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Abstract
Storage hydropower generation plays a crucial role in the electric power system and
energy transition because it is the most widespread power generation with low green-
house gas emissions and, moreover, it is relatively cheap to ramp up and down. As
a result, it provides flexibility to the grid and helps mitigate the short-term produc-
tion uncertainty that affects most green energy technologies. However, using water
in reservoirs represents an opportunity cost, which is related to the evolution of plant
production capacity and production profitability. As the latter is related to a wide range
of types of variables, in order to incorporate it in a large-scale prediction model it is
important to select the variables that impact most on storage hydropower generation.
In this paper, we investigate the impact of the variables influencing the choices of
price maker producers, and, in particular we study the impact of Clean Spark Spread
expectations on storage hydroelectric generation. In this connection, using entropy
and machine learning tools, we present a method for embedding this expectations in a
model to predict storage hydropower generation, showing that, for some time horizon,
expectations on CSS have a greater impact than expectations on power prices. It is
shown that, if the right mix of power price and CSS expectations is considered, the
prediction error of the model is drastically reduced. This implies that it is important
to incorporate CSS expectations into the storage hydropower model.
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1 Introduction

In the last decades the problem of reducing green-house gases emissions has obtained
increasing worldwide concern and energy policies have been oriented towards a
transformation of the global energy sector from fossil-based to zero-carbon sources,
undertaking the so-called Energy Transition.

In this scenario, hydropower is of paramount importance as it is themostwidespread
source of electricity with low GHG emissions. In fact, it generates about 60% of
renewable electricity and has median life-cycle carbon equivalent intensity of 18.5
gCO2-eq/kWh (IHA 2018).

Among hydropower plants, those equipped with storage technology play a crucial
role for the electric power system and for the energy transition. As known, this tech-
nology allows water resources from watercourses or lakes to be stored in reservoirs,
and this enables plant management to choose whether and when to release water to
produce electricity (Killingtveit 2019). As a result, storage hydropower plants offer
flexibility to the grid and help mitigate the short-term production uncertainty that
affects most green energy technologies, as shown in Albadi and El-Saadany (2010)
and Hirth (2016) for wind and in Komiyama and Fujii (2014) for solar power.

Therefore, it is clear that modelling and predicting hydropower production is of
great importance to determine the effects of the energy policy of the countries involved.
However, since national production is the sum of generation of several plants, it will
be affected by the decisions of a large number of economic players, which makes this
modelling troublesome. Besides, national production is planned by geographical sub-
areas (market zones) through the articulation of different markets and this particular
architecture increases the degree of interaction of the operators’ individual choices,
making the problem even more complex.

In each market zone, most of the production is planned in spot markets, which
are usually auction markets in which bids are regulated according to the merit order
criterion. This criterion assumes that power plant operators bid at their marginal costs,
which, in case of storage hydropower plants, equals the production opportunity cost
(Aasgård et al. 2019). In particular, it depends on the evolution over time of the
production capacity and the profitability of the plant.

As for the production capacity of a storage hydropower plant, it depends on the
volume of water in the reservoir (water availability), which in turn is closely related to
the volume of water in the lakes and rivers connected to each plant. Water availability
has been extensively discussed in the literature. We refer to the following works for
more details (Muñoz and Sailor 1998; Cuo et al. 2011; Castillo-Botón et al. 2020;
Chen et al. 2019; Ahmad and Hossain 2019; Plucinski et al. 2019).

Concerning profitability, it is defined as the economic convenience of using water
at one time instead of another. This problem has been addressed in its various aspects
in several works, as, e.g. in Singh and Singal (2017) and Nandalal and Bogardi (2007).
In particular, some of these works have pointed out that, when a competitive market
involves a number of price-maker producers, the revenue for each producer depends
on the bids of all other price-maker producers. In this regard, for instance, Baslis
and Bakirtzis (2011) formulate the optimal medium-term scheduling within a unique
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stochastic Mixed Integer Linear Programming problem, focusing on the influence of
demand variations and competitors’ offers on the producer’s bidding strategy.

Then, also Steeger and Rebennack (2015) study the bidding problem for multiple
price-maker hydropower producers competing in a deregulated, bid-based market.
Unlike Baslis and Bakirtzis (2011), their model exploits a Mixed Integer Linear
Programming based on discrete functional parameters, highlighting the relevance of
price-maker producers operating in the market.

In their work, Birkedal and Bolkesjø (2016) analyze the impact of drivers influ-
encing hydropower scheduling on weekly hydroelectric generation, using a two stage
least squares model. This work highlights that hydro balance, inflow and marginal
costs of coal-fired power plants are important factors to explain weekly hydropower
supply.

Jahns et al. (2020) derive supply curves for hydro-reservoirs in Norway and apply
the resulting ones in a multi-region electricity market model, showing how they can be
used to perform historical and counterfactual simulations. A key assumption of their
model is that an increase in the marginal costs of substituting thermal power plants
matches an increase in the water value of reservoirs.

On the other hand,when it comes to large-scale storage hydropower prediction, only
a few works have been carried out. In particular, Li et al. (2016) address the problem
of annual hydropower forecasting in Japan using Grey models and combining it with
Markov chains to improve forecast accuracy.

Monteiro et al. (2014) exploits numerical weather prediction tools (NW P) to fore-
cast the hourly aggregate generation in Spain and Portugal. In their work the authors
identify a sigmoidal relationship between hydrological power potential and hourly
hydroelectric generation, achieving satisfactory results for the next-day forecasts.

Wang et al. (2017) propose the Data Grouping approach based on Grey Modelling
(DGGM) to forecast the quarterly hydropower production in China. They show that
their model performs better than other models such as SARIMA and Grey Model. In
particular, they obtain good results for the pre-2011 time series, and quite high errors
for the series from 2011 to 2015.

Uzlu et al. (2014) estimate annual hydraulic energy production in Turkey using the
Cosine Amplitude Method (CAM) to determine the most sensitive factors affecting
hydroelectric generation. However, CAM is a linear method and, as such, it suffers
from the same limitations of commonly used methods (cross-correlation, principal
component analysis, cognitive mapping and sensitivity analysis), i.e. it is not able to
detect possible nonlinear links among the variables.

Generally speaking, the difficulty of formulating a hydropower model for a large
area lies in the ability to select and aggregate the best variables that influence water
availability and profitability at a macro-territorial level. This process requires careful
simplification because the resulting variables must provide good significance to the
problem.

Regarding the economic variables influencing profitability, as argued by Moreno
(2009), their consideration in a prediction model implies the introduction of a high
level of complexity, due to the large number of different types of potential variables
to be used. In fact, the power system is structured into many integrated markets, with
different operating rules and purposes for the various steps in the electricity chain.
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In this scenario, as argued by Uzlu et al. (2014) and Chen et al. (2016), it is crucial
to select the correct predictor variables, because increasing the number of independent
variables (size of input vector) can result in over-fitting or over-training the problem,
which would reduce the accuracy of the model prediction.

As shown by Condemi et al. (2021b), the main potential drivers of the daily
aggregate hydropower generation are the economic variables that embody operators’
expectations on short to medium term market trends. In particular, expectations on
power prices and on thermal plants’ profitability are extremely important. In fact,
since it is not possible to purchase water resources, the crucial point in managing
hydropower plant resources is to choose the most convenient timing to exploit them.
As a consequence, hydropower plant management needs an accurate prediction of
future inflow and returns. Obviously, given the uncertainty of these future values, each
operator bases her decisions on her own expectations. These expectations are incorpo-
rated in the forward prices, which represent the current value that the market attributes
to the production of 1 MWh in its delivery period.

The aim of this paper is to study the impact of Clean Spark Spread expectations
on storage hydroelectric generation (SHG) and to present a method for embedding
this expectations in a model to predict monthly storage hydropower generation. In
particular, we show that future SHG depends more on the CSS expectations than on
those on power prices.

More in detail, we are first interested in detecting the main economic variables that
influence storage hydropower generation. Since the main competitors of hydropower
producers are thermal producers, these variables correspond to the future revenue
expectations of hydropower and thermal producers. To quantify these expectations,
we use the corresponding forward values as proxies.

Afterwards, in order to find the best predictors, we exploit an entropy approach to
seek the set containing forward on CSS and power prices with the "highest information
content" for the prediction of SHG. We show that the best set is composed mostly
of CSS forward values. Let us remark that we adopt an entropy approach because the
relationship among SHG and its drivers is a nonlinear one (Condemi et al. 2021b).

In particular, the approach we follow in this paper is to exploit the creation of a
sorted list of conditional entropy computations between different subsets of features
and output variables. Then, among them, we pick those with the smallest conditional
entropy (for the conditional entropy approach see, e.g. Rastrow et al. 2011; Fischer
and Alemi 2020; Wen et al. 2017; Friston et al. 2012).

Finally, we test the prediction ability of these variables in a real problem of monthly
hydropower generation in Northern Italy, using Machine Learning models. These
models have been widely used in economic and financial analysis, because, compared
to statistical/econometric methods, they allow to deal with problems with complex
structures (Ghoddusi et al. 2019). The results achieved suggest that the use of CSS
expectations to predict storage hydropower generation provides competitive results.
Moreover, it is clear from the analysis that CSS plays a key role in determining
hydroelectric generation.

The rest of the paper is structured as follows: in Sect. 2 we analyse the decision-
making strategy of the main producers operating in power market and provide proxies
for their profitability expectations. Section 3 provides a summary of the methods we
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apply to this problem. In Sect. 4 we present the results of our analysis in the real case
of the Northern Italy. Section 5 closes the paper with final conclusions and remarks
on the research carried out.

2 Problem statement

2.1 Electricity supply chain

The electricity supply chain is composed of all the steps from energy production to
its consumption. These include: generation, whole trade, transmission, dispatching,
distribution and metering, and retail sale. Among these, transmission, dispatching and
distribution sectors are considered to be a natural monopoly, while the other sectors are
undergoing liberalization. The centralization of the electric power system is mainly
due to the need to keep the grid continuously in balance, i.e. the electricity loaded into
the grid, net of losses, must coincide with the electricity consumed.

In this framework, the rules adopted by each country to organize the production
of electricity are oriented to minimize the risk of overload or underload of the grid,
respecting the principle of free competition. Consequently, in the electricity markets,
producers’ offers are accepted according to zonal criteria and market rules. In par-
ticular, most of the production is organized in the spot electricity markets, which are
typically a day-ahead auction markets, regulated according to the merit order criterion
(Weron 2014). The merit order model assumes that power plant operators bid at their
marginal costs in the electricity spot market, and, since the latter is related to power
plant technology, the bids will be homogeneous by type of production.

More specifically, photovoltaic, wind and run of river are technologies that exploit
energy resources that cannot be stored and, for this reason, generally offer their pro-
duction on the markets accepting any price (i.e. they are price-taker operators). Also
nuclear electricity producers are price-taker operators, due to their lack of flexibility
in operating power plants, which in some cases can also lead to negative price selling.

As for the bids of thermal operators, these are planned according to the operating
margin of production, i.e. the difference between the price of the energy produced and
the cost of the fuel used to produce it.

In most of the countries,1 also the amount of environmental taxes should be taken
into consideration and subtracted from this value. In particular, in countries that adopt
the Emission Trading System (ET S), which consists of a cap-and-trade system orga-
nized by a regulation authority, each carbon credit certificate authorizes the emission
of 1 ton of CO2.

Accordingly, in these countries, gross operatingmargin of thermal power producers
is represented by the Clean Spread, defined as

Clean Spread = electricity price − fuel price − carbon credit price

1 https://carbonpricingdashboard.worldbank.org/map_data.
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Based on the fuel exploited by the plant, this value is called Clean Spark Spread
(for gas-fired plants) or Clean Dark Spread (for coal-fired plants) and is defined,
respectively, as

CSS = Ppw − Pgas − α ∗ PCO2 , (1)

CDS = Ppw − Pcoal − β ∗ PCO2 , (2)

where Ppw is the selling power price per MWh, Pgas e Pcoal are, respectively, the
prices of gas and coal used to produce 1 MWh. Besides, PCO2 is the price of a carbon
credit certificate and the parameters α and β represent the number of tons of CO2
emitted to produce 1 MWh using gas or coal, respectively.

As for hydropower plants, they produce electricity by exploiting the kinetic energy
of falling or fast-running water. Among them, storage hydropower plants store water
from lakes and rivers in reservoirs. We point out that these water resources can also
be brought into the reservoirs by electromechanical lifting with pumping systems.

The bidding strategies of hydro-power producers are based on two criteria. The
first, so-called profitability, is based on today’s production returns compared to future
ones. The second criterion is based, instead, on the quantity of the water available in
the reservoir, which in turn determines the so-called hydropower production capacity,
mainly influenced by rainfall and snowpack melting.

2.2 Hydropower economic prediction drivers

To accurately predict storage hydropower generation, a model based on the funda-
mentals must include both physical variables related to the production capacity of the
plants (Ph) and economic variables (Ec) representing the profitability of production
and the aggregate power market mechanisms. For this reason, we can express the
Storage Hydropower Generation (SHG) as a general nonlinear function of physical
and economic prediction variables, as the following

SHG = f (Ph; Ec).

Concerning profitability, since it is not possible to buy water resources, the cru-
cial point in managing hydropower plant resources is to choose the most convenient
timing to exploit them. As a consequence, the hydropower plant management needs
an accurate future inflow prediction, and, in addiction, has to compare current returns
and potential future returns. Obviously, given the uncertainty of these future values,
each operator bases her decisions on her own expectations. These expectations are
incorporated in the forward prices, which represent the current value that the market
attributes to the production of 1 MWh in its delivery period.

Therefore, the current price of a Daily (D), Weekly (W ), Monthly (M) or Quarterly
(Q) forward corresponds to the actual value of 1 MWh generated in the hours of a
specific day, week, calendar month or quarter, respectively. In particular, quarters
are fixed as the following: January–March, April–June, July–September, October–
December.
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Fig. 1 Forward order per Relative Maturity

Then, for each of these products, the maturity period is a different time interval
(s1, s2). For example, as for a monthly forward, s1 corresponds to the first hour of
the first day of the month, and s2 corresponds to the 24th hour of the last day of the
month.

If we consider the time series of forward prices F based on their relative maturity
period, we have that D01 is the current price of the daily forward with delivery period
tomorrow, M01 is the current price of the monthly forward with delivery period in
the next calendar month, and so on. Generalizing, let today be the day d of the month
m of the quarter q. Then we can define DX as the current price of the daily forward
with delivery period in the day d + x , MX as the current price of the monthly forward
with delivery period in the month m + x , and finally QX as the current price of the
quarterly forward with delivery period in the m + q quarter, respectively (see Fig. 1).

As a result, it is possible to approximate operators’ expectations on the gap between
the present value of future and current returns by the price spread between the forward
FX pw with relative maturity X and daily forward with relative maturity the next day
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(D01), as defined in the following

�FX pw = FX pw − D01, (3)

However, the hydropower generation is influenced by the bids of other price-maker
producers, since their bids influence both prices and the amount of demand that be
satisfied by hydropower generation. In particular, thermal producers are an important
category of price-makers and their bids, as argued above, are formulated according
to the Clean Spread. Since there is no forward associated with the Clean Spread, we
can quantify the market’s expectations on its value using the corresponding forward
prices, which in the case of the Clean Spark Spread can be expressed as

CSSFX = FX pw − FXgas − α ∗ FXCO2, (4)

where FXgas represents the gas forward price ine/MWhwith relativematurity X and
FXCO2 represents the CO2 forward price with relative maturity X . Let us remark
that the parameterα represents the tons of CO2 emitted to produce 1MWh.Differently
from the hydropower case, since gas can be purchased on the market, it is possible to
refer to the Clean Spread in absolute terms. In Table 7 of Appendix A the notations
used in the paper are listed.

The aim of this paper is to study the impact of Clean Spark Spread expectations on
the aggregate monthly hydroelectric generation and to provide a method to embed this
expectations in a storage hydropower generation model. To this end, we analyse the
optimal set of the prediction variables of the storage hydropower generation (SHG)
using an entropy approach.

As a first step, since usually the interactions amongfinancial and economic variables
do not occur simultaneously (but there is a time delay of the effect of the phenomenon
on the other variables), it is very important to evaluate the time-delay among the
input and the output variables. In addition, there is often a persistence of the effect of
one variable on the other over time, so neglecting the lag may lead to assessing the
secondary effects of a phenomenon and not the root cause of the phenomenon itself,
compromising the correct interpretation of the results.

In order to identify the time lag, we need to investigate the timing of the market.
Typically, spot electricity markets are organized as auction markets. Specifically, they
are the day-ahead market, where most of the production is organized and the intraday
market, mainly used to make secondary adjustments.

In the day-ahead market, before a certain closing time on day t − 1, agents must
submit their bids and offers for the delivery of electricity during each hour of day t
(see Fig. 2).

Consequently, it is reasonable to assume that the traders’ bids at t − 1 are based
on the knowledge of financial variables at t − 2. For this reason, in our analysis we
consider the generation at t as a function of the information available at the end of day
t − 2, as shown in the following function

SHGt = f (Pht−1, Ect−2)
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Fig. 2 Bid in day-ahead auction market

3 Methods

In this section we describe the tools employed to identify the best subset of the input
variables to predict SHG. First, we introduce the basic framework of the entropy
analysis of time series, based on the key tools of our approach, i.e. conditional Shannon
entropy and transfer entropy. Then, we recall the techniques employed to estimate
the entropy measures and, finally, we discuss the role of variable selection in our
framework.

3.1 Informationmeasures

The entropy of a random variable is the average level of information or uncertainty
inherent in the variable’s possible outcomes. Formally, the concept of (information)
entropy H(X) of a random variable X with a probability mass function p(x) is defined
by

H(X) = −
∑

x

p(x) log2 p(x) .

(see, e.g. Cover and Thomas 2012).
Since we use logarithms to base 2, entropy will be measured in bits. Entropy is

a measure of the average uncertainty in the random variable X and corresponds to
the number of bits required on average to describe the random variable (Cover and
Thomas 2012).

It is possible to define the conditional entropy H(Y |X), which is the entropy of a
random variable Y , conditioned to the knowledge of another random variable X . Let
p(x, y) be the joint probability of these variables, X and Y , occurring together. Hence,
conditional entropy H(Y |X) is defined as

H(Y |X) = −
∑

x∈X ,y∈Y
p(x, y) log2

p(x, y)

p(x)
(5)

where X and Y denote the support sets of X and Y .
The conditional entropy (CE) of a randomvariable Y given another randomvariable

X is zero if and only if Y is a function of X . Hence we can estimate Y from X with
zero probability of error if and only if H(Y |X) = 0. Extending this argument, we
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expect to be able to estimate Y with a low probability of error only if the conditional
entropy H(Y |X) is small. On the other hand, it results

H(Y |X) ≤ H(Y ) (6)

where the equality holds if and only if X and Y are independent random variables.
Accordingly, it is possible to define the normalized measure of conditional entropy as
the following ratio:

r := H(Y |X)

H(Y )
. (7)

The value of ratio r ranges from 0 to 1. If r is nearer to 1, then we expect that the error
made in estimating Y , given X , is high. On the contrary, if r is near to 0, we expect to
estimate Y with a low error probability.

In the same way it is possible to define the joint Shannon entropy (in bits) of X and
Y , as

H(X ,Y ) = −
∑

x∈X

∑

y∈Y
P(x, y) log2[P(x, y)] .

For more than two random variables X1, . . . , Xn this expands to

H(X1, . . . , Xn) = −
∑

x1∈X1

. . .
∑

xn∈Xn

P(x1, . . . , xn) log2[P(x1, . . . , xn)] , (8)

where Xi denotes the support set of Xi , ∀i = 1, . . . , n,
Equation (5) and definitions (6) and (7) can be easily extended to the multivariate

case H(Y |X1, . . . , Xn) by replacing X with random variables X1, . . . , Xn . Thanks to
themultivariate extension of joint entropy (8),H(Y | X1, . . . , Xn) can also be expressed
as the difference between the joint entropy of all variables and the joint entropy of the
variables upon which we want to condition:

H(Y |X1, . . . , Xn) = H(X1, . . . , Xn,Y ) − H(X1, . . . , Xn). (9)

The conditional entropy estimated in this paper relies on Eq. (9).
Another tool we exploit in this paper is Transfer Entropy (TE).
Brought from information theory, transfer entropy from one random process X

to another random process Y is a nonparametric statistic that describes the degree
to which X reduces the uncertainty about the future value of Y knowing the past
values of X given past values of Y . It allows to detect the direction of the information
flow among the time series under study and has the advantage to provide asymmetric
interactions, (He and Shang 2017).

In order to define transfer entropy, we assume that the underlying processes evolve
over time according to a Markov process (Schreiber 2000). We also combine the
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Shannon entropy with the Kullback-Leibler divergence (Kullback and Leibler 1951).2

Let us denote by X and Y two sources that emit N symbols with an a-priori joint
probability p(xi , y j ) := pi j and marginal probability p(xi ) := pi , p(y j ) := p j ,
whose dynamical structures correspond to stationary Markov processes of order k
(process X) and l (process Y). The Markov property implies that the probability
to observe X at time t + 1 in state i conditional on the k previous observations is
p (it+1|it , . . . , it−k+1) = p (it+1|it , . . . , it−k).

Let i (k)t = (it , . . . , it−k+1) and j (l)t = ( jt , . . . , jt−l+1). Information flow from
source Y to source X is measured by quantifying the deviation from the generalized

Markov property p
(
it+1|i (k)t

)
= p

(
it+1|i (k)t , j (l)t

)
relying on the Kullback-Leibler

divergence (Schreiber 2000).
Then, the Shannon transfer entropy is given by

T EY→X (k, l) =
∑

i, j

p
(
it+1, i

(k)
t , j (l)t

)
log2

⎛

⎝
p

(
it+1|i (k)t , j (l)t

)

p
(
it+1|i (k)t

)

⎞

⎠ , (10)

where T EY→X measures the information flow from Y to X (T EX→Y as a measure
for the information flow from X to Y can be derived analogously).

Transfer entropy is affected from the noise which is present in time series and the
noise can lead to misleading results that can be avoided by estimating the effective
transfer entropy (ETE) (He and Shang 2017). ETE is obtained from the original TE
minus the random transfer entropy (RTE). The calculation of ETE is based on the
shuffling procedure which is necessary to derive RTE (Behrendt et al. 2019; Dimpfl
and Peter 2018; He and Shang 2017; Benedetto et al. 2020) and it is given by:

ET EY→X (k, l) = T EY→X (k, l) − RT EY→X (k, l) , (11)

where RTE is given by:

RT EY→X = 1

N

N∑

i=1

T EYshu f f led→X .

Data shuffling consists in i.i.d. random draws from the Y time series that are used
to generate another time series, i.e. the shuffled series. This procedure eliminates
the dependency between Y and X as well as the dependency within Y observations
(Behrendt et al. 2019). The shuffling of the series is repeated N times and RTE is
obtained from the sample mean of TE where Y is the shuffled sequence. RTE is
subtracted to the original TE to obtain ETE estimate as in Eq. (11).

2 If we consider two discrete distributions, P and Q, the Kullback-Leibler divergence from Q to P is defined
as:

DKL(P‖Q) =
∑

i

P(i) log2

(
P(i)

Q(i)

)
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3.2 Entropy estimation

By considering Eq. (9), we observe that the multivariate conditional entropy com-
putation requires to determine two entropy terms, namely H(X1, . . . , Xn,Y ) and
H(X1, . . . , Xn). An efficient estimate of entropy is therefore essential to calculate
H(Y |X1, . . . , Xn).

Entropy estimation has gained much interest over the last decades (Meyer 2008)
and most approaches focus on reducing the bias inherent to entropy estimation. The
methods developed inMeyer (2009) focus on the fastest andmost used entropy estima-
tors. We exploit some of these estimators in the case study that we analyze in Sect. 4.
Namely they are the empirical estimator and the Miller–Madow bias correction esti-
mator.

Let’s now define them. The empirical estimator is the entropy of the empirical
distribution:

Êemp(X) = −
∑

x∈X

#(x)

m
log

#(x)

m
,

where #(x) is the number of data points having value x andm is the number of samples.
It can be shown that entropy estimators are biased downwards, and the asymptotic bias
is −|X |−1

2m and depends on the number of bins |X | (Meyer 2008; Paninski 2003).
As for theMiller–Madow correction estimator, it is defined as the empirical entropy

corrected for the asymptotic bias, as in the following

Êmm(X) = Êemp(X) + |X | − 1

2m
, (12)

where |X | is the number of binswith nonzero probability. This correction,while adding
no computational cost, reduces the bias without changing variance. As a result, the
Miller–Madow estimator is often preferred to the empirical entropy estimator which
proves to be naive.

These estimators, as many others, have been designed for discrete variables.
If the random variable X is continuous and taking real values in [a, b], then we
have to partition this interval into |X | sub-intervals in order to employ a discrete
entropy estimator. In this paper, following the approach by Meyer (2008), we adopted
the equal frequency quantization algorithm. According to this algorithm, the |X |
sub-intervals are such that each of them has the same number of data points, i.e.
m/|X | (Dougherty et al. 1995; Liu et al. 2002; Yang and Webb 2009). The choice
|X | = √

m has been proved to be a fair trade-off between bias and variance (Meyer
2008).

Let’s turn now to TE. Since time series data are continuous and TE is a discrete
measure, original data must be discretized, using symbolic encoding, to estimate the
joint probabilities in (10)—for further details see, e.g. Behrendt et al. (2019).
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The estimation of the joint probabilities in TE computation is challenging. One can
refer, e.g. to Lee et al. (2012) and Behrendt et al. (2019).

A way to obtain the PDFs in Eq. (10) is to allocate data points to fixed, equally-
spaced bins. Let us denote the bounds specified for the n bins by q1, q2, . . . , qn , where
q1 < q2 < · · · < qn , and consider a time series denoted by X = {xt }. From a
mathematical point of view, we define a function Q (called quantizer) Q : xt 	→ st
such that

st =

⎧
⎪⎨

⎪⎩

1 xt < q1
i xt ∈ [qi−1, qi )

n xt ≥ qn

for i = 2, . . . , n . (13)

The allocation of data points to equally-spaced bins is less time consuming than other
methods to estimate TE as the Nearest Neighbours method but has the drawback of
detecting more false positives than the latter (Assis and de Assis 2018). In this paper
we employ a q = 3-quantile binning, partitioning the data into three bins through the
5% and 95% empirical quantiles of the data distribution as suggested by Behrendt
et al. (2019); Dimpfl and Peter (2018).

Table 2 in Sect. 4.2 provides descriptive statistics for our dataset. All the
series (except the SHGN, which, however, is compared with all the others) exhibit
an excess kurtosis. Therefore, it seems reasonable to investigate the information
contained in the tails of our distributions via TE according to the aforemen-
tioned discretization into three bins. This is an established practice in the liter-
ature (Benedetto et al. 2020; Behrendt and Schmidt 2020; Behrendt and Prange
2021). Moreover, Behrendt and Prange (2021), for a number of observations com-
parable to ours, argue that a partitioning into more bins would require more
data.

Moreover, we still performed the analysis of TE between SHGN and the other
series, by increasing the number of quantiles incrementally from 1 to 10, as done by
Park et al. (2021); see Appendix B for more details.

3.3 Variable selection

The variable selection problem is often defined as the selection of a subset of
variables based on statistical estimates of its performance and can be consid-
ered as a particular form of model selection (Reunanen 2003). It is an important
step in building an automatic predictor (e.g., the best one). The accuracy of
the prediction can be improved by excluding irrelevant variables, and, at the
same time, variable selection increases the intelligibility of a model, even though
we cannot ignore the fact that by eliminating a variable, we lose its informa-
tion.

Let X = (XS, XR) be composed of two subsets of variables, XS , standing for the
selected variables, and XR , the remaining or eliminated variables (Meyer 2008).
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By definition of conditional mutual information3 (Meyer 2008; Cover and Thomas
2012), we have,

H(Y | X) = E (Y | (XS, XR)) = E (Y | XS) − I (XR; Y | XS) ,

where I (XR; Y | XS) denotes the conditional mutual information of the random vari-
able XR and Y given XS . If

I (XR; Y | XS) > 0 ,

i.e. if XR possesses some information on Y given XS, then eliminating XR increases
the uncertainty on the output variable. In other words:

E (Y | (XS, XR)) ≤ E (Y | XS)

However, eliminating information could increase noise but improves the reliability
(less variance) of the estimation — see, e.g. the bias-variance trade-off as discussed
by Meyer (2008).

The approach we follow in this paper is to perform a feature selection by creating
a sorted list of conditional entropy computations between the different subsets of
features and the output variable and then picking those with the smallest conditional
entropy. Minimizing the conditional entropy is a task that can be found in a plenty of
applications (Rastrow et al. 2011; Fischer and Alemi 2020; Wen et al. 2017; Friston
et al. 2012).

Let us formalize this process. Clearly, for n input variables, the number of possible
subsets is 2n . This step entails finding the best subset of variables in the power set
2S where S denotes the set of random variables X1, . . . , Xn . Hence, it is an example
of combinatorial optimization problem (Kohavi and John 1997; Meyer 2008). More
formally the problem is, given n input variables X1, . . . , Xn , find the subset Smax

0 ⊂ S
which minimizes the conditional entropy

Smax
0 = arg min

S0∈2S
E (Y | S0) .

4 Experiments and results

In this section, we analyze the case study related to storage hydropower generation in
Northern Italy (SHGN ).

3 For discrete random variables X, Y, and Z the conditional mutual information I (X; Y |Z) is defined as
follows

I (X; Y |Z) =
∑

z∈Z

∑

y∈Y

∑

x∈X
pX ,Y ,Z (x, y, z) log

pZ (z)pX ,Y ,Z (x, y, z)

pX ,Z (x, z)pY ,Z (y, z)
.
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The analysis is structured in three steps. In the first, we estimate the transfer entropy
between the storage hydropower generation series and the proxy time series of CSS
expectations, identified as argued in Sect. 2. Here we have employed the R package
Rtransferentropy for the TE computation, which heavily relies on the method reported
in Behrendt et al. (2019); Dimpfl and Peter (2018).

In the second step, we estimate the conditional entropy between SHGN and sev-
eral sets of variables, to identify the best set of economic variables for predicting
SHGN . To this purpose, we initially analyse the set of variables directly correlated
with hydroelectric operators’ revenues, i.e. proxies of future power prices. Then, we
exploit the results of the first step as a guideline to obtain the sub-set of variables with
the highest information content.

CE has been estimated by means of the R package infotheo, based on the Meyer’s
work (Meyer 2008, 2009).

In the final step,we compare the predictive performance of different SHGN models
based on the sub-sets identified in the previous step and a machine learning (ML)
approach.

4.1 Northern Italy powermarket

The Italian electricity transmission grid is partitioned into virtual and geographical
zones. Virtual zones correspond to points of interconnection with foreign countries,
called foreign virtual zone, and to limited production poles, called national virtual
zone. Instead, geographical zones represent a portion of the national network relating
to a geographical area. In particular, there are 6 geographical zones: Northern Italy,
Central Northern Italy, Central Southern Italy, Southern Italy, Sardinia and Sicily (see
Fig. 3).

Among them, Northern Italy has the highest share of hydroelectric generation.4 It
covers a geographical area of 6392.17 km2 (ISTAT 2020), including the Italian Alps,
where storage hydropower plants are mainly located (see Fig. 4). Table 1 provides the
main information on these plants.

With regard to other types of producers, we do not consider the production dynam-
ics related to price-taker producers since they do not provide any information on
hydropower generation (Condemi et al. 2021b). Instead, variables affecting the com-
petitiveness of thermal power plants play an important role. In particular, in Northern
Italy, gas-fired power plants work as base load plants, whose gross operating margin
is represented by the Clean Spark Spread (1). For this reason, we do not include CDS
(2) in the real case application.

4.2 Data description

SHGNdx represents the total amount of electricity (in GWh) generated, in the whole
area of study, during the day dx by storage hydro-power plants.

4 This power market zone is the geographic area composed of the following regions: Valle d’Aosta,
Piemonte, Liguria, Trentino, Veneto, Friuli Venezia Giulia and Emilia Romagna.
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Fig. 3 Topology of interconnection among the zones

Fig. 4 Distribution of the storage hydropower plants and hydrography of Northern Italy
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Table 1 Storage Hydropower plants characteristics in Northern Italy

Size N. plants Nominal power β

Total (MW) Alps (%) Other (%) Mean (MW) Std. Dev. (MW)

Large plants 30 8628.31 96.74 3.26 287.61 243.09

(β > 100 MW)

Medium plants 110 3638.08 96.18 3.82 33.07 21.00

(10 < β ≤ 100 MW)

Small plants 15 138.48 54.59 45.41 9.23 0.76

(β ≤ 10 MW)

Total 155 12404.87 96.11 3.89 80.03 148.80

Fig. 5 Hydroelectricity (in GWh) generated by storage plants in Northern Italy, from 04/01/2014 at
03/01/2019

In our work, we examine the time series of daily electricity generated by stor-
age hydropower plants in Northern Italy (SHGNt ), collected from 04/01/2014 to
03/01/2019 (tx = dx ). SHGNdx (Fig. 5) represents the total amount of electricity (in
GWh) generated, in the whole area of study, during the day dx by storage hydro-power
plants (data source: TERNA). In accordance with the time lag assessment performed
in Sect. 2, time series of proxies,�FXt (3) andCSSFXt (4), have been synchronised
so that tx = dx − 2. Consequently, these series refer to the days (d) from 02/01/2014
to 01/01/2019. In particular, our elaboration is based on EEX (2019) data.

As regard the maturity period, we compute the values of daily proxies for the
following maturity periods (X ): D01, M01, M02, M03, M04, M05, M06, M07,
Q01, Q02, Q03. Moreover, since there are no one-week forwards written on Gas,
the proxy referring to maturity W01 has been computed only for �W01 (power price
proxy). In particular, to compute the value of such proxies, we use the average of the
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market closing prices referring to Forwards written on the PUN5 and Italian PSV6

Natural Gas price. Conversely, we estimate the parameter α year by year based on
ISPRA (2018) data.

As regards the gaps in the time series caused by market closures, we assume that
producers base their decisions on the latest available data.

Table 2 contains the main time series statistics used in this paper. In particular, we
apply the Dickey-Fuller uniroots tests, ADF and PP, based on Banerjee’s et al. tables
and on J.G. McKinnons’ numerical distribution functions (Banerjee et al. 1993), and
we adopt the median absolute deviation (mad), as index of variability. The column
“Kurtosis” of Table 2 shows that the distribution of our data are all leptokurtic, except
SHGN.

4.3 Transfer entropy analysis

In this section we investigate the influence of the Clean Spark Spread forward values
on SHGN , using the proxies defined in Sect. 4.2. To this aim, for each of the eleven
CSSFX time series, we estimate the effective transfer entropy, defined in Eq. (11),
from SHGN (Y) toCSSFX (X), ET EY→X , and in the opposite direction, ET EX→Y .

Furthermore, to establish the dominant direction in the relationship between X and
Y, we use the following criterion: if ET EY→X and ET EX→Y have similar values
or both have values approximately equal to zero, we define the dominant direction
between X and Y as doubtful. Instead, if ET EY→X and ET EX→Y have strictly
distinct values for all iterations, we define the dominant relationship as that relating
to the ETE with the highest values.

Let us consider Figs. 6 and 7, and Table 3. Using the denomination introduced in
Benedetto et al. (2020), figures and table contain, respectively, static and dynamic
transfer entropy analysis. The static transfer entropy is a number, and it is estimated
over the entire sample size. The dynamic transfer entropy, instead, is calculated with
a growing window approach, always starting from the first observation and increasing
window size.

For instance, concerning CSSM01 (see Fig. 6), it is evident that series ET EY→X

has always greater values than the series ET EX→Y . Consequently, regarding the
maturity M01, we define the direction from CSSM01 to SHGN as the dominant
one.

Table 3 shows the results of the Transfer Entropy analysis between SHGN and
CSSFX for their respective maturities. As the results clearly indicate, the information
from CSSF to SHGN is the most relevant.

In fact, there is a clear dominance for the following maturities: D01, M01, M03,
M04, M06, M07, Q02, Q03. Therefore, the knowledge of Clean Spark Spread expec-
tations for these maturities is important to predict storage hydropower generation and
thus including them in a SHGN model will improve its performance.

5 “Prezzo Unico Nazionale” (PUN) is the average of day-ahead market zonal prices, weighted for the
related Volumes, of all transactions executed during a market session.
6 PSV, “Punto di Scambio Virtuale” is the Italian Virtual Trading Point organized and managed by Snam
Rete Gas.
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Fig. 6 ETE between SHGN
and CSSM01
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Fig. 7 ETE between SHGN
and CSSQ01
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However, there are two cases in which the dominant direction is doubtful. In partic-
ular, in the case of CSSQ01 (see Fig. 7) the values of the two series are very similar,
whereas, as regards CSSM02, the values of the ET EX→Y and ET EY→X series are
close to zero, indicating that there may not be a relationship between X and Y . The
results enclosed in Table 3 are based on a q = 3-quantile binning. In order to investi-
gate the possible effects of using other values of q and to allow for a robustness check
of our results, we performed a TE analysis based on quantiles (see Appendix B for
more details).

Therefore, in order to study the relationship relevant to these maturities, further
analysis is required. In particular, it is necessary to decide whether to include �FX ,
CSSF or no variables. To this aim, a more in-depth analysis is presented in the next
section.
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Table 3 Effective Transfer Entropy between SHGN (Y ) and CSS forward value (X)

Forward value (X) Average ET EY→X Average ET EX→Y Dominant direction

CSSD01 0.0014 0.0082 X → Y

CSSM01 0.00042 0.0022 X → Y

CSSM02 0 2.47e−06 Doubtful

CSSM03 0 0.00015 X → Y

CSSM04 0 0.00050 X → Y

CSSM05 0.0034 0.00077 Y → X

CSSM06 0.0007965704 0.0022 X → Y

CSSM07 0 0.0015 X → Y

CSSQ01 0.0006186239 0.0006952758 Doubtful

CSSQ02 0 0.00188492 X → Y

CSSQ03 0 0.001029241 X → Y

4.4 Conditional entropy analysis

Having assessed, in the previous section, the relationship between the individual
CSSFX and SHGN , we are now interested in evaluating the information content
of the economic variables as a set of variables (Xi ). To this end, we will now estimate
the entropy of SHGN (Y ) conditional on different sets of variables (Xi ), by using the
Miller–Madow bias correction estimator, defined by (12).

At first, we separate the products by type, yielding two sets, XA defined by

XA = (D01,�W01,�M01,�M02,�M03,�M04,

�M05,�M06,�M07,�Q01,�Q02,�Q03) (14)

and XB defined by

XB = (CSSD01,�W01,CSSM01,CSSM02,CSSM03,CSSM04,

CSSM05,CSSM06,CSSM07,CSSQ01,CSSQ02,CSSQ03)

The first is comprised of the power price proxies, �FX , whereas XB is comprised
of the CSSFX , except for the W01 maturity which, as already mentioned, cannot be
represented by CSS prices.

As shown in Fig. 8, the conditional entropy of the set Y given XA is stable with
a mean value of 0.13496, while the set of variables XB has a lower CE, on average
0.11560. Consequently, compared to set XA, set XB contains more information about
SHGN . However, in the first step of the analysis, we pointed out that there is a marked
dominance of the information directionality from CSSF to SHGN , with regard to
maturities D01, M01, M03, M04, M06, M07, Q02, Q03, whereas, as for M05,
dominance is in the opposite direction. Therefore, by exploiting the transfer entropy
analysis, we constructed the set XC
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Fig. 8 Conditional Entropy of Y given Xi (2016–2018)

XC = (CSSD01,�W01,CSSM01,CSSM02,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,CSSQ01,CSSQ02,CSSQ03)

by replacing in the set XA the proxies related to the maturities for which the dominant
direction is from CSSF to SHGN . The conditional entropy of SHGN given XC is
stable with a mean value of 0.11252, thus the mixed prices’ set XC , contains more
information about SHGN than the initial sets XA and XB .

In addition, as for maturities Q01 and M02, in the first step of the analysis, a
doubtful situation emerged that needs to be clarified in order to identify a better subset
of variables. To investigate maturity M02, we have estimated the entropy of SHGN
conditional on the sets XD and XE respectively, where the two sets are defined as
follows

XD = (CSSD01,�W01,CSSM01,�M02,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,CSSQ01,CSSQ02,CSSQ03)

XE = (CSSD01,�W01,CSSM01,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,CSSQ01,CSSQ02,CSSQ03)

Let us remark that, regarding maturity M02, XD comprises power price proxy,
while XE does not include neither the power price proxy nor the CSS one. The CE
corresponding to set XD and XE are stable with a mean value of 0.11018 and 0.11345,
respectively. Since H(Y | XD) < H(Y | XC ) < H(Y | XE ) , we conclude that,
concerning maturity M02, it is preferable to include the proxy power �M02.

Similarly, as regards Q01, we defined the sets XF and XG , respectively as

XF = (CSSD01,�W01,CSSM01,CSSM02,CSSM03,

CSSM04,�M05,CSSM06,CSSM07,�Q01,CSSQ02,CSSQ03)

XG = (CSSD01,�W01,CSSM01,CSSM02,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,CSSQ02,CSSQ03)

123



The impact of Clean Spark Spread expectations on storage… 1133

Table 4 Mean Conditional Entropy (2016–2018)

Set XA XB XC XD XE

Mean H(Y | X) 0.13500 0.11560 0.11253 0.11018 0.11345

Set XF XG XH XI XL

Mean H(Y | X) 0.11039 0.11436 0.11596 0.10291 0.10873

Let us remark that, as for maturity Q01, XF includes power price proxy, while XG

does not include neither the power price proxy nor the CSS one.
Aswith the case ofM02, and as shown inTable 4 and in Fig. 8, the highest results are

obtained by considering a proxy power price relating to maturity Q01. Let us remark
that CE plotted in Fig. 8 has been estimated, as done for dynamic TE in Figs. 6 and 7,
with a growing window approach, starting from the first observation and increasing
window size.

For completeness purposes, we have also compared the CE concerning the sets XL

and XH , defined as follows:

XH = (CSSD01,�W01,CSSM01,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,CSSQ02,CSSQ03)

XL = (CSSD01,�W01,CSSM01,�M02,CSSM03,CSSM04,

�M05,CSSM06,CSSM07,�Q01,CSSQ02,CSSQ03) (15)

where as for maturities M02 and Q01, XL include power price proxies, while XH

does not include neither power price proxies nor CSS ones. The results in Table 4
show that the best sub-set is XL with a mean H(Y |XL) of 0.10873. In particular, given
the same number of variables, set XL has a CE of 19.45%, lower than the set of power
price proxy XA.

It is important to point out that, to provide a rank of importance between power and
CSS proxies, we have considered sets containing at most one element per maturity. If
we consider, instead, the set XI composed by all the proxies, defined as follows

XI = (CSSD01, D01,�W01,CSSM01,CSSM02,CSSM03,CSSM04,

CSSM05,CSSM06,CSSM07,CSSQ01,CSSQ02,CSSQ03,

�M01,�M02,�M03,�M04,�M05,�M06,�M07,

�Q01,�Q02,�Q03)

its CE will result slightly better than the one of XL , that is about 5.35% less.
However, to achieve this CE reduction we need to double the number of input

variables, 23 instead of 12. Nevertheless, in our opinion, the benefits are not sufficient
to offset the growth of the complexity following the increase in the number of variables.
Therefore, we identify the set XL as the optimal sub-set for determining SHGN .
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Finally, if we define the variable yt as the sum of the SHGN from day t to day
t + 30

yt =
t+30∑

i=t

SHGNi (16)

the results about H(yt |Xi ) remain unchanged compared to those shown in the case of
H(SHGN |Xi ).

4.5 Prediction performance

In this section we show the prediction performance of different Storage Hydropower
Generation (SHG) models based on the economic variables identified in the previous
section and on a machine learning approach (Mosavi et al. 2019). As argued in Sect. 2,
we defined SHG as a nonlinear function of physical (Ph) and economic (Ec) prediction
variables related to production capacity and profitability of storage hydropower plants.
The output of the trainedMLmodels is the Storage Hydropower Generated in the next
30 days (yt ), as defined in (16).

As regards physical variables, the set Pht of input includes daily average values of
snow depth (SW ), rainfall (Rn), temperature (T ) and global solar radiation (I R) per
hydrological sub-basin (Condemi et al. 2021a)

Pht = (Rnt ,SWt ,Tt , IRt ),

where t denotes the current day and bold characters denote a vector. In particular, our
elaboration is based on the Sistema Nazionale per la protezione dell’Ambiente- SNPA
(2019).

Regarding the economic variables, we treated the set XA (14), including proxies
on power price expectations, and the set XL (15), identified as the best set in Sect. 4.4.
We use these two sets alternately to construct the input vector used to train and test
the machine learning regressors.

As argued in Sect. 2, we set a time delay of 2 days for economic variables, whereas,
concerning the physical one, we set a time lag of 1 day (see Condemi et al. 2021b),
defining the variables yat and ybt as,respectively

yat = f (Pht−1,XA;t−2),

and

ybt = f (Pht−1,XL;t−2),

In addition, in order to provide a benchmark of the benefit of economic sets for SHGN
prediction, we have considered the case in which the input set comprised only the set
Ph. Then, we define the following variable

123



The impact of Clean Spark Spread expectations on storage… 1135

Table 5 Predictive capabilities criterion

MAPE [0;10] (10;20] (20;50] > 50

Predictive capabilities High Good Reasonable Weak

yct = f (Pht−1).

SVR is used in such a way that the output is always the same (SHGN), whereas,
instead, the input matrix varies according to the cases a, b, c above defined.

In all cases, the input database is composed of daily values from 04/01/2014 to
03/01/2019 and has been split in 60% training (1093), 20% validation (365) and 20%
testing (365).

We tested different standard machine learning algorithms 7 (see Ghoddusi et al.
2019), to compare the two sets of inputs considered. Specifically, we applied nonlin-
ear Support Vector Regression machine (SVR), with linear and polynomial kernel
(referenced as SVRl and SVRp, respectively), and Multi-layer Percepron (MLP),
well-known for its generalization and computational capability (Adnan et al. 2017;
Mohd Yassin et al. 2017). In the cases of SVR, the training algorithm used a K-fold
cross-validation (with K=5) to select the SVR hyper-parameters. Regarding SVM
parameters, the BoxConstraint (C) value is 1 and the Epsilon (ε) value is iqr(Y)/13.49,
which is an estimate of a tenth of the standard deviation using the interquartile range
of the response variable Y. If iqr(Y) is equal to zero, then the Epsilon value is 0.1.
The dataset was splitted as follows: 80% of the data for the training set, 10% for the
validation set and 10% for testing. As regard the MLP, the structure used is a two-
layer feed-forward network with a sigmoid (17) transfer function in the hidden layer
and 10 hidden neurons. We trained this network with the Bayesian Regularization
backpropagation function (see Kayri 2016):

tanh = ea − e−x

ea + e−x
(17)

Finally, we evaluated the performance of the corresponding Step-Ahead Prediction
Network according to the following metrics

MAE = 1

N

N∑

i=1

|yi − ỹi |

MAPE = 1

N

N∑

i=1

|yi − ỹi |
yi

According to the level ofMAPE, we can define the predictive capabilities of the model
as in Table 5 (Wang et al. 2017).

7 We specifically use the implementations provided by MATLAB language program (version R2021a with
the Statistics and Machine Learning Toolbox) for the SVR and MLP.

123



1136 C. Condemi et al.

Table 6 Results of Machine
Learning models on the test
dataset

Set Metric Set Ph Set A Set L

SVRl Corr (yi , ỹi ) 0.82278 0.7601 0.836

MAE*1e-3 0.48422 0.5486 0.47481

MAPE (%) 19.24 23.24 19.10

SVRp Corr (yi , ỹi ) 0.68539 0.8274 0.828

MAE*1e-3 0.57837 0.6314 0.62309

MAPE (%) 25.20 28.26 27.08

MLP Corr (yi , ỹi ) 0.75059 0.90838 0.99356

MAE*1e-3 0.6327 0.2006 0.05823

MAPE (%) 30.52 8.89 2.67

For each algorithm, the prediction performance during the test period is shown in
Table 6.

The results show clearly that the performance obtained by using the input set XL

(15) is better than that obtained with set XA.
In particular, when the SVRl is applied, the set XL allows for a 4.14 % reduction

in MAPE, whereas, in the case of MLP, the MAPE improves by 6.22 %. Specifically,
the predictive performance of MLP, using the set XL , is highly competitive.

5 Conclusions

Among hydropower plants, those equipped with storage technology play a crucial role
for the electric power system and for the energy transition. This technology allows
water resources from watercourses or lakes to be stored in reservoirs, and this enables
plant management to choose whether and when to release water to produce electricity.
As a result, storage hydropower plants offer flexibility to the grid and help to mitigate
the short-term production uncertainty that affects most green energy technologies.
Hence, using water in reservoirs represents an opportunity cost, which is related to
the evolution of production profitability and plant production capacity.

Due to these operational issues, predicting storage hydropower production requires
addressing two problems of a different nature. On one side, a physical problem arises,
i.e., predicting production capacity in the medium-term. On the other hand, an eco-
nomic problemmust be addressed, i.e., maximizing revenues by exploiting production
capacity.

Regarding the economic issue, it is crucial to consider that, in a competitive power
market, each producer’s revenue depends on both the price of power and the generation
supply of other price-maker producers.

Since the main price-makers in the power market are thermoelectric and hydroelec-
tric producers, the economic variables to be used to predict hydropower generation
are power prices and market values influencing thermoelectric production.

The main problem with incorporating these economic variables into a large-scale
prediction model is that there are potentially too many types of variables to use. Thus,
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it is important to consider that the strategies of market players are based on their short-
and medium-term expectations. This implies that the problem can be simplified by
using forward prices as a predictor.

In this paper we show that expectations on the Clean Spark Spread have an impor-
tant impact on storage hydropower generation. In particular, for some time horizons,
expectations on the CSS have a more important impact on hydropower generation
than expectations on power price. Indeed, in these cases, the transfer entropy analysis
shows a clear prevalence of the information flow from CSS to the SHGN , compared
to the one in the opposite direction. This is because expectations of a lower CSS
indicate that thermoelectricity will be offered at higher prices and vice versa.

Hence, there is an important effect on the overview of hydropower producers. In
fact, the reduced competitiveness of thermal power plants will increase the share of
demand that can be covered by storage hydropower generation. As a result, the future
value of water in reservoirs increases and so does the current opportunity cost.

In addition, the insights provided by the transfer entropy analysis were used to
identify the set of economic variables with the highest information content to predict
SHGN . The results indicate that the subset of mixed prices XL , identified according
to the results of the TE analysis, is the best subset to predict SHGN . Specifically,
the average conditional entropy of SHGN given XL is 0.10873, which is a value
significantly lower than the ones obtained using proxies of the expectations either on
power price, H(SHGN |XA), or on CSS, H(SHGN |XB), that are respectively 0.135
and 0.1156.

Finally, we point out that it is of paramount importance to incorporate CSS expec-
tations into the storage hydropower model. In fact, if the right mix of power price
and CSS expectations is considered, the prediction error of the model is drastically
reduced.

Specifically, in the case study we investigate, using an SVR with linear kernel we
obtain a reduction in MAPE of 4.14% and 6,22% using MLP. The MLP algorithm
based on set XL , obtains a very competitive result in the problem, with a correlation
of 0.99356 and a MAPE of 2.67%.

Themethods employed here rely on two conditions, the stationarity (for TEmethod)
and the iid assumption of the data (for the entropy in general). From Table 2, the ADF
test rejects the null hypothesis of unit root also for all the series object of this article.
This allows us to use the data in their raw form.

Anyway, local trends and seasonality could affect the robustness of the results.
Nevertheless, the known approaches to address these issues, based on transformations
of the series, would not be consistent with the economic theory underlying the model.
For example, considering the series of differences to lag-k, for a suitable k ≥ 1, may
not be compatible with our paper contribution. In particular, the aim of our paper
is to analyze the influence of expectations on hydroelectric generation forecasting,
a topic that has not yet received enough consideration in the literature. By tackling
this problem in terms of variations of storage hydropower generation, the economic
link between dependent and independent variables would be lost. From an economic
point of view, we would have no reason to argue that there is a relationship between
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expectations on CSS in the medium term and the daily variation of hydroelectricity.
This could be an interesting topic for future research.
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Appendix A: Notation

See Table 7.

Appendix B: Transfer entropy based on quantile

We partitioned the data xt into the discretized value st by the quantiles {qi } in Eq. (13).
Specifically, we proceeded as in Park et al. (2021), by performing a uniform binning:
for the 3-quantiles case, we have the first quantile below 0.33, the second quantile
between 0.33 and 0.66 and the third quantile over 0.66; if it is expressed in four

Table 7 Notation

Notation Description Unit of measure

SHGN Storage Hydropower generation in Northern Italy Gwh

D01 Forward one Day Power Price e/MWh

W01 Forward one Week Power Price e/MWh

MXpw Forward X Mouthy Power Price e/MWh

QX pw Forward X Quarter Power Price e/MWh

MXgas Forward X Mouthy Gas Price e/MWh

QXgas Forward X Quarter Gas Price e/MWh

MXC02 Forward X Mouthy C02 Price e/MWh

QXC02 Forward X Quarter C02 Price e/MWh

CSSD01 CSS Forward one Day Power Price e/MWh

CSSMX CSS Forward X Mouthy Power Price e/MWh

CSSQX CSS Forward X Quarter Power Price e/MWh

CE Conditional Entropy bits

ETE Effective Transfer Entropy bits

123

http://creativecommons.org/licenses/by/4.0/


The impact of Clean Spark Spread expectations on storage… 1139

quantiles, the first quantile is below 0.25, the second quantile falls between 0.25 and
0.50, the third quantile is between 0.50 and 0.75, while the fourth quantile is over 0.75.

As noted by Park et al. (2021), when data is partitioned, the selection of a suitable
number of quantiles is crucial. If this number is too big, the interval of interest will be
too narrow. By contrast, if it is too small, the interval of interest will be too wide. For
this reason, some established practices have been proposed in the literature (Benedetto
et al. 2020; Behrendt and Schmidt 2020; Behrendt and Prange 2021). Moreover, since
misdefining the number of quantiles can reduce TE and affect the validity of the
analysis, Park et al. (2021) proposed to consider, as a suitable number of quantiles,
those value that maximize the TE. Anyway, this approach based on uniform binning
does not account for leptokurtic series and does not allow to determine the dominant
direction of the information flow across different quantile choices. In fact, as explained
by Behrendt et al. (2019): “the information flow in both directions cannot be compared
across different quantiles but only for the same quantile”. However, we still performed
the analysis of the transfer entropy between SHGN and the other series, by increasing
the number of quantiles incrementally from 1 to 10, as done by Park et al. (2021).

Figures 9 and 10 show TE between SHGN and the rest of the dataset according
to a function of number of quantiles q. When q = 1, TE is zero, because discretized
data fall into only one process. As q increases, TE increases as well and, unlike Park
et al. (2021) results, it is not maximized in both directions for the same value of q.
Moreover, unlike Park et al. (2021) results, it is not true that, above q = 3, TE rapidly
decreases and becomes close to zero. Nevertheless, this analysis confirms, for almost
all the values of q, the results enclosed in the last column of 3. For example, the upper-
left plot in Fig. 9 confirms that the dominant direction is from CSSD01 to SHGN for
each value of q between 1 and 10. These figures shed light also on some doubtful
findings returned by last column of Table 3. For example, Fig. 9 shows that, in the
case of CSSM02 forward value, the dominant direction is from CSSM02 to SHGN.
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Fig. 9 Transfer entropy as a function of q: SHGN versus CSSD01, CSSM01, . . ., CSSM05
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Fig. 10 Transfer entropy as a function of q: SHGN versus CSSM06, CSSM07, CSSQ01, CSSQ02, CSSQ03

Appendix C: plots of themost representative series

The series depicted in this Appendix corresponds to sub-hydrographic basins inNorth-
ern Italy depicted in Fig. 11. They are: Figs. 12, 13, 14, 15 and 16.
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Fig. 11 Northern Italy sub-hydrographic basins and the grouping of hydro-power plants

Fig. 12 Series of the rainfall on Alps-Italy (cumulative daily in millimeters)

Fig. 13 Daily average global radiation MJ/m2
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Fig. 14 Snowpack level (daily average in centimeters)

Fig. 15 Average daily temperature in ◦C

Fig. 16 The current price of the monthly forward with delivery period in the next calendar month, M01
(/MWh)
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