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Abstract
This paper draws a parallel between the economic and financial points of view in
the modeling of long-term yield curves and provides new results on asymptotic long
rates. The Ramsey rule, which is the reference equation in the economic literature
to compute long-term discount rates, links endogenous discount rate and marginal
utility of aggregate optimal consumption at equilibrium. This paper proposes a unified
framework and a financial interpretation of the economic discount rate given by the
Ramsey rule, usingmarginal utility indifference prices for non-replicable zero-coupon
bonds. Optimal discounted pricing kernel is at the core of this unifying approach and is
determined through an optimization program that can be posed backward or forward.
The dynamics and the long-term behavior of the marginal utility yield curve is studied
in both settings. Special attention is paid to its dependency on the initial wealth of the
economy, as well as on the time-horizon in the backward setting, extending previous
results in the literature.

Keywords Ramsey rule · Yields curves · Long-run rates · Marginal indifference
pricing · Market-consistent progressive utility of investment and consumption ·
Forward/backward portfolio optimization

JEL Classification C54 · C61 · D52 · E43 · G12

With the financial support of the "Chaire Risque Financier" of the "Fondation du Risque", the Labex
MME-DII and the Labex ECODEC. This article is present on a university repository website and can be
accessed on https://arxiv.org/abs/1404.1895 and https://hal.archives-ouvertes.fr/hal-01458419/document.
This article is not published nor is under publication elsewhere.

B Caroline Hillairet
caroline.hillairet@ensae.fr

1 LPSM, UMR CNRS 6632, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France

2 CREST, UMR CNRS 9194, Ensae Paris, 5 Avenue Henry Le Chatelier, 91120 Palaiseau, France

3 LAGA, UMR CNRS 7539, Université Paris 13, 99 Avenue Jean Baptiste Clément, 93430
Villetaneuse, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10203-022-00370-1&domain=pdf
https://arxiv.org/abs/1404.1895
https://hal.archives-ouvertes.fr/hal-01458419/document


376 N. El Karoui et al.

Introduction

Modeling accurately long-term interest rates is a crucial challenge in many financial
topics, such as the financing of ecological projects, or the pricing of longevity-linked
securities or any other investment with long-term impact. The standard valuation
methodology to evaluate such investment projects relies on a cost–benefit analysis.
Once this cost–benefit analysis has been conveyed, the main question arising is how
to compare valuations of projects’ impacts with different temporally distributed cash-
flows.This is especially crucialwhen theyhavedifferent and longmaturities. To answer
this question, one key ingredient is the discount rate, used to compute the present
value of each cash flow. As in Gollier (2012), the discount rate is defined here as the
minimum rate of return to implement a non-risky investment project. For the evaluation
of risky projects, this discount rate should be adapted to take into account the degree of
uncertainty of the project: differentmethodologies exist, for example relying onCAPM
(capital asset pricing model), or transforming each future cash flow into its certainty
equivalent, which is related to themarginal indifference price (see Sect. 4.2.2). Interest
rates are at the core of three main sectors: government bond and public policies, fixed
income market and rate derivatives, and private long-term investment project and
pensions funds. Each sector addresses its own issues, and consequently has its own
point of view and its ownmodeling. Besides, asmentioned byPiazzesi (2010), "inmost
industrialized countries, the central bank seems to be able tomove the short term of the
yield curve.Whatmatters for aggregate demand, however, are long-term yields". In the
meantime, the debate on ecological issues and global warning has replaced to the front
of the stage the difficulty to reach a census on the notion of rates which are standard
both in economy and finance. Therefore, it is important to bring coherence to those
points of view, and even more since the Covid-19 crisis that prompts us to think "long
term" and "global". Our paper aims first to provide a unified framework to highlight
similarities and differences between those approaches. Thanks to its formalism, the
mathematics help in clarifying the notions in a unified way, while being as neutral as
possible. Second, we propose a newmodel to evaluate rates, based on dynamic utilities
and indifference pricing. Our model, which is linked to financial markets, still offers
interesting economic interpretations, as well a mathematical robustness. Particular
attention is paid on the dependency of rates on the initial wealth of the economy, and
on the time-horizon, which is often downplayed in the literature.

Based on the equilibrium theory, an extensive literature has been developed to
propose an endogenous definition of the economic discount rate. The Ramsey rule,
introduced in 1928 by Ramsey in his seminal work (Ramsey 1928), is the reference
equation to compute the discount rate. It has been further discussed by numerous
economists such as Gollier (2010, 2012) and Weitzman (1998, 2007). The issue is
addressed at a macroeconomic level, where long-run interest rates have not neces-
sarily the same meaning as in financial markets. We call them “economic” interest
rates because they are affected mainly by structural characteristics of the economy.
The Ramsey rule links the discount rate with the marginal utility of aggregate con-
sumption at the economic equilibrium. Besides, the financial framework is based on a
no-arbitrage condition and links yield curves and zero-coupon bonds prices. Since the
zero-coupon bond market is highly illiquid for long maturities, we use utility indif-
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ference pricing for the evaluation of these non-replicable contingent claims. For a
small amount of transaction, this pricing method leads to a linear pricing rule (see
Davis 1998) called the Davis price or the marginal utility price. Then, according to
the Ramsey rule, we show that equilibrium interest rates and marginal utility interest
rates coincide. The economic and financial frameworks are actually very close: both
rely on a similar optimization problem that determines the optimal discounted pricing
kernel used to evaluate claims under the historical (also called physical) probability
measure. The discounted pricing kernels are the key processes for yield curve model-
ing and provide a unifying approach for the economic and financial viewpoints. One
main difference is that in the economic framework, it is the spot interest rate r (which
is the drift term of the optimal discounted pricing kernel) that is determined endoge-
nously by the market clearing condition at the equilibrium, while in the financial
framework, r is exogenous and it is the orthogonal diffusion coefficient of the optimal
discounted pricing kernel that is determined at the optimum. As utility functions are
at the cornerstone of the Ramsey rule and its financial interpretation using marginal
utility indifference price, this paper also provides an in-depth comparison analysis of
the standard backward setting (in which the utility function at a time horizon TH is
given) and the forward setting (in which the initial utility is the one that is given). To
satisfy time-consistency, the preference criterion should satisfy a dynamic program-
ming principle, that is also called market consistency. Musiela and Zariphopoulou
(2007, 2010) were the first to suggest to use instead of the classic criterion the concept
of progressive dynamic utilities that have been further studied by El Karoui and Mrad
(2013) and El Karoui et al. (2018) in a consumption framework. Progressive utilities
give an adaptive way to model possible changes over the time of preferences of an
agent, which is particularly important in this context of long-term decision making.
They also provide a flexible tool to aggregate preferences of heterogeneous economic
actors (see El Karoui et al. 2017). Contrary to the standard approach in which the
optimal processes are computed through a backward analysis and emphasizing their
dependency on the time-horizon of the optimization problem, the problem here is
posed forward, leading to time-coherent optimal processes and putting emphasis on
their monotonicity with respect to their initial values.

The paper is organized as follows. Section 1 introduces the Ramsey rule and high-
lights some features of the standard economic framework. Section 2 is dedicated to
basic concepts of the economic equilibrium and financial no-arbitrage frameworks,
highlighting their similarities and their differences. The related optimization problem
that determines the discounted pricing kernel is presented in both the backward and
forward settings. Section 3 develops those concepts in an Itô model. Section 4 pro-
vides a pathwise version of the Ramsey rule, written in terms of the optimal discounted
pricing kernel and proposes a financial interpretation of the Ramsey rule and of the
economic discount rates, using marginal utility indifference pricing. Utility indiffer-
ence price with logarithmic utility corresponds to the benchmark approach of Platen
and Heath (2006), but this special case does not allow us to capture the dependency
on initial conditions such as the initial wealth. The yield curve dynamics is studied
in Sect. 5, and using general marginal indifference price, special attention is paid on
the dependency of the interest rates on the global wealth of the economy. Section 6 is
devoted to the long-term behavior of the instantaneous forward rate and zero-coupon
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rates, as well as to aggregated rates. In particular, in the case of backward power util-
ities, we provide a new relation between the orthogonal diffusion coefficient of the
optimal discounted pricing kernel and the zero-coupon bond price. As a consequence,
for non-replicable zero-coupon bonds, the time-horizon dependency of the discounted
pricing kernel process and its orthogonal diffusion coefficient implies long-term yield
curves that have a diffusion component and thus that are not necessarily monotonous
in time. This extends previous results of Dybvig et al. (1996) and El Karoui et al.
(1997) that did not take into account this time-horizon dependency (that only occurs
in incomplete market). We illustrate our results with the important example of mix-
ture of power utilities that corresponds to the aggregation of investors having different
Constant Relative Risk Aversion (CRRA). We prove that when the maturity tends to
infinity, the asymptotic long aggregate rate is the lowest individual asymptotic rate.
The asymptotic limit with respect to the wealth of the economy is also studied: when
thewealth tends to infinity the aggregate zero-coupon price converges to the one priced
by the less risk averse agent, whereas when the wealth tends to zero, it converges to
the one priced by the more risk averse agent. Finally, technical details and proofs on
utility indifference pricing are postponed in the “Appendix”.

1 The Ramsey rule

For the financing of ecological projects reducing global warming and any other invest-
ment with a long-term impact, it is necessary to model accurately long-run interest
rates. In general, these issues are addressed at macroeconomic level, where long-run
interest rates have not necessarily the same interpretation as in financial market. To
avoid confusion, we refer to it as socially efficient or economic interest rates, because
they would bemainly affected by structural characteristics of the economy and be low-
sensitive to monetary policy. Correct estimates of these rates are useful for long-term
decisions, and understanding their determinants is important.

General macroeconomic models often assume that at equilibrium, the sum of
agents’ choices is mathematically equivalent to the optimal decision of one individ-
ual, called the representative agent. More precisely, the economy is represented by the
strategy of a risk-averse representative agent, whose utility function from consump-
tion rate at date t is denoted v(t, c). The macroeconomics literature typically relates
the economic equilibrium rate to the time preference rate and to the average rate of
productivity growth. Indeed, if one considers a small perturbation around the equilib-
rium that consists in investing (a small amount) in a project which is financed by a
reduction of aggregate consumption, then, using a first degree Taylor approximation,
it implies that the discount rate is related to the marginal rate of substitution between
current and future consumption. In 1928, Ramsey in his seminal paper (Ramsey 1928)
was the first to establish an economic model used to construct a scientific basis for the
discount rate, which leads to the following definition.

Definition 1.1 Wecall Ramsey rule the link between the discount rate and themarginal
utility of the optimal aggregate consumption (written below between time t = 0 and
T )
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Re
0(T ) = − 1

T
lnE

[
vc(T , c∗

T )

vc(0, c∗
0)

]
(1.1)

where c∗ is the optimal consumption trajectory.

TheRamsey rule emphasizes the key role played by themarginal utility of consumption
in the evaluation of the discount rate. This marginal utility will be interpreted hereafter
as a discounted pricing kernel and creates a bridge between the economic and financial
points of view.

1.1 Ramsey rule in a standard economic framework

Inmodern dynamicmacroeconomics, it is standard to represent intertemporal behavior
by a time separable intertemporal utility function with constant relative risk aversion
θ (0 < θ < 1) and time preference parameter (also called rate of impatience) λ:
typically, the utility is proportional to e−λt c1−θ

1−θ
. In the seminal paper ofRamsey (1928),

the optimal consumption is a deterministic function c∗
t = c∗

0 exp(gt) (with g being the
growth rate of the economy) and the Ramsey rule (1.1) becomes Re

0(T ) = λ + θg,
in which the parameters should be calibrated in accordance with the time-horizon.
Although this equation is very simple, there is no consensus on the parameter values.
In the Stern review on the climate change (Stern and Stern 2007) and which addresses
time horizons covering two centuries, θ = 0.1, g = 1.3% λ = 0.1%, which leads
to a discount rate of 1.4%, whereas the UK-treasury uses a discount rate of 2.5%
for maturity of 100 years. Thus, 1 million of dollars in 100 years is equivalent today
either to 250,000 dollars or 82,000 dollars, depending on which rate is taken. In order
to add some randomness in the future optimal consumption, the consumption process
is frequently modeled by a geometric Brownian motion c∗

t = c∗
0 exp(gt + ϕWt ), still

leading to a flat curve Re
0(T ) = λ+θg− 1

2θ
2ϕ2. The Ramsey rule is still the reference

equation in macroeconomics and it was revisited by numerous economists, such as
Gollier (2010, 2012) and Weitzman (1998, 2007).

1.2 Discussion on the robustness

Despite the tractability of simple models, they nevertheless lead to shortcuts that
often hide certain dependencies and determinants. For example, the use of a power
utility function is not an innocuous assumption and implies that the rate does not
depend on the initial level of consumption (or equivalently on the initial wealth of the
economy). Besides, economic rates are very sensitive to the rate of preference for the
present, which can be viewed as the intensity of an independent exponential random
horizon (see Remark 2.1). In this paper, we particularly focus on those dependencies
by highlighting them in the notation, when needed.

Robustness with respect to the time preference parameter In an infinite time horizon,
the time component of the utility is often taken as a discount rate of the form e−λt

where λ is interpreted as the time preference rate. In his seminal paper (Ramsey 1928),
Ramsey prefers not to discount later enjoyments in comparison with earlier ones, ”a
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practice which is ethically indefensible and arises merely from the weakness of the
imagination". Then, to overcome the problem of ill-posedness of the underlying opti-
mization problem, he introduces a "maximum obtainable rate of enjoyment or utility"
called "Bliss". In their paper (Hourcade and Lecocq 2004) motivated by ecological
issue, Lecocq and Hourcade also emphasize the difficulty to calibrate this parameter λ.
They interpret it as a preference of no sacrifice for the present. If we expect to consume
more in the future, this parameter gives a lower bound for the Ramsey rule: indeed
relation (1.1) applied to a time separable utility function with exponential decay at
rate λ and assuming increasing expected consumption implies that Re

0(T ) ≥ λ.

Robustness with respect to form of the utility In the Ramsey rule (1.1), apart from
the time preference parameter λ, another key component is the marginal utility vc. At
equilibrium, the marginal rates of substitution vc(T , cT )/vc(0, c0) between consump-
tion at date 0 and at date T are equalized across agents and equal to the marginal rate
of substitution of a representative agent whose consumption is equal to the aggregate
consumption in the economy. The utility function of this representative agent is char-
acterized by a risk tolerance (which is just the inverse of the absolute risk aversion)
which is the mean of the absolute risk tolerance of all agents evaluated at their actual
level of consumption, see (Wilson 1968). This means that at equilibrium, the utility
of the representative agent is supposed to aggregates preferences of the heterogenous
economic actors. This aggregation is very complex, and the aggregate utility is unlikely
to have a simple expression, unless all agents are identical. In particular, it is shown in
El Karoui et al. (2017) that assuming a consistent power utility for the representative
agent actually implies that all agents have a power utility with the same risk aversion.
Besides, in the presence of generalized long-term uncertainty, the decision scheme
must evolve: economists agree on the necessity of a sequential decision scheme that
allows to revise the first decisions according to the evolution of the knowledge and
to direct experiences, see (Hourcade and Lecocq 2004). Market-consistent progres-
sive (also called forward) utilities (see Definition 2.1) provide a flexible framework
to tackle those issues. They allow to take into account accurately the aggregation of
preferences and to overcome the dependency in the time preference parameter, while
leading to time-coherent strategies.

The next section is dedicated to basic concepts of the economic equilibrium and
financial no-arbitrage frameworks. The purpose is to briefly present both the economic
and financial points of view, and to point out the differences, that may be quite subtle.
Although the results in this section are not completely new, we aim at providing a
mathematical unifying framework, to shed a new light on concepts that are sometimes
posed as evidence. The concept of preference criterion is central in this mathemati-
cal framework. We therefore recall briefly the definition of a utility function and its
conjugate.

A utility function u is a strictly concave, increasing, and nonnegative func-
tion on R

+, with continuous marginal utility uz , satisfying the Inada conditions,
limz �→∞ uz(z) = 0 and limz �→0 uz(z) = +∞ to prevent 0 consumption at optimum.
The risk aversion is measured by the ratio RA(u)(z) = −uzz(z)/uz(z) and the relative
risk aversion by Rr

A(u)(z) = z RA(u)(z).
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The conjugate or dual utility ũ is the Fenchel–Legendre convex conjugate
transformation of the utility function u, given by ũ(ζ ) = supz>0

(
u(z) − ζ z). In

particular, ũ(ζ ) ≥ u(z) − ζ z and the maximum is attained at uz(z) = ζ . Under Inada
conditions, ũ is twice continuously differentiable, strictly convex, strictly decreasing,
with ũ(0+) = u(+∞), ũ(+∞) = u(0+). Moreover, the marginal utility uz is the
inverse of the opposite of the marginal conjugate utility ũζ ; that is u−1

z (ζ ) = −ũζ (ζ );
ũ(ζ ) = u

( − ũζ (ζ )
) + ũζ (ζ ) ζ , and u(z) = ũ

(
uz(z)

) + z uz(z). These strategic
relations are also applied with stochastic utilities U (throughout the paper, we adopt
the convention of capital letter for stochastic utility and small letter for deterministic
utility).

2 The discounted pricing kernel: an unifying approach

We draw hereafter some parallels and comparisons between the economic and the
financial frameworks for the modeling of interest rates and we present formally some
strategic tools that are common toboth frameworks. In particularweare concernedwith
the computation of the optimal aggregate consumption (c∗

t ) that appears in the Ramsey
rule (1.1). Overall, it is related to an optimization problem of the representative agent.
His choice variables are howmuch to consume or save at each point in time, howmuch
to invest in each security, under the constraint that no bankruptcy is permitted. His
optimization problem is to maximize the expected utility over the class of admissible
wealth-consumption processes subject to a continuous time budget constraint to be
written down.

2.1 An economic and financial model setup

The economic and financial setups have a lot of similarities. For now, we just present
the global picture and we emphasize points that are strategic for the paper: namely
the time-horizon TH , the initial conditions, the existence of a representative agent and
his preference criterion. We refer to Björk (2020) for a detailed economic framework,
and Sect. 3 for a general financial model.

The universe consists in long-lived securities (also called technology in economics)
and a riskless security (a bank account) with short rate (rt ). The dynamic strategy
of an investor is characterized by the portfolio investment π and a (nonnegative)
consumption plan c that should be chosen in an admissible set denotedA: in particular
the corresponding wealth Xπ,c should remain positive (no bankruptcy). The set X c

of admissible wealth may have different forms, depending on the framework and the
optimization problem that is considered. Usually it is a positive convex cone. The
trades are assumed to occur continuously in time without any friction: no transaction
costs and no taxes, and securities are infinitely divisible. The following optimization
program has to be solved in both financial and economic frames; in the usual setting
it is formulated on a given horizon TH , and is written at time t = 0 as follows (given
X0 = x):
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U(0, x) := sup
(π,c)∈A

E
(
u(TH , Xπ,c

TH
) +

∫ TH

0
v(t, ct )dt

)
. (2.1)

In the backward financial formulation, the utilities u and v of terminal wealth (at
TH ) and of consumption rate are given. To ensure time-consistency, it is important to
identify which "terminal" criterion U(T , .) should be considered at any intermediate
date T ≤ TH , while still leading to the same optimal strategy and the same value
U(0, x) that is satisfying

for any T ≤ TH , U(0, x) = sup
(π,c)∈A

E
(U(T , Xπ,c

T ) +
∫ T

0
v(t, ct )dt

)
.

Under regularity assumptions, this criterion is given by the "value function" U(T , z)
given the wealth XT = z at time T (not to be confused with the initial wealth X0 = x)

U(T , z) = " sup "
(π,c)∈A

E

(
u(TH , Xπ,c

TH
(T , z)) +

∫ TH

T
v(s, cs)ds|XT = z

)
, a.s.. (2.2)

This time-consistency translates into a martingale property of the preference process
U(t, X∗

t ) + ∫ t
0 v(s, c∗

s )ds along the optimal strategy. This property, known as the
dynamic programming principle, is the key common feature of the different points of
view considered in this paper. In all of them the utility of consumption (v(t, .), t > 0)
is given, and the question arising is to find the utility (U(t, .), t > 0) of wealth, but
they mainly differ by their boundary conditions.

In the backward setting, U(TH , .) = u(TH , .) is given, and the unknown is
the optimal strategy (X∗, c∗) as well as U(t, .), also called ”indirect” utility, possibly
stochastic. Nevertheless, it is not trivial to prove that U defined by (2.2) is indeed
concave.

In the forward setting, there is no intrinsic time-horizon TH and it is the initial
utility U(0, .) which is given. Then the unknown is the utility process (U(t, .), t > 0)
associated to an optimal strategy (X∗, c∗).

At the economic equilibrium, the formulation of the problem is close to the
forward formulation. At equilibrium, the optimal portfolio is given by the market
clearing condition πe = 1. The unknown is still the utility (U(t, .), t > 0) and a
consumption rate ce, such that the pair (Xπe,ce , ce) is optimal.

In this paper the preference criteria of agents are modeled by a pair of progressive
utilities (U,V), that is a family of stochastic utility processes such that for any t ,
(U (t, z), V (t, c)) are some utility functions. As discussed above, it is natural to impose
that the progressive utility system satisfies a dynamic programming principle, also
called market consistency given the investment universe X c.

Definition 2.1 (Consistent progressive utility system). A progressive utility system
(U,V) is said to be X c-consistent if

(i) for any admissible wealth Xπ,c ∈ X c with consumption rate c, the preference
process Gπ,c

t = U (t, Xπ,c
t ) + ∫ t

0 V (s, cs)ds is a positive supermartingale.
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(ii) there exists an optimal strategy such that the preference process

G∗
t = U (t, Xπ∗,c∗

t ) +
∫ t

0
V (s, c∗

s )ds is a martingale.

The value function system (U(t, .), v(t, .)) of the classic consumption optimization
problem is an example of a X c-consistent system defined from its terminal condi-
tion U(TH , z) = u(TH , z). Conversely, a X c-consistent system (U,V) is the value
function system of some investment-consumption problem, with stochastic terminal
conditionU (TH , .) for any time horizon TH . The forward and backward settings differ
by their boundary conditions, the terminal utility is given in the standard case and the
initial one in the forward case. This point induces major differences in the interpreta-
tion and in the mathematical treatment of the utility’s characterization. In particular,
progressive utilities put emphasis on the initial conditions, such as the initial wealth
of the economy, which is often downplayed with standard utilities.

2.2 The discounted pricing kernels and the dual problem

As for any concave optimization problem, it is useful to associate the dual convex
problem based on the orthogonal cone Y of the convex cone X c, and whose ele-
ments Y are called discounted pricing kernels. They are also called stochastic discount
factor in the economic literature, or state price density process in the financial liter-
ature. The discounted pricing kernels Y ∈ Y are characterized by the property that
for any admissible strategy (π, c), the current wealth plus the cumulative consump-
tion, both discounted by Y , is a positive local martingale (and thus supermartingale),
namely (Yt X

π,c
t + ∫ t

0 Yscsds) is supermartingale. This implies that for any T ≥ 0,

E

(
YT XT + ∫ T

0 Yscsds
)

≤ x . This inequality, also known as the budget constraint,

provides a necessary condition of admissibility, directly written in terms of the termi-
nal wealth XT and the consumption process (cs)s∈[0,T ]. Discounted pricing kernels are
related to the following dual convex problem written at time t ≤ TH in the backward
setting, with ũ (resp.ṽ) is the conjugate utility of u (resp. v) given in (2.1)

Ũ(t, ζ ) = " inf
Y∈Y

"E
(
ũ(TH ,YTH (t, ζ )) +

∫ TH

t
ṽ(s,Ys)ds|Yt = ζ

)
, a.s. (2.3)

Note that the dynamic programming principle for the primal and dual preference
processes, together with the martingale property of (Y ∗

t X
∗
t + ∫ t

0 Y
∗
s c

∗
s ds), implies that

Ũ(t, .) is indeed the Fenchel–Legendre convex conjugate of U(t, .). In the general
forward setting, theX c-market consistency property on the primal progressive utility
system (U,V) translates naturally into a market consistency property on the dual
progressive utilities (Ũ, Ṽ), given the dual set Y .

Definition 2.2 (Consistent dual progressive utility system). A dual progressive utility
system (Ũ, Ṽ) is said to be Y -consistent if

(i) for any admissible dual process Y ∈ Y , J̃t = Ũ (t,Yt ) + ∫ t
0 Ṽ (s,Ys)ds is a

submartingale.
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(ii) there exists an optimal process Y ∗ in Y such that

the optimal preference process J̃ ∗
t = Ũ (t,Y ∗

t ) +
∫ t

0
Ṽ (s,Y ∗

s )ds is a martingale.

Besides, thanks to the time-consistency, the dual relation at terminal date Y ∗
TH

=
u′
x (TH , X∗

TH
) translates at any date t ≤ TH (with the corresponding relation for the

consumption):

Proposition 2.1 (El Karoui et al. 2018, Corollary 4.9). Let (U,V) be aX c-consistent
progressive utility system1 satisfying regularities conditions. Then the optimal pro-
cesses are linked by the first-order relation: for any t, Y ∗

t (y) = Uz(t, X∗
t (x)) =

Vc(t, c∗
t (c0)) with y = uz(x) = vc(c0). Equivalently in terms of the dual utilities

X∗
t (x) = −Ũζ (t,Y ∗

t (y)) and c∗
t (c0) = −Ṽζ (t,Y ∗

t (y)).

This shows that the marginal utility of consumption that appears in the Ramsey rule
can be interpreted as an optimal discounted pricing kernel.

Remark 2.1 In the backward approach, the optimal processes are denoted (c∗,H , X∗,H )

and Y ∗,H , the additional symbol H underlining the dependency of the optimal pro-
cesses on the optimization horizon TH . This dependency is analog to the sensitivity
of economic discount rate in the pure time preference parameter λ raised in Sect. 1.2.
Indeed, if one take in (2.1) a random time horizon TH as an independent exponential
random variable with mean2 1/λ (and a vanishing wealth at TH ), then the criterion
becomes E(

∫∞
0 e−λtv(ct )λdt).

After this overview of main concepts involved in the modeling of discount rates,
we develop them in a classic Itô framework.

3 Discounted pricing kernel in an Itô framework

3.1 The financial no-arbitrage framework in incomplete markets

Thefinancial investment universe is assumed to be an incomplete Itômarket, definedon
a standard filtered probability space (�, (Ft ),P) that supports a n-standard Brownian
motion W [see for example (Karatzas et al. 1987; Karatzas and Shreve 2001) or
(Skiadas 2007)]. The market is characterized by the short rate (rt ), the n-dimensional
risk premium vector (ηt ), and by the d × n volatility matrix (σt ) of the risky assets
(d ≤ n). In finance, the processes r , η and σ are usually taken exogenous. We assume
that

∫ T
0 (|rt | + ‖ηt‖2)dt < ∞, for any T > 0, a.s. We specify here the class of

admissible strategies in terms of (κt , ρt ) where3 κt = σ tr
t πt , ct = ρt Xt : πt is Rd -

valued and corresponds to the proportion ofwealth invested in the risky assets, while ρt

1 The deterministic initial utilities U (0, .) and V (0, .) are denoted u(.) and v(.).
2 For example, λ = 0.1 corresponds to a random horizon TH with mean of 10 years.
3 The upperscript tr denotes the matrix transpose.

123



Ramsey rule with forward/backward utility... 385

is the (nonnegative) wealth-proportional consumption rate. Using this parametrization
in (κ, ρ), the self-financing dynamics of a positive wealth process has a multiplicative
form4

dXκ,ρ
t = Xκ,ρ

t [(rt − ρt ) dt + κt .(dWt + ηtdt)] Xκ,ρ
0 = x . (3.1)

The existence of a multivariate risk premium η formulates the absence of arbitrage
opportunity. A self-financing strategy (κ, ρ) is admissible if the portfolio κt lives in a
given progressive family of vector spacesRt a.s., which expresses the incompleteness
of the market. The setX c of admissible wealth processes with admissible (κ, ρ) is a
convex cone. Since from (3.1), the impact of the risk premium on the wealth dynamics
only appears through the term κt .ηt for κt ∈ Rt , there is a "minimal" risk premium
ηRt , the projection of ηt on the space Rt , to which we refer in the sequel. For any
x ∈ R

n , xR denotes the orthogonal projection of x onto R and x⊥ the orthogonal
projection onto R⊥. To avoid technicalities, we assume throughout the paper that all
processes satisfy the necessary measurability and integrability conditions such that
the following formal manipulations and statements are meaningful.

In this Itô setting, the class Y of the discounted pricing kernels is characterized as
follows.

Definition 3.1 (Discounted pricing kernel). A nonnegative Itô semimartingale Y ν is
an admissible discounted pricing kernel if for any admissible consumption plan (κ, ρ),
the process

(
Y ν
t X

κ,ρ
t + ∫ t

0 Y
ν
s X

κ,ρ
s ρsds

)
is a local martingale. The dynamics of Y ν is

then given by

dY ν
t = Y ν

t

[− rtdt + (νt − ηRt ).dWt
]
, νt ∈ R⊥

t , Y ν
0 = y. (3.2)

The minimal discounted pricing kernel Y 0 corresponds to ν ≡ 0

yY 0
t = y exp

(−
∫ t

0
rsds −

∫ t

0
ηRs .dWs − 1

2

∫ t

0
||ηRs ||2ds). (3.3)

Note that Y does not depend on the presence of the consumption process and is
uniquely characterized by the financial market. The volatility process σ Y = (ν −ηR)

of Y ν consists of two components: the minimal risk premium ηR that lies in R and
an orthogonal component ν that lies in R⊥. Observe that any discounted pricing
kernel Y ν

t (y), starting from y at time 0, is the product of Y 0
t by the exponential local

martingale L⊥,ν
t = exp

( ∫ t
0 νs .dWs − 1

2

∫ t
0 ||νs ||2ds

)
, since ηRs .νs ≡ 0. The inverse of

the minimal discounted pricing kernel, 1
Y 0 , is the admissible market numeraire, also

called GOP (Growth Optimal Portfolio), see (El Karoui et al. 1995; Platen and Heath
2006), or Filipovic and Platen 2009).

A discounted pricing kernel involves both a discounted factor exp(− ∫ t
0 rsds) (with

the process r that may be stochastic) and a martingale density process corresponding

4 In this paper, the scalar product of two vectors X and Z (of the same dimension) will be denoted by X.Z
or sometimes by < X,Z >.
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to a change of probability measure. In a complete market in which all risks could be
hedged, the orthogonal set R⊥ is trivial and reduced to ν = 0. This is the standard
economic framework. In the economic framework, it is the short rate r and thus the
drift term of the optimal discounted pricing kernel that is determined at the optimum
(at the equilibrium), whereas in the financial framework, r is exogenous and it is the
orthogonal component ν that is determined at the optimum.

3.2 Itô dynamics of the utility process

In this Itô framework it is natural to take progressive utility as "regular"5 Itô random
field with differential decomposition

dU (t, z) = β(t, z)dt + γ (t, z).dWt .

In the standard backward framework, the initial value of the value functionU is usually
not explicit and is computed through a backward analysis, starting from its given
terminal utility (possibly random) U (TH , .) at time TH . For consistent progressive
utilities, the initial value is given and the problem is solved forward, and the emphasis
is placed on themonotonicity of optimal processes with respect to the initial condition.
We refer toElKaroui et al. (2018) for explicit regularity conditions and characterization
of the consistent pairs of consistent utilities of investment and consumption and the
optimal policies. The optimal portfolio is given by

zκ∗
t (z) = zσ tr

t π∗(t, z) = − Uz(t, z)

Uzz(t, z)

(
ηRt + γR

z (t, z)

Uz(t, z)

)
(3.4)

with the additional (compared to the deterministic case) risk premium term
γR
z (t,z)
Uz(t,z)

coming from the diffusion term of the progressive utility U. The market consistency
implies the following HJB constraint

β(t, z) = −Uz(t, z)zrt + 1

2
Uzz(t, z)‖zκ∗

t (z)‖2 − Ṽ
(
t,Uz(t, z)

)
. (3.5)

Consistent progressive power utilitiesA consistent progressive utility system
with constant relative risk aversion (also called power utility) is necessarily a pair
of power utilities that are time-separable, with the same risk aversion coefficient θ

(0 < θ < 1)

U (θ)(t, z) = Zu
t
z1−θ

1 − θ
and V (θ)(t, c) = Zv

t
c1−θ

1 − θ
. (3.6)

The positive processes Zu and Zv are linked by a SDE satisfied by Zu and that is given
by the HJB drift constraint (3.5) [see El Karoui et al. (2018, Sect. 4.2) for the study
of progressive power utilities with consumption]. One important feature is that the

5 Explicit regularity conditions are given in El Karoui et al. (2018, Sect. 4).
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optimal processes for power utilities are linear with respect of their initial condition.
Power utility is the usual framework of the Ramsey rule.

Before interpreting and generalizing the Ramsey rule in this financial forward
setting, Sect. 3.3 points out that this forward approach is in fact very natural when
considering an economic equilibrium.

3.3 Determining the equilibrium spot rate

For evaluating public policies, the economy is usually assumed to be at equilibrium.
Nevertheless, it must be kept in mind that this assumption puts strong constraints on
the economic framework that could be considered (see He and Leland 1993 and El
Karoui andMrad 2021). A power utility function, together with a geometric Brownian
motion for the discounted pricing kernel Y ∗, provides a classic example of such an
equilibrium, which is usually stated in a Markovian setting. Let us first recall the
definition of an equilibrium [see Dumas and Luciano (2017, Chapter 11)]. For sake of
simplicity, we state it in the simple case of a one-dimensional market, with no purely
financial/inside security and a productive/outside security, whose dynamics is given
exogenously (with drift coefficient μt and volatility σt ).

Definition 3.2 At time t , an equilibrium is an allocation π∗
t , a consumption level c∗

t ,
a rate of interest r∗

t , such that the representative agent is at the optimum and the
market (for the productive/outside security as well as for the riskless security) clears.
Market-clearing conditions are as follows:

• The supply-equals-demand condition for productive/outside security: π∗ = 1.
• The zero-net supply condition for the riskless security.

The equilibrium is expressed in terms of the representative agent’s value function
U(t, z) (Eq. (2.2), with deterministic utilities u(TH , .) and v(t, .)). By identifying the
optimal investment to 1 (cf. (3.4) with the diffusion term of U equal to zero in a
backward Markovian setting), the market clearing condition (on the risky securities)
determines the risk premium as a function of the relative risk aversion of the utility
process U :

η(t, x) = η(t, X∗
t (x)) with η(t, z) = −σt

z Uzz(t, z)

Uz(t, z)
= σtR

r
A(U)(t, z). (3.7)

This determines endogenously the equilibrium rate

r∗
t (x) = r(t, X∗

t (x)) with r(t, z) = μt + σ 2
t z

Uzz(t, z)

Uz(t, z)
. (3.8)

Deterministic power (CRRA) utilities u(z) = z1−θ

1−θ
and deterministic coefficients σ,μ

is the standard model used in economy; it is an important case in which computations
simplify and the existence of an equilibrium can be stated. It notably implies, using
(3.8), that the equilibrium rate does not depend on thewealth process X∗. Nevertheless,
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this case hides some important features on the dependency of the optimal processes
and rates on initial conditions, as we will see in Sects. 5.2 or 6.4.2.

For a general utility function u that is not necessarily of power type, the existence
of an equilibrium is not guaranteed and the relations given here are conditioned to its
existence.
This simple equilibrium model has numerous extensions, as the famous one proposed
by Cox–Ingersoll–Ross (1985). One sought feature of this model was that it yields
positive rate (but nowadays the desire of havingmodel with positive rates is not current
anymore). Taking into account the presence of a financial market, Cox et al. (1985)
adopted an equilibrium approach to endogenously determine the term structure of
interest rates. In their model, the dynamics of the production process and the utility
function depend on an exogenous stochastic factor which in some way influences
the economy. At equilibrium, all purely financial assets are in zero net supply. The
risk-free rate and the financial assets prices are determined endogenously such that
the representative agent is not better off by trading in the money market, i.e. he is
indifferent between an investment in the production opportunity and the risk-free
instrument. This is related to the theory of indifference pricing that will be used in the
sequel (see Sect. 4.2). Then assuming a CIR dynamic for the exogenous stochastic
factor implies also a CIR dynamics for the equilibrium short rate.
To summarize, in the equilibrium approach, the short rate is determined endogenously
and does not appear in the equilibrium optimal wealth process dynamics dX∗

t =
(μt X∗

t −c∗
t )dt+X∗

t σtdWt (the terms in the short rate r cancel due to themarket clearing
conditions) nor in the HJB equation: replacing the expression of the equilibrium rate
(3.8) into the HJB equation (3.5) yields6,

Ut (t, z) + v(t, c∗
t ) + (μt z − c∗

t )Uz(t, z) + 1

2
σ 2
t z

2Uzz(t, z) = 0,

which is linear in Uz and Uzz . In fact, the utility function at time TH is not given and is
part of the processes that should be determined at equilibrium. Besides, the expression
for the short rate (3.8), together with the dynamics of the wealth process X∗ shows
that the problem is naturally posed forward in the equilibrium setting. Remark that in
the no-arbitrage financial framework, the bank account and utility functions are given
exogenously. In turn, when the market is incomplete, the excesses of return of some
less basic assets, such as some bonds, are the one that are endogenously determined
in the arbitrage approach.

6 When the time horizon TH is an exponential variable, the terminal condition disappears and is replaced
by a linear term of order 0 in the HJB equation

Ut (t, z) + v(t, c∗t ) + (μt z − c∗t )Uz(t, z) + 1

2
σ 2
t z

2Uzz(t, z) − λ U(t, z) = 0.
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4 Pathwise Ramsey rule and its financial interpretation

In light of Sect. 2, we provide a pathwise extension of the Ramsey rule and its financial
interpretation, based on marginal utility indifference pricing.

4.1 A pathwise Ramsey rule

In the sequel, the upper-script .∗ denotes interchangeably optimal process of the for-
ward and backward formulation, keeping in mind that, for the backward formulation,
the statements are valid up to time TH , with optimal processes that may depend on
TH . We focus on the optimality relations given by Proposition 2.1

{
c∗
t (c0) = −Ṽζ (t,Y ∗

t (y)) i.e. Vc(t, c∗
t (c0)) = Y ∗

t (y), t ≥ 0
c0 = −ṽζ (y) i.e. vc(c0) = y.

(4.1)

Remark that a parametrization in y is equivalent to a parametrization in the initial
wealth x or in the initial consumption rate c0, based on the one to one correspondence
vc(c0) = uz(x) = y. The forward point of view emphasizes the key role played by the
monotonicity of Y with respect to the initial condition y (under regularity conditions
of the progressive utilities). Then as function of y, c0 is decreasing, and c∗

t (c0) is an
increasing function of c0. This question of monotonicity is frequently avoided, maybe
because with power utility functions Y ∗

t (y) is linear in y.
Equation (4.1) may be interpreted as a pathwise Ramsey rule, between themarginal

utility of the optimal consumption and the optimal discounted pricing kernel:

Vc(t, c∗
t (c0))

vc(c0)
= Y ∗

t (y)

y
, t ≥ 0 with vc(c0) = y. (4.2)

This one to one correspondence between the optimal consumption and the optimal
discounted pricing kernel holds at any date t , that is why we call it a "pathwise
Ramsey rule". Remark that formulating this pathwise relation (4.2) in terms of the
optimal consumption leads to an expression that only involves the utility process V of
the consumption, which contrary to U, is a given process. Formulating the pathwise
relation (4.2) in terms of thewealthwould have involved the utilityUwhich is complex
to compute, U being the value function of the optimization problem.

The Ramsey rule leads to a description of the equilibrium yield curve as a func-
tion of the optimal discounted pricing kernel Y ∗, Re

0(T )(y) = − 1
T lnE[Y ∗

T (y)/y]
which allows us to give a financial interpretation in terms of zero-coupon bonds. More
dynamically in time, we define for t < T and denoting by δ := (T − t) the time to
maturity

Re
t (δ)(y) = Re

t (T − t)(y) := −1

T − t
lnE

[
Vc(T , c∗

T (c0))

Vc(t, c∗
t (c0))

∣∣Ft

]

= −1

T − t
lnE

[
Y ∗
T (y)

Y ∗
t (y)

∣∣Ft

]
. (4.3)
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The Ramsey rule brings us to study the quantity E

[
Y ∗
T (y)

Y ∗
t (y)

∣∣Ft

]
. In the context of a

financial complete market, it is well-known that this quantity corresponds to the price
at date t of zero-coupon bonds (maturing at time T ). Nevertheless, its interpretation
for incomplete market is less trivial and will be investigated in Sect. 4.2. Before going
on with the financial interpretation of this equilibrium yield curve given in terms of the
discounted pricing kernel, we recall that in the equilibrium framework the short-term
interest rate rt is endogenous and fixed at equilibrium to satisfy the market clearing
condition of the aggregate demands. On the contrary, in the financial no-arbitrage
framework, the short rate is exogenous and the discounted pricing kernel is optimized
not through its drift rt but through its orthogonal diffusion coefficient νt . In the financial
no-arbitrage context, the optimization procedure impacts only the form on the yield
curve (through the risk premium), and not the beginning of the curve. This helps to
understand how yield curve movements of the short end (monitored by a central bank)
translate into long-term yield. For this financial interpretation purpose, it is natural to
link zero-coupon bonds and the equilibrium yield curve.

4.2 Marginal indifference pricing interpretation of the Ramsey rule

In this section, we investigate the financial interpretation of the Ramsey rule. The
financial point of view focuses more on the financial products than the rates, namely
in this context on the zero-coupon bonds, which is a contract that pays 1 at a given date
T . We thus want to interpret, in terms of price of zero-coupon bonds, the quantities

E

[
Y ∗
T (y)

Y ∗
t (y)

∣∣Ft

]
for all t < T . This question is related to a more general issue in finance

that consists in the pricing of a bounded contingent claim ξT paid at date T (ξT = 1
in the case of zero-coupon bond). We thus address this pricing issue for replicable
and non-replicable claims, with both backward (in this case T ≤ TH ) and forward
approaches. When all risks are replicable, then the price is uniquely determined as
the value of the replicating portfolio (by no-arbitrage arguments). When some risks
remain not replicable, several valuationmethodologies exist (such as super-replicating
prices or indifference prices), leading to different prices or bid-ask prices; we refer the
interested reader to the “Appendix” for further discussion. To evaluate small amounts
of non-replicable claims, we will consider the marginal utility indifference pricing.
This pricing procedure consists in choosing an optimal discounted pricing kernel Y ∗
among the set Y of all admissible discounted pricing kernels.

4.2.1 Valuation of replicable payoffs

The valuation of a (bounded) contingent claim ξT (paid at date T ) is done through the
choice of a discounted pricing kernel Y ν , the price at time t being then given by the

expectation E
[Y ν

T (y)
Y ν
t (y) ξT

∣∣Ft
]
. The question that arises is the choice of this discounted

pricing kernel Y ν . As mentioned in Definition 3.1, any discounted pricing kernel Y ν
t

is written as the product of the so-called minimal discounted pricing kernel Y 0
t (y) =

yY 0
t = y exp

( − ∫ t
0 rsds − ∫ t

0 ηRs .dWs − 1
2

∫ t
0 ||ηRs ||2ds) and an orthogonal local

martingale L⊥,ν
t (y) = exp

( ∫ t
0 νs(y).dWs − 1

2

∫ t
0 ||νs(y)||2ds

)
. In finance rt and ηRt
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are exogenous, while νt ∈ R⊥
t is endogenous and may depend on y. The minimal

discounted pricing kernel Y 0 plays a "universal" rule and any Y ν differs only in the
orthogonal part L⊥,ν(y). Y 0 includes both the short-term interest rate r and the risk

premium ηR, it can be decomposed as Y 0
t = e− ∫ T

0 rsds LR
T with LR

T = exp
( −∫ t

0 ηRs .dWs − 1
2

∫ t
0 ||ηRs ||2ds) an exponential martingale which corresponds to the

density process of a change of probability.
If the bounded contingent claim ξT is replicable by an admissible self-financing

portfolio, its market price pm(ξT ) (pm when it is not ambiguous) is the value of
the replicating portfolio (by no-arbitrage). Thus, pmt is a bounded process such that
Y ν
t (y)pmt is a martingale for any discounted pricing kernel Y ν(y), and in particular

for yY 0
t . This leads to the classic pricing formula of a replicable contingent claim

pmt (ξT ) = E
[Y 0

T
Y 0
t
ξT
∣∣Ft
] = E

[Y ν
T (y)

Y ν
t (y) ξT

∣∣Ft
]
.

Therefore, for replicable payoff, the price is uniquely given by E
[Y ν

T (y)
Y ν
t (y) ξT

∣∣Ft
]
,

whatever the discounted pricing kernel Y ν . In finance, it is interpreted as the risk
neutral conditional expectation of the discounted claim between t and T ,

pmt (ξT ) = E

[
Y 0
T

Y 0
t

ξT
∣∣Ft

]
= E

Q
[
e− ∫ T

t rsdsξT
∣∣Ft
]

(4.4)

where Q is the minimal risk-neutral probability with density LR
T with respect to P

(on FT ). Under the risk neutral probabilityQ, all assets and admissible self-financing
portfolios have the same return rt . Remark also that in a complete market (which is the
natural framework of equilibrium modeling), any contingent claim is replicable, and
Y 0 is the only discounted pricing kernel. In conclusion, for replicable zero-coupon
bonds, equilibrium yield curve (4.3) and market yield curve have the same expression
in terms of the discounted pricing kernel.

However, for long maturities, this replicable assumption is very strong (even if
the payoff of the zero coupon is constant, the short-term interest rate and the risk
premium are stochastic). If the contingent claim is not replicable, the price is not
uniquely determined and different discounted pricing kernel Y ν may lead to different

prices E
[Y ν

T (y)
Y ν
t (y) ξT

∣∣Ft
]
. What is the financial interpretation of the Ramsey rule in this

context? It is important to point out that theRamsey rule is amarginal linear pricing rule
that is computed for relative small amounts. The following section relates it with the
marginal utility indifference pricing. Indeed, similarly to the heuristic of the Ramsey
rule recalled in (1.1), the marginal utility indifference price is also a linear price that
corresponds to a small perturbation of first order around an equilibrium.

4.2.2 Marginal indifference pricing

When hedging strategies cannot be implemented, the nominal amount of the trans-
action becomes an important risk factor. One way to evaluate non-replicable claims
is the utility based indifference pricing, which is a nonlinear pricing rule. The utility
indifference price is the price at which the investor is indifferent from investing or
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not in the contingent claim. We consider the two following maximization problems
stated at time t = 0 to simplify the notations (this can be easily extended to any time
t ≤ T ). The first one without the claim ξT has already been introduced previously

UT (x) := sup
(κ,ρ)∈Ac

E

[
U
(
T , Xκ,ρ

T (x)
)+

∫ T

0
V (s, cs)ds

]
. (4.5)

The terminal utilityU (T , .) is then perturbed by the random payment qξT , leading to
the second maximization problem

U ξ,T (x, q) := sup
(κ,ρ)∈Ac

E
[
U
(
T , Xκ,ρ

T (x) − q ξT
)+

∫ T

0
V (s, cs)ds

]
. (4.6)

The utility indifference price7 is the cash amount p̂q0,T (x, ξT , q) determined by the
relationship

U ξ,T (x + p̂q0,T (x, ξT , q), q
) = UT (x). (4.7)

As in (1.1), (4.7) provides the additional initial wealth p̂q that offsets the loss of
providing a q-quantity of the claim ξT at time T .
When the investors are aware of their sensitivity to the non-replicable risk, they can
try to transact for only a little amount in the risky contract, which corresponds to the
zero marginal rate of substitution puT (u for utility), also called Davis price (1998)
or marginal indifference price. This is a classic pricing approach in economics, less
frequently used in option pricing. Themarginal utility indifference price is determined
by the relationship

pu0,T (x, ξT ) := lim
q→0

∂ p̂q0,T
∂q

(x, ξT , q). (4.8)

The marginal utility price is characterized by the optimal discounted pricing kernel of
the consumption optimization problem (4.5).

Proposition 4.1 Let Y ∗(y) be the optimal discounted pricing kernel associated with
the (forward or backward) consumption optimization problem. For any nonnegative
contingent claim ξT delivered at time T , the marginal utility price is given at any time
t ≤ T by

put,T (x, ξT ) = E

[
ξT

Y ∗
T (y)

Y ∗
t (y)

|Ft

]
, y = uz(x). (4.9)

Proof We refer to the “Appendix” for the proof, as well as a discussion on the time-
coherence of this pricing rule, in the backward and forward settings (see Proposition
7.1). �
7 If q > 0 (resp. q < 0) it is a selling (resp. a buying) indifference price. For q > 0 one should assume
that qξT is super replicable at price x .

123



Ramsey rule with forward/backward utility... 393

Using the marginal utility indifference pricing, the price of the contingent claim is
computed as the expectation under a pricing measure. 1/Y ∗(y) can be interpreted as
the optimal market numeraire. In the case of a logarithmic utility criterion, Y ∗(y) is
the minimal discounted pricing kernel Y 0 (that does not depend on y) and we recover
the pricing rule given by the benchmark approach of Platen and Heath (2006), as 1/Y 0

coincides with the Growth Optimal Portfolio. This special case does not allow us to
capture the dependency on initial conditions such that the initial wealth. This pricing
rule is also related to the "local expectations hypothesis" of Piazzesi (2010), in which
the transition from the data-generating measure P to the pricing measure (Y ∗

T .P) is
tied to preference parameters.

We point out that the marginal utility price is a linear pricing rule; this means that
there exists a consensus on this price for a small amount, but investors are not sure
to have liquidity at this price. Nevertheless, this linear pricing rule may not be well
adapted for larger nominal amount of transaction and highly illiquid market. From a
financial viewpoint, this linear pricing rule given by the discounted pricing kernel Y ∗
allows to enrich the financial market with the zero-coupon bonds whose prices become
coherent assets under (Y ∗.P). In this extended market, the minimal discounted pricing
kernel Y 0 is then replaced by Y ∗.

Froman economic viewpoint, utility indifference pricing relies on the disturbance of
a partial equilibrium by adding a new contingent claim/asset that should be financed. A
completemarket cannot be disturbed by a newasset because any contingent claim/asset
can be hedged. But in incomplete markets the equilibrium is not perfect and the new
claims to be financed have an impact on it. In the case of new claims whose size are
small, the disturbance is marginal, leading to a marginal utility indifference price. This
indicates similarities between the marginal utility indifference price and the Ramsey
rule. We now interpret the previous results on the marginal utility pricing of zero-
coupon bonds in terms of the yield curve.

4.3 Marginal utility yield curve

As usual, we use the generic notation
(
B(t, T ), t ≤ T

)
for the price at time t of a

zero-coupon bond paying one unit of cash at maturity T . In finance, the market yield
curve (δ → Rt (δ)) is expressed in term of the time tomaturity δ = T −t and is defined
through the price of a zero-coupon bonds by B(t, T ) = exp(−(T − t)Rt (T − t)). We
use the previous results of Sects. 4.2.1 and 4.2.2 concerning the pricing of contingent
claims: the case of a zero-coupon bond corresponds to a contract that delivers 1 at
maturity T , i.e. ξT = 1.

(i) If the zero-coupon bonds are replicable, then there is no ambiguity about their
prices, as any discounted pricing kernel Y leads to the same price (see (4.4))

B0(t, T ) = E

[
YT
Yt

|Ft

]
= E

[
Y 0
T

Y 0
t

∣∣Ft

]
.

123



394 N. El Karoui et al.

In practice, this pricing rule B0(t, T ) = E
(Y 0

T
Y 0
t

∣∣Ft
)
, using the minimal pricing

kernel Y 0, is often used as a benchmark, even if the bonds are not replicable. It
corresponds to the benchmark approach of Platen and Heath (2006). In these case,
the price does not depend on y (for exogenous r , ηR).

(ii) For non-hedgeable zero-coupon bond, we can apply the marginal indifference
pricing rule (with consumption) based on the u-optimal pricing kernel Y ∗

t (y).
Although it is important to emphasize the dependence of the optimal pricing kernel
Y ∗(y) on the utility, we avoid this dependence to simplify the notations. Similarly,
themarginal utility price at time t of a zero-coupon bond depends on the utility only
through the optimal discounted pricing kernel Y ∗(y), we denote it by B∗(t, T )(y)

(note that it depends on y): B∗(t, T )(y) = E

[
Y ∗
T (y)

Y ∗
t (y)

∣∣Ft

]
.Based on the link between

optimal discounted pricing kernel and optimal consumption,

B∗(t, T )(y) = E

[Y ∗
T (y)

Y ∗
t (y)

∣∣Ft

]
= E

[Vc(T , c∗
T (c0)

)
Vc
(
t, c∗

t (c0)
) ∣∣Ft

]
, y = vc(c0) = uz(x)

(4.10)

where Vc is given by the first-order relation (4.2). According to the Ramsey rule
(4.3), equilibrium interest rates and marginal utility interest rates are the same,
in terms of the discounted pricing kernel. One should keep in mind that in the
equilibrium framework the discounted pricing kernel is determined at equilibrium
through the spot rate rt endogenously, while it is optimized through its orthogonal
diffusion coefficient νt in the financial setting. Besides, it is worth emphasizing
that the marginal utility prices are only valid for small trades. Indeed for non-
replicable claims, the size of the transactions is an important source of risk; for
larger trades, the first-order approximation given by the marginal utility price
is no more accurate, and we should add a correcting second-order term or use
indifference pricing (see Appendix, Theorem 7.2).

5 Yield curves dynamics and their volatilities

The increase of thefixed incomemarket in size andnumber of products has transformed
the way of considering the links between rates of different maturities, leading to leave
the economic theory of rational expectation for the principle of no-arbitrage between
bonds of different terms. Initiated by Vasicek in 1977, this evolution has matured
with Heath–Jarrow–Morton theory (192) and the theory of bond as a numeraire in El
Karoui et al. (1995). Note that this point of view that follows from the no-arbitrage
principle is relevant for a day by day management of the rate fluctuations, but does
not replace the analysis of the economic fundamentals that explain the broad patterns
of the fluctuations. This section revisits the previous results on the yield curve, using
Heath–Jarrow–Morton (HJM) theory in incomplete market, for both the economic and
financial viewpoints, and both the forward and backward frameworks (in the backward
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approach, the maturity T of the zero-coupon should be taken smaller than the horizon
TH ).

The notion of forward contracts will be used, such as the forward zero-coupon
bonds, whose price Bt (T0, T ) is the price at time t of a bond starting at time T0 and pay-
ing one unit of cash at time T > T0. By non-arbitrage, Bt (T0, T ) = B(t, T )/B(t, T0).
The family of forward instantaneous rates

(
f (t, T0) = −∂T ln

(
Bt (T0, T )

)|T=T0

)
takes also a large place in the HJM theory.

Instead of starting with a given dynamic for the short rate r and deducing the zero-
coupon bonds and their volatilities (as it is the case for example for the Vasicekmodel),
the Heath–Jarrow–Morton framework adopts a reverse approach based on the prices
of zero-coupon bonds and their volatility. It is worth emphasizing that in the HJM
approach the spot rate is not given and is deduced from the volatility process, and of
the initial conditions of the forward rates ( f (0, T )). Thus, in what follows, we focus
on the volatility family of the zero-coupon bonds that characterizes the dynamics of the
yield curve. It is important to highlight that this characteristic is determined directly by
themartingale property of the process (Y ∗

t (y)B∗(t, T )(y))t∈[0,T ], in both the economic
and the financial viewpoints. The subtle difference consists of the endogeneity for the
economic viewpoint (resp. exogeneity for the financial viewpoint) of the spot rate r
that may depend (or not) on y. This dependency of the rates on the initial wealth of
the economy x (through the one to one relation y = uz(x)) is investigated in Sect. 5.2
.

5.1 Heath JarrowMorton framework for forward rates

Recall that anydiscounted pricing kernelY ∗(y) is characterized by its volatility process
σ Y ∗

(y) := ν∗(y) − ηR(y) (resp. −ηR(y) for Y 0), where ηR(y) is the minimal risk
premium (that lies inR) and ν∗(y) is the orthogonal component that lies inR⊥. In the
economic framework ηR(y) is endogenous, while in the financial setting it is exoge-
nous and usually taken independent of y. σ Y ∗

(y) does not depend on the maturity T ,
but may depend on the horizon TH in the backward framework, through the orthogonal
component ν∗(y). The dynamics of the associated bonds B∗(t, T )(y) differ by their
volatility vectors, denoted by�∗(t, T )(y) that are assumed to be progressive processes
with the convention �∗(t, T )(y) = 0 a.s. for t ≥ T . In the sequel, we use the usual
short notation for exponential martingale8, Et (φ) := exp

( ∫ t
0 φs .dWs− 1

2

∫ t
0 ‖φs‖2ds

)
.

The study is based on the martingale property of the process Y ∗
t (y)B∗(t, T )(y) (resp.

Y 0
t B

0(t, T )), whose volatility
(
σ Y ∗
t (y) + �∗(t, T )(y)

)
is the sum of the volatilities

of each term, and whose terminal value is Y ∗
T (y). Thus, the exponential martingale

Y ∗
t (y)B∗(t, T )(y) has the following representation:

Y ∗
t (y)B∗(t, T )(y) = yB∗(0, T )(y)Et

(
σ Y ∗

(y) + �∗(., T )(y)
)
. (5.1)

The same formula holds for Y 0
t B

0(t, T ) (ν∗ ≡ 0). As a byproduct, (5.1) writ-
ten for t = T provides another formula for the random variable Y ∗

T (y) =
8 Additional assumptions on φ, of Novikov type, are necessary to ensure that this local martingale is a true
martingale, see e.g. (Novikov 1973) or (Krylov 2019).
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y exp(− ∫ T
0 rsds)ET

(
σ Y ∗

(y)
)
: observing that B∗(T , T )(y) = 1,

Y ∗
T (y) = Y ∗

T (y)B∗(T , T )(y) = yB∗(0, T )(y)ET
(
σ Y ∗

(y) + �∗(., T )(y)
)
. (5.2)

Identifying the two formulas for the random variable Y ∗
T (y) yields, where Cst(y) is a

deterministic term

∫ T

0
rs (y)ds = Cst(y) −

∫ T

0
�∗(s, T )(y).dWs + 1

2

∫ T

0
||�∗(s, T )(y) + σY ∗

s (y)||2 − ||σY ∗
s (y)||2ds

= Cst(y) −
∫ T

0
�∗(s, T )(y).(dWs + σY ∗

s (y)ds) + 1

2

∫ T

0
||�∗(s, T )(y)||2ds. (5.3)

The instantaneous forward rates are defined by f ∗(t, T )(y) = −∂T ln B∗(t, T )(y).
They represent the instantaneous rate of the forward zero-coupon bond defined at time
t with starting date T . The limit of the instantaneous forward rate, when the maturity
T tends to the current date t , is the spot rate r of no-arbitrage:

lim
T→t

f ∗(t, T )(y) = rt (y). (5.4)

The instantaneous forward rates are easier to compute than the rates R∗
t (T − t)(y)

themselves: indeed they are computed directly from (5.1) by taking the logarithmic
derivative of the product Y ∗

t (y)B∗(t, T )(y) with respect to the maturity T .

Proposition 5.1 We recall that σ Y ∗
(y) = ν∗(y) − ηR(y) is the volatility process

of Y ∗(y). We assume that the volatility vectors �∗(t, T )(y) are differentiable with
respect to T with locally bounded derivative γ ∗(t, T )(y) := ∂T�∗(t, T )(y). Then the
instantaneous forward rates satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f ∗(t, T )(y)= f ∗(0, T )(y)−
∫ t

0
γ ∗(s, T )(y).

(
dWs−(σ Y ∗

s (y)+�∗(s, T )(y))ds
)
,

(5.5)

d f ∗(t, T )(y) = −γ ∗(t, T )(y).
(
dWt−(σ Y ∗

t (y)+�∗(t, T )(y))dt
)
. (5.6)

The yield curve δ �→ R∗
t (δ)(y) is obtained as the primitive of the forward rate curve:

R∗
t (δ)(y) = 1

δ

∫ δ

0
f ∗(t, t + s)(y)ds. (5.7)

The market practice that uses the minimal pricing kernel Y 0 (for which ν = 0) as
benchmark induces a instantaneous forward rate f 0(t, T )(y) instead of f ∗(t, T )(y).
We compute below the dynamics of the difference between the instantaneous forward
rates.

Dynamics of the error f ∗(t, T ) − f 0(t, T )
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The difference � f (t, T )(y) := f ∗(t, T )(y) − f 0(t, T )(y) (� f (T , T ) = 0)
between the instantaneous forward rates has the following dynamics (with similar
notations for �γ and ��)

dt (� f (t, T ))(y)

= dt f
∗(t, T )(y) − dt f

0(t, T )(y)

= −�γ (t, T )(y).(dWt + ηRt (y)dt)+ < γ ∗(t, T )(y), ν∗
t (y) > dt

+ < γ ∗(t, T )(y), �∗(t, T )(y) > dt− < γ 0(t, T )(y), �0(t, T )(y) > dt

= −�γ (t, T )(y).(dWt−σ Y ∗
t (y)dt)+ < �γ (t, T )(y), �∗(t, T )(y) > dt

+ < γ 0(t, T )(y),��(t, T )(y) + ν∗
t (y) > dt .

The dynamics of the "error" of using theminimal discounted pricing kernel Y 0 (bench-
mark approach) instead of Y ∗(y) is similar to the dynamics (5.5) of a forward rate,
plus the additional source term < γ 0(t, T )(y),��(t, T )(y) + ν∗

t (y) > dt .

5.2 Exogenous spot rate and wealth dependency

To investigate the wealth dependency of the rates, one should keep in mind that the
parameter y is directly linked to the wealth of the economy, through the one to one
relation y = uz(x). Note that writing (5.5) in a backward formulation and since
f ∗(T , T )(y) = rT (y) from equation (5.4),

f ∗(t, T )(y) = rT (y) +
∫ T

t
γ ∗(s, T )(y).(dWs−(σ Y ∗

s (y)+�∗(s, T )(y))ds). (5.8)

It appears that the spot rate seems to be depending on y (and thus on the initial
wealth x), even for an exogenous spot rate. This dependency is conveyed by the
orthogonal component ν∗(y) of the diffusion coefficient σ Y ∗

(y). Nevertheless, it is
usual in the financialmodeling to take the spot rate rt and theminimal risk premium ηR
independent of the initial parameter y, on the contrary to the economic framework in
which they are endogenous and thus naturally depend on y. But this assumption implies
a constraint on the initial slope of the instantaneous forward rates. The dynamics of
the spot rate and the condition under which r does not depend on y are given in the
following proposition.

Proposition 5.2 (Properties of the spot rate). The spot rate is given by

rt (y) = f ∗(0, t)(y) −
∫ t

0
γ ∗(s, t)(y).(dWs−(σ Y ∗

s (y)+�∗(s, t)(y))ds), (5.9)

and its dynamics is given by

drt (y) = ∂δ f
∗(t, t)(y)dt − γ ∗(t, t)(y).

(
dWt−σ Y ∗

t (y)dt
)
. (5.10)
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This implies that for exogenous spot rate r that does not depend on y, γ ∗(t, t) and
∂δ f ∗(t, t)(y) + γ ∗(t, t).σ Y ∗

t (y) do not depend on y.

Remark Since the yield curve R∗
t (δ) is a more natural market data than the instanta-

neous forward rate f ∗(t, t + δ), it is interesting to write its initial slope in terms of the
initial slope of the yield curve, namely ∂δ f ∗(t, t)(y) = 2∂δR∗

t (0)(y).

Proof Note thatEq. (5.9) is a backward formulationof (5.5).Contrary to the differential
form (5.6), T is not fixed anymore, instead T = t + δ with δ → 0. Therefore, as in
Musiela and Rutkowski (2005), we denote r(t, δ)(y) := f ∗(t, t + δ)(y). To get its
dynamics, we apply Itô’s formula to equation (5.5):

f ∗(t, T )(y) = f ∗(0, T )(y) −
∫ t

0
γ ∗(s, T )(y).

(
dWs−(σ Y ∗

s (y)+�∗(s, T )(y))ds
)
,

with T = t + δ which is of finite variation, and thus, we get

dr(t, δ)(y) = ∂δr(t, δ)(y)dt + γ ∗(t, t + δ)(y).�∗(t, t + δ)(y)dt

−γ ∗(t, t + δ)(y).
(
dWt−σ Y ∗

t (y)dt
)
. (5.11)

When the time to maturity δ goes to zero, using the relation rt (y) = f ∗(t, t)(y) and
the fact that �∗(t, t)(y) = 0, the dynamics of the spot rate is given by

drt (y) = ∂δ f
∗(t, t)(y)dt − γ ∗(t, t)(y).

(
dWt−σ Y ∗

t (y)dt
)
.

This implies that for exogenous spot rate r , γ ∗ does not depend on y on the diagonal
and ∂δ f ∗(t, t)(y)+γ ∗(t, t)(y).σ Y ∗

t (y) does not depend on y . Besides, the initial slope
of the instantaneous forward rate can be interpreted in terms of the initial slope of the

yield curve. Indeed, differentiating (5.7) w.r.t. δ, one gets ∂δR∗
t (δ) = − R∗

t (δ)−rt
δ

+
f ∗(t,t+δ)−rt

δ
. Since rt = R∗

t (0) = f ∗(t, t), passing to the limits when δ → 0, yields
∂δ f ∗(t, t)(y) = 2∂δR∗

t (0)(y). Thus, the dynamics of the spot rate can also be written
as

drt (y) = 2∂δR
∗
t (0)(y)dt − γ ∗(t, t)(y).

(
dWt−σ Y ∗

t (y)dt
)
.

�
We now illustrate these constraints of exogenous spot rates in an affine framework
with deterministic volatilities.

A Gaussian affine framework The Vasicek model (1977) was the first model for
interest rate coming from a financial point of view. It is stated in a complete market
and its starting point is the dynamics of the spot rate (rt ) which is assumed to be an
Ornstein–Uhlenbeck process. As a consequence, all the rates in the Vasicek model
are affine and Gaussian. We provide here a similar affine framework in an incomplete
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market. We only assume that the instantaneous forward rates f ∗(t, T )(y) are affine
function of rt (y)

f ∗(t, T )(y) = �(t, T )(y)rt (y) + ϒ(t, T )(y), �(t, T )(y) and ϒ(t, T )(y) deterministic,

(5.12)

together with the hypothesis of a deterministic diffusion coefficient for the spot rate.
Then differentiating this identity with respect to T , and replacing into (5.10) implies
an Ornstein–Uhlenbeck dynamics for the spot rate, with at (y) := −∂δ�(t, t)(y) and
bt (y) := ∂δϒ(t, t)(y)

drt (y) = (bt (y) − at (y)rt (y)) dt − γ ∗(t, t)(y).
(
dWt−σ Y ∗

t (y)dt
)
.

Furthermore, identifying the diffusion coefficient in (5.12) and (5.6) implies that
γ ∗(t, T )(y) = �(t, T )(y)γ ∗(t, t)(y). Besides, differentiating r(t, δ) = f (t, t +
δ) using relation (5.12) and identifying with (5.11) the term in rt (y)dt implies

∂t�(t, T )(y) − at (y)�(t, T )(y) = 0, hence �(t, T )(y) = e− ∫ T
t au(y)du since

�(T , T )(y) = 1. Therefore, we have proved that the affine structure (5.12)
induces a time-dependent version of the standard Vasicek model with γ ∗(t, T )(y) =
e− ∫ T

t au(y)duγ ∗(t, t)(y). If in addition the volatility σ Y ∗
(y) is deterministic then this

affine model is also Gaussian.9

Illustration of Proposition 5.2: If the spot rate r does not depend on y, then the
diffusion coefficient γ ∗(s, s) is independent of y. Remark also that if rt does not
depend on y, then E(rt (y)) does not either, and this implies that a is also independent
of y. To summarize, in this affine model, if the spot rate r does not depend on the
initial condition y then γ ∗(t, t), at and the drift bt (y) − atrt+γ ∗(t, t).σ Y ∗

t (y) do not
depend on y. We recover the result of Proposition 5.2, since in this affine framework,
∂δ f ∗(t, t)(y) = bt (y) − atrt as a direct consequence of (5.12). This approach can be
generalized into a multidimensional affine model, as in Duffie et al. (2003).

6 Asymptotic long-run rates

We are interested in the dynamics behavior of the yield curve, when the maturity goes
to infinity

R∗
t (∞)(y) := lim

T→+∞ R∗
t (T )(y). (6.1)

Recalling the relation R∗
t (T )(y) = 1

T

∫ T
0 f ∗(t, t + s)(y)ds, we study hereafter the

asymptotic limit of the forward rate f ∗(t,∞)(y) := limT→+∞ f ∗(t, T )(y) and by
Cesaro’s Lemma10 we deduce the limit of the yield curve from the one of the instan-

9 In fact, up to a change of probability that depends on σY ∗
(y), this affine model is always Gaussian.

10 See (Korevaar 2013). Note that this is only a sufficient condition: the two limits of f ∗(t, T )(y) and
R∗
t (T )(y) are not equivalent from a strict mathematical point of view, but are equal when both of them
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taneous forward rate. Recalling (5.5)

f ∗(t, T )(y) = f ∗(0, T )(y) −
∫ t

0
γ ∗(s, T )(y).

(
dWs−(σ Y ∗

s (y)+�∗(s, T )(y))ds
)
,

we have to study together the behavior of the stochastic integral
∫ t
0 γ ∗(s, T )(y).dWs

and of the finite variation process
∫ t
0 γ ∗(s, T )(y).(σ Y ∗

s (y)+�∗(s, T )(y))ds, for a fixed
t and when T is large.11 A particular attention is paid on the parameters : the initial
value y, or the time horizon TH . Notably the backward and forward frameworks induce
different asymptotic behaviors, as detailed hereafter. This extends previous results of
Dybvig et al. (1996) and El Karoui et al. (1997).

6.1 Asymptotic long-run rates with backward utilities

We study the yield curve dynamics for infinite maturity, first in the framework of
backward utility, for which the orthogonal component ν∗,H (y) of σ Y ∗,H

(y), as well as
the volatility�∗,H (., T )(y), depend on the time-horizon TH , and consequently impacts
the long-term behavior of the yield curve. Remark that in previous papers on long-term
rates such as Dybvig et al. (1996) and El Karoui et al. (1997), this dependency on TH
that only happens in incomplete market (otherwise the orthogonal component ν is
zero) is not taken into account. This explains why we have more various long-term
behaviors for rates in the backward setting in incomplete markets. We thus highlight
this dependency by using the index H , and to fix the idea, as T tends to infinity, we
take TH = T .

Proposition 6.1 In the backward case, when the maturity TH tends to infinity, the
instantaneous forward rate f ∗,H (t, TH )(y) converges uniformly in L2 (toward a finite
limit) if the following limits exist a.s. in R

⎧⎪⎨
⎪⎩

ks(y) := lim
TH→+∞ γ ∗,H (s, TH )(y), (6.2)

gs(y) := lim
TH→+∞ γ ∗,H (s, TH )(y).

(
ν∗,H
s (y) + �∗,H (s, TH )(y)

)
. (6.3)

The dynamics of the asymptotic long instantaneous forward rate f ∗(t,∞)(y) is

f ∗(t,∞)(y) = f ∗(0,∞)(y) −
∫ t

0
ks(y).dWs+

∫ t

0

(
gs(y)− < kRs (y), ηRs >

)
ds.

(6.4)

exist. For the converse result one need for example a monotonicity condition of u → f ∗(t, u) to deduce
the infinite limit of f ∗ from the one of R∗.
11 We assume sufficient regularity conditions on the coefficients of the SDE satisfied by the process
f ∗(t, T ) (typically γ ∗(s, T )(y) uniformly bounded in T by an L2-integrable process, as in El Karoui et al.
(1997)) to use convergence results of SDE.
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(i) Having simultaneously the limit k.(y) not equal to zero ds ⊗ dP a.s. with a finite
limit g.(y) is possible only if 1

TH
< k⊥

s (y), ν∗,H
s (y) >= −||ks(y)||2 + O( 1

TH
)

ds ⊗ dP. Then the instantaneous forward rates for infinite maturity are finite and
their dynamics (6.4) have a diffusion component.

(ii) If 1
TH

< k⊥
s (y), ν∗,H

s (y) >�= −||ks(y)||2 + O( 1
TH

) ds ⊗ dP, the limit gs(y) is
finite only if ks(y) ≡ 0 ds ⊗ dP a.s., and the usual form holds for the asymptotic
instantaneous forward rates

f ∗(t,∞)(y) = f0(y) +
∫ t

0
gs(y)ds.

Proof We have to study the limit of the terms in (5.5), where in the backward case the
orthogonal component of σ Y ∗

(y), namely ν∗,H (y), may depend on TH and has to be
taken into account to compute the limit.

First, remark that if γ ∗,H (s, TH )(y) converges (which is equivalent to
γ ∗,H ,R(s, TH )(y) and γ ∗,H ,⊥(s, TH )(y) converge), then the stochastic integral in
(5.5) converges. Besides,

γ ∗,H (s, TH )(y).
(
σ Y ∗
s (y)+�∗,H (s, TH )(y)

)
= − < γ ∗,H ,R(s, TH )(y), ηRs > + < γ ∗,H (s, TH )(y), ν∗,H

s (y)

+�∗,H (s, TH )(y) > .

Since ηRs does not depend on TH , (6.2) and (6.3) imply that the right hand side
converges a.s. and the dynamics is given by (6.4).

We recall that γ ∗(t, T )(y) = ∂T�∗(t, T )(y). Therefore, by Cesaro’s Lemma, when
TH → +∞, < γ ∗,H (s, TH )(y), �∗,H (s, TH )(y) > is asymptotically equivalent to
TH ||γ ∗,H (s, TH )(y)||2. Thus, if ks(y) = lim

TH→+∞ γ ∗,H (s, TH )(y) is not equal to zero

a.s., then < γ ∗,H (s, TH )(y), ν∗,H
s (y) + �∗,H (s, TH )(y) > converges if and only if

1
TH

< k⊥
s (y), ν∗,H

s (y) >= −||ks(y)||2 + O( 1
TH

).

Otherwise, to ensure the limit gs(y) to be finite, one should have
lim

TH→+∞ γ ∗,H (s, TH )(y) = 0 ds ⊗ dP a.s., which implies that there is no stochastic

integral in the dynamics (6.4), which is then given by ft (y) = f0(y) + ∫ t
0 gs(y)ds. �

By applying again Cesaro’s Lemma, this time on the rates f ∗,H (t, TH )(y) and
R∗,H
t (TH )(y) = 1

TH

∫ TH
0 f ∗,H (t, t + s)(y)ds, we conclude that R∗(t,∞)(y) =

f ∗(t,∞)(y).
The diffusion component in the dynamics (6.4) of asymptotic long rates is a con-

sequence of the dependency on TH of the orthogonal ν∗,H of the optimal discounted
pricing kernel Y ∗,H . To specify the dynamics (6.4), one need to determine the links
between the orthogonal diffusion coefficients ν∗,H and �∗,H ,⊥(., TH ), which is not
an easy task in full generality. Nevertheless, the computations are tractable for power
utilities, which is the natural setting for the Ramsey rule (cf. Sects. 3.3 and 1.1).
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6.2 Yield curve properties with backward power utilities

The following theorem provides a new and non-asymptotic relation between the
orthogonal diffusion coefficient of the optimal discounted pricing kernel and the zero-
coupon bond price.

Theorem 6.2 For backward power utilities, the orthogonal diffusion coefficient ν∗,H

of the optimal discounted pricing kernel Y ∗,H and �∗,H ,⊥(., TH ) of the zero-coupon
bond price are linked by the relation

ν
∗,H
t = −�∗,H ,⊥(t, TH ), 0 ≤ t ≤ TH . (6.5)

Proof ν∗,H is the orthogonal diffusion coefficient of the optimal discounted pricing
kernel Y ∗,H , solution of the dual optimization problem. According to Definition 2.2,
the dual problem relies on the submartingale/martingale property of the preference

process
(
Ũ(t,Y ν

t ) + ∫ t
0 ṽ(s,Y ν

s )ds
)
, which is sometimes better to write in a multi-

plicative form. It is then equivalent to study the submartingale/martingale property of(
exp

(∫ t
0

ṽ(s,Y ν
s )

Ũ(s,Y ν
s )
ds

)
Ũ(t,Y ν

t )
)
.

In the backward power framework, the terminal dual utility from wealth Ũ(TH , .)

and the dual utilities from consumption ṽ(s, .) are given: they are dual power utilities,

with the same risk aversion parameter θ , Ũ(TH , y) = Zũ
TH

y
θ−1
θ , and for s ∈

[0, TH ], ṽ(s, y) = Z ṽ
s y

θ−1
θ , where Z ṽ

s is a given process and Zũ
TH

is a given FTH -
random variable.

Then, as recalled in (3.6), Ũ is also time-separable with risk aversion parameter θ .

This implies that for s ∈ [0, TH ], ṽ(s,Y ν
s )

Ũ(s,Y ν
s )

= Z̃s where Z̃ is a progressive process that

does not depend12 on ν. The backward dual optimization problem (2.3) turns out to

find ν ∈ R⊥ that minimizes the drift of Ũ(TH ,Y ν
s ) that is the drift of (Y ν

TH
)

θ−1
θ

(Y ν
TH )

θ−1
θ = exp

(
− θ − 1

θ

∫ TH

0
rsds + θ − 1

θ

∫ TH

0
σ Y ν

s .dWs −
∫ TH

0

θ − 1

2θ
||σ Y ν

s ||2ds
)
.

Using relation (5.3) with the discounted pricing kernel Y ν,H instead of Y ∗, leading to
zero-coupon prices Bν,H (t, T )

(
Bν,H (0, T ) = B(0, T ) and Bν,H (T , T ) = 1

)
with

volatility �ν,H , we have (where Cst denotes a deterministic constant that does not
depend on ν)

(Y ν
TH )

θ−1
θ = Cst exp

( θ − 1

θ

∫ TH

0
(�ν,H (s, TH ) + σ Y ν

s ).dWs − θ − 1

2θ

∫ TH

0
||�ν,H (s, TH ) + σ Y ν

s ||2ds
)

= Cst ETH
(

θ − 1

θ
(�ν,H (., TH ) + σ Y ν

)

)
exp

(
− θ − 1

2θ

∫ TH

0
||�ν,H (s, TH ) + σ Y ν

s ||2ds
)

exp
( ∫ TH

0

1

2
(
θ − 1

θ
)2||�ν,H (s, TH ) + σ Y ν

s ||2ds
)

12 This has been proved in El Karoui et al. (2018, Sect. 4.2).
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= Cst ETH
(

θ − 1

θ
(�ν,H (., TH ) + σ Y ν

)

)
exp

(1 − θ

2θ2

∫ TH

0
||�ν,H (s, TH ) + σ Y ν

s ||2ds
)
.

This implies that the minimization problem is equivalent to minimize (in ν) the
quadratic form

1 − θ

2θ2
||σ Y ν

t + �ν,H (t, TH )||2 = 1 − θ

2θ2
||νH

t − ηRt + �ν,H (t, TH )||2

which achieves its minimum at ν∗,H
t = −�∗,H ,⊥(t, TH ). �

Even in this simple framework of backward power utilities, the backward approach
and relation (6.5) imply a diffusion component in the dynamics of asymptotic long
rates. Recall that for power utilities, the optimal discounted pricing kernel is linear
with respect to its initial condition y, which implies that the interest rates do not depend
on y.

Corollary 6.3 For backward power utilities, the asymptotic long instantaneous forward
rate f ∗(t,∞) (that may be infinite) is given by

f ∗(t,∞) = f ∗(0,∞) −
∫ t

0
ks .dWs +

∫ t

0
gsds, (6.6)

wi th

⎧⎪⎨
⎪⎩

ks := lim
TH→+∞ γ ∗,H (s, TH ),

gs := lim
TH→+∞

1

TH
||�∗,H ,R(s, TH )||2.

(i) If kRs is not equal to zero dt ⊗ dP a.s., then f ∗(t,∞) is infinite.
(ii) Otherwise, f ∗(t,∞) = f ∗(0,∞) − ∫ t

0 k
⊥
s .dWs + ∫ t

0 gsds.

Proof Applying Proposition 6.1 with ν
∗,H
t = −�∗,H ,⊥(t, TH ) and using Cesaro’s

Lemma

lim
TH→+∞ γ ∗,H (s, TH ).(ν∗,H

s + �∗,H (s, TH )) = lim
TH→+∞

1

TH
||�∗,H ,R(s, TH )(y)||2.

If kRs (y) = limTH→+∞ γ ∗,H ,R(s, TH ) �= 0 dt ⊗ dP a.s., then limTH→+∞ 1
TH

||�∗,H ,R(s, TH )(y)||2 and f ∗(t,∞) are infinite. Otherwise f ∗(t,∞)(y) =
f ∗(0,∞)(y) − ∫ t

0 k
⊥
s .dWs + ∫ t

0 gsds. �
Even in this simple framework of backward power utilities, the long-run yield curves (if
they are not infinite) have a diffusion component and thus are not monotonous in time.
This differs from the framework of forward utility for which they are non-decreasing
processes, as detailed below.
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6.3 Asymptotic long-run rates with forward utility

We study the yield curve dynamics for infinite maturity, in the framework of forward
utility, for which the orthogonal diffusion coefficient ν∗(y) does not depend on the
time-horizon. As a consequence the limit behavior is more straightforward compared
to the backward case and has no diffusion component. In particular, in this forward
setting, we recover the results of Dybvig et al. (1996) and El Karoui et al. (1997).

Proposition 6.4 In the forward case, the asymptotic long instantaneous forward rate
f ∗(t,∞)(y) is

(i) infinite if lim
T→+∞ γ ∗(t, T )(y) exists and is not equal to zero dt ⊗ dP a.s.

(ii) Otherwise, f ∗(t,∞)(y) = f ∗(0,∞)(y) + ∫ t
0 gs(y)ds with gs(y) =

limT→+∞ 1
T ||�∗(s, T )(y)||2.

So, the asymptotic long forward rate f ∗(t,∞)(y) is a non-decreasing process in
time starting from f ∗(0,∞)(y), constant if gs(y) ≡ 0 ds ⊗ dP a.s.

As a corollary, by Cesaro’s Lemma, R∗(t,∞)(y) = f ∗(t,∞)(y).

Proof The proof is based on the following observation (using Cesaro’s Lemma)

lim
T→+∞

1

T
�∗(t, T )(y) = lim

T→+∞
1

T

∫ T

0
γ ∗(t, u)(y)du = lim

T→+∞ γ ∗(t, T )(y).

(i) If limT→+∞ γ ∗(t, T )(y) exists and is not equal to zero dt ⊗ dP a.s. then

lim
T→+∞ �∗(t, T )(y) = ∞ a.s and lt (y) is infinite.

(ii) Otherwise,
∫ T
0 γ ∗(s, T )(y).dWs and

∫ T
0 γ ∗(s, T )(y).σ Y ∗

s (y)ds converge to zero
and

lt (y) = l0(y) +
∫ t

0
gs(y)ds, where gt (y)is the nonnegative process

gt (y) = lim
T→+∞(γ ∗(t, T )(y).�∗(t, T )(y)) = lim

T→+∞ T ||γ ∗(t, T )(y)||2

= lim
T→+∞

1

T
||�∗(s, T )(y)||2.

�
Throughout this paper, we have pointed out the key role of the discounted pricing
kernel Y ∗ in the computation of the Ramsey rule and the yield curve, such Y ∗ being
optimal relatively to a given preference criterion. A natural question arising is how
to handle the heterogeneity of economic actors that may have different preferences
and thus different discounted pricing kernel Y ∗. To do this, considering N investors
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characterized by their utility U θi , we aggregate the discounted pricing kernels as
follows:

Y ∗(y) :=
N∑
i=1

Y ∗,θi (yθi (y)), y =
N∑
i=1

yθi (y).

We propose to study the impact of aggregation on the yield curve, in particular for
infinite maturity, or when the wealth of the economy tends to 0 or ∞.

6.4 Aggregation of utilities

As pointed out in El Karoui et al. (2017), aggregating discounted pricing kernels cor-
responds to the aggregation of utilities. We concentrate of aggregating power utilities,
since as explained in Sect. 3.3, power utility functions is an important case of utility
functions, in which computations are tractable and the existence of an equilibrium can
be stated. Besides, El Karoui and Mrad (2021) proved that the utility functions that
are compatible with an equilibrium can be written as mixtures of power utilities.

Let us consider an economycomposedof N investors,with consistent power utilities
characterized by (constant) relative risk aversion parameters θ1 < · · · < θN . Then,
their optimal discounted pricing kernels Y ∗,θi

t (y) are linear in y with coefficient Ȳ ∗,θi
t

and the individual price of zero-coupon bonds with maturity T does not depend on y

and is given by B∗,θi (t, T ) = E
( Ȳ ∗,θi

T

Ȳ
∗,θi
t

|Ft
)
. The aggregate indifference zero-coupon

bond price B∗(0, T )(y), computed at time 0 for simplicity, is given by

B∗(0, T )(y) = 1

y

N∑
i=1

yθi (y)B∗,θi (0, T ), with y =
N∑
i=1

yθi (y). (6.7)

6.4.1 Asymptotic limit for infinite maturity

For any agent, we define his asymptotic long rate

R∗,θi
0 (∞) := lim

T→∞ R∗,θi
0 (T ) = lim

T→∞

(
− 1

T
ln(B∗,θi (0, T ))

)
.

The following proposition shows that when the maturity tends to infinity, the asymp-
totic long aggregate rate is the one with the lowest asymptotic long rate. This is a
similar result to that in Cvitanic et al. (2011, Sect. 7).

Proposition 6.5 Weconsider the aggregation of N heterogeneous agents havingCRRA
utility functions, and we denote by R∗

0(T )(y) the corresponding aggregate indifference
rate. Then the asymptotic long aggregate rate

R∗
0(∞) := lim

T→∞ R∗
0(T )(y) = min

i∈[[1;N ]]
R∗,θi
0 (∞)(possibly in f ini te).
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Proof First remark that if for any i ∈ [[1; N ]], R∗,θi
0 (T )(y) have the same limit (infi-

nite or not) then it is straightforward to see that the aggregate yield curve R∗
0(T )(y)

converges to this limit. We define I := argmin
i∈[[1;N ]]

R∗,θi
0 (∞), and we choose io ∈ I. Then

R∗
0(T )(y) = − 1

T
ln(B∗(0, T )(y))

= − 1

T
ln

(
yθio (y)

y
B∗,θio (0, T )

)
− 1

T
ln

⎛
⎝1 +

∑
i �=io

yθi (y)B∗,θi (0, T )

yθio (y)B∗,θio (0, T )

⎞
⎠

= R
∗,θio
0 (T ) − 1

T
ln

(
yθio (y)

y

)

− 1

T
ln

⎛
⎝1 +

∑
i �=io

yθi (y)

yθio (y)
e−T

(
R∗,θi (0,T )−R∗,θio (0,T )

)⎞⎠ . (6.8)

If i /∈ I, e−T
(
R∗,θi (0,T )−R∗,θio (0,T )

)
→ 0 since limT→∞(R∗,θi

0 (T ) − R
∗,θio
0 (T )) > 0.

Thus, the factor inside the logarithm is greater than one and for, large T , is smaller

than (N + 1)e
T max

i∈I |R∗,θi
0 (T )−R

∗,θio
0 (T )|

. Therefore, the last term (6.8) converges to zero

since for all i ∈ I, limT→∞(R∗,θi
0 (T ) − R

∗,θio
0 (T )) = 0. We conclude that

R∗
0(∞) = lim

T→∞ R∗
0(T )(y) = lim

T→∞ R
∗,θio
0 (T ) = min

i∈[[1;N ]] R
∗,θi
0 (∞).

�

6.4.2 Asymptotic limit with respect to the initial wealth

Power utility functions imply equilibrium rates that do not depend on the wealth
process of the economy (see Sect. 3.3) and thus does not allow to capture some
important features concerning the impact of the wealth of the economy on the rates.
This can be circumvented with aggregation of power utilities, which provides a more
flexible preference criterion. Thus, we study hereafter the asymptotic behavior of the
aggregate zero-coupon bond price B∗(0, T )(y) for small and largewealth x = u−1

z (y),
and for any maturity T .

If any investor is endowed at time 0 with a proportion αi of the initial global wealth
x (
∑N

i=1 αi = 1), then yθi (y) = uθi
z (αi x) = (αi x)−θi , y = ∑N

i=1 y
θi (y) = uz(x)

and

B∗(0, T )(y) = 1

y

N∑
i=1

yθi (y)B∗,θi (0, T ) =
∑N

i=1(αi x)−θi B∗,θi (0, T )∑N
i=1(αi x)−θi

. (6.9)

Proposition 6.6 Weconsider the aggregation of N heterogeneous agents havingCRRA
utility functions. When the wealth tends to infinity the aggregate zero-coupon price
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converges to the one priced by the less risk averse agent, whereas when the wealth
tends to zero, it converges to the one priced by the more risk averse agent.

Proof We use (6.9), and the fact that for power utility uθi , yθi (y) = uθi
z (αi x) =

(αi x)−θi . When the wealth tends to infinity (corresponding to y = uz(x) tends to

zero) the discrete random measure
∑N

i=1 y
θi (y) δθi (θ)

y converges toward a Dirac measure
that charges the agent with the smallest risk aversion θi and, respectively, toward the
largest risk aversion θi when the wealth tends to zero (corresponding to y tends to
infinity):

lim
y→0

B∗(0, T )(y) = Bθ1
0 (T ) and lim

y→+∞ B∗(0, T )(y) = BθN
0 (T ).

This is coherent with the result of Cvitanic et al. (2011, Corollary 4.6). �
This can be generalized into a continuum of heterogeneous investors indexed by θ ,
with any utility function (not necessarily power) and having different weights in the
economy [see (El Karoui et al. 2017, Sect. 3)].

Conclusion

This paper draws a parallel between financial and economic discount rates and pro-
vides a financial interpretation of the Ramsey rule, using consistent pair of progressive
utilities of investment and consumption and using marginal utility indifference price
(Davis price) for the pricing of non-replicable zero-coupon bonds.Wehave highlighted
that forward utilities provide a more flexible framework than standard backward util-
ities, which induce time dependency on the time horizon ; this difference between
forward and backward approaches is particularly relevant in the computation of the
infinite maturity yield curve. The case of power utilities is also developed, in order
to provide tractable computations and to remain deliberately close to the economic
equilibrium setting. Nevertheless, power utilities imply that the optimal processes are
linear with respect to their initial conditions, and due to this simplification, power
utilities are not able to catch the impact of the wealth of the economy on the discount
rates. Considering aggregation of power utilities, which is equivalent to an aggregation
of discounted pricing kernels, overcomes this issue while keeping tractable formulas.
This arises naturally in a context of heterogeneous investors, while being compatible
with the existence of an equilibrium. Our approach can also be related to multi-curve
modeling that attracts significant attention since the crisis, see (Grbac and Runggaldier
2015).

In this paper, we have chosen a framework close to the one of the economic equi-
librium framework, with a linear pricing rule (given by the marginal utility price),
and for illustrative purpose, we have provided explicit examples in Gaussian markets.
We would like to point out the limitations of such framework and to suggest some
extensions. Indeed, models that are linear with respect to the noise could result to an
underestimation of extreme risks, especially for the long term, and one would like
to give more importance to the randomness of the economy. Alternative models to
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Gaussian markets for interest rate are affine models and quadratic Gaussian models,
for which calculations can be carried out. A short-rate model is affine if it is a linear
combination of an affine state space process, whose conditional characteristic function
is exponential affine with respect to the initial value. Affine models lead to tractable
pricing formula, using Riccati’s equations, see for example (El Karoui et al. 2014) in
the context of the Ramsey rule. Quadratic Gaussian models are factor models where
interest rates are quadratic functions of underlying Gaussian factors, see (Beaglehole
and Tenney 1991; Karoui and Durand 1998), or (Jamshidian 1996), among others.
Quadratic Gaussian models allow an extra quadratic term of the state variable in the
expression for the short rate. For these quadratic short-rate models similar properties
hold as for the affine models—as well as analytical and computational tractability—
in which the zero-coupon price changes to an expression with an extra quadratic term.
Besides, marginal utility price is a linear pricing rule which means that investors agree
on this price for a small amount, but they are not sure to have liquidity at this price.
For larger nominal amount of transaction and highly illiquid market, the size of the
transaction impacts the price. One may use utility indifference pricing, which induces
a bid ask spread. Nevertheless, computing utility indifference prices is often a difficult
task. An alternative is to use a second-order expansion of the Davis price, which is
more tractable. This is developed in the Appendix.

7 Appendix

This Appendix provides theoretical details and proofs on utility indifference pricing,
on the time-coherence of the marginal utility price in both the forward and back-
ward settings, as well as the derivation of the second-order development of the utility
indifference price with respect to the amount of claim.

7.1 Utility indifference pricing

When the payoff ξT of the claim is not replicable, there are different ways to evaluate
the risk coming from the non-replicable part, while taking into account the size of the
transaction. A way is the pricing by indifference that leads to a bid-ask spread. The
utility indifference price p̂q0,T (x, ξT , q) is the price at which the investor is indifferent
from investing or not in the contingent claim ; it is given by the nonlinear relationship

U ξ,T (x + p̂q0,T (x, ξT , q), q) = UT (x). (7.1)

where the two maximization problems13 (with and without the claim ξT ) have been
introduced in Sect. 4.2

13 To ease the notations, we will often write Uξ and U rather than Uξ,T and UT .
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UT (x) = sup
(κ,ρ)∈Ac

E[U (T , Xκ,ρ
T ) +

∫ T

0
V (s, cs)ds]. (7.2)

U ξ,T (x, q) := sup
(κ,ρ)∈Ac

E[U (T , Xκ,ρ
T − q ξT ) +

∫ T

0
V (s, cs)ds]. (7.3)

Remark: The formulation of the utility indifference pricing problem is the same for
forward and backward utilities, with the appropriate utility process U that should be
considered in the definitions (7.2) and (7.3). In both cases, the utility indifference
pricing problem is posed backward, with the natural maturity T which is the date
of payment of the claims, and the associated optimal processes depend on T . The
literature usually considers the utility indifference pricing problem in the backward
framework (that is withU (TH , .) a given deterministic function, and T ≤ TH ), see for
example (Davis 1998), the survey of Hobson (Henderson and Hobson 2009) or (Car-
mona and Nualart 1990). If T < TH , thanks to the dynamic programming principle,
the stochastic utility U (T , .) that should be considered in (7.2) and (7.3) is the value
function at time T of the backward optimization problem with utilityU (TH , .) at time
TH . In the forward framework, U (T , .) is the forward utility itself at time T (and T
is not restricted to be less than TH ). In what follows, we consider both the forward
and backward settings and we comment the differences when needed. We use the
index H (such as Y ∗,H

. ) to emphasize the time horizon dependency in the backward
optimization problem.

7.2 Marginal indifference pricing and time-coherence

For a small amount of the claim, one can use marginal indifference price, which corre-

sponds to the zeromarginal rate of substitution pu0,T (x, ξT ) := limq→0
∂ p̂q0,T

∂q (x, ξT , q)

as defined in (4.8). In this section, we prove Proposition 4.1 that characterizes the
marginal indifference price in terms of the optimal discounted pricing kernel Y ∗, and
we investigate the time-coherence of this linear pricing rule.

Marginal indifference price is defined for any maturity T ∈ [0,+∞[ in the forward
case and for any T ≤ TH in the backward case. In the backward case, the value function
U (T , .) depends on the horizon TH . In particular, if the contingent claim ξT is delivered
at time T ≤ TH , then ξT can be invested between time T and TH into any admissible
portfolio X .(T , ξT ) (martingale under Y ∗,H ) and computing the marginal utility price
with terminal payoff ξTH = XTH (T , ξT ) leads to the same price, as explained below.

Proposition 7.1 Let (Y ∗
t (y)) be the optimal discounted pricing kernel associated with

a (forward or backward) consumption optimization problem. For any nonnegative
contingent claim ξT delivered at time T , the marginal utility price is given at any time
t ≤ T by

put,T (x, ξT ) = E
[
ξT

Y ∗
T (y)

Y ∗
t (y)

|Ft
]
, y = Uz(0, x). (7.4)
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(i) In the forward case, the pricing rule is time-coherent:
for all T and T ′, with T ≤ T ′

put,T ′(x, ξT ′) = put,T (x, ξT (t, x)) with ξT (t, x) = puT ,T ′(X∗
T (t, x), ξT ′). (7.5)

(ii) In the backward case, the time-coherence property (7.5) is satisfied

• for T ≤ T ′ ≤ TH with ξT (t, x) = ξ H
T (t, x) = pu,H

T ,T ′(X
∗,H
T (t, x), ξT ′).

• for T ≤ T ′ with T ′ > TH if the utility function U (T ′, .) at the horizon T ′ is the
consistent progressive utility starting from u(TH , .) at time TH .

Proof To simplify the notations, the proof is given for t = 0 (the dynamic version can
be proved in the sameway) and the indifference price is denoted p̂q := p̂q0,T (x, ξT , q).

Following (Davis 1998), we compute the marginal indifference price of any con-
tingent claim as follows. Denote by (X∗,q(x), c∗,q(x)) the optimal strategy of the
optimization program (7.3) (q-quantity of the claim ξT ), such that

E
[
U (T , X∗,q

T (x) − qξT ) +
∫ T

0
V (s, c∗,q

s (x))ds
] = U ξ (0, x, q).

Thanks to the envelope theorem we can invert optimization and differentiation along
the optimal paths (see Milgrom and Segal 2002); in our setting, the q-derivative con-
cerns the random variables U

(
T , Xκ,c

T (x) − qξT
)+ ∫ T

t V (s, cs(x))ds. Then

∂q U ξ (0, x, q) = −E
(
Uz(T , X∗,q

T (x) − qξT )ξT
)
.

On the other hand, since by definition U ξ (0, x, q) = U(0, x − p̂q)

∂qU ξ (0, x, q) = ∂q U(0, x − p̂q) = −∂ p̂q

∂q
Uz(0, x − p̂q),

we obtain the q-sensitivity of the indifference price

∂ p̂q

∂q
= E

(
Uz(T , X∗,q

T (x) − qξT )ξT
)

Uz(0, x − p̂q)
. (7.6)

This quantity depends on the optimal process X∗,q
T (x) which is not easy to compute,

but at the limit in q = 0, it becomes, since lim
q→0

X∗,q
T = X∗

T

pu0,T (x, ξT ) = lim
q→0

∂ p̂q

∂q
(x, ξT )

= E
[
ξTUz(T , X∗

T (x))
]

Uz(0, x)
.
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The marginal pricing rule is linear and associated with the pricing kernel

Uz(T , X∗
T (x))

Uz(0, x)
= Y ∗

T (Uz(0, x))

Uz(0, x)
.

(i) In the forward case, for any maturity T ′, we have

pu0,T ′(x, ξT ′) = 1

uz(x)
E
[
Uz(T

′, X∗
T ′(x)) ξT ′

]

= E
[
ξT ′

Y ∗
T ′(y)

y

]
.

In particular, for any T ≤ T ′, one can easily prove (7.5):

pu0,T ′(x, ξT ′) = 1

uz(x)
E
[
Uz(T

′, X∗
T ′(x)) ξT ′

]

= 1

uz(x)
E
[ 1

Uz(T , X∗
T (x))

E
[
Uz(T

′, X∗
T ′(x)) ξT ′ |FT

]
Uz(T , X∗

T (x))
]

= 1

uz(x)
E
[
puT ,T ′(X∗

T (x), ξT ′)Uz(T , X∗
T (x))

]
= pu0,T (x, puT ,T ′(X∗

T (t, x), ξT ′)).

(ii) In the backward case, if the maturity of the claim is T ≤ TH , then the
amount ξT may be invested in any admissible portfolio X .(T , ξT ) such that
(Xt (T , ξT ) Y ∗,H

t (y))T≤t≤TH is a martingale and taking ξT ′ = XT ′(T , ξT ), T ′ ∈
[T , TH ]. Then the proof of (7.5) in the backward case is identical to the one of the
forward case as soon as T ≤ T ′ ≤ TH :

pu,H
0,T ′(x, ξT ′) = E

[
E

(
XT ′(T , ξT )

Y ∗,H
T ′ (y)

y

)
|FT

]

= E
[
ξT

Y ∗,H
T (y)

y

] = pu,H
0,T (x, ξT ), y = uz(x).

Thebackwardmarginal utility pricing is awell-posed pricing rule only for T ≤ TH .
Nevertheless, for T ′ > TH , in order to still have (7.5), the utility function should
be extended between TH and T ′ in a time-coherent way in order to get the optimal
Y ∗ until T ′. �

As mentioned before, the marginal utility indifference pricing rule is not well adapted
for larger nominal amount of transaction and highly illiquid market. A correcting
term of Davis’ price consists in providing a second-order development of the utility
indifference price, with respect to the number of claim q. In the backward case, this
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has first been studied by Henderson (2002) in the Black and Scholes model for power
and exponential utilities, and it has been generalized in a semimartingale financial
model and backward utility function by Kramkov and Sirbu (2006, Theorem A.1).
Theorem 7.2 provides a more direct proof for forward utility.

7.3 Second-order extension of themarginal utility price

The following result provides a second-order expansion of the utility indifference
price, for small quantity q of the claim ξT .

Theorem 7.2 Suppose the optimal strategy X∗,q(x) of the optimization program (7.3)
to be continuously differentiable 14 with respect to q. The utility indifference price
at time t of a q-quantity of the claim ξT delivered at time T admits the following
second-order expansion in the neighborhood of q = 0

p̂qt,T (x, ξT ) = qput,T (x, ξT )
(
1 + q

Uzz(t, X∗
t (x))

Uz(t, X∗
t (x))

put,T (x, ξT )
)

+ q2
E
(
Uzz(T , X∗

T (x))(∂q X
∗,q
T (x)|q=0 − ξT )ξT

)
Uz(t, x)

+ o(q2) (7.7)

recalling the Davis price put,T (x, ξT ) = E
[
ξT

Y ∗
T (y)

Y ∗
t (y) |Ft

]
, y = uz(x) = Uz(0, x).

Remark that the term RA(u) = −Uzz(t,z)
Uz(t,z)

is the absolute risk aversion coefficient.

Besides, the term ∂q X
∗,q
T (x)|q=0 makes it difficult to compute explicitly this second-

order term.

Proof We prove the result at time t = 0, the dynamic version is obtained in the same
way. From (7.6),

Uz(0, x − p̂q)(∂q p̂
q) = E

(
Uz(T , X∗,q

T (x) − qξT )ξT
)
.

Differentiating again with respect to q, it follows under regularity assumptions

Uz(0, x − p̂q)(∂2q p̂
q) −Uzz(0, x − p̂q)(∂q p̂

q)2

= E
(
Uzz(T , X∗,q

T (x) − qξT )(∂q X
∗,q
T (x) − ξT )ξT

)
.

Then, since p̂q → 0 and (∂q p̂q) → pu when q → 0

∂2q p̂
q |q=0 = E

(
Uzz(T , X∗

T (x))(∂q X
∗,q
T (x)|q=0 − ξT )ξT

)+Uzz(0, x)(pu)2

Uz(0, x)
.

14 In the semimartingale framework, this regularity is obtained from that of the SDE coefficients with
respect to the parameter q. See (Kunita 1997) for regularity of semimartingales with parameters.
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Therefore, the second-order expansion of p̂q in the neighborhood of q = 0 is

p̂q = qpu(1 + qpu
Uzz(0, x)

Uz(0, x)
) + q2

E
(
Uzz(T , X∗

T (x))(∂q X
∗,q
T (x)|q=0 − ξT )ξT

)
Uz(0, z)

+o(q2).
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