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Abstract
In this article, we present a new class of pricing models that extend the application
of Wishart processes to the so-called stochastic local volatility (or hybrid) pricing
paradigm. This approach combines the advantages of local and stochastic volatility
models. Despite the growing interest on the topic, however, it seems that no particular
attention has been paid to the use of multidimensional specifications for the stochastic
volatility component. Our work tries to fill the gap: we introduce two hybrid models in
which the stochastic volatility dynamics is described by means of a Wishart process.
The proposed parametrizations not only preserve the desirable features of existing
Wishart-based models but significantly enhance the ability of reproducing market
prices of vanilla options.

Keywords Wishart process · Local volatility · Hybrid model · Calibration ·
Multi-assets

JEL Classification G12 · G13

1 Introduction

Local volatility (LV) and stochastic volatility (SV) are two of the most widely used
approaches to overcome some well-known drawbacks of Black–Scholes model. LV,
for example, has become a market standard for derivatives pricing and risk manage-
ment within several asset classes, e.g. equity and FX. In early 1990s, the milestone
articles (Derman and Kani 1994) and (Dupire 1994) opened the way to the concept of
LV: specifying a unique time- and state-dependent diffusion process, it is possible to
consistently reproduce any given European options surface observed on the market.
Although the result is quite elegant, it requires the existence of a complete surface
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of quoted options. However, in practice we only observe prices for a discrete set of
instruments with different combinations of moneyness and time to maturity. We then
need to rely on techniques able to “complete” the market surface consistently with
the absence of arbitrage opportunities (roughly speaking this would mean that the
corresponding local variance surface remains nonnegative). Some recent papers go in
this direction: in Gatheral and Jacquier (2014), easy to check conditions are formu-
lated to eliminate static arbitrages in the famous stochastic volatility inspired (SVI)
parametrization (Gatheral 2004), while a finite differencemethod is used in Andreasen
and Huge (2011) to get a complete surface of arbitrage consistent option values from
sparse market prices. Despite the ability in matching the spot implied volatilities, the
LV approach has severe limitations in pricing exotic options. The inherent determin-
istic nature of volatility does not allow to satisfactorily describe the underlying asset
volatility dynamics. A well-known consequence is that LV models tend to generate
forward implied volatility surfaces much flatter than the market ones (see Gatheral
2011 for an overview on the topic).

The drawbacks of LV are partially overcome by the use of SV models where an
additional stochastic process is introduced to describe the dynamics of volatility. A
massive research activity has been produced in this field revealing the wide diffu-
sion of such approach both within practitioners and academics. Notwithstanding the
parametrization adopted, the more realistic description of volatility in SV models
compared to the LV case comes at a price: (diffusion) processes with embedded SV
usually are not able to match market implied volatilities in deep far from the money
regions for short dated options. The first attempt to improve the ability of SV models
to match marginal distribution of stock prices has been the use of jumps (Bates 1996).
Another solution could originate from the observation that LV and SV models are
complementary to some extent: this is exactly the idea behind the so-called stochastic
local volatility (SLV) or hybrid approach. Combining both LV and SV models could
lead to an overall improvement of pricing accuracy since the resulting hybrid model
would benefit from a satisfactory description of volatility dynamics (SV) and the abil-
ity to reproduce market plain vanilla option prices (LV). A fast growing interest in
SLV models has recently led to a widespread research activity aimed at formulating
valid approaches. We refer to Cui et al. (2018) and Homescu (2014) for a comprehen-
sive overview of the topic. An important feature of SLV models is that it is possible
to separately calibrate the LV and SV components and combine them in a nonlinear
and nonparametric way by means of the so-called leverage function. The peculiar and
most delicate step to perform when dealing with SLV is the calibration of leverage
function itself since we need to account for the dependency between LV and SV. Sev-
eral techniques have been devised to tackle the problem: in Engelmann et al. (2011)
and Ren et al. (2007) algorithms are presented to numerically solve the corresponding
nonlinear integral Fokker–Planck PDE. Thesemethods are well suited for models with
embedded 1-factor SV component while for multifactor ones they would suffer from
the curse of dimensionality. Recently some simulation-based techniques have been
proposed: Markovian projection (Henry-Labordere 2009), particle method (Cozma
et al. 2019; Guyon and Henry-Labordere 2012, 2013) and nonparametric numerical
scheme (Van der Stoep et al. 2014). These last two methods allow to deal easily with
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multidimensional processes since they basically require only to be able to sample
trajectories for the asset price.

A common SLV specification in the single-asset framework is the use of nonpara-
metric local volatility combined with a Heston-like stochastic volatility process as in
Tian et al. (2015) and Van der Stoep et al. (2014). However, in the light of the poor
ability of 1-factor SV models in dealing with skew dynamics, as stated in La Bua and
Marazzina (2019), it seems appropriate to introduce a richer structure for the SV part.
To reach such a goal, we present a new hybrid model, the Wishart stochastic local
volatility model (WSLV).

Moreover, the pricing of derivatives with a multi-asset risk exposure requires a
satisfactory modelling of the correlation structure among the involved assets, consis-
tently with an accurate reproduction of individual plain vanilla market evidences. This
leads to the introduction of multi-asset SLV models as done in De Col and Kuppinger
(2014), where a simplified multi-asset Heston framework is extended to accommo-
date for hybrid asset covariations. In order to incorporate a more flexible dependence
structure among state variables,we also introduce theWishart Stochastic LocalCovari-
ance model (WSLC) as hybrid generalization of the pure SV model in Da Fonseca
et al. (2007). As far as we know, this new class of models represents one of the first
attempts, and probably the most comprehensive one, to provide a multidimensional
variance dynamics within the SLV pricing paradigm.

Besides the extension of SLV literature to the case ofmatrix-based stochastic volatil-
ity parametrizations, we aim at improving the pricing performance of pure SVWishart
models. As shown in La Bua and Marazzina (2019, 2021), indeed, we must introduce
stringent parameters restrictions to satisfy existence and uniqueness conditions for
the solution of Wishart stochastic differential equation (SDE). This is needed, for
example, when we want to simulate the variance process in order to price more exotic
derivatives. However, such conditions are not usually met when market calibration
is performed. Consequently, the constrained parameters set obtained enforcing such
conditions is not able to accurately reproduce the market implied volatility surface. In
our new setting, the additional LV component acts as a compensator meant to reduce
the gap with the market still preserving the well definiteness of Wishart processes.
Therefore, the introduction of the LV component in this hybrid paradigm results in a
significant improvement of the ability of the model in reproducing the market.

The article is organized as follows: in Sects. 2 and 3, we briefly describe the general
SLV andWishart volatility frameworks, respectively. In Sect. 4, we present theWSLV
model and report a realistic implementation of the model using the market dataset of
DAX option prices. In Sect. 5, we illustrate the main properties of the WSLC model
and show an application on market data for the pair of indices EuroStoxx50-DAX.
Finally, in Sect. 6, we state some concluding remarks.
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2 The general SLV framework

A SLV model specifies the following risk-neutral dynamics for the T -forward price
f (t) of an equity asset

d f (t) = f (t) σ (t, f (t)) ψ(V (t)) dB(t), (1)

where V (t) is a (possibly multifactor) stochastic process that affects the dynamics
of f (t) through the functional form ψ(·) and B(t) is a Brownian motion of suitable
dimension that can be correlated with the source(s) of randomness in V (t). As an
example if V (t) is described in terms of 1-factor CIR process and ψ(v) = √

v, then
we get the popular Heston stochastic local volatility model (Tian et al. 2015; Van der
Stoep et al. 2014).

In this paper, we consider, without loss of generality, risk-free rate and dividend
yield equal to zero. We refer the reader to Guyon and Henry-Labordere (2011) for
the extension of SLV models to the case of stochastic interest rates and/or discrete
dividends.

Here, σ(t, f (t)) is the leverage function that can be interpreted as a (deterministic)
local adjustment factor introduced to match the underlying asset terminal distribution
observed on themarket. The definition ofσ(t, f (t)) is the key aspect of SLVmodelling
as well as the most challenging task in the implementation of any model of this kind.
Before stating the fundamental result about SLV modelling, we recall an important
theorem in stochastic calculus that represents the main tool to develop the formal
ground of the framework.

Theorem 1 (Mimicking process, Gyöngy 1986) Let ξ(t) be a stochastic process sat-
isfying the SDE

dξ(t) = α0(ω, t)dt + α1(ω, t)dW (t), ξ(0) = 0,

where W (t) is a (possibly multidimensional) Brownian motion and α0, α1 bounded,
nonanticipative processes such that α1α

�
1 is uniformly positive semidefinite. Then

there exists a SDE

dx(t) = a0(t, x(t))dt + a1(t, x(t))dW (t), x(0) = 0,

with nonrandom coefficients that admits a weak solution x(t) having the same one-
dimensional distribution as ξ(t) for any t ≥ 0. The coefficients a0 and a1 have the
following representation

a0(t, x) = E [α0(t)|ξ(t) = x] ,

a1(t, x) =
√
E

[
α1(t)α�

1 (t)|ξ(t) = x
]
.

Thanks to this result, we are suppliedwith an explicit strategy to construct stochastic
processes drivenbydeterministic coefficients that “mimic” someother (more involved)
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processes with stochastic coefficients. We now state a general result, firstly shown in
Ren et al. (2007), that links the leverage function to both the LV and SV components.

Proposition 1 (Leverage function, Ren et al. 2007) Given a SLV model defined by
Eq. (1), the market observed implied volatility surface is matched if and only if the
leverage function is of the form1

σ(t, f ) = σLV (t, f )√
EQ

[
ψ2(V (t))

∣∣ f (t) = f
] , (2)

where σLV (t, f ) is the local volatility calibrated on the same market prices.

Proof In its basic intuition, Eq. (2) is a straightforward application of Theorem 1: let
us set

σLV (t, f ) =
√
EQ

[
σ 2(t, f )ψ2(V (t))

∣∣ f (t) = f
]
, (3)

such that the solution of LV process d f (t) = σLV (t, f (t)) f (t)dB(t) and Eq. (1)
share the same marginal distribution for f (t). The matching with the market follows
directly from the definition of local volatility process as given in Dupire (1994). We
refer the interested reader to the original paper (Ren et al. 2007) for a complete proof.

��

Proposition 1 provides an interesting interpretation for the leverage function as the
ratio between the local volatility and the expected value of the stochastic volatility
component. Intuitively this suggests how a SLV model works: if the (expected) level
of stochastic volatility is significantly different to the local volatility, then the leverage
function acts as compensator (on average).

Clearly, the specification (1) includes the “pure” LV or SV models as particular
cases: with σ(t, f ) = 1 we get a standard SV model while assuming no randomness
in V (t) we end up with the LV dynamics.

As pointed out in Guyon and Henry-Labordere (2011), substituting Eq. (2) into
Eq. (1) we get a McKean SDE where the diffusion coefficient depends not only on
state variables but also on their joint probability distribution. Keeping on following
(Guyon and Henry-Labordere 2011), issues about existence and uniqueness of SLV
SDE (1) have been raised since we have no certainty at all that any market implied
volatility surface can be matched given a set of parameter for the SV part. Numerical
investigations show that the problem becomes quite relevant when large values of
volatility of volatility are needed to obtain very steep forward skew in standard (1-
factor) SV models. The same observation is found in Sepp (2011) where jumps are
added to the SLV dynamics.

1 The expectation in Eq. (2) is computed under the risk-neutralmeasure sincewe are interested in derivatives
pricing.
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2.1 Calibration of a SLVmodel

In order to be able to implement a given SLV model, we firstly need to calibrate its
three main components: local volatility surface, stochastic volatility parameters and
leverage function (2). Remarkably, it is possible to decompose the overall problem
into three individual tasks to be tackled separately. In particular, the calibration of
leverage function can be carried out via ad hoc algorithms after having determined the
LV and SV components. In the following, we illustrate the calibration of LV surface
and leverage function. The estimate of SV parameters is, indeed, highly influenced by
modelling assumptions and requires a customized approach. In our case, we refer to
La Bua and Marazzina (2019, 2021) for an extensive treatment of the methodologies
applied to the calibration of Wishart-based parameters.

2.1.1 Calibration of LV surface

TheLV surface can be estimated following one of the (numerous) approaches proposed
in literature. Despite the lack of evidences in favour of a particular calibration scheme,
we remark that the chosen approach should not generally affect the outputs of SLV
modelling, provided that the method produces realistic results. We choose to consider
a nonparametric specification of LV surface and calibrate it using the algorithm in
Abasto et al. (2013). The scheme,which is basically a slightmodification ofAndreasen
and Huge (2011), has been proven to give accurate results in repricing calibration
instruments with both PDE and Monte Carlo methods. Let 0 = T0 < T1 < TN be a
set of option expiry dates and consider the Dupire forward equation (Dupire 1994)

∂C(K , T )

∂T
= 1

2
σLV (T , K )2K 2 ∂2C

∂K 2 (K , T ) (4)

where we set, for the sake of simplicity, interest rates and dividends to zero. In
Andreasen and Huge (2011), the authors propose to calibrate Eq. (4) between two
consecutive dates with the following one-step implicit finite difference scheme

[
1 − 1

2
(Ti+1 − T1)σ̄i (K )2K 2 ∂2

∂K 2

]
C(K , Ti+1) = C(K , Ti ), (5)

C(K , 0) = [S(0) − K ]+ , i = 0, 1, . . . , N (6)

where σ̄i (K ) are the volatility proxies to be calibrated by minimizing the difference
between themarket prices and those obtained by Eq. (5). Further, the function σ̄ (T , K )

is considered to be piecewise constant in time and strike. The modification proposed
in Abasto et al. (2013) considers the same optimization problem but introduces a finer
time grid between market expirations in order to produce more accurate results. The
corresponding equation becomes

[
1 − 1

2

(Ti+1 − T1)

NT
σ̄i (K )2K 2 ∂2

∂K 2

]
C

(
K , Ti + (Ti+1 − T1)

NT

)
= C(K , Ti ), (7)
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Fig. 1 Local volatility surfaces calibrated to market data on 3 February 2016. DAX index (left) and
EuroStoxx50 index (right)

C(K , 0) = [S(0) − K ]+ , i = 0, 1, . . . , N (8)

with NT the number of points in the temporal mesh between any two consecutive
dates. An additional advantage of the method (in comparison with the original scheme
in Andreasen and Huge 2011) is that the calibrated volatility proxies represent in this
case the calibration output with no need of further processing. In Fig. 1 we report the
calibrated LV surfaces for DAX and EuroStoxx50 indices. In both cases, results are
obtained in less than 2 seconds via Matlab code on a laptop PC with an Intel Core i7
CPU and 8 GB RAM.

2.1.2 Calibration of leverage function

Given a LV surface and a set of SV parameters (ideally) calibrated on the same basket
of market options, the last step in the implementation of a SLVmodel is the calibration
of Eq. (2). The task, however, is not trivial since the computation of the conditional
expectation therein would require to know the joint distribution of f (t) and V (t). This
is clearly not the case due to the presence of the nonparametric LV component that
affects the dynamics of f (t) itself.

In 1-factor SLV models PDE methods are proposed to solve the corresponding
Fokker–Planck equation. However, in multifactor SLV models these methods are
totally unfeasible since we would deal with high-dimensional PDEs.

Simulationmethods appear to bemore appropriate and flexible enough to be applied
within multifactor SLV frameworks. Among the proposed approaches, the nonpara-
metric method presented in Van der Stoep et al. (2014) is the most intuitive and easiest
to implement. This approach is a particular implementation of the particlemethodwith
a simple rectangular kernel (Guyon and Henry-Labordere 2013). Since we extensively
use this technique for our numerical tests, a brief description is given. We refer the
interest reader to the original paper for a detailed illustration and a complete error
analysis.
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Let f̂ be the discrete time approximation to the SLV (1). A naive Euler scheme
would take the form

f̂ j (tm+1) = f̂ j (tm) σ (tm, f̂ j (tm)) ψ(V̂ j (tm))
√

� B, f̂ j (0) = f0 > 0, (9)

for the generic j-th simulation, j = 1, . . . , N , at a given time step m + 1 with
m = 0, . . . , MT . Here, N is the total number of simulated paths and MT the number
of time steps. We also set a uniform time grid � = T /MT where T is the terminal
date. The (multidimensional) standard normal variable B is assumed to be enriched
with the correlation structure assumed by the chosen SV model (at this stage, for sake
of generality, we leave it unspecified). The stochastic variance process V is simulated
with an appropriate scheme as well.

Substituting Eq. (2) in Eq. (9), we get

f̂ j (tm+1) = f̂ j (tm)
σLV (tm, f̂ j (tm))√

EQ
[
ψ2(V (tm))

∣∣ f (tm) = f̂ j (tm)
] ψ(V̂ j (tm))

√
� B.

(10)

The idea in Van der Stoep et al. (2014) is to group the N realizations of pair
( f̂ j (tm), V̂ j (tm)) at each time stepm into 	mutually exclusive subsets based on sorted
values of f̂ j (tm). The approximation of conditional expectation in Eq. (10) is then
given by

E
Q

[
ψ2(V (tm))

∣∣∣ f (tm) = f̂ j (tm)
]

≈ E
Q

[
ψ2(V (tm))

∣∣∣ f (tm) ∈ (bk,bk+1
]]

(11)

for a proper choice of bins (b1,b2] , (b2,b3] , . . . , (b	,b	+1
]
withb1 ≥ 0 andb	+1 <

∞.
Two different bins specifications are proposed in Van der Stoep et al. (2014):

equidistant and equally weighted (i.e. into each subset there is approximately the
same number of realizations) bins. The latter has been found to give better results in
terms of approximation accuracy in particular and it is the one used in our numerical
tests. This means that for each time step we choose the 	 + 1 bins according to

b1(tm) = f̄1(tm), b	+1(tm) = f̄N (tm), bk(tm) = f̄(k−1)N/	(tm), k = 2, . . . , 	

(12)

where
{
f̄ j (tm)

}N
j=1 indicates the sequence of f̂ j (tm) sorted in ascending order.

3 TheWishart volatility framework

In this section, we briefly introduce the Wishart (multidimensional) stochastic volatil-
ity model (WSV, La Bua and Marazzina 2019 and references therein) and the Wishart
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affine stochastic correlation model (WASC, La Bua and Marazzina 2021 and refer-
ences therein). These two models exploit a Wishart process to deal with a multifactor
stochastic volatility process in a single-asset framework (WSV) and with a multi-asset
stochastic volatility framework (WASC). In Sects. 4 and 5, we show how local volatil-
ity can be used to extend the WSV and the WASC model, and the great advantages
due to this extension.

3.1 Wishart process

First of all, we report the definition of a Wishart process.

Definition 1 (Wishart process) LetW (t) be a d × d Brownian motion (i.e. a matrix of
d × d independent scalar Brownian motions) and S+

d (R) the set of real d × d positive
semidefinite matrices. We define the Wishart process as the solution on S+

d (R) of the
following SDE:

d
(t) = (���+M
(t)+
(t)M�)dt + √

(t)dW (t)Q + Q�dW�(t)

√

(t),


(0) = 
0 ∈ S+
d (R) (13)

with �, Q, M ∈ Md(R) (the set of real d × d square matrices).

In order to embed mean-reversion and stationarity, we consider matrix M to have
only eigenvalues with negative real part. Furthermore, we relate the deterministic part
of the drift in Eq. (13), ���, to the expected long-term value of the process, denoted
with 
∞, by means of the equation

− ��� = M
∞ + 
∞M�. (14)

From Eqs. (13) and (14), we can easily see the close connection between Wishart and
CIR processes. If we set d = 1 in Eq. (13), we end up with a scalar CIR process
defined by the SDE

dv(t) = κ(θ − v(t))dt + η
√

v(t)dwv(t), v(0) = v0, (15)

with κ , θ , and η strictly positive parameters, v0 ≥ 0 and wv(t) a scalar Brownian
motion.

Section 2.1 in LaBua andMarazzina (2019) dealswith the existence and uniqueness
of the solution of the Wishart process SDE above defined. More precisely, assuming
a more restrictive parametrization for the deterministic part of the drift

��� = βQ�Q, (16)

there exists a unique (weak) solution if

β ≥ d − 1, (17)
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and a unique (strong) solution if

β ≥ d + 1. (18)

The real positive parameter β plays the role of Feller’s condition in the univariate case.
Additionally if the Condition (17) is not met the whole process is not well defined.
We refer to La Bua and Marazzina (2019) for further details.

3.2 Wishart multidimensional stochastic volatility model

In order to overcome inherent limitations of 1-factor SVmodels in describing the term
structure of volatility skew, as documented for example in Christoffersen et al. (2009),
Cont and Da Fonseca (2002) and Pacati et al. (2018), a matrix generalization of Heston
modelwas proposed inDaFonseca et al. (2008). This is theWishart (multidimensional)
stochastic volatilitymodel (WSV)where the dynamics of the forward price of an equity
asset is given by

d f (t) = f (t)Tr
[√


(t) dB(t)
]
, f (0) > 0, (19)

and B(t) is a d-dimensional matrix Brownian such that

B(t) = W (t)R� + Z(t)
√
Id − RR�, (20)

with Z(t) another matrix of Brownian motions independent ofW (t) and R ∈ Md(R)

that fulfils the condition Id − RR� ∈ S+
d (R). This correlation structure is required in

order to preserve the analytical tractability of the model: the WSV model so defined,
indeed, belongs to the class of affine models (La Bua and Marazzina 2019).

In Da Fonseca et al. (2008), the authors show that theWSVmodel can be expressed
in a scalar form, as stated in the following proposition.

Proposition 2 (Scalar version of WSV dynamics, Proposition 3.2 in La Bua and
Marazzina 2019) Let y(t) = log ( f (t)) be the asset log-price, then its dynamics
in the WSV model can be written as

dy(t) = −1

2
V(t)dt + √

V(t) db(t), (21)

dV(t) =
(
Tr

[
β Q�Q

]
+ 2 Tr [M
(t)]

)
dt + 2

√
Tr

[

(t)Q�Q

]
dw(t), (22)

where b(t) and w(t) are two scalar Brownian motions with stochastic correlation
given by

ρW (t) = Tr [RQ
(t)]
√
Tr [
(t)]

√
Tr

[
Q�Q
(t)

] . (23)
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3.3 Wishart affine stochastic correlationmodel

The Wishart Affine Stochastic Correlation (WASC) model was introduced in Da Fon-
seca et al. (2007) and further studied in La Bua andMarazzina (2021) with the purpose
of reproducing well-known multi-asset stylized facts in a tractable way. The WASC
model makes use of Wishart process to describe the stochastic variance covariance
matrix of asset returns. The model proposes the following joint dynamics for a vector
of forward asset prices:

df(t) = diag [f(t)]
√


(t) db(t), f(0) ∈ R
d+ (24)

where diag [·] is the operator that transforms a d-dimensional column vector into a
d × d diagonal matrix. In Eq. (24) b(t) is a d-vector Brownian motion such that

b(t) =
√
1 − r�r z(t) + W (t) r (25)

with z(t) another vector Brownianmotion independent onW (t) and r ∈ [−1, 1]d such
that r�r ≤ 1. Here, r can be interpreted as the vector of coefficients meant to drive
the linear correlation between the shocks on asset returns and shocks on variance–
covariance matrix 
(t). The choice of the correlation structure (25) represents the
major improvement with respect to the model in Gourieroux and Sufana (2004) and
aims at accommodating realistic single-asset volatility skews still preserving the affin-
ity of the model. Remarkably, the resultingWASC dynamics (24) allows for stochastic
correlation among asset returns in a tractable framework where each asset is enriched
with a stochastic volatility behaviour consistent with the effects observed on plain
vanilla markets. We refer to La Bua and Marazzina (2021) for further details.

4 TheWishart stochastic local volatility model

In La Bua and Marazzina (2019), the authors provide a fast and accurate algorithm to
calibrate the WSV model. However, numerical results setting d = 2 shows that the
Condition (17) is not usually met calibrating the model (e.g. Table 1 in La Bua and
Marazzina 2019), and imposing it as a constrained has a not negligible impact on the
ability of the model to capture the market prices and volatility (see Figures 5 and 6 in
La Bua and Marazzina 2019). However, if Condition (17) is not satisfied, the process
is not well defined. Therefore, in the following we exploit the LV term in order to
enhance the WSV model, showing that, thanks to the LV component, we are able to
fit market data also imposing Condition (17).

4.1 Model dynamics

In order to increase the ability of WSV model in describing the marginal probability
distribution of asset price, we introduce theWishart stochastic local volatility (WSLV)
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220 G. L. Bua, D. Marazzina

model given by

d f (t) = f (t) σ (t, f (t))Tr
[√


(t) dB(t)
]
, (26)

where 
(t) is a Wishart process described by Eq. (13). Equivalently, we can write

d f (t) = f (t) σ (t, f (t))
√
V(t)db(t), (27)

with dynamics of V(t) and stochastic correlation given, respectively, by Eqs. (22) and
(20). The latter specification leads to an immediate interpretation of Eq. (27) as a SLV
model in light of the general framework defined by Eq. (1). That is we get the WSLV
dynamics as soon as we set V (t) = V(t) and ψ(v) = √

v in Eq. (1).
Consistently with Proposition 1, we define the WSLV leverage function as

σ(t, f ) = σLV (t, f )√
EQ [Tr [
(t)]| f (t) = f ]

, (28)

such that, byTheorem1, themodelmatches themarket implied probability distribution
of asset prices. The resulting model induces a hybrid instantaneous variance for the
log-asset y(t) = log( f (t)) given by

d [y(t), y(t)] = σ 2(t, ey(t))V(t)dt (29)

with the remarkable property to embed a multifactor specification of the stochastic
volatility component.Here, the notation [·, ·] refers as usual to the quadratic covariation
of two stochastic processes. Equation (26) represents, indeed, a generalization of the
WSVmodelmeant to combine theflexibility grantedby theunderlyingWishart process
with an accurate pricing of plain vanilla options. Even if our modelling choice can
be seen questionable since we lose the analytical tractability of WSV model we have
numerous arguments in favour. Firstly, as in any SLV model, the calibration of LV
and SV is performed separately, therefore we can still rely of fast calibration routines
for the SV parameters. Secondly Monte Carlo pricing is unavoidable when we deal
with exotic options even in affine models. Finally, as shown in Sect. 4.2, we get an
evident improvement in the pricing performance of European options that could not
be achieved otherwise. We think indeed that moving towards a hybrid framework is
the only viable way to improve the accuracy of the WSV model given the restrictions
on the parameter β.

The usual fixof adding jumps presents several drawbacks in this case. The additional
increase in the number of parameters comeswith no guarantee that the loss of accuracy
imposed by the restriction β ≥ d − 1 would be generally overcome. Analogously to
the 1-factor SV case, apart from anything else, jumps pose nontrivial problems in a risk
management perspective. As illustrated in Da Fonseca and Grasselli (2011) adding
jumps on the stock and/or on the volatility could lead to a loss of parameters sensitivity
with respect to the skew since it is into some extent transferred to the parameters that
drive the discontinuities.
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Table 1 Calibration on 3
February 2016 with the WSV
model over a full set of DAX
European call options. Source
Table 1 in La Bua and
Marazzina (2019)

Parameter β ≥ 0 β ≥ 1

β 0.3287 1.0405


11 0.0653 0.0794


12 0.0105 0.0038


22 0.0213 0.0003

M11 − 1.0793 − 0.7020

M12 − 0.8468 0.0893

M22 − 1.4760 − 0.9895

Q11 0.4060 0.2703

Q12 0.1623 − 0.0198

Q21 0.4097 0.0317

Q22 0.4763 0.0879

R11 − 0.7280 − 0.7056

R12 − 0.1718 − 0.0090

R21 0.6232 − 0.0277

R22 − 0.5645 − 0.5293

4.2 Numerical results

Pricing routine within the WSLV model follows the same steps as in any other SLV
model: (1) calibration of LV and SV components, (2) calibration of leverage function
and (3) pricing. In La Bua andMarazzina (2019), the authors performed the calibration
of Wishart-like SV component over a set of market prices of call options written on
DAX index. In particular, we set d = 2 and we consider here the parameters obtained
enforcing the condition β ≥ 1 (rightmost column of Table 1, reporting the parameters
presented in Table 1 in LaBua andMarazzina 2019) in order to dealwith awell-defined
variance process, given that Condition (17) is satisfied.

Exploiting the simulation-based approach in Van der Stoep et al. (2014) for the
calibration of leverage function, we can address steps (2) and (3) in a single run
enhancing the computational efficiency of the procedure. In order to discretize Eq. (27)
we can apply the GVA sampling scheme provided in La Bua and Marazzina (2019).
The use of an efficient scheme, indeed, is greatly recommended in this case: since
in the SLV framework we deal with the simulation of a process with an embedded
local volatility component, which is known to require a fine time discretization to get
precise results, we need to rely on a fast and accurate sampling procedure. To take into
account the presence of the additional local adjustment term, we need to introduce
some slight modifications to the GVA scheme, that for the WSLV model reads as

ŷ(t + �) = ŷ(t) − 1

2
σ 2(t, eŷ(t))V̂(t)�

+ σ(t, eŷ(t))

(
ρ̂W (t)

√
V̂(t)w̃ +

√(
1 − ρ̂

2

W (t)
)
V̂(t )̃z

)
. (30)
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Fig. 2 Implied volatility for European call options on DAX index. Upper panels: T = 1M (left), T = 3M
(right). Lower panels: T = 1Y (left), T = 3Y (right)

For the discretization of V , V̂ , and further details, we refer to (La Bua and Marazzina
2019, Section 4.2). Further, we set the number of bins required to compute Eq. (11)
to 50 and we choose them according to Eq. (12) at any time step. The Monte Carlo
simulations are performed sampling 105 trajectories with daily time steps. With this
settings we are able to solve the calibration problem for a time horizon of 3 years in
less than 28 s.2 Storing the calibrated values of the leverage function as well as the
chosen bins we can reuse them for further applications.

We are finally ready to test the ability of WSLV model in improving the pricing
performance of both its components. We can therefore price European and forward
starting options to assess the overall effect of the proposed SLV mixing.

2 All the numerical tests have been implemented via Matlab code on a laptop PC with an Intel Core i7 CPU
and 8 GB RAM. Algorithms are coded in Matlab and then compiled as MEX files.
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Table 2 Mean absolute error in
volatility points (1 = 1%
difference with respect to market
values)

Maturity LV WSV β ≥ 0 WSV β ≥ 1 WSLV

1M 0.0765 0.4138 1.8937 0.2115

3M 0.1945 0.7323 2.3794 0.1750

1Y 0.1329 0.1269 0.4075 0.1307

3Y 0.1720 0.1172 0.2099 0.1412

Overall 0.1474 0.3317 1.1405 0.1609

4.2.1 European options

We test the WSLV performance with respect to short and long dated European call
options. Figure 2 shows the results for maturities in the range {1M, 3M, 1Y , 3Y }
in order to assess the performance over the entire term structure of volatility surface.
As comparison we also priced the options within the pure LV and SV models. For
the latter, we consider both parameters sets reported in Table 1, with and without the
constraint β ≥ 1. In Section A, we report the numerical results in terms of difference
between market and models implied volatilities. Table 2 summarizes the evidences
found in terms of mean absolute error with respect to market implied volatilities:

The conclusion is that if we enhance the WSV model with a LV term, then the
worsening induced by the constraint on the parameter β in the WSV model can be
fully neutralized: the marginal asset probability distribution in WSLV substantially
matches the market one.3 We see that the performance of WSLV is comparable to
the pure LV model. This is particularly evident if we focus on the shorter maturities:
for options with strike prices far from the at-the-money level, the improvement over
the SV parametrizations is quite substantial. The result is a direct consequence of the
SLV mechanism: the compensation effect due to the leverage function fills the gap
betweenmarket and SVmodel. For longermaturities, since the SVmodel already gives
adequate results, the adjustment due to the local volatility term is less pronounced.
However, also in this case the WSLV gives a better fit of market values than the WSV
with β ≥ 1.

We would like to stress that we also report results for the WSV model without the
constraint β ≥ d − 1 to show that, without this constraint, the model performs better,
as also shown in La Bua and Marazzina (2019). However, if β ∈ [0, 1), even if we
can use the characteristic function for calibration, the model is not well defined, and,
for example, a Monte Carlo simulation is not feasible. This is the reason why in the
WSLV model we only deal with the case β ≥ 1. Our results show that, thanks to the
LV component, a good fit to market data is possible even in a framework where the
Wishart SV component is well defined. Therefore, introducing the LV component is
a simple and efficient way to improve the fit to market data in a Wishart SV (well
defined) framework.

3 We recall that if our goal is to use a Monte Carlo framework, then we need to impose at least condition
β ≥ 1 in the case d = 2. Fulfilling this condition results in an overall calibration error equal to 1.1405
for the WSV and to 0.1609 for the WSLV model, see Table 2. Therefore, the advantage of the new hybrid
framework.
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Computationally the affine nature of WSV makes the pricing of European options
quite fast without having to rely on simulations. However, the possibility to exploit
new efficient simulation scheme for Wishart-based models allows to get prices in
acceptable time also within the WSLV one. CPU time is then comparable to the ones
for the pure SV case: the additional calculation time due to the presence of the local
volatility term is indeed negligible.

4.2.2 Forward starting options

Having confirmed the ability of WSLV model in overcoming the limitations of the
pure WSV one with respect to the pricing of European claims, we can now test if
the new framework is also able to produce realistic forward volatility dynamics. More
precisely,weprice twodifferent sets of forward starting options that starts, respectively,
at T1 = 3 months and T1 = 2 years with maturity in one year. We can exploit the
analytical tractability of WSV model to price forward starting options via FFT in
the pure SV case. As shown in Da Fonseca et al. (2008), the forward characteristic
function of log-returns can be expressed in terms of the characteristic function of the
Wishart process. This gives us an insight about the nature of this kind of options: they
are basically pure variance derivatives. On the other hand, we need to rely on Monte
Carlo simulations for the pricing with LV and WSLV models. Figure 3 illustrates the
results in terms of Black–Scholes implied volatility, that is the value of σBS such that

CFS
Model(K , t0, T1, T2) = e−rT1CBS(1, K , T2 − T1, σBS),

where CFS
Model(K , t0, T1, T2) is the model price of a forward starting option that starts

at T1 and expires at T2 with strike K while CBS(S0, K , T , σ ) is the Black–Scholes
price of a plain vanilla call option. The message we get is clear: within the WSLV
framework, we are still able to reproduce the proper volatility dynamics of the pure
SVmodel. As we can see in Fig. 3, as time goes by the forward implied volatility in the

Fig. 3 Implied volatility for forward starting call options on DAX index. T1 = 3M (left), T1 = 2Y (right).
In both cases, T2 = T1 + 1Y
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LV case becomes flatter showing the inadequacy of the model in describing how the
volatility actually evolves. This does not happen for the SV and WSLV models where
the skew persists through time. The ability of preserving a forward implied volatility
shape similar to the SV case is a well-known feature of SLV models, as shown for
example in Engelmann et al. (2011) and Van der Stoep et al. (2014) for the Heston
stochastic local volatility model. The problem seems poorly addressed in the existing
literature, see, e.g. (Guyon and Henry-Labordere 2013, Section 12.11): according to
our knowledge, this is the first time that such a result is obtained for a multifactor
affine specification of the SV component.

4.2.3 On the calibration of the SV and LV components of the WSLVmodel

Figure 2 shows that, when an European call option is considered, the WSLV and LV
models provide similar implied volatility curves, the same for the SV model, with
the exception of short maturities in the case the constraint β ≥ 1, necessary for a
well-defined process, is considered. In the case of forward starting call options, Fig.
3 shows that both WSV and WSLV models provide similar implied volatility curves,
while LVmodel fails in reproducing the volatility smile, in particular if large values of
T1 are considered. To get more insight on this, we deal with the following numerical
experiment: instead of calibrating the SV model on market data, we consider the four
sets of parameters reported in Table 3, and we calibrate only the LV component (and
the leverage function) of the WSLV model to the implied volatility market surface of
European options; then we obtain the forward start (with maturity one year) implied
volatility surfaces represented in Fig. 4. These results show that the implied volatilities
are very different for large values of T1, therefore the calibration of the LV component
itself is not enough to represent correctly option prices (with the exception of European

Table 3 WSV model parameters Parameter I II III IV

β 2 2 2 2


11 0.1 0.1 0.1 0.1


12 0 0 0 0


22 0.001 0.001 0.001 0.1

M11 0 0 − 0.75 − 0.75

M12 0 0 0 0

M22 0 0 − 1 − 1

Q11 0.01 0.25 0.25 0.25

Q12 0 0 0 0

Q21 0 0 0 0

Q22 0.01 0.25 0.25 0.25

R11 − 0.5 − 0.5 − 0.5 − 0.5

R12 0 0 0 0

R21 0 0 0 0

R22 − 0.5 − 0.5 − 0.5 − 0.5
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Fig. 4 Implied volatility for forward starting call options on DAX index for the WSLV model, considering
the SV parameters in Table 3. T1 = 3M (left), T1 = 2Y (right). In both cases, T2 = T1 + 1Y

call options, since numerical results here not reported show a good fit also if only the
LV component of the WSLV model is calibrated). To gain more insights, we perform
similar experiments considering set IV in Table 3, and comparing the LV, SV and
WSLVmodels pricing forward start call options with 2 years maturity. Figure 5 shows
the strong action of the LV component (and of the leverage function) of the WSLV
model to “correct” the not-calibrated SV component, resulting on a smile which is
close to the LV model. However, again, if T1 is large, the WSLV succeeds in avoiding
the flattening of the LV model.

The above experiments show the importance of calibrating both the SV and the LV
part correctly. In our calibrations, we calibrate both components on European options,
however, even if rather standard, this is not the unique approach. One can calibrate
the SV part on different kinds of derivatives (if a fast and accurate pricing method
is available, e.g. if the price can be computed exploiting the characteristic function)
leaving to the LV component the fit to the European implied volatility.

These results can be generalized for any SLV model, e.g. the Heston stochastic
local volatility model in Van der Stoep et al. (2014). Numerical experiments here not
reported show a limited gain in exploiting theWSLVmodel with respect to the Heston
stochastic local volatility model if the goal is to deal with derivatives like forward
starting options. We would like to stress that the main advantage in exploiting matrix
stochastic volatility model is the stochastic correlation between assets and volatility:
indeed, in a multidimensional Heston model, the correlation is stochastic but depends
on factors that generates the volatility dynamics itself, while in the case of theWishart
volatility model, the correlation depends on the volatility factors but also on other
factors, see, e.g. (Benabid et al. 2008). Therefore, the advantage of using a Wishart
SV component is its ability to price correctly derivatives like variance swaps, as shown
in Da Fonseca et al. (2015). Due to the presence of closed formulas for some variance
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Fig. 5 Implied volatility for forward starting call options on DAX index for the WSLV model, considering
the SV set of parameters IV in Table 3. T1 = 3M (left), T1 = 2Y (right). In both cases, T2 = T1 + 2Y

derivatives, see, e.g. Da Fonseca et al. (2015), in the Wishart SV framework, the SV
parameters could be set to improve the fitting to variance derivatives market data, if
available.

5 TheWishart Stochastic Local Covariancemodel

In La Bua and Marazzina (2021), the authors showed that the reduced WASC model
is able to generalize the Heston model in a multi-asset framework embedding a rich
dependence structure among all the state variables involved. Unfortunately, in order
to grant a realistic dynamics of Wishart generated cross-asset correlations, they found
necessary to enforce the (very) restrictive condition of positive definiteness for the
Wishart process, exactly as in the WSV model in La Bua and Marazzina (2019).
This in turn has the unpleasant effect to produce an extremely rigid implied volatility
structure. However, even in this case, the introduction of a LV term is able to fix the
problem.

5.1 Model dynamics

With the objective of alleviating such a distortion, we now introduce the Wishart
Stochastic Local Covariance (WSLC) model, where the risk-neutral joint behaviour
of a d-dimensional vector of forward asset prices is

df(t) = diag [f(t)]�[f(t),
(t)] db(t) (31)
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with 
(t) and b(t) defined, respectively, by Eqs. (13) and (25). Here, the matrix
function �[f(t),
(t)] combines the local and the stochastic volatility components
such that the instantaneous covariance matrix among log-assets is

(dy(t)) (dy(t))� = ���dt = �2dt, (32)

with y(t) = [
log ( f1(t), f2(t), . . . , fd(t))

]�
.Adirect application of Theorem 1 guar-

antees that the single-asset terminal probability distributions induced by Eq. (31) are
consistent with market ones provided that we have

E
Q

[
�2

i,i [f(t),
(t)]
∣∣∣ fi (t) = f

]
= σLV ,i (t, f ), (33)

for i = 1, . . . , d and σLV ,i is the local volatility calibrated to the i th asset option
prices. In order to fulfil this requirement, we assume the following parametrization
for �:

�[f(t),
(t)] = diag [σ (t, f(t))]
√


(t) (34)

where σ (t, f(t)) is a vector-valued leverage function whose values are given by

σi (t, f ) = σLV ,i (t, f )√
EQ [
i (t)| fi (t) = f ]

. (35)

It is worthwhile to point out that the choice of � is not unique and different specifica-
tions can accommodate alternativemodelling features. If we consider, for example, the
FXmarket, a desirable property of a pricing model would be to preserve the symmetry
under inversion and triangulation of FX rates. In that case, matrix � in Eq. (34) is
not the optimal choice since it would lead to mis-specified cross-rates dynamics. We
refer to De Col and Kuppinger (2014) for the treatment of the topic in a multi-asset
hybrid extension of (a simplified) Heston model. Nonetheless, since our main con-
cern here is to focus on equity markets, parametrization (34) represents an adequate
setting. In particular, considering for simplicity d = 2, we have that the WSLC asset
instantaneous covariance matrix reads as

(dy(t)) (dy(t))� = �2dt =
[

σ 2
1 
1(t) σ1σ2
12(t)

σ1σ2
12(t) σ 2
2 
2(t)

]
, (36)

where we use the shorthand notation σi = σi
(
t, eyi (t)

)
. The asset covariance is then

hybrid (thus the name of the model), since it now depends on y1(t), y2(t) and 
12(t).
Furthermore, quite interestingly, we end up with the same correlation structure

induced by the pure stochastic volatility model. From Eq. (36), indeed, it results that

Corr [dy1(t), dy2(t)] = 
12(t)√

1(t)
2(t)

dt . (37)
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This is due to the peculiar form of matrix �. An inherent advantage of this result is
that we are granted with cross-asset correlations that lie in the interval [−1, 1] as soon
as the Wishart process is well defined. For the sake of generality, though, we remark
that the overall effects can be more subtle and would require a thorough analysis of the
induced dependence structure that we leave to further research. In particular, it would
be interesting to study the differences in terms of pricing of multi-asset securities with
respect to hybrid specifications of asset correlation.

The framework proposed naturally applies to the most general parametrization of
Wishart process. However, we consider a reduced form by setting matrix M diagonal.
In this setting, theWSLCmodel is able tomatch the prices of univariate path-dependent
options generated with a hybrid Heston model whose parameters are set as illustrated
in Section 3.1 in La Bua and Marazzina (2021). Indeed, as already pointed out for
the WASC model, it is possible to show that each asset dynamics is equivalent to an
individual instance of the hybrid Heston model. This allows, for example, to rely on
existing techniques specifically devised for the Heston case, such as the numerical
schemes for the solution of the Fokker–Planck PDE in the calibration of σi (t, f ).
More importantly, in the light of the above, we can interpret the WSLC model as an
intuitive multi-asset extension of the Heston model able to introduce a high degree
of flexibility in designing the dependence structure thanks to the underlying Wishart
process.

5.2 Numerical results

This section is devoted to illustrate a realistic implementation of theWSLCmodel.We
consider here a two-assets specification of the model intended to price derivatives on
the pair of indices EuroStoxx50-DAX. We refer to Sect. 2.1 for the calibration of the
two nonparametric local volatility surfaces (one for each asset, d = 2). Additionally,
we consider the Wishart-based parameters in the third column of Table 2 in La Bua
and Marazzina (2021), reported in the rightmost column of Table 4, i.e. we assume to
deal with the parameters set obtained by requiring theWishart process to be defined in
the interior of the cone S+

2 (R), i.e. Condition (18). This setting is motivated by the fact
that our goal is to construct a model able to produce realistic cross-asset correlations.

Having specified the LV and SV components, we can now address the task of
calibrating the bivariate leverage function. To this extent, we estimate Eq. (35) by
means of simulation-based approach (11) coupled with the GVA scheme described
in La Bua and Marazzina (2021). This scheme can be extended to deal with the
discretization of WSLC model trajectories by simply modifying Eq. (37) in La Bua
and Marazzina (2021) into

ŷi (t + �) = ŷi (t) − 1

2
σ 2
i

(
t, eŷi (t)

)

̂i (t)�

+σi

(
t, eŷi (t)

) √

̂i (t)

d+i∑
j=1

	̂d+i, j (t)ŵ
∗
j (t) (38)

for i = 1, . . . , d, where all other terms remain unchanged.
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Despite the evidences found in La Bua and Marazzina (2021), indeed, it is our
opinion that the GVA scheme should be preferred over the simpler TE scheme (also
proposed in La Bua and Marazzina 2021) for calibration purposes. This is due to the
fact that the GVA scheme allows for an accurate discretization of Wishart process. On
the contrary, within the TE scheme we cannot bound the process
(t) to remain in the
cone of positive semidefinitematrices and diagonal elements can also become negative
with nonzero probability. Even worse, the truncation mechanism could severely affect
the estimate of (conditional) expected values in Eq. (35) and, ultimately, lead to wrong
calibrated leverage functions. Having this in mind, we perform the calibration of
leverage function by sampling 5 × 105 trajectories on a daily time grid. As in the
single-asset case, we consider 50 equally weighted bins at each time step. We use the
model so defined to price European call options written on each of the two indices,
with maturity of 1 month and 3 years. As comparison, we price the basket of options
in a pure LV setting and in the WASC model for which we consider the unconstrained
parameters and those obtained when the condition β ≥ 3 is satisfied (see Table 4).
In Table 5, we report the mean absolute error in volatility terms with respect to the
market, while in Section B we exhibit the full set of numerical results.

The most evident result is that the WSLCmodel is able to overcome the limitations
due to the request of a positive definiteWishart process.Not only the improvementwith

Table 4 Calibration on 3
February 2016 with the WASC
over a full set of EuroStoxx50
and DAX indices European call
options. Source: first and third
column of Table 2 in La Bua and
Marazzina (2021)

Parameter β ≥ 0 β ≥ 3

β 0.8577 3.0110


11(0) 0.0697 0.0556


12(0) 0.0765 0.0643


22(0) 0.0890 0.0788

M11 − 1.9763 − 0.6740

M22 − 1.1605 − 0.8590

Q11 0.4422 0.1259

Q12 0.1448 0.0920

Q21 0.1075 0.0440

Q22 0.3843 0.1529

r1 − 0.5145 − 0.4706

r2 − 0.5247 − 0.8490

Table 5 Mean absolute error in volatility points (1 = 1% difference with respect to market values)

Asset Maturity LV WASC β ≥ 0 WASC β ≥ 3 WSLC

EuroStoxx50 1M 0.2078 1.2459 3.2357 0.3357

3Y 0.0894 0.5197 0.7123 0.1301

DAX 1M 0.0765 0.8727 2.9537 0.3818

3Y 0.1720 0.3108 0.4866 0.0695

Overall 0.1356 0.6885 1.6580 0.2097
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Fig. 6 Implied volatility for European call options for maturities T = 1M (left) and T = 3Y (right). Upper
panels: EuroStoxx50 index. Lower panels: DAX index

respect to the constrained WASC parametrization is dramatic (the average volatility
error drops from 1.6580 to 0.2097%), but also the comparison with the fully calibrated
SVmodel highlights a consistent overperformance of the new hybrid setting (the error
is reduced by about 70% on average). This effect can be appreciated by looking at
Fig. 6 where the models induced implied volatilities are shown together with market
ones. In particular, we want to stress that the only difference between the WSLC and
the WASC model with the condition β ≥ 3 is the presence of the additional local
adjustment factor in the former dynamics. As a consequence of Eq. (35), the hybrid
model is in line with the LV one and reproduces satisfactorily the market implied
volatility smiles, even when short times to maturity are considered. Overall, the new
model succeeds in fitting the market evidences on single-asset markets and allows a
sound modelling of the dependence structure.
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6 Concluding remarks

In this article, we present a new class of hybrid models with the remarkable feature of
embedding a matrix-defined dynamics for the stochastic evolution of variance factors.
Numerical tests highlight that the new models effectively incorporate the advantages
of LV approach in reproducing plain vanilla market evidences, still preserving the
flexibility of Wishart-based pure SV models. In our framework, the contribution of
the additional LV component is even more relevant if we take into account the fact that
market calibrated parameters usually violate the condition for existence and unique-
ness of (weak) solution to theWishart SDE.We showed that the proposed SLVmixing
presents an effective, probably unique, tool to deal with this problem within the class
of Wishart-based pricing models. Additionally, WSLV model is found to be adequate
evenwhenwe study the resulting volatility dynamics: it preserves the shape of forward
implied volatility originated by the pure multidimensional SV model. This feature, in
conjunction with the ability of properly manage the time structure of the skew, makes
the WSLV a valid alternative to price forward implied volatility-dependent payoffs.
Further, in the light of the evidences shown in La Bua and Marazzina (2019, 2021), it
seems appropriate to consider WSLC as the most genuine and comprehensive frame-
work proposed so far to extend the famous Heston model to the multi-asset case.
The resulting model, indeed, is able to generate a sophisticated dependence structure
among assets and variance factors. More importantly, the newmodels succeed in elim-
inating any kind of mispricing of plain vanilla claims due to the stronger condition
that we need to impose on model parameters in order to get reasonable cross-asset
correlations dynamics.

Calibration and pricing in the new framework are easily dealt thanks to the numer-
ical techniques proposed in La Bua and Marazzina (2019, 2021). In particular, we
extensively rely on the simulation schemes devised for WSV and WASC that allow to
exploit the exact sampling of Wishart process in Ahdida and Alfonsi (2013).

In our opinion, the new models could turn out to be a comprehensive modelling
framework to price a heterogeneous range of exotic derivatives consistently with Euro-
pean claimswhen a flexiblemultidimensional dynamics of variance factors is required.
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Appendix A: WSLVmodel: numerical results

See Tables 6 and 7.
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Table 6 Results of numerical experiments: Part I

Time K/ f0 (%) Market Error

LV WSV β ≥ 0 WSV β ≥ 1 WSLV

1 M 75 40.96 − 0.12 0.14 5.35 1.32

80 38.25 − 0.03 0.24 4.26 0.62

85 35.56 0.00 0.36 3.20 0.26

90 32.89 − 0.03 0.46 2.17 0.08

95 30.25 − 0.03 0.49 1.19 0.02

97.5 28.95 − 0.03 0.46 0.72 0.00

100 27.68 − 0.05 0.41 0.28 − 0.02

102.5 26.45 − 0.10 0.33 − 0.12 − 0.06

105 25.28 − 0.17 0.21 − 0.46 − 0.12

110 23.30 − 0.16 − 0.12 − 0.91 − 0.10

115 22.14 − 0.08 − 0.59 − 0.78 − 0.02

120 22.26 − 0.08 − 0.73 0.25 0.04

125 23.64 − 0.01 − 0.07 2.19 0.07

130 25.78 0.18 1.19 4.63 0.24

3 M 70 41.27 0.93 − 0.24 4.63 0.71

75 38.66 0.46 − 0.17 3.64 0.27

80 36.09 0.22 − 0.11 2.67 0.07

85 33.54 0.10 − 0.08 1.73 − 0.03

90 31.02 0.04 − 0.12 0.83 − 0.09

95 28.55 0.01 − 0.22 − 0.01 − 0.10

97.5 27.34 0.00 − 0.28 − 0.39 − 0.10

100 26.18 − 0.02 − 0.35 − 0.73 − 0.11

102.5 25.07 − 0.05 − 0.41 − 1.02 − 0.15

105 24.04 − 0.09 − 0.45 − 1.25 − 0.20

110 22.37 − 0.09 − 0.47 − 1.42 − 0.19

115 21.49 − 0.05 − 0.41 − 1.05 − 0.14

120 21.60 − 0.02 − 0.20 − 0.04 − 0.13

125 22.56 0.07 0.33 1.47 − 0.08

130 24.01 0.19 1.12 3.22 0.01

140 27.35 0.38 2.91 6.67 0.20

150 30.57 0.58 4.59 9.69 0.40

Market indicates the implied volatility observed on 3 February 2016 for a given call option on DAX index.
The error columns contain the difference between market implied volatility and the one obtained with the
corresponding model
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Table 7 Results of numerical experiments: Part II

Time K/ f0 (%) Market Error

LV WSV β ≥ 0 WSV β ≥ 1 WSLV

1 Y 50 40.53 − 0.62 0.01 2.16 1.15

60 36.71 − 0.35 0.07 1.47 0.45

70 33.20 − 0.19 0.05 0.91 0.18

75 31.55 − 0.16 0.03 0.68 0.10

80 29.95 − 0.13 0.01 0.47 0.05

85 28.42 − 0.11 0.00 0.30 0.01

90 26.94 − 0.10 0.02 0.15 − 0.01

95 25.53 − 0.10 0.05 0.04 − 0.03

97.5 24.86 − 0.09 0.08 − 0.01 − 0.03

100 24.21 − 0.09 0.12 − 0.05 − 0.03

102.5 23.58 − 0.09 0.16 − 0.09 − 0.03

105 22.99 − 0.10 0.21 − 0.11 − 0.04

110 21.90 − 0.09 0.30 − 0.15 − 0.04

115 20.96 − 0.07 0.36 − 0.16 − 0.02

120 20.19 − 0.06 0.34 − 0.16 − 0.03

125 19.61 − 0.06 0.25 − 0.12 − 0.04

130 19.22 − 0.04 0.11 − 0.06 − 0.04

140 18.92 0.00 − 0.11 0.15 − 0.09

150 19.10 0.06 − 0.11 0.48 − 0.12
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Table 7 continued

Time K/ f0 (%) Market Error

LV WSV β ≥ 0 WSV β ≥ 1 WSLV

3 Y 50 31.24 − 0.52 − 0.18 0.57 0.65

60 29.11 − 0.33 − 0.09 0.47 0.38

70 27.22 − 0.23 − 0.05 0.34 0.22

75 26.34 − 0.21 − 0.04 0.27 0.17

80 25.50 − 0.19 − 0.05 0.19 0.14

85 24.71 − 0.17 − 0.06 0.11 0.12

90 23.96 − 0.16 − 0.08 0.04 0.12

95 23.24 − 0.15 − 0.10 − 0.04 0.12

97.5 22.90 − 0.15 − 0.12 − 0.08 0.11

100 22.57 − 0.14 − 0.13 − 0.11 0.11

102.5 22.26 − 0.14 − 0.14 − 0.15 0.10

105 21.95 − 0.14 − 0.15 − 0.18 0.10

110 21.38 − 0.13 − 0.17 − 0.22 0.08

115 20.86 − 0.12 − 0.19 − 0.25 0.07

120 20.40 − 0.11 − 0.19 − 0.26 0.06

125 20.00 − 0.11 − 0.18 − 0.24 0.04

130 19.67 − 0.10 − 0.15 − 0.19 0.03

140 19.18 − 0.09 − 0.04 0.00 0.02

150 18.91 − 0.07 0.11 0.28 0.04

Market indicates the implied volatility observed on 3 February 2016 for a given call option on DAX index.
The error columns contain the difference between market implied volatility and the one obtained with the
corresponding model
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Appendix B: WSLCmodel: numerical results

See Tables 8 and 9.

Table 8 Results of numerical experiments: Part I

Time K/ f0 (%) Market Error

LV WASC β ≥ 0 WASC β ≥ 3 WSLC

1 M 75 40.18 0.49 3.77 11.86 − 1.56

80 36.90 0.31 2.78 9.63 − 0.62

85 33.58 0.18 1.81 7.34 − 0.19

90 30.21 0.08 0.89 5.00 − 0.05

95 26.83 0.03 0.08 2.64 0.05

97.5 25.19 0.02 − 0.24 1.50 0.08

100 23.63 0.00 − 0.48 0.44 0.09

102.5 22.22 − 0.05 − 0.63 − 0.47 0.05

105 21.05 − 0.10 − 0.70 − 1.15 − 0.02

110 19.55 − 0.03 − 0.82 − 1.69 0.04

115 19.03 0.10 − 1.03 − 1.31 0.12

120 19.06 0.28 − 1.24 − 0.49 0.41

125 19.34 0.49 − 1.42 0.45 0.63

130 19.74 0.74 − 1.56 1.34 0.80

3 Y 50 27.42 − 0.22 0.79 1.99 − 0.96

60 25.57 − 0.16 0.61 1.55 − 0.35

70 23.91 − 0.13 0.39 1.12 − 0.07

75 23.13 − 0.12 0.27 0.90 0.00

80 22.38 − 0.11 0.14 0.69 0.05

85 21.65 − 0.10 0.00 0.48 0.08

90 20.96 − 0.09 − 0.14 0.27 0.10

95 20.29 − 0.08 − 0.29 0.07 0.10

97.5 19.98 − 0.08 − 0.37 − 0.03 0.09

100 19.67 − 0.08 − 0.44 − 0.12 0.09

102.5 19.37 − 0.08 − 0.51 − 0.21 0.08

105 19.09 − 0.08 − 0.57 − 0.28 0.07

110 18.60 − 0.07 − 0.64 − 0.38 0.04

115 18.24 − 0.06 − 0.61 − 0.36 0.01

120 18.07 − 0.05 − 0.42 − 0.17 − 0.02

125 18.08 − 0.05 − 0.09 0.18 − 0.05

130 18.20 − 0.04 0.33 0.62 − 0.07

140 18.59 − 0.04 1.22 1.59 − 0.11

150 19.02 − 0.03 2.05 2.53 − 0.14

Market indicates the implied volatility observed on 3 February 2016 for a given call option on EuroStoxx50
index. The error columns contain the difference between market implied volatility and the one obtained
with the corresponding model
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Table 9 Results of numerical experiments: Part II

Time K/ f0 (%) Market Error

LV WASC β ≥ 0 WASC β ≥ 3 WSLC

1 M 75 40.96 − 0.12 1.76 6.60 − 0.89

80 38.25 − 0.03 1.17 5.23 − 0.29

85 35.56 0.00 0.62 3.90 − 0.05

90 32.89 − 0.03 0.14 2.60 0.00

95 30.25 − 0.03 − 0.24 1.36 0.03

97.5 28.95 − 0.03 − 0.39 0.78 0.04

100 27.68 − 0.05 − 0.51 0.24 0.03

102.5 26.45 − 0.10 − 0.59 − 0.23 − 0.02

105 25.28 − 0.17 − 0.65 − 0.62 − 0.10

110 23.3 − 0.16 − 0.80 − 0.96 − 0.11

115 22.14 − 0.08 − 0.86 − 0.29 − 0.04

120 22.26 − 0.08 − 0.32 1.92 0.22

125 23.64 − 0.01 1.10 5.84 1.23

130 25.78 0.18 3.07 10.80 2.29

3 Y 50 31.24 − 0.52 0.28 1.74 − 0.24

60 29.11 − 0.33 0.17 1.20 − 0.06

70 27.22 − 0.23 0.03 0.72 0.00

75 26.34 − 0.21 − 0.04 0.50 0.01

80 25.5 − 0.19 − 0.12 0.30 0.01

85 24.71 − 0.17 − 0.19 0.11 0.00

90 23.96 − 0.16 − 0.27 − 0.06 0.00

95 23.24 − 0.15 − 0.34 − 0.20 − 0.02

97.5 22.9 − 0.15 − 0.37 − 0.27 − 0.02

100 22.57 − 0.14 − 0.40 − 0.32 − 0.03

102.5 22.26 − 0.14 − 0.43 − 0.37 − 0.04

105 21.95 − 0.14 − 0.46 − 0.41 − 0.05

110 21.38 − 0.13 − 0.50 − 0.46 − 0.06

115 20.86 − 0.12 − 0.53 − 0.47 − 0.08

120 20.40 − 0.11 − 0.53 − 0.44 − 0.10

125 20.00 − 0.11 − 0.50 − 0.34 − 0.12

130 19.67 − 0.10 − 0.45 − 0.20 − 0.14

140 19.18 − 0.09 − 0.27 0.25 − 0.16

150 18.91 − 0.07 − 0.02 0.88 − 0.18

Market indicates the implied volatility observed on 3 February 2016 for a given call option on DAX index.
The error columns contain the difference between market implied volatility and the one obtained with the
corresponding model
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