̂(m), by Theorem 7 and (46) one can thus concludewith the following

Corollary 2 An m-tuple (X1, . . . , Xm) distributed according to a LS(ε, σ ) load-
sharing model with parameters of the form

μ j ([m] \ A) = 1 − σ(A, j) − 1

(17 · m · m!)|A|−1 , j ∈ A. (47)

is p-concordant with σ .

Notice the following implication of the above formula (43) for a load sharing
model described by the family M ≡{μ j (I ) : I ⊂ [m] , j /∈ I }: for given A ⊆ [m],
the probabilities {α j (A) : j ∈ A} only depend on {μ j (I ) : I ⊆ Ac, j /∈ I }.
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Remark 4 Specifically concerning with the case of a LS (ε, σ ) model, we can realize
that, for given B ⊆ [m] with |B| = n ≤ m and j ∈ B, the probability α j (B) only
depends on ε(n), ε(n + 1)..., ε(m) and on the functions σ(D, ·) for D ⊆ [m] with
D ⊇ B.

Notice furthermore that, for an arbitrary choice of ε, σ , the LS (ε, σ ) model has
the set of numbers μ j ([m] \ A) (for j ∈ A) that only depends on the cardinality of A.
Thus, by (39) and (44), one has

M̂m−h=M(i1, . . . , im−h)=
h∑

u=1

[1−(u−1)ε(h)]=h−h(h−1)

2
ε(h), (48)

for h ∈ [m] and for any (i1, . . . , im−h) ∈ D(∅,m − h). The formulas (44), (47) and
(48) give rise to a specially convenient form for the probability in (41).

We are now in a position to present the proof of Theorem 6.

Proof Let us fix the given ranking pattern

σ = (σ (A, ·) : A ⊆ [m]) ∈ �̂(m).

In what follows we will inductively identify, for n = 2, . . . ,m, a sequence of vectors
ε(n) ≡ (

ε(n)(�))�=2,...,m
)
and we will consider the load-sharing models LS

(
ε(n), σ

)

with parameters μ
(n)
j (B) determined by (44) through σ and the vectors of coefficients

ε(n). In correspondence with LS
(
ε(n), σ

)
, denote furthermore by α

(n)
i (A) (i ∈ A))

the related quantities as defined in (4).
Along the construction of ε(n) ≡ (

ε(n)(�))�=2,...,m
)
, n = 2, ...,m − 1, we will in

particular impose the conditions

ε(n)(n + 1) = · · · = ε(n)(m) = 0 (49)

and notice that, in view of the formula (43) and Remark 4, they imply that

α
(n)
i (A) = 1

|A| (50)

for any A ⊆ [m] with |A| > n.
For n = 2, . . . ,m consider now the sequence of claims H(n) defined as follows.

H(n) : By maintaining the condition (49) it is possible to find positive quantities

ε(n)(2), . . . , ε(n)(m) such that

σ(A, i) < σ(A, j) ⇒ α
(n)
i (A) > α

(n)
j (A), (51)
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for any A with |A| ≤ n. Notice that H(m) coincides with the thesis of the theorem.

σ(A, i) < σ(A, j) ⇒ αi (A) > α j (A), (52)

for any A ⊆ [m].
The claims H(n) (n = 2, . . . ,m) will now be proven by induction on n. This

procedurewill then lead us to obtain the claimH(m), namely the thesis of theTheorem.
In the first induction step n = 2 we consider the ranking functions σ(A, ·) with

A ⊆ [m] and |A| = 2.
Initially, we set ε(2)(2) = 1

2 and ε(2)(�) = 0 for any � ≥ 3.
In this way, still by formula (43) and Eq. (44), one has that for A = {i, j}, with

i �= j , the implication

σ(A, i) < σ(A, j) ⇒ α
(2)
i (A) > α

(2)
j (A),

is satisfied.
This claim immediately follows from the circumstance that ε(2)(3) = · · · =

ε(2)(m) = 0 implies that all the terms, appearing in the summation in (43) are equal
each other, excepting

μ
(2)
i1

(∅)

M (2)(∅)

μ
(2)
i2

(i1)

M (2)(i1)
. . .

μ
(2)
ik

(i1, i2, . . . im−3)

M (2)(i1, i2, . . . im−3)

μ
(2)
i (i1, i2, . . . im−2)

M (2)(i1, i2, . . . im−2)

�= μ
(2)
i1

(∅)

M (2)(∅)

μ
(2)
i2

(i1)

M (2)(i1)
. . .

μ
(2)
ik

(i1, i2, . . . im−3)

M (2)(i1, i2, . . . im−3)

μ
(2)
j (i1, i2, . . . im−2)

M (2)(i1, i2, . . . im−2)
.

We notice that the previous inequalities α
(2)
i (A) > α

(2)
j (A) are strict.

Let us now pass, on the other hand, to considering a set A ⊆ [m] with |A| > 2. By
(43) and Eq. (44) one has

α
(2)
i (A) = 1

|A| ,

regardless of the index i ∈ A.
We now proceed inductively. For given n < m we maintain (49) and assume the

induction hypothesisH(n), guaranteeing the existence of ε(n)(2), ε(n)(3), . . . , ε(n)(n)

such that the implication

σ(A, i) < σ(A, j) ⇒ α
(n)
i (A) > α

(n)
j (A) (53)

holds true for any A with |A| ≤ n. By Remark 4 and due to (49), we again obtain that
for any A ⊆ [m] with |A| > n

α
(n)
i (A) = 1

|A| , (54)
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regardless of the index i ∈ A.
We nowwant to show that also the claimH(n+1) holds. On this purpose, recalling

the condition ε(n+1)(n + 2) = · · · = ε(n+1)(m) = 0, we set

ε(n+1)(�) = ε(n)(�), for � = 2, . . . , n.

It remains to conveniently choose the positive value ε(n+1)(n + 1) in order to get

σ(A, i) < σ(A, j) ⇒ α
(n+1)
i (A) > α

(n+1)
j (A), (55)

for any A with |A| ≤ n + 1.
The existence of such a value ε(n+1)(n + 1) > 0 will follow from the inductive

hypothesis H(n) and from the fact the probabilities (α
(n+1)
i (A)) are continuous with

respect to the collection of the intensities (μ
(n+1)
i (·)) and therefore they are also

continuous with respect to the collection of the coefficients ε(n+1)(�) (� = 2, ...,m).
Thus, by continuity, the validity of (55) ismaintained for any Awith |A| ≤ n, provided
that ε(n+1)(n + 1) > 0 is sufficiently small.

Notice that the assumption that all the inequalities in (53) are strict is unavoidable
here.

Let us now consider the sets A with cardinality |A| = n + 1. Having selected such
a value ε(n+1)(n + 1) > 0, by (43), we obtain

α
(n+1)
i (A) = 1

m
+

m−n−2∑

k=1

m − n − 1

m

m − n − 2

m − 1
. . .

m − n − k

m − k + 1

1

m − k

+m − n − 1

m

m − n − 2

m − 1
. . .

1

n + 2

1 − (σ (A, i) − 1)ε(n+1)(n + 1)[
� − n(n + 1)ε(n+1)(n + 1)

] .

(56)

This formula shows that if σ(A, i) > σ(A, j) then αi (A) < α j (A). Thus (55) is
satisfied also for A with |A| = n + 1 and the thesis is proven by induction.

The quantities ε(2), . . . , ε(m), appearing in the above construction, are only
required to be sufficiently small. More precisely, ε(n) is only required to belong to
a suitable right neighbourhood of zero. Such a neighbourhood will possibly depend
on ε(2), . . . , ε(n − 1). Therefore one can select ε(2), . . . , ε(m) ∈ Q+. With such a
choice also the quantities μi ([m] \ A), defined in (44), turn out to be rational, for
any A ⊆ [m] and i ∈ A. Finally, by (41), one obtains that all the elements of PJ are
rational as well. ��

References

Alon, N.: Voting paradoxes and digraphs realizations. Adv. Appl. Math. 29(1), 126–135 (2002)
De Santis, E.: Ranking graphs through hitting times of Markov chains. Random Struct. Algorithms 59,

189–203 (2021)

123



156 E. De Santis, F. Spizzichino

De Santis, E., Spizzichino, F.: First occurrence of a word among the elements of a finite dictionary in random
sequences of letters. Electron. J. Probab. 17(25), 9 (2012)

De Santis, E., Spizzichino, F.: Construction of aggregation paradoxes through load-sharing models. Adv.
Appl. Probab. 55(1), 223–244 (2023)

De Santis, E., Malinovsky, Y., Spizzichino, F.: Stochastic precedence and minima among dependent
variables. Methodol. Comput. Appl. Probab. 23, 187–205 (2021)

Erdos, P., Moser, L.: On the representation of directed graphs as unions of orderings. Magyar Tud. Akad.
Mat. Kutató Int. Közl. 9, 125–132 (1964)

Fishburn, P.C.: Inverted orders for monotone scoring rules. Discrete Appl. Math. 3(1), 27–36 (1981)
Gehrlein, W.V., Lepelley, D.: Elections, Voting Rules and Paradoxical Outcomes. Studies in Choice and

Welfare. Springer, Cham (2017)
Guibas, L.J., Odlyzko, A.M.: String overlaps, pattern matching, and nontransitive games. J. Comb. Theory

Ser. A 30(2), 183–208 (1981)
Hazla, J., Mossel, E., Ross, N., Zheng, G.: The probability of intransitivity in dice and close elections.

Probab. Theory Relat. Fields 178, 951–1009 (2020)
Kalai, G.: Social indeterminacy. Econometrica 72(5), 1565–1581 (2004)
Klamler, C.: Borda and Condorcet: some distance results. Theory Decis. 59, 97–109 (2005)
Mala, J.: On λ-majority voting paradoxes. Math. Soc. Sci. 37(1), 39–44 (1999)
McGarvey, D.C.: A theorem on the construction of voting paradoxes. Econometrica 21, 608–610 (1953)
Montes, I., Rademaker,M., Perez-Fernandez,R.,DeBaets,B.:A correspondence betweenvoting procedures

and stochastic orderings. Eur. J. Oper. Res. 285, 977–987 (2020)
Nurmi, H.: Voting Paradoxes and How to Deal with Them. Springer, Berlin (1999)
Perez-Fernandez, R., De Baets, B.: The superdominance relation, the positional winner, and more missing

links between Borda and Condorcet. J. Theor. Politics 31, 46–65 (2019)
Saari, D.G.: A dictionary for voting paradoxes. J. Econ. Theory 48(2), 443–475 (1989)
Saari, D.G.: A chaotic exploration of aggregation paradoxes. SIAM Rev. 37(1), 37–52 (1995)
Saari, D.G.: Discovering aggregation properties via voting. In: Batchelder, W.H., Colonius, H., Dzhafarov,

E.N. (eds.) New Handbook of Mathematical Psychology, vol. 2, pp. 271–321. Cambridge University
Press, Cambridge (2018a)

Saari, D.G.: Mathematics Motivated by the Social and Behavioral Sciences. SIAM, Philadelphia (2018b)
Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications. Probability and Mathematical

Statistics. Academic Press, Inc., Boston (1994)
Shaked, M., Shanthikumar, J.G.: Multivariate conditional hazard rate functions: an overview. Appl. Stoch.

Models Bus. Ind. 31(3), 285–296 (2015)
Spizzichino, F.: Reliability, signature, and relative quality functions of systems under time-homogeneous

load-sharing models. Appl. Stoch. Models Bus. Ind. 35(2), 158–176 (2019)
Stearns, R.: The voting problem. Am. Math. Mon. 66, 761–763 (1959)
Van Newenhizen, J.: The Borda method is most likely to respect the Condorcet principle. Econ. Theory 2,

69–83 (1992)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Construction of voting situations concordant with ranking patterns
	Abstract
	1 Introduction
	2 Notation, definitions, and preliminary results
	3 Existence of q-concordant voting situations
	4 On the number of voters for q-concordant voting situations
	5 Discussion and concluding remarks
	Acknowledgements
	Appendix
	References




