
Decisions in Economics and Finance (2021) 44:669–705
https://doi.org/10.1007/s10203-021-00350-x

ORIG INAL RESEARCH

A revised version of the Cathcart & El-Jahel model and its
application to CDSmarket

Davide Radi1,2 · Vu Phuong Hoang3 · Gabriele Torri2,4 · Hana Dvořáčková2
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Abstract
The paper considers the pricing of credit default swaps (CDSs) using a revised version
of the credit riskmodel proposed in Cathcart and El-Jahel (2003). Default occurs either
the first time a signaling process breaches a threshold barrier or unexpectedly at the
first jump of a Cox process. The intensity of default depends on the risk-free interest
rate, which follows a Vasicek process, instead of a Cox-Ingersoll-Ross process as in
the originalmodel. This offers two advantages. On the one hand, it allows us to account
for negative interest rates which are recently observed, on the other hand, it simplifies
the formula for pricing CDSs. The goodness of fit of the model is tested using a dataset
of CDS credit spreads related to European companies. The results obtained show a
rather satisfactory agreement between theoretical predictions and market data, which
is identical to the one obtained with the original model. In addition, the values of the
calibrated parameters result to be stable over time and the semi-closed form solution
ensures a very fast implementation.

Keywords Credit risk · Hybrid models · Credit default swaps

1 Introduction

Default is the main source of risk in the financial markets. To reduce the exposition to
the risk of default investors use credit derivatives, such as credit default swaps (CDSs).
They are bilateral agreements to transfer credit risk (on a reference entity) between two
parties. The pricing of these derivatives requires to assess credit risk. For this purpose,
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the financial literature offers three types of models: structural models, reduced-form
models and hybrid models.

Structural models evaluate the risk of default of a firm issuing a debt based on one or
more variables related to its capital structure, see, e.g., Merton (1974), Black and Cox
(1976), Longstaff and Schwartz (1995) and Feng and Volkmer (2012). According
to these models, a firm goes bankrupt only if it is in financial distress. Excluding
sophisticated versions that accommodate unexpected jumps in the value of firm’s
assets and for which analytical tractability is lost, see, e.g., Zhou (2001), structural
models are built on the hypotheses that firm’s assets follow a diffusion process and
investors are able to observe the true distance to default. These two assumptions make
bankruptcy predictable, see Giesecke (2006). In reality, however, the hypothesis of
complete information is often violated and investors ask for a premium to compensate
the risk of a non-predictable default. As a consequence of this, structural models
underestimate short-term credit spreads as confirmed by empirical studies, see, e.g.,
Jones et al. (1984) and Franks and Torous (1989).

The mechanism that triggers default is different in a reduced-form model. Fully
embracing the hypothesis of incomplete information and neglecting any knowledge
about the capital structure of a firm, bankruptcy occurs as the first jump of a counting
process, see, e.g., Jarrow and Turnbull (1995), Lando (1998), Duffee (1999), Duffie
and Singleton (1999), Madan and Schoutens (2008), Schoutens and Cariboni (2009),
and Fontana and Montes (2014). The possibility to replicate high credit spreads even
for short-term maturities and the mathematical tractability are the main advantages of
this approach. Considering default as an exogenous event, dependent only on latent
variables, is the main drawback.

Structural and reduced-form approaches can be combined together. The resulting
hybrid models offer several advantages, such as mathematical tractability, ability to
reproduce high short-term spreads and a structural definition of default. A first example
of hybrid model is proposed in Madan and Unal (1998). Employed in Ballestra et al.
(2017) for pricing CDSs, it assumes that default occurs at the first jump of a Pois-
son process as in reduced-form models. However, the intensity of default accounts
for structural informations. A similar model is proposed in Madan and Unal (2000),
where the intensity of default is approximated by a linear function of the firm’s equity
value and of a stochastic risk-free interest rate. Similar is also the structural hazard-
rate model in Das and Sundaram (2007), where the equity value follows a constant
elasticity of variance process instead of a simpler geometric Brownian motion.1 Start-
ing from the different angle offered by the first-passage default models, Duffie and
Lando (2001) and Giesecke (2006) obtain a family of hybrid models by introducing
incomplete information about firm’s value and default barrier. A more sophisticated
hybrid model is proposed in Cathcart and El-Jahel (2006), where default occurs either
when a signaling variable breaches a lower barrier as in structural models or at the
first jump of a counting process as in Madan and Unal (2000). The intensity of default
of the counting process is a linear function of the risk-free interest rate and of the

1 This allows us to capture the so-called leverage effect, that is value and volatility of equity are negatively
correlated. However, Das and Sundaram (2007) conclude that the leverage effect has a limited impact on
the term structure of default swap spreads and a geometric Brownian motion can be used to approximate
firm’s equity value.
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signaling variable measuring credit quality. The short-term interest rate follows a
Cox-Ingersoll-Ross (CIR) process, see Cox et al. (1985), while the signaling variable
follows a geometric Brownian motion.

In Ballestra et al. (2020), the hybrid model in Cathcart and El-Jahel (2006) has been
empirically tested by employing a dataset of CDS spreads. The full-fledged version
of this model does not allow to have a closed-form solution for pricing credit risk.
To simplify the CDS pricing formula, the hazard rate can be assumed independent
of the signaling variable as in Cathcart and El-Jahel (2003), and to simplify it even
more, the hazard rate can be assumed constant. In the latter case, the pricing formula
for CDS spreads is available analytically except for the numerical approximation of
a univariate integral. The empirical analysis in Ballestra et al. (2020) underlines that
the model with constant hazard rate provides a good compromise between goodness
of fit and computational efficiency.

In this work, we extend the analysis in Ballestra et al. (2020) by proposing a revised
version of the model in Cathcart and El-Jahel (2003) where the short-term interest
rate follows a Vasicek process instead of a CIR process.2 In assessing companies’
credit risk, this allows us to account for the impact of negative interest rates fre-
quently observed in the last decade. Then, we derive a closed-form solution for the
default probability and a formula for pricing CDS spreads in semi-closed form. A
one-dimensional integral only needs to be approximated numerically.

As confirmed by a numerical test, the computational burden of the CDS pricing
formula obtained is equal to the one of the CDS pricing formula obtained in Ballestra
et al. (2020) by imposing a constant hazard rate. Respect to this latter model, however,
the current CDS pricing formula must ensure a superior empirical fitting, which we
expect to be similar to the one obtained with the model proposed in Cathcart and
El-Jahel (2003). To test this conjecture, a calibration procedure using econometric
techniques is employed. This procedure is based on the maximum-likelihood estima-
tion of the parameters of the process used to model the short-term default-free interest
rate. Then, by minimizing the mean absolute percentage error, we observe that the
fitting of the empirical term structure of the CDS spreads obtained with our model is
identical to the one obtainedwith the credit riskmodel in Cathcart and El-Jahel (2003).
This result corroborates our conjecture and allows us to conclude that the credit risk
model considered here is a valid alternative to the model proposed in Cathcart and
El-Jahel (2003). Indeed, it ensures the same goodness of fit but it takes a hundred times
less CPU time to compute a CDS spread.

In addition, a dataset of CDS spreads observed in the last three years is employed to
show the stability over time of the calibrated values of the parameters of the new credit
risk model considered here. This analysis is performed by considering the spreads of
CDSs written on 142 companies. The companies are divided in three groups according
to their S&P rating. The model reveals that companies with high credit rating have a
higher equity value, their credit quality signaling variable is less volatile, their hazard
rate is lower and their duration gap is positive while it becomes negative when compa-
nies with lower credit rating are considered. We also study how the calibration varies

2 The CIR process was preferred to the Vasicek process till the 2007-2008 financial crisis. Afterwards, the
observation of negative interest rates brought Vasicek model back into vogue. Indeed, differently from the
CIR model, the Vasicek model allows to have negative interest rates with positive probability.
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across different sectors by grouping the companies according to the two digits NAICS
sector code, finding that there aren’t relevant differences in the calibrated parameters
across sectors. Finally, we observe that the rise of CDS spreads in conjunction with
the COVID-19 pandemic is mainly capture by the intensity-of-default parameters.

The road map of the paper is the following. Section 2 introduces the valuation
framework proposed. Section 3 derives formulas in closed form for computing the
probability of default, the current price of a survival security and the forward price
of a survival security. These results are employed in Sect. 4, where two formulas for
pricing CDS spreads are derived. The first one obtained assuming the current valuation
framework. The secondone obtained assuming the credit riskmodel inCathcart andEl-
Jahel (2003). The main differences between the two pricing formulas are discussed.
In Sect. 5 an empirical analysis estimates the goodness of fit of the two credit risk
models in replicating the curve of CDS spreads. In Sect. 6 an investigation employing
historical data shows the stability over time of the calibrated values of the parameters
of the proposed credit risk model. Section 7 concludes. Appendix A recaps the credit
risk model in Cathcart and El-Jahel (2003). All proofs are in Appendix B. Appendix C
contains the list of the companies studied, the descriptive statistics of the CDS curves,
and the results of the calibrations for selected companies.

2 The valuation framework

A credit-risk modeling framework is developed by assuming that the market is fric-
tionless and perfectly competitive. Trading takes place continuously. Investors act as
price takers and there are no taxes, transaction costs, or informational asymmetries.

The default-free interest rate is supposed to evolve according to the following
process

dr (t) = k (μ − r (t)) dt + σr (t, r (t)) dWr (t) (1)

where k is a real parameter that measures the speed at which the default-free interest
rate converges to the long-run average μ and Wr is a standard Wiener process under
the martingale measure Q. Concerning the diffusion term, in this work we assume
that σr (t, r (t)) = σr . That is, we assume that the default-free interest rate follows a
Vasicek process (Vasicek 1977). In contrast, Cathcart and El-Jahel (2003), Cathcart
and El-Jahel (2006), and Ballestra et al. (2020) model the short-term interest rate as
a Cox-Ingersoll-Ross (CIR) process (i.e. σr (t, r (t)) = σr

√
r (t), Cox et al. 1985).

Considering the short-term interest rate following a Vasicek process represents the
main novelty from the modeling point of view of this work. This novelty allows us
to account for negative interest rates, which are recently experienced in the European
markets and, as discussed later, it gives us significant computational advantages for the
calibration. Figure 1 presents a simulation of the Vasicek and CIR stochastic processes
obtained using an Euler scheme. The plot highlights how the main difference between
the two is the behaviour when the process approaches zero: while the former can
assume negative values, the latter remains always positive and reduces its volatility.

Assuming that the short-term riskless rate follows process (1) with σr (t, r (t)) =
σr , the risk-neutral price at the current time t0 of a default-free pure discount bond
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Fig. 1 Simulated Vasicek and CIR stochastic processes. Parameters for Vasicek: k = 1, μ = 0.005,
σr (t0) = 0.005, r = 0.001. Parameters for CIR: k = 1, μ = 0.005, σr = 0.05, r = 0.001. The process is
simulated using a Euler scheme with discrete time steps �t = 0.01. For the two models we used the same
Wiener process as driver to make the visual comparison between the two models easier

with maturity T is given by (see Vasicek 1977):

PV (r (t0) , t0; T ) = eA (t0; T ) + B (t0; T ) r (t0) (2)

where

B (t0; T ) = e−k(T−t0) − 1

k

A (t0; T ) =
(

σ 2
r

2k2
− μ

)
(B (t0; T ) + T − t0) − σ 2

r

4κ
B2 (t0; T ) (3)

A firm’s credit quality is measured by a signaling variable denoted by x .3 A higher
(lower) value of this signaling variable means a higher (lower) credit quality. Specifi-
cally, its risk-adjusted dynamics follows the diffusion process

dx (t) = αx (t) dt + σx x (t) dWx (t) (4)

where α is a real parameter, σx is a real and positive parameter, whileWx is a standard
Wiener process under the martingale measure Q and is uncorrelated to Wr .

Given the dynamics of the default-free interest rate and of the signaling variable,
default occurs either expectedly at the first time the signaling variable x breaches from
above the threshold value xL , also known as the default barrier, or unexpectedly at the
jump event of a Cox, or counting, process with hazard rate λ (r) = a+br . Here, a and
b are real value parameters and λ (r) is imposed to be non-negative. The intensity of
default is therefore assumed to be a linear function of the short-term risk-free interest
rate. As shown in Madan and Unal (2000), the parameter b proxies the duration gap
of a company. A positive value of b indicates a positive duration gap. In this case, an
increase of the interest rate reduces the value of the assets more than the values of the
liabilities and the credit spreads are positively related to the short-term interest rate.

3 It can be considered a proxy of the firm’s equity value.
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A negative value of b indicates a negative duration gap. In this case, an increase of the
interest rate reduces the value of the assets less than the values of the liabilities and
the credit spreads are negatively related to the short-term interest rate.

At the default time, the company defaults on all of its obligations and some restruc-
turing occurs so that the assets of the company are allocated exogenously among
various bondholders. Specifically, we assume the so-called recovery of treasury, see,
e.g., Duffie and Singleton (1999) and Guo et al. (2008), according to which bond-
holders receive δ default-free discounted bonds with the same maturity and promised
payment as for the original security. The recovery rate δ is assumed constant.

The model that we propose here is closely related to Cathcart and El-Jahel (2003)
with the only difference being the dynamics of the default-free interest rate (both
models are special cases of Cathcart and El-Jahel 2006). The model of Cathcart and
El-Jahel (2003) however is computationally heavy, and Ballestra et al. (2020) suggest
to use a constant hazard rate to balance goodness of fit and computational simplicity.
Thanks to the different specification of the interest rate process, in our model we
can relax the assumption of constant hazard rate, assuming instead that this quantity
depends on the short-term interest rate with no additional computational burden.

A possible drawback exists for the current credit-risk modeling framework. Con-
sidering the short-term interest rate following a Vasicek process, the linear model for
the intensity of default here employed has the potential of yielding negative credit
spreads as hazard rates can go negative. However, as also specified inMadan and Unal
(2000) this problem can be mitigated, in practice, by calibrating the resulting model
to positive credit spread data over a finite horizon of debt maturities.

3 The probability to survive

Consider the stopping time τx , defined as the first time the random variable x breaches
the default barrier xL . Moreover, consider the stopping time τr , defined as the first
time the counting process with hazard rate λ (r) has a jump.

According to the valuation framework in the previous section, td = min {τx , τr } is
the random time of default and Q (td > T ) is the probability to survive up to time T .
Note that

Q (td > T ) = E
Q [

1{td>T }
]

= E
Q [

1{τx>T∧τr>T }
]

= E
Q [

1{τx>T }1{τr>T }
]

(I )= E
Q [

1{τx>T }
]
E
Q [

1{τr>T }
]

(5)

where (I) follows from the fact that x and r are independent random variables. Then,
by Girsanov’s Theorem and reflection principle, see, e.g., (Shreve 2010, pp. 297–299),
we have that
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E
Q [

1{τx>T }
] = f (x (t0) , t0; T )

= N (d1 (T − t0)) − e

(
1− 2α

σ2x

)
ln x(t0)

xL N (d2 (T − t0)) (6)

where

d1 (s) = ln x(t0)
xL

+ (
α − 1

2σ
2
x

)
s

σx
√
s

(7)

and

d2 (s) = − ln x(t0)
xL

+ (
α − 1

2σ
2
x

)
s

σx
√
s

(8)

Employing formula (6), the analytical expression for the probability to survive of
a firm and the price of a survival security (defaultable bond with zero recovery) are
defined in the following Proposition (proof in Appendix B).

Proposition 1 Assuming the hybrid credit-risk model in Sect. 2, we have that

Q (td > T ) = f (x (t0) , t0; T ) gV (r (t0) , t0; T ) (9)

where f is defined in (6), while

gV (r (t0) , t0; T ) = eE1 (t0; T ) + E2 (t0; T ) r (t0) (10)

with

E1 (t0; T ) =
(
bσ 2

r

2k2
− μ

)
b (B (t0; T ) + (T − t0)) − b2σ 2

r

4k
B2 (t0; T ) − a (T − t0)

E2 (t0; T ) = bB (t0; T ) (11)

and B (·; ·) defined as in (3). Moreover, the current price of a survival security with
unitary face value and maturity T is given by

SV (r (t0) , x (t0) , t0; T ) = f (x (t0) , t0; T ) g̃V (r (t0) , t0; T ) (12)

where g̃V is obtained by gV substituting b with b + 1.

The price of a survival security in Proposition 1 is the discounted value of the
probability to survive when the short-term interest rate follows a Vasicek process.

The formula to price a survival security as well as the probability to survive are both
available in closed form as shown in Proposition 1. The forward price of a survival
security also admits a closed-form solution. This is a relevant point as the forward price
of a survival security is required for pricing CDSs. In the current valuation framework,
the forward price of the survival security discounts the promised unit payoff for reasons
related to exposure to the hazard of default, as captured by the process for the timing
risk of default λ (r), and multiply it for the probability that the signaling variable does
not breach the default barrier xL .
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To compute the forward price of a survival security, we consider the forward mea-
sure QT as in Madan and Unal (2000), which is the unique equivalent martingale
measure under which the values of traded assets discounted by the price of the default-
free bond, in this case PV (r (t0) , t0; T ), are martingales.

The change of measure density process from Q to QT is given by the Radon-
Nikodym derivative which is equal to the price of a default-free bond with maturity
T , see, e.g., Brigo and Mercurio (2007) and Madan and Unal (2000). Then, applying
Girsanov’s theorem, the QT dynamics for x and r are given by

dx (t) = αx (t) dt + σxdWx (t)

dr (t) =
(
μ (k − r (t)) − σ 2

x B (t; T )
)
dt + σr dW̃r (t) (13)

where Wx (t) and W̃r (t) are Wiener processes under QT while B (t; T ) is defined
in (3). Since by assumption the signaling variable is uncorrelated to the short-term
interest rate, its dynamics does not changewhenwemove from themartingalemeasure
Q to the forward measure QT , i.e. QT (τx > T ) = Q (τx > T ).

The formula in closed form for the forward price of a survival security is provided
in following proposition (proof in Appendix B).

Proposition 2 Assuming the hybrid credit-risk model in Sect. 2, the forward price of
a survival security with unitary face value and maturity T is given by

FV (x (t0) , r (t0) , t0; T ) = QT (td > T )

= f (x (t0) , t0; T ) hV (r (t0) , t0; T ) (14)

where f is defined in (6), while

hV (r (t0) , t0; T ) = eE3 (t; T ) + E4 (t; T ) r (t0) (15)

with

E3 (t0; T ) = b

((
1 + b

2

)
σ 2
r

k2
− μ

)
(B (t0; T ) + (T − t0))

+
(
1 + b

2

)
bσ 2

r

2k
B2 (t0; T ) − a (T − t0)

E4 (t0; T ) = bB (t0; T ) (16)

and B (·; ·) defined as in (3).

4 Pricing credit default swaps

In this section, we consider the problem of pricing CDSs. To this aim, let us consider
a CDS written on a unit bond with initial protection time t0, final protection time T
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(T − t0) is therefore the time to maturity of the CDS), and random time of default
td . Moreover, let us denote a CDS spread by 	 and let us assume that it is paid
continuously. Then, at time t0 the premium leg is given by (see e.g., Brigo andMercurio
2007, p. 736 and Gündüz and Uhrig-Homburg 2014)

PremiumLeg = E
Q

[
	

∫ T

t0
e
− ∫ z

t0
r(u)du1{td>z}dz

]
(17)

where 1{·} denotes the indicator function. Moreover, let LGD denote the single pro-
tection payment (so-called loss given default), operated at the time of default td .
According to the assumption of recovery of treasury with recovery rate δ, see again
Guo et al. (2008), we have:

LGD = (1 − δ) P (r (td) , td ; T ) (18)

where P (r (td) , td ; T ) is the price at time td of a default-free discount bond with
maturity T . Therefore, the protection leg is given by

ProtectionLeg = P (r (t0) , t0; T )EQT [
(1 − δ) 1{T≥td>t0}

]
(19)

where QT is the forward measure discussed above. By equating the premium leg to
the protection leg and solving for	, we obtain the so-called CDS par spread (hereafter
simply referred to as CDS spread) at the initial protection time t0:

	(x (t0) , r (t0) , t0; T ) = P (r (t0) , t0; T )EQT [
(1 − δ) 1{T≥td>t0}

]

EQ

[∫ T

t0
e
− ∫ z

t0
r(u)du1{td>z}dz

] (20)

Assuming the credit risk model in Sect. 2, a solution in semi-closed form for
computing the CDS spread in (20) is proposed in the following Proposition (see the
proof in Appendix B)

Proposition 3 Assuming the credit risk model in Sect. 2, the CDS spread in (20), that
we denote by 	V , can be computed as follows:

	V (x (t0) , r (t0) , t0; T ) = PV (r(t0), t0; T ) (1 − δ)
(
1 − FV (x (t0) , r (t0) , t0; T )

)
∫ T

t0
SV (x (t0) , r (t0) , t0; s) ds

(21)
where FV (·) is the forward price of a survival security defined in Proposition 2, SV (·)
is the current price of a survival security defined in Proposition 1, while PV (·) is the
price of a default-free pure discount bond defined as in (2).

The one-dimensional integral at the denominator of the pricing formula (21) needs
to be approximated numerically. The numerical approximation is obtained by employ-
ing a 32-points Newton-Cotes quadrature rule. A numerical test indicates that this
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Table 1 CPU time for obtaining
a single CDS spread

	V 	C I R

CPU time 2.407 × 10−4 s 0.022 s

one-dimensional differential quadrature approximation ensures the required level of
precision when pricing CDSs with maturities lower than or equal to 30 years.4

To test the validity of the valuation framework proposed, the pricing of CDS spreads
is also addressedwith the credit riskmodel ofCathcart andEl-Jahel (2003). The pricing
formula for CDS spreads under the Cathcart and El-Jahel (2003) model is provided in
Ballestra et al. (2020) and is recap in the following Proposition:5

Proposition 4 Assuming the credit risk model in Cathcart and El-Jahel (2003), the
CDS spread in (20), that we denote by 	C I R , can be computed as follows:

	C I R (x (t0) , r (t0) , t0; T )

= PCI R (r(t0), t0; T ) (1 − δ)
(
1 − FCI R (x (t0) , r (t0) , t0; T )

)
∫ T

t0
SCI R (x (t0) , r (t0) , t0; s) ds

(22)

where FCI R (·) is the forward price of a survival security defined in Proposition 6,
SC I R (·) is the current price of a survival security defined in Proposition 5, while
PCI R (·) is the price of a default-free pure discount bond defined as in (24).

To compute the pricing formula (22) the one-dimensional integral at the denomina-
tor needs to be approximatednumerically.As for the pricing formula (21), the 32-points
Newton-Cotes quadrature rule can be employed. In addition to this, the forward price
of a survival security must also be approximated numerically when computing (22),
see Proposition 6 in Appendix A. Specifically, a numerical approximation of the solu-
tion of the system of two ordinary differential equations in (33) is required when
pricing a CDS spread under the credit risk model in Cathcart and El-Jahel (2003).
Such approximation is obtained employing the fourth-order-Runge-Kutta method.

The credit risk model here proposed offers therefore an advantage in terms of
computational complexity. This advantage is due to the forward price of a survival
security, available in closed form for the valuation framework here proposed and not
available in closed form for the credit risk model in Cathcart and El-Jahel (2003).

The different computational complexity impacts on the CPU time required to price
a CDS spread. Table 1 indicates that a single CDS spread is computed in around two

4 Only CDSs with maturities lower than or equal to 30 years are considered in the empirical analysis that
follows and in general CDSs with maturities higher than 30 years are not traded. Concerning the order of
approximation, the numerical test conducted, which is not reported here for the sake of space, indicates a
computational error lower than 10−4. Since a CDS spread is measured in basis points, computing a CDS
pricing formula with a level of precision of 10−4 is enough for the purpose of our application.
5 For the sake of comparison, the CDS pricing formula derived in Ballestra et al. (2020) for the valuation
framework in Cathcart and El-Jahel (2003) is rewritten in (22) in terms of the price of a default-free bond,
the current price of survival security and the forward price of a survival security, see appendix A.
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Fig. 2 Term structure of the CDS spreads. Example 1, parametrization with humped curve. Parameters:
x
xL

= 2, α = 0.01, σx = 0.2, r = 0.001, k = 1, μ = 0.015, σr = 0.005, a = 0.1, δ = 0.4. Positive
duration gap: b = 0.1 (a). Negative duration gap: b = −0.1 (b)

hundredths of a second when the credit risk model in Cathcart and El-Jahel (2003)
is employed. The same single CDS spread requires about a hundredth less CPU time
when the valuation framework here proposed is employed. This difference is estimated
by using a computer Intel Core i7 CPU, 2.3 GHz, with all the software codes written in
Matlab9.3, andbecomesparticularly relevant in the calibrationphase. In fact, generally
tens of thousands of CDS spreads need to be computed for a single calibration.

Despite the different computational complexity, the term structure of CDS spreads
obtainedwith the pricing formulas (21) and (22) are very similar. In Fig. 2, for example,
two humped curves of CDS spreads are proposed, one obtained assuming a positive
duration gap (panel (a)) and one obtained assuming a negative duration gap (panel
(b)). For maturities from zero to 30 years, the CDS spreads generated by the credit
risk model in Cathcart and El-Jahel (2003) are equal to the ones generated by the
valuation framework here proposed. The same occurs when upward sloping curves
of CDS spreads are considered. It is the case of Fig. 3, where the employed values
of the interest rate parameters are the ones used in the empirical analysis in the next
section. Even in this case we observe that the two credit risk models generate similar
CDS spreads independently of the sign of the duration gap. This suggests that the two
models predict almost equal credit spreads. The only differences can be observedwhen
the volatility parameter of the short-term interest rate σr takes large values (Fig. 4). In
this case, we observe that the CDS spreads related to long-term maturities are higher
when generated by the credit risk model here proposed. However, such a difference is
observed for values of σr which are far from the ones observed in reality. Therefore,
we can conclude that the twomodels generate almost equal curves of CDS spreads and
the goodness of fit of the twomodels should be similar. This conjecture is corroborated
by the empirical analysis that follows.
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Fig. 3 Term structure of the CDS spreads. Example 2, parametrization with upward sloping curve. Param-
eters: x

xL
= 2.5, α = 0.01, σx = 0.2, r = −0.005, k = 0.170, μ = 0.005, σr = 0.003, a = 0.01, δ = 0.4.

Positive duration gap: b = 0.01 (a). Negative duration gap: b = −0.01 (b). The interest rate parameters
are as in Table 2
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Fig. 4 Term structure of the CDS spreads. Example 3, parametrization with upward sloping curve and
high interest rate volatility σr . Parameters: x

xL
= 2.5, α = 0.01, σx = 0.2, r = −0.005, k = 0.170,

μ = 0.005, σr = 0.02, a = 0.01, δ = 0.4. Positive duration gap: b = 0.01 (panel (a)). Negative duration
gap: b = −0.01 (panel (b))

5 Empirical testing of models

We use a dataset of (single-name) CDSs. We consider the credit spreads of CDSs
written on bonds issued by 142 European companies. For each company, ten different
maturities of CDSs are considered, that is T1 = 6 months, T2 = 1 year, T3 = 2 years,
T4 = 3 years, T5 = 4 years, T6 = 5 years, T7 = 7 years, T8 = 10 years, T9 = 20 years,
and T10 = 30 years. The CDS data are obtained from the Thomson Reuters Eikon
database. Following Packer and Zhu (2005) and consistently with the assumption
of recovery of treasury, we only include CDSs with restructuring clause XR14, i.e.
no restructuring. Furthermore, we only collect CDSs written on debts classified as
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Table 2 Maximum-likelihood
estimation of the parameters of
the CIR model, first line, and of
the parameters of the Vasicek
model, second line

k μ σr

CIR 0.0170 − 0.0049 0.0031

Vasicek 0.0170 − 0.0049 0.0029

Monthly observations of the 1-week Euribor rates for the period from
February, 2010, to February, 2020, are considered

senior unsecured and traded in Euros. The list of all the 142 companies considered
in the analysis and the descriptive statistics of the CDS spread curves are available in
Appendix C.

Moreover, we also use a dataset of monthly quotes of the Euribor rate. In particular,
we consider the monthly observations of the 1-week Euribor rate that we use as a
proxy for the default-free interest rate.

These datasets are employed to conduct an empirical investigation. The goal of this
investigation is to compare the goodness of fit of the pricing formulas in Propositions
3 and 4, obtained assuming the current credit risk model and the one in Cathcart and
El-Jahel (2003), respectively.

To this aim, we estimate the parameters of the CIR model (adopted in Cathcart
and El-Jahel (2003) to describe the dynamics of the risk-free interest rate) and of the
Vasicekmodel (adopted in the valuation framework in Sect. 2 to describe the dynamics
of the risk-free interest rate) by employing the maximum-likelihood method, see,
e.g., Fergusson and Platen (2015) and Ballestra et al. (2016), and using the monthly
observations of the 1-week Euribor rate from February 1, 2010 to February 3, 2020.
Moreover, r (t0) is set equal to the 1-week Euribor rate at the day at which the CDS
spreads are considered, that is February 3, 2020. The current time t0 is set equal to 0
for notational simplicity and the estimated values of k, μ and σ 2

r for the two models
employed are reported in Table 2.

To complete the calibration of the credit risk models, the values of the interest rate
parameters in Table 2 are employed and the recovery rate δ is set to 0.4. A constant
recovery rate equal to 40% is a common assumption in the literature, see e.g. Altman
and Kishore (1996), Jankowitsch et al. (2008) and Madan (2014). Then, for each
company considered, the remaining parameters of the credit risk models are obtained
by fitting the term structure of realized CDS spreads quoted on February 3, 2020. This
is done by using a calibration procedure analogous to the one proposed in Hao et al.
(2013), Ballestra et al. (2017) and Ballestra et al. (2020). Specifically, the parameters
of the model that still need to be estimated, namely x0

xL
, α, σ 2

x , a and b, are obtained by
minimizing the mean absolute percentage error (MAPE) between the empirical CDS
spreads and the theoretical ones:

MAPE

(
x0
xL

, α, σ 2
x , a, b

)
= 1

10

10∑
i=1

∣∣∣∣	
∗ (0, Ti ) − 	 j (x0, r (0) , 0; Ti )

	∗ (0, Ti )

∣∣∣∣ (23)

where 	 j (x0, r (0) , 0; Ti ) is evaluated using the CDS pricing formula (21) if j = V
and the CDS pricing formula (22) if j = C I R, while 	∗ (0, Ti ) denotes the value
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Table 3 Statistics of the calibrated values and of the mean absolute percentage error (goodness of fit) for the
credit risk model in Cathcart and El-Jahel (2003), formula 	C I R , and for its revised version here proposed,
formula 	V

x0
xL

α σx a b MAPE %

(AAA) – (A-) 	C I R Average 3.224 0.054 0.237 0.010 1.516 8.53%

Min 2.392 0.023 0.177 −0.013 −2.752 2.39%

Max 4.715 0.120 0.300 0.010 1.873 19.20%

SD 0.589 0.020 0.032 0.003 0.667 2.48%

	V Average 3.224 0.054 0.237 0.010 1.506 8.52%

Min 2.392 0.022 0.177 −0.013 −2.804 2.25%

Max 4.716 0.121 0.300 0.010 1.860 19.23%

SD 0.588 0.020 0.032 0.003 0.672 2.51%

(BBB+) – (BBB-) 	C I R Average 3.002 0.037 0.236 0.009 1.285 8.10%

Min 1.612 0.009 0.101 −0.009 −3.832 0.90%

Max 5.076 0.191 0.300 0.010 1.832 15.73%

SD 0.569 0.024 0.030 0.003 1.069 2.81%

	V Average 2.999 0.037 0.236 0.009 1.277 8.06%

Min 1.612 0.009 0.101 −0.009 −3.881 0.31%

Max 4.977 0.188 0.300 0.010 1.822 15.76%

SD 0.558 0.023 0.030 0.003 1.075 2.92%

(BB+) – (CCC) 	C I R Average 2.589 0.085 0.243 0.005 −3.392 6.79%

Min 1.015 −0.029 0.115 −0.020 −19.872 3.42%

Max 5.035 1.314 0.294 0.010 1.639 10.41%

SD 0.849 0.317 0.047 0.010 7.282 2.18%

	V Average 2.583 0.084 0.244 0.005 −3.434 5.70%

Min 1.015 −0.030 0.114 −0.020 −19.946 1.86%

Max 4.936 1.304 0.300 0.010 1.638 10.19%

SD 0.831 0.315 0.047 0.010 7.351 2.39%

For each one of the 142 European companies listed in Appendix C, the parameters are calibrated by
employing CDS spreads with maturities 6 months and 1, 2, 3, 4, 5, 7, 10, 20 and 30 years. The CDS
spreads are quoted on February 3, 2020. Companies are organized in three groups according to their S&P
rating. The first group is made of 57 companies characterized by medium and high investment grade, that
is credit rating greater than or equal to A−. The second group is made of 68 companies characterized by
low investment grade, that is credit rating in the range BBB+ and BBB−. The third group is made of 17
companies characterized by speculative (no investment) grade, that is credit rating lower than BBB−. The
statistics of the calibrations are available for each one of these three groups

observed at time 0 (February 3, 2020) of the spread of a CDS with time to maturity
Ti .

The results of this calibration are available inTable 3,where companies are classified
into three groups according to their S&P rating.Weobserve that assuming the valuation
framework in Sect. 2 we obtain a goodness of fit almost equal, and slightly higher, than
the one obtained by assuming the credit risk model in Cathcart and El-Jahel (2003).
This result is observable independently of the investment grade of the companies
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Table 4 Statistics of the calibrated values for the credit risk model here proposed (formula 	V )

x0
xL

α σx a b λ MAPE %

Finance and
Insurance

Average 3.027 0.081 0.237 0.009 0.499 0.006 8.30%

Min 1.015 −0.012 0.101 −0.020 −17.171 0.000 0.30%

Max 4.574 1.304 0.300 0.010 1.747 0.099 15.80%

SD 0.734 0.187 0.042 0.004 3.671 0.004 3.10%

Manufacturing Average 2.990 0.038 0.234 0.010 1.577 0.001 8.20%

Min 2.392 −0.012 0.177 0.010 0.003 0.000 4.90%

Max 4.716 0.078 0.300 0.010 1.837 0.009 13.10%

SD 0.435 0.019 0.025 0 0.363 0.001 2.10%

Information Average 3.300 0.037 0.251 0.008 1.065 0.002 8.70%

Min 2.636 0.005 0.198 −0.009 −3.881 0.000 1.50%

Max 4.977 0.074 0.300 0.010 1.813 0.010 14.80%

SD 0.674 0.021 0.032 0.006 1.580 0.002 3.10%

Utilities Average 3.038 0.037 0.232 0.010 1.668 0.001 7.50%

Min 2.472 0.013 0.192 0.010 1.494 0.000 4.60%

Max 4.140 0.062 0.287 0.010 1.795 0.002 9.10%

SD 0.474 0.013 0.027 0 0.000 0.101 1.50%

Transportation
and
Warehousing

Average 2.941 0.032 0.233 0.004 −3.231 0.020 7.20%

Min 1.635 0.010 0.185 −0.020 −19.946 0.000 2.50%

Max 4.936 0.063 0.300 0.010 1.860 0.100 19.20%

SD 1.064 0.018 0.037 0.012 8.655 0.037 5.80%

Others Average 3.033 0.027 0.243 0.008 0.748 0.004 7.10%

Min 2.131 −0.030 0.200 −0.013 −3.881 0.000 1.50%

Max 4.977 0.058 0.289 0.010 1.831 0.024 11.20%

SD 0.636 0.022 0.027 0.006 1.750 0.006 2.40%

For each one of the 142 European companies listed in Appendix C, the parameters are calibrated by
employing CDS spreads with maturities 6 months and 1, 2, 3, 4, 5, 7, 10, 20 and 30 years. The CDS spreads
are quoted on February 3, 2020. Companies are organized in six groups according to the two digits 2017
NAICS sector code (see https://www.census.gov/naics/). The statistics of the calibrations are available for
each one of these six groups

considered.Moreover, the values of the calibrated parameters are very similar between
the credit risk model here proposed and the one in Cathcart and El-Jahel (2003). This
indicates that the two models convey the same information about the credit quality
of a firm. These findings are confirmed looking at the results of the calibrations for
individual companies (seeAppendix C, Table 7, wherewe report the calibration results
for a selection of companies from different sectors, countries, and rating classes).
Finally, Table 4 reports the calibration results aggregating the companies by industrial
sector, and we see that the calibration exercise gives rather homogenous results across
sectors. The values for the credit risk model in Cathcart and El-Jahel (2003) are not
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reported for brevity, although they do not show relevant differences from the valuation
framework proposed in Sect. 2.

Then,wecan conclude that considering aVasicekprocess (as in the current valuation
framework) instead of a CIR process (as in Cathcart and El-Jahel 2003) for modeling
the short-term interest rate allows us to preserve (eventually improve) the goodness of
fit, as well as to account for negative interest rates and to reduce the computational time
required for the calibrations. As specified in Table 1, the gain in terms of CPU time is
of about hundred times. Specifically, employing the proposed valuation framework,
that is pricing formula (21), the time for calibrating a set of 142 term structure of CDS
spreads is equal to 13 minutes and 22 seconds (802s), while employing the credit risk
model in Cathcart and El-Jahel (2003), that is pricing formula (22), the same set of
term structure of CDS spreads needs 20 hours, 11 minutes and 47 seconds (72707s)
to be calibrated.

To bring the investigation into perspective, a comparisonwith the results inBallestra
et al. (2020) is required. In fact, the empirical testing conducted inBallestra et al. (2020)
considers: 1) The credit risk model proposed in Cathcart and El-Jahel (2003), which is
the model here considered when the short-term interest rate follows a CIR process; 2)
The advanced version of this model proposed in Cathcart and El-Jahel (2006), where
the hazard rate also depends on the signaling process; 3) The credit risk model as the
one here considered but with constant hazard rate; 4) The credit risk model as the one
here considered but with zero hazard rate.

The results in Ballestra et al. (2020) underline that an evaluation framework as the
one here considered but with constant hazard rate, i.e. b set equal to zero, represents a
good compromise between goodness of fit and computational simplicity. Despite so,
the same results indicate that the assumption of a constant hazard rate reduces the level
of precision. On average, the reduction is estimated in a point of the mean absolute
percentage error. This gap of goodness of fit is obtained by employing a set of 65 term
structures of CDS spreads, which are made of only seven maturities, that is 1 year, 2
years, 3 years, 4 years, 5 years, 7 years and 10 years. Therefore, the gap is expected to
be larger when, as in the current analysis, the further maturities of 6 months, 20 years
and 30 years are considered.

These empirical findings compared to those obtained here lead us to a clear conclu-
sion. The credit risk model here proposed matches the goodness of fit of the model in
Cathcart and El-Jahel (2003) and, at the same time, ensures the same computational
efficiency of the model with constant hazard rate.

All this confirms and enforces our conjecture. That is, assuming that the short-term
interest rate follows a Vasicek process instead of a CIR process, we obtain a valid
alternative to the credit risk model in Cathcart and El-Jahel (2003). Computational
efficiency and high goodness of fit make the proposed model particularly useful for
practitioners.

6 Historical calibration of CDS curves

The credit risk model here considered is calibrated by using historical data. In par-
ticular, we employ the same set of 142 companies employed above but we consider
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the term structures of CDS spreads on three different dates, that is February 3, 2020,
February 1, 2019 and February 1, 2018. The calibration procedure is analogous to
the one used above. For each of these three dates, we obtain the maximum-likelihood
estimation of the parameters of the Vasicek model using the monthly observations of
the 1-week Euribor rate in the previous ten years. The current value of the default-free
interest rate is set equal to the 1-week Euribor rate observed on the day the term struc-
ture of CDS spread is considered and the recovery rate is set to 40%. The remaining
parameters are calibrated company by company by minimizing the mean absolute
percentage error as in (23).

The statistics of the calibrations are available inTable 5.They indicate the stability of
the values of the calibrated parameters over time. In fact, for each calibrated parameter
we observe similar average value, minimum value, maximum value and standard
division. The only exception is the parameter α for non-investment grade companies
((BB+)-(CCC)), where we observe that the average value of α is 0.071 in 2019 while
it jumps to 0.017 in 2018. However, this difference is due to a single company with
credit spreads of around 1500 basis points for short maturities (an outlier), that is a
company that data indicate in strong financial distress. The details of these calibrations
are available in Appendix C, see Table 8, where the estimated parameters are available
for a selection of companies.

The statistics of the calibrations available in Table 5 also provide interesting insights
about the financial situations of companies with different credit rating. Considering the
parameter x0

xL
, its value increases with the company’s credit rating. This is consistent

with the fact that the credit quality of a company with a high credit rating should
be higher than the one of a company with a low credit rating. The volatility of the
signaling variable increases reducing the credit rating of the firm. This indicates that
the creditworthiness (or credit quality) of companies with a low credit rating is more
sensitive to randomshocks (more subject to fluctuations).6 At the same time, the hazard
rate increases on averagemore than ten timesmoving from companies with high credit
rating, that is (AAA)-(A-), to companies with low credit rating, that is (BB+)-(CCC).
This indicates that the probability of an unexpected default is higher for firms with a
low credit rating. Moreover, we observe that the value of the parameter b is on average
positive for companies with credit rating higher than or equal to BBB-. Therefore these
companies are characterized by a positive duration gap. On the contrary, companies
with a credit rating lower than BBB- are characterized by a negative value of b.
Therefore these companies are characterized by a negative duration gap.

The negative duration gap for companies with low credit ratings indicates that
these companies are more financially exposed than companies with high credit rat-
ings. Moreover, for a company with positive (negative) duration gap the value of the
activities increases more (less) than the values of the liabilities when the interest rate
decreases. Thus, a reduction in risk-free interest rates makes low-credit-rated compa-

6 This is consistent with the so-called leverage effect, according to which the volatility of a firm’s equity
value is inversely related to the value of the equity itself, see, e.g., Das and Sundaram (2007). A property that
is also inherent in the structural models, such as the ones in Merton (1974) and in Longstaff and Schwartz
(1995).
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Table 5 Statistics of the calibrated values and of the mean absolute percentage error (goodness of fit) for
the credit risk model here considered

(AAA) – (A-) (BBB+) – (BBB-) (BB+) – (CCC)
2020 2019 2018 2020 2019 2018 2020 2019 2018

x0
xL

Average 3.224 3.225 3.428 2.999 3.009 3.180 2.583 2.560 2.904

Min 2.392 1.842 1.813 1.612 1.600 1.667 1.015 1.014 1.511

Max 4.716 4.465 4.999 4.977 4.327 4.518 4.936 3.126 3.972

SD 0.588 0.604 0.738 0.558 0.513 0.638 0.831 0.503 0.651

α Average 0.054 0.052 0.048 0.037 0.035 0.040 0.084 0.071 0.017

Min 0.022 0.007 0.018 0.009 0.004 −0.032 −0.030 −0.082 −0.031

Max 0.121 0.121 0.121 0.188 0.087 0.094 1.304 1.286 0.071

SD 0.020 0.020 0.019 0.023 0.016 0.020 0.315 0.315 0.030

σx Average 0.237 0.240 0.230 0.236 0.246 0.239 0.244 0.249 0.253

Min 0.177 0.125 0.121 0.101 0.100 0.103 0.114 0.111 0.102

Max 0.300 0.300 0.298 0.300 0.300 0.297 0.300 0.291 0.300

SD 0.032 0.036 0.036 0.030 0.035 0.042 0.047 0.049 0.063

a Average 0.010 0.009 0.006 0.009 0.010 0.008 0.005 0.008 0.009

Min −0.013 0.004 0.001 −0.009 0.004 0.001 −0.020 −0.020 0.000

Max 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

SD 0.003 0.001 0.003 0.003 0.001 0.003 0.010 0.008 0.003

b Average 1.506 2.059 1.407 1.277 1.487 1.552 −3.434 −2.731 −1.324

Min −2.804 0.098 0.257 −3.881 −6.739 −3.552 −19.946 −32.061 −51.891

Max 1.860 2.618 2.456 1.822 2.641 2.615 1.638 2.261 2.473

SD 0.672 0.539 0.659 1.075 1.801 0.922 7.351 8.648 13.053

λ Average 0.002 0.002 0.001 0.003 0.004 0.002 0.023 0.018 0.014

Min 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000

Max 0.010 0.010 0.009 0.022 0.035 0.023 0.100 0.129 0.200

SD 0.002 0.002 0.002 0.003 0.007 0.003 0.033 0.032 0.048

MAPE% Average 8.520 4.795 3.862 8.058 5.071 4.875 5.700 5.769 5.406

Min 2.253 1.698 1.319 0.305 1.647 1.870 1.863 1.244 2.117

Max 19.234 9.673 14.753 15.765 11.842 19.870 10.188 9.232 8.565

SD 2.507 1.771 2.374 2.920 1.879 3.220 2.393 2.254 1.818

For each one of the 142 European companies listed in Appendix C, the parameters are calibrated by
employing CDS spreads with maturities 6 months and 1, 2, 3, 4, 5, 7, 10, 20 and 30 years. The CDS spreads
used for the calibrations are quoted on February 3, 2020, on February 1, 2019, and on February 1, 2018.
Companies are organized in three groups according to their S&P rating. The first group is made of 57
companies characterized by medium and high investment grade, that is credit rating greater than or equal to
A−. The second group is made of 68 companies characterized by low investment grade, that is credit rating
in the range BBB+ and BBB−. The third group is made of 17 companies characterized by speculative (no
investment) grade, that is credit rating lower than BBB−. The statistics of the calibrations are available for
each one of these three groups

nies even more fragile, while high-credit-rated companies benefit from the reduction.
As suggested by the hazard rate of the credit risk models considered in this work.7

7 The positive relationship between credit spread and risk-free rate observed for high rated (invest-
ment grade) companies is apparently inconsistent with the predictions of structural models, see, e.g.,
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Fig. 5 Rolling window calibrations for the CDS pricing formula (21) using daily observations of the
CDS spreads written on debt issued by Allianz SE. Time window from 1-1-2018 to 29-1-2021. Panel (a),
empirical 5-year CDS spreads (blue line) and theoretical 5-year CDS spreads (black and dashed line).
Panel (b), calibrated values of the intensity of default (λ). Panel (c), calibrated values of the ration between

signaling variable and default barrier
(
x0
xL

)
. Panel (d), calibrated values of the drift parameter of the

signaling variable (α). Panel (e), calibrated values of the short-term volatility of the signaling variable (σx )

Finally, focusing on two companies, that is Allianz Se and Dailmer AG, the credit
risk model is calibrated every trading day in the period from January 1, 2018 to
January 29, 2021. For each trading day, the calibration procedure employed is the one
described at the beginning of this section. The results of the calibrations are shown in

Footnote 7 continued
Merton (1974) and Longstaff and Schwartz (1995). However, this difference relay on the fact that structural
models consider the direct effect, i.e. these models are based on the assumption that the growth rate of
the value of the assets of a firm is proportional to the risk-free rate. On the contrary, the current modeling
framework is based on the assumption that the credit quality signaling variable is not correlated to the
risk-free interest rate. Therefore, only the indirect effect of the interest rate is considered, i.e. its role as
a discount factor, which justifies a positive relationship between credit spreads and risk-free rates. Our
results are consistent with the ones in Ballestra et al. (2020) and with the empirical evidence of a positive
relationship between credit spreads and risk-free rates over the long-run documented inMorris et al. (1998).
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Fig. 6 Rolling window calibrations for the CDS pricing formula (21) using daily observations of the CDS
spreads written on debt issued by Dailmer AG. Time window from 1-1-2018 to 29-1-2021. a empirical
5-year CDS spreads (blue line) and theoretical 5-year CDS spreads (black and dashed line). b calibrated
values of the intensity of default (λ). c calibrated values of the ration between signaling variable and default

barrier
(
x0
xL

)
. d calibrated values of the drift parameter of the signaling variable (α). e calibrated values of

the short-term volatility of the signaling variable (σx )

Figs. 5 and 6 and indicate how the valuation framework proposed captures the impact
of special events such as the COVID-19 pandemic. Specifically, the parameters of the
credit-quality signaling variable remain relatively stable over time.On the contrary, the
intensity of default increases substantially in conjunction with COVID-19 pandemic.
This allows to replicate the inflated CDS spreads that are observed in the period
from March to April, 2020. In these two months the 5-year CDS spreads almost
quadruple. The model therefore captures that the increase in CDS spreads is not due to
firm-specific components but is due to macroeconomic events or endogenous shocks,
specifically the COVID-19 pandemic.
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7 Conclusions

In thiswork, a revised version of the credit riskmodel proposed inCathcart andEl-Jahel
(2003) is considered. Specifically, the short-term interest rate is assumed to follow a
Vasicek process instead of aCIRprocess. This allows us to account for negative interest
rates, which are empirically observed in the last decade. Then, a formula for pricing
CDS spreads is derived, which requires a hundred times less CPU time than the CDS
pricing formula for the credit risk model in Cathcart and El-Jahel (2003). In addition,
an empirical analysis reveals that these two pricing formulas ensure the same goodness
of fit. Therefore, the credit risk model proposed represents a valid alternative that may
be of interest for practitioners. The validity of the model is also corroborated by the
values of the parameters which, calibrated using the term structures of CDS spreads
for 142 European companies, show large stability over time. Further applications of
the model could focus on the study of the potential transmission of credit risk across
sovereign, bank, and non-bank institutions (see e.g. Gross and Siklos 2020), or in the
modeling of quanto CDS spreads (i.e. differences in CDS premia in different currency
denominations, see e.g. Della Corte et al. 2018). We leave these streams of research
to further works.
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Appendix A

Assuming that the risk-free rate follows a CIR process instead of a Vasicek process,
the valuation framework in Sect. 2 becomes the hybrid credit risk model proposed in
Cathcart and El-Jahel (2003).

Specifically, Cathcart and El-Jahel (2003) assumes that the risk-free rate follows
process (1) where σr (t, r (t)) = σr

√
r (t). In this case, the risk-neutral price at the

current time t0 of a default-free pure discount bond with maturity T is given by (see
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again Cox et al. 1985):

PCI R (r (t0) , t0; T ) = eC (t0; T ) + D (t0; T ) r (t0) (24)

where

C (t0; T ) = 2kμ

σ 2
r

ln

⎛
⎝ 2ϕe

(k+ϕ)(T−t0)
2

2ϕ + (k + ϕ)
(
eϕ(T−t0) − 1

)
⎞
⎠

D (t0; T ) = −2
(
eϕ(T−t0) − 1

)
2ϕ + (k + ϕ)

(
eϕ(T−t0) − 1

) (25)

and ϕ = √
k2 + 2σ 2

r .
Considering the credit risk model in Cathcart and El-Jahel (2003), the formula for

the probability to survive as well as the formula for the current price of a survival
security are derived in the following Proposition (proof in Appendix B).

Proposition 5 Assuming the valuation framework in Cathcart and El-Jahel (2003), we
have that the probability to survive up to time T is given by

Q (td > T ) = f (x (t0) , t0; T ) gCI R (r (t0) , t0; T ) (26)

where f is defined in (6), while

gC I R (r (t0) , t0; T ) = eE5 (t0; T ) + E6 (t0; T ) r (t0) (27)

where

E5 (t0; T ) = −a (T − t0) + 2kμ

σ 2
r

ln

⎛
⎝ 2γ e

(k+γ )(T−t0)
2

2γ + (k + γ )
(
eγ (T−t0) − 1

)
⎞
⎠

E6 (t0; T ) = − 2b
(
eγ (T−t0) − 1

)
2γ + (k + γ )

(
eγ (T−t0) − 1

) (28)

and γ = √
k2 + 2bσ 2

r . The current price of a survival security with unitary face value
and maturity T is given by

SCI R (r (t0) , x (t0) , t0; T ) = f (x (t0) , t0; T ) g̃C I R (r (t0) , t0; T ) (29)

where g̃C I R is obtained by gCI R substituting b with b + 1.

The current price of a survival security in Proposition 5 is the discounted value of
the probability to survive when the short-term interest rate follows a CIR process. The
formula for the current price of a survival security is available in closed form as shown
in Proposition 5. Conversely, the forward price of a survival security does not admit
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a closed-form solution when the credit risk model in Cathcart and El-Jahel (2003) is
employed.

Consider the forward measure QT to compute the forward price of a survival
security, see, e.g., Madan and Unal (2000). We recap that QT is the unique equivalent
martingale measure under which the values of traded assets discounted by the price
of the default-free bond, in this case PCI R (r (t0) , t0; T ), are martingales.

The change of measure density process from Q to QT is given by the Radon-
Nikodym derivative which is equal to the price of a risk-free bond with maturity T ,
see, e.g., Brigo and Mercurio (2007) and Madan and Unal (2000). Then, applying
Girsanov’s theorem, the QT dynamics for x and r are given by

dx (t) = αx (t) dt + σxdWx (t)

dr (t) =
(
μ (k − r (t)) − σ 2

x D (t; T ) r (t)
)
dt + σr dW̃r (t) (30)

where Wx (t) and W̃r (t) are Wiener processes under QT while D (t; T ) is defined
in (25). Since by assumption the signaling variable is uncorrelated to the short-term
interest rate, its dynamics does not changewhenwemove from themartingalemeasure
Q to the forward measure QT , i.e. QT (τx > T ) = Q (τx > T ).

Proposition 6 Assuming the valuation framework inCathcart and El-Jahel (2003), the
forward price of a survival security with unitary face value and maturity T is given
by

FCI R (x (t0) , r (t0) , t0; T ) = QT (td > T )

= f (x (t0) , t0; T ) hCI R (r (t0) , t0; T ) (31)

where f is defined in (6), while

hC I R (r (t0) , t0; T ) = eE7 (t0; T ) + E8 (t0; T ) r (t0) (32)

with E7 and E8 that solve the following system of two ordinary differential equations

E8,t = kE8 + b − σ 2
r

2
E2
8 − σ 2

r D (t, T ) E8

E7,t = −kμE8 + a (33)

subject to final conditions E7 (T , T ) = E8 (T , T ) = 0. D (·; ·) is defined as in (25).

Note that in order to compute the forward-price of a survival security, system (33)
needs to be approximated numerically.

Appendix B

Proof of Proposition 1 Employing the results in (5)–(8), to derive the probability to
survive Q (td > T ) we only need to compute E

Q
[
1{τr>T }

]
. By standard results on
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Cox processes, we have that

gV (r (t) , t; T ) = E
Q [

1{τr>T }
]

= E
Q

[
e− ∫ T

t λ(r(s))ds
]

(34)

where λ (r) = a+br is the intensity of default. Since by assumption r follows (under
martingale measure Q) the Vasicek process (1), by Feynman-Kac formula, see, e.g.,
Friedman (1975) andKrylov (1980),we know that the function g satisfies the following
partial differential problem:

− gV ,t − k (μ − r) gV ,r − σ 2
r

2
gV ,rr + λ (r) gV = 0 (35)

subject to
gV (r (T ) , T ; T ) = 1 (36)

Guessing a solution of the form

gV (r (t) , t; T ) = eE1 (t; T ) + E2 (t; T ) r (t) (37)

we obtain

− E1,t − E2,t r − k (μ − r) E2 − σ 2
r

2
E2
2 + a + br = 0 (38)

Then, by separation of variables we have the following system of two ordinary differ-
ential equations8

E2,t = kE2 + b

E1,t = −kμE2 − σ 2
r

2
E2
2 + a (39)

from which, imposing the condition E2 (T ; T ) = 0, we obtain

E2 (t; T ) = b
e−k(T−t) − 1

k
(40)

It follows that

E1 (t; T ) =
∫ t

0

(
−kμE2 − σ 2

r

2
E2
2 + a

)
ds + C0

= −μb
e−k(T−t) − e−kT

k
+ μbt − b2σ 2

r

4k3
e−2kT

(
e2kt − 1

)
− b2σ 2

r

2k2
t

+2σ 2
r b

2

2k3

(
e−k(T−t) − e−kT

)
+ at + C0 (41)

8 The reader who is not familiar with dynamical systems is referred to Teschl (2012) and Bischi et al.
(2016).
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Imposing E1 (T ; T ) = 0, we obtain

E1 (t; T ) =
(
bσ 2

r

2k2
− μ

)
(E1 (t; T ) + b (T − t)) − σ 2

r

4k
E2
1 (t; T ) − a (T − t) (42)

By definition, the price of a survival security with unitary face value is given by

E
Q

[
1{td>T }e− ∫ T

t r(s)ds
]

(43)

Since x and r are independent, (43) can be rewritten as

E
Q [

1{τx>T }
]
E
Q

[
1{τr>T }e− ∫ T

t r(s)ds
]

(44)

whereEQ
[
1{τx>T }

]
is defined as in (6)–(8),while by standard results onCoxprocesses,

we have that

E
Q

[
1{τr>T }e− ∫ T

t r(s)ds
]

= E
Q

[
e− ∫ T

t (λ(r(s))+r(s))ds
]

(45)

Therefore, this expected value is equal to g̃V , which is obtained by gV substituting b
with b + 1. This completes the proof. ��

Proof of Proposition 2 Note that QT (td > T ) = E
QT [

1{τx>T }
]
E
QT [

1{τr>T }
]
and

E
QT [

1{τx>T }
] = E

Q
[
1{τx>T }

]
which is equal to f as shown in (6)–(8). Therefore,

we need only to compute E
QT [

1{τr>T }
]
. By standard results on Cox processes, we

have that

hV (r (t) , t; T ) = E
QT [

1{τr>T }
]

= E
QT

[
e− ∫ T

t λ(r(s))ds
]

(46)

where λ (r) = a + br . Since r follows process (30) under forward measure QT , by
Feynman-Kac formula, see, e.g., Friedman (1975) and Krylov (1980), we know that
the function hV satisfies the following partial differential problem:

− hV ,t −
(
k (μ − r) − σ 2

r B (t, T )
)
hV ,r − σ 2

r

2
hV ,rr + λ (r) hV = 0 (47)

subject to
hV (r (T ) , T ; T ) = 1 (48)

where B (t, T ) is defined as in (3). Guessing a solution of the form

hV (r (t) , t; T ) = eE3 (t, T ) + E4 (t, T ) r (t) (49)
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we have that

− (
E3,t + E4,t r

) −
(
k (μ − r) − σ 2

r B (t, T )
)
E4 − σ 2

r

2
E2
4 + λ (r) = 0 (50)

By separation of variables, we obtain

E4,t = kE4 + b

E3,t = −
(
kμ − σ 2

r B (t, T )
)
E4 − σ 2

r

2
E2
4 + a (51)

Therefore, E4 (t; T ) = bB (t; T ) and

E3 (t; T ) =
∫ t

T

(
−kμE4 (s; T ) + σ 2

r B (s, T ) E4 (s; T )
)
ds

+
∫ t

T

(
−σ 2

r

2
E2
4 (s; T ) + a

)
ds (52)

Evaluating the integral we obtain E3 (t; T ) as in (16). This completes the proof. ��
Proof of Proposition 3 Consider the forward measure QT . Then the forward price of
the protection leg is given by

EQT [
(1 − δ) 1{T>td>t0}

] = (1 − δ) EQT [
1 − 1{τx>T }1{τr>T }

]
= (1 − δ)

(
1 − EQT [

1{τx>T }
]
EQT [

1{τr>T }
])

(53)

where EQT [
1{τx>T }

]
EQT [

1{τr>T }
]
is by definition the probability to survive under

the forward measure (or forward price of a survival security). Since r follows process
(30) under forwardmeasure QT , the formula for the forward price of a survival security
is FV (x, r , t; T ) defined as in (14), see Proposition 2. Therefore, the current price �

of the protection leg is given by:

�(x, r , t; T ) = PV (r , t; T )
(
1 − FV (x, r , t; T )

)
(1 − δ) (54)

where PV (r , t; T ) is the current price of a default-free pure discount bond defined as
in (2). Concerning the premium leg, by Fubini’s theorem we have that

E
Q

[∫ T

t0
1{τx>z∧τr>z}e− ∫ z

t0
r(s)dsdz

]
=

∫ T

t0
E
Q

[
1{τx>z∧τr>z}e− ∫ z

t0
r(s)ds

]
dz (55)

where E
Q

[
1{τx>z∧τr>z}e− ∫ z

t0
r(s)ds

]
is, by definition, the current price of a survival

security with unitary face value. Since by assumption r follows (under martingale
measure Q) the Vasicek process (1), the formula for the current price of a survival
security is given in (12), see Proposition 1. This completes the proof of the Proposition.

��
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Proof of Proposition 5 Employing the results in (5)–(8), we need only to compute
E
Q

[
1{τr>T }

]
in order to derive the probability to survive Q (td > T ). By standard

results on Cox processes, we have that

gCI R (r (t) , t; T ) = E
Q [

1{τr>T }
]

= E
Q

[
e− ∫ T

t λ(r(s))ds
]

(56)

where λ (r) = a+br is the intensity of default. Since by assumption r follows (under
martingale measure Q) the CIR process as indicated in Appendix A, by Feynman-Kac
formula, see, e.g., Friedman (1975) and Krylov (1980), we know that the function
gCI R satisfies the following partial differential problem:

− gCI R ,t − k (μ − r) gCI R ,r − σ 2
r

2
rgC I R ,rr + λ (r) gCI R = 0 (57)

subject to
gCI R (r (T ) , T ; T ) = 1 (58)

Guessing a solution of the form

gCI R (r , t; T ) = eE5 (t; T ) + E6 (t; T ) r (t) (59)

we obtain

− E5,t − E6,t r − k (μ − r) E6 − σ 2
r

2
r E2

6 + a + br = 0 (60)

Then, by separation of variables we have the following system of two ordinary differ-
ential equations:

E5,t = a − kμE6

E6,t = b + kE6 − σ 2
r

2
E2
6 (61)

where the second one is a Riccati equation, subject to the conditions E5 (T ; T ) =
E6 (T ; T ) = 0. Following (Polyanin and Zaitsev 2003, sec.1.2.1), set

σ 2
r

2
E6 (t; T ) = ut (t; T )

u (t; T )
(62)

from which we have that

E6,t = 2

σ 2
r

utt u − (ut )2

u2
= b + k

2

σ 2
r

ut
u

− 2

σ 2
r

(ut )2

u2
(63)

Therefore, u satisfies the following second-order ordinary differential equation

utt − kut − b
σ 2
r

2
u = 0 (64)
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Since γ 2 = k2+2bσ 2
r > 0, its solution, see (Polyanin and Zaitsev 2003, sec. 2.1.2-2),

is given by

u = C1e
1
2 (k+γ )t + C2e

1
2 (k−γ )t (65)

and its derivative is

ut = C1
1

2
(k + γ ) e

1
2 (k+γ )t + C2

1

2
(k − γ ) e

1
2 (k−γ )t (66)

By imposing ut = 0 in t = T , which allowus to have the final condition E6 (T ; T ) = 0
satisfied, we obtain

C2 = −C1
k + γ

k − γ
eγ T (67)

Therefore,

u = C1e
1
2 (k+γ )t − C1

k + γ

k − γ
eγ T e+ 1

2 (k−γ )t (68)

and

E6 (t; T ) = 2

σ 2
r

C1
1
2 (k + γ ) e

1
2 (k+γ )t − C1eγ T 1

2 (k + γ ) e
1
2 (k−γ )t

C1e
1
2 (k+γ )t − C1

k+γ
k−γ

eγ T e+ 1
2 (k−γ )t

= − 2b
(
eγ (T−t) − 1

)
2γ + (k + γ )

(
eγ (T−t) − 1

) (69)

Then,

E5 (t; T ) =
∫ t

T
ads − kμ

∫ t

T
E6 (s; T ) ds

= −a (T − t) + 2kμ

σ 2
r

ln
2γ e

(k+γ )
2 (T−t)

2γ + (k + γ )
(
eγ (T−t) − 1

) (70)

By definition, the price of a survival security with unitary face value is given by

E
Q

[
1{td>T }e− ∫ T

t r(s)ds
]

(71)

Since x and r are independent, (71) can be rewritten as

E
Q [

1{τx>T }
]
E
Q

[
1{τr>T }e− ∫ T

t λ(r(s))ds
]

(72)

whereEQ
[
1{τx>T }

]
is defined as in (6)–(8),while by standard results onCoxprocesses,

we have that

E
Q

[
1{τr>T }e− ∫ T

t r(s)ds
]

= E
Q

[
e− ∫ T

t (λ(r(s))+r(s))ds
]

(73)
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Therefore, this expected value is equal to g̃C I R , which is obtained by gCI R substituting
b with b + 1. This completes the proof. ��
Proof of Proposition 6 Note that QT (td > T ) = E

QT [
1{τx>T }

]
E
QT [

1{τr>T }
]
and

E
QT [

1{τx>T }
] = E

Q
[
1{τx>T }

]
which is equal to f as shown in (6)–(8). Therefore,

we need only to compute E
QT [

1{τr>T }
]
. By standard results on Cox processes, we

have that

hCI R (r (t) , t; T ) = E
QT [

1{τr>T }
]

= E
QT

[
e− ∫ T

t λ(r(s))ds
]

(74)

where λ (r) = a + br is the intensity of default. Since r follows process (30) under
forwardmeasure QT , byFeynman-Kac formula, see, e.g., Friedman (1975) andKrylov
(1980), we know that the function hCI R satisfies the following partial differential
problem:

− hCI R ,t −
(
k (μ − r) − σ 2

r D (t, T ) r
)
hCI R ,r − σ 2

r

2
rhC I R ,rr + λ (r) hCI R = 0 (75)

subject to
hCI R (r (T ) , T ; T ) = 1 (76)

where D (t, T ) = −2(1−exp(−ϕ(T−t0)))
2ϕ+(k−ϕ) exp(−ϕ(T−t0))

is as in (25). Guessing a solution of the form

hCI R (r (t) , t; T ) = eE7 (t, T ) + E8 (t, T ) r (t) (77)

we obtain

− (
E7,t + E8,t r

) −
(
k (μ − r) − σ 2

r D (t, T ) r
)
E8 − σ 2

r

2
r E2

8 + λ (r) = 0 (78)

By separation of variables, we have the system of ordinary differential equations in
(33) subject to final condition E7 (T , T ) = E8 (T , T ) = 0. This completes the proof.

��

Appendix C

Table 6 reports the descriptive statistics for the CDS spreads considered. As expected,
spreads tend to be higher for companies with worse credit rating, and on average were
the highest in 2019. Considering the spread curve, spreads are typically higher for
longer maturities indicating a positively sloped curve. The results of the calibrations
for a selection of companies is available in Tables 7 and 8. Specifically, Table 7 shows
the results of the calibrations (using quotations on February 3, 2020) for CDS pricing
formulas (21) and (22), while Table 8 shows the calibrations for CDS pricing formula

123



698 D. Radi et al.

Ta
bl
e
6

St
at
is
tic
s
of

th
e
C
D
S
sp
re
ad
s
em

pl
oy
ed

in
th
e
em

pi
ri
ca
la
na
ly
ze
s
he
re

co
nd
uc
te
d

(A
A
A
)
–
(A

-)
(B

B
B
+
)
–
(B

B
B
-)

(B
B
+
)
–
(C

C
C
)

20
20

20
19

20
18

20
20

20
19

20
18

20
20

20
19

20
18

1
yr

sp
re
ad

(%
)

av
er
ag
e

0.
10

42
0.
14

05
0.
09

32
0.
17

89
0.
28

41
0.
14

20
2.
22

72
1.
36

18
0.
81

67

m
in

0.
02

92
0.
04

09
0.
01

99
0.
03

38
0.
04

89
0.
01

22
0.
08

58
0.
05

08
0.
05

05

m
ax

0.
63

14
0.
58

11
0.
55

04
1.
31

42
1.
99

67
1.
30

13
12

.7
02

8
10

.9
83

4
9.
82

24

SD
0.
10

12
0.
09

56
0.
08

68
0.
20

41
0.
37

47
0.
17

54
3.
67

74
2.
60

02
2.
32

75

5
yr

sp
re
ad

(%
)

av
er
ag
e

0.
33

01
0.
48

66
0.
31

88
0.
64

19
0.
94

48
0.
56

97
3.
52

04
3.
10

71
1.
76

93

m
in

0.
13

64
0.
15

09
0.
13

26
0.
18

58
0.
28

37
0.
24

55
0.
69

27
0.
80

34
0.
58

95

m
ax

1.
00

03
1.
07

39
0.
90

08
1.
97

44
2.
78

15
1.
71

62
13

.0
55

1
7.
62

27
6.
44

11

SD
0.
15

49
0.
20

05
0.
13

62
0.
35

09
0.
56

34
0.
26

53
3.
39

01
2.
09

77
1.
54

37

10
yr

sp
re
ad

(%
)

av
er
ag
e

0.
58

97
0.
78

10
0.
58

28
1.
05

35
1.
35

42
0.
96

01
3.
94

85
3.
75

60
2.
39

81

m
in

0.
30

66
0.
33

04
0.
28

79
0.
43

49
0.
57

66
0.
51

43
1.
00

73
0.
97

28
1.
00

96

m
ax

1.
19

63
1.
51

69
1.
09

82
2.
44

17
3.
09

60
3.
04

19
11

.6
70

5
8.
43

80
5.
73

03

SD
0.
20

43
0.
25

91
0.
17

42
0.
42

45
0.
58

57
0.
37

57
2.
94

86
2.
05

16
1.
48

41

C
ur
ve

sl
op

e
(%

)
av
er
ag
e

0.
05

39
0.
07

12
0.
05

44
0.
09

72
0.
11

89
0.
09

09
0.
19

13
0.
26

60
0.
17

57

m
in

0.
00

87
0.
02

51
0.
02

50
0.
00

25
0.
00

33
0.
00

37
−0

.4
93

6
−0

.5
85

0
−0

.4
54

7

m
ax

0.
10

75
0.
13

14
0.
09

34
0.
23

15
0.
27

58
0.
29

75
0.
51

08
0.
80

54
0.
49

62

SD
0.
01

96
0.
02

41
0.
01

60
0.
04

25
0.
04

86
0.
03

97
0.
24

15
0.
28

93
0.
20

05

N
um

.o
f
co
m
pa
ni
es

57
68

17

T
he

C
D
S
sp
re
ad
s
us
ed

fo
rt
he

ca
lib

ra
tio

ns
ar
e
qu

ot
ed

on
Fe

br
ua
ry

3,
20

20
,o
n
Fe

br
ua
ry

1,
20

19
,a
nd

on
Fe
br
ua
ry

1,
20

18
.C

om
pa
ni
es

ar
e
or
ga
ni
ze
d
in
th
re
e
gr
ou

ps
ac
co
rd
in
g

to
th
ei
r
S&

P
ra
tin

g.
T
he

fir
st
gr
ou

p
is
m
ad
e
of

57
co
m
pa
ni
es

ch
ar
ac
te
ri
ze
d
by

m
ed
iu
m

an
d
hi
gh

in
ve
st
m
en
t
gr
ad
e,

th
at

is
cr
ed
it
ra
tin

g
gr
ea
te
r
th
an

or
eq
ua
l
to

A
−.

T
he

se
co
nd

gr
ou

p
is
m
ad
e
of

68
co
m
pa
ni
es

ch
ar
ac
te
ri
ze
d
by

lo
w
in
ve
st
m
en
tg

ra
de
,t
ha
ti
s
cr
ed
it
ra
tin

g
in

th
e
ra
ng

e
B
B
B

+
an
d
B
B
B

−.
T
he

th
ir
d
gr
ou

p
is
m
ad
e
of

17
co
m
pa
ni
es

ch
ar
ac
te
ri
ze
d
by

sp
ec
ul
at
iv
e
(n
o
in
ve
st
m
en
t)
gr
ad
e,
th
at
is
cr
ed
it
ra
tin

g
lo
w
er

th
an

B
B
B

−.
T
he

de
sc
ri
pt
iv
e
st
at
is
tic
s
ar
e
av
ai
la
bl
e
fo
r
ea
ch

on
e
of

th
es
e
th
re
e
gr
ou
ps
.C

ur
ve

sl
op
e
is
co
m
pu
te
d
as
:
10

yr
s
sp
re
ad

−1
yr

sp
re
ad

10
−1

123



A revised version of the Cathcart… 699

Ta
bl
e
7

C
al
ib
ra
tio

n
of

fo
rm

ul
as

	
C
IR

an
d

	
V
fo
r
a
se
le
ct
ed

gr
ou

p
of

co
m
pa
ni
es

R
at
in
g

C
om

pa
ny

M
od

el
x 0 x L

α
σ
x

a
b

M
A
PE

%

A
A

A
lli
an
z
SE

	
C
IR

3.
50

5
0.
06

4
0.
24

7
0.
01

0
1.
67

3
9.
16

%

	
V

3.
50

6
0.
06

4
0.
24

7
0.
01

0
1.
66

5
9.
18

%

A
A
-

Sh
el
lP

L
C

	
C
IR

2.
94

1
0.
04

1
0.
21

9
0.
01

0
1.
79

0
11

.2
0%

	
V

2.
94

0
0.
04

1
0.
21

9
0.
01

0
1.
77

5
11

.2
2%

A
+

B
N
P
Pa
ri
ba
s
SA

	
C
IR

4.
40

5
0.
08

6
0.
30

0
0.
01

0
1.
64

7
10

.7
4%

	
V

4.
40

6
0.
08

6
0.
30

0
0.
01

0
1.
63

4
10

.7
5%

A
B
an
co

Sa
nt
an
de
r
SA

	
C
IR

2.
74

3
0.
05

2
0.
21

4
0.
01

0
1.
66

9
6.
68

%

	
V

2.
74

3
0.
05

2
0.
21

4
0.
01

0
1.
66

0
6.
70

%

A
-

D
ai
m
le
r
A
G

	
C
IR

2.
60

0
0.
02

3
0.
21

0
0.
01

0
1.
45

6
6.
63

%

	
V

2.
60

0
0.
02

3
0.
21

0
0.
01

0
1.
44

3
6.
65

%

B
B
B
+

D
eu
ts
ch
e
Te
le
ko
m

A
G

	
C
IR

3.
86

0
0.
07

4
0.
29

2
0.
01

0
1.
69

0
7.
58

%

	
V

3.
86

0
0.
07

4
0.
29

2
0.
01

0
1.
68

3
7.
59

%

B
B
B

B
an
co

Sa
ba
de
ll
SA

	
C
IR

2.
92

9
0.
04

2
0.
26

2
0.
01

0
1.
35

0
9.
37

%

	
V

2.
92

7
0.
04

2
0.
26

2
0.
01

0
1.
34

5
9.
38

%

B
B
B
-

E
di
so
n
Sp

A
	
C
IR

2.
60

0
0.
04

2
0.
21

6
0.
01

0
1.
58

3
4.
60

%

	
V

2.
59

9
0.
04

2
0.
21

6
0.
01

0
1.
57

3
4.
60

%

B
B
+

L
eo
na
rd
o
Sp

A
	
C
IR

2.
71

0
0.
02

0
0.
23

7
0.
01

0
1.
60

0
7.
55

%

	
V

2.
71

2
0.
02

0
0.
23

7
0.
01

0
1.
60

1
7.
54

%

B
Se
le
ct
a
B
V

	
C
IR

2.
44

1
−0

.0
06

0.
26

5
0.
01

0
0.
62

9
4.
84

%

	
V

2.
44

4
−0

.0
06

0.
26

6
0.
01

0
0.
68

6
4.
85

%

T
he

ca
lib

ra
tio

n
is
pe
rf
or
m
ed

by
fit
tin

g
th
e
cu
rv
es

of
C
D
S
sp
re
ad
s.
M
at
ur
iti
es
:6

m
on
th
s
an
d
1,
2,

3,
5,
7,
10

,2
0
an
d
30

ye
ar
s.
T
he

C
D
S
sp
re
ad
s
us
ed

ar
e
qu
ot
ed

on
Fe
br
ua
ry

3,
20

20
.T

he
C
D
Ss

em
pl
oy
ed

ha
ve

th
e
fo
llo

w
in
g
fe
at
ur
es
.R

es
tr
uc
tu
ri
ng

cl
au
se
:
X
R
14

.S
en
io
ri
ty
:
Se
ni
or

un
se
cu
re
d.

T
he

ra
tin

g
is
by

S&
P.

	
C
IR

in
di
ca
te
s
th
e
cr
ed
it
ri
sk

m
od
el
in

C
at
hc
ar
ta
nd

E
l-
Ja
he
l(
20

03
),
th
at
is
th
eo
re
tic
al
va
lu
es

ob
ta
in
ed

us
in
g
fo
rm

ul
a
(2
2)
.	

V
in
di
ca
te
s
th
e
va
lu
at
io
n
fr
am

ew
or
k
he
re

pr
op

os
ed
,t
ha
ti
s
th
eo
re
tic

al
va
lu
es

ob
ta
in
ed

us
in
g
fo
rm

ul
a
(2
1)
.T

ho
m
so
n
R
eu
te
rs

E
ik
on

is
ou

r
da
ta

pr
ov
id
er
.T

he
ca
lib

ra
te
d
va
lu
es

fo
r
al
lt
he

ot
he
r
co
m
pa
ni
es

co
ns
id
er
ed

in
th
e
an
al
ys
is
ar
e
no

tr
ep
or
te
d
fo
r

br
ev
ity
,a
nd

ar
e
av
ai
la
bl
e
up

on
re
qu

es
t

123



700 D. Radi et al.

Ta
bl
e
8

C
al
ib
ra
tio

n
of

th
e
cr
ed
it
ri
sk

m
od

el
he
re

pr
op

os
ed

(f
or
m
ul
a

	
V
)
fo
r
th
e
ye
ar
s
20

18
,2
01

9,
an
d
20

20
,f
or

a
se
le
ct
ed

gr
ou

p
of

co
m
pa
ni
es

R
at
in
g

C
om

pa
ny

M
od

el
x 0 x L

α
σ
x

a
b

M
A
PE

%

A
A

A
lli
an
z
SE

20
20

3.
50

6
0.
06

4
0.
24

7
0.
01

0
1.
66

5
9.
18

%

20
19

3.
50

0
0.
06

9
0.
24

5
0.
01

0
2.
53

5
3.
99

%

20
18

2.
98

0
0.
03

2
0.
18

5
0.
00

5
1.
29

5
5.
46

%

A
A
-

Sh
el
lP

L
C

20
20

2.
94

0
0.
04

1
0.
21

9
0.
01

0
1.
77

5
11

.2
2%

20
19

3.
39

6
0.
02

7
0.
22

9
0.
00

8
2.
02

7
2.
79

%

20
18

3.
50

6
0.
03

1
0.
23

4
0.
00

3
0.
67

1
4.
05

%

A
+

B
N
P
Pa
ri
ba
s
SA

20
20

4.
40

6
0.
08

6
0.
30

0
0.
01

0
1.
63

4
10

.7
5%

20
19

3.
85

7
0.
06

8
0.
29

7
0.
01

0
2.
06

8
7.
41

%

20
18

3.
11

2
0.
03

8
0.
20

0
0.
00

6
1.
46

7
1.
80

%

A
B
an
co

Sa
nt
an
de
r
SA

20
20

2.
74

3
0.
05

2
0.
21

4
0.
01

0
1.
66

0
6.
70

%

20
19

2.
79

3
0.
03

8
0.
22

8
0.
01

0
2.
13

5
6.
58

%

20
18

3.
43

8
0.
05

5
0.
22

9
0.
00

9
2.
12

9
1.
62

%

A
-

D
ai
m
le
r
A
G

20
20

2.
60

0
0.
02

3
0.
21

0
0.
01

0
1.
44

3
6.
65

%

20
19

2.
50

0
0.
03

1
0.
21

6
0.
01

0
2.
04

9
6.
23

%

20
18

3.
08

3
0.
04

1
0.
21

7
0.
00

9
2.
42

9
6.
10

%

123



A revised version of the Cathcart… 701

Ta
bl
e
8

co
nt
in
ue
d

R
at
in
g

C
om

pa
ny

M
od

el
x 0 x L

α
σ
x

a
b

M
A
PE

%

B
B
B
+

D
eu
ts
ch
e
Te
le
ko
m

A
G

20
20

3.
86

0
0.
07

4
0.
29

2
0.
01

0
1.
68

3
7.
59

%

20
19

4.
10

8
0.
07

2
0.
29

7
0.
01

0
2.
42

3
3.
73

%

20
18

4.
51

8
0.
06

7
0.
28

5
0.
00

8
2.
00

4
9.
85

%

B
B
B

B
an
co

Sa
ba
de
ll
SA

20
20

2.
92

7
0.
04

2
0.
26

2
0.
01

0
1.
34

5
9.
38

%

20
19

3.
24

1
0.
03

9
0.
28

8
0.
01

0
0.
66

2
4.
99

%

20
18

3.
21

6
0.
05

2
0.
25

4
0.
01

0
2.
03

9
5.
80

%

B
B
B
-

E
di
so
n
Sp

A
20

20
2.
59

9
0.
04

2
0.
21

6
0.
01

0
1.
57

3
4.
60

%

20
19

2.
46

6
0.
04

1
0.
20

9
0.
01

0
2.
23

8
3.
13

%

20
18

3.
44

9
0.
06

4
0.
28

9
0.
01

0
2.
23

6
5.
13

%

B
B
+

L
eo
na
rd
o
Sp

A
20

20
2.
71

2
0.
02

0
0.
23

7
0.
01

0
1.
60

1
7.
54

%

20
19

2.
72

9
0.
01

3
0.
25

4
0.
01

0
1.
98

8
6.
65

%

20
18

2.
87

8
0.
03

2
0.
25

9
0.
01

0
2.
30

1
4.
73

%

B
Se
le
ct
a
B
V

20
20

2.
44

4
−0

.0
06

0.
26

6
0.
01

0
0.
38

3
4.
85

%

20
19

2.
59

5
−0

.0
26

0.
27

3
0.
01

0
0.
73

9
5.
51

%

20
18

2.
49

1
−0

.0
26

0.
26

5
0.
01

0
0.
41

0
5.
06

%

T
he

ca
lib

ra
tio

n
is
pe
rf
or
m
ed

by
fit
tin

g
th
e
cu
rv
e
of

C
D
S
sp
re
ad
s
us
in
g
fo
rm

ul
a
(2
1)
.M

at
ur
iti
es
:6

m
on
th
s
an
d
1,

2,
3,

5,
7,

10
,2

0
an
d
30

ye
ar
s.
T
he

C
D
S
sp
re
ad
s
us
ed

ar
e

qu
ot
ed

on
Fe

br
ua
ry

3,
20

20
,o
n
Fe

br
ua
ry

1,
20

19
,a
nd

on
Fe
br
ua
ry

1,
20

18
.T

he
C
D
Ss

em
pl
oy
ed

ha
ve

th
e
fo
llo

w
in
g
fe
at
ur
es
.R

es
tr
uc
tu
ri
ng

cl
au
se
:X

R
14

.S
en
io
ri
ty
:S

en
io
r

un
se
cu
re
d.

T
he

ra
tin

g
is
by

S&
P.
T
ho

m
so
n
R
eu
te
rs
E
ik
on

is
ou

r
da
ta
pr
ov
id
er
.T

he
ca
lib

ra
te
d
va
lu
es

fo
r
al
lt
he

ot
he
r
co
m
pa
ni
es

co
ns
id
er
ed

in
th
e
an
al
ys
is
ar
e
no

tr
ep
or
te
d

fo
r
br
ev
ity
,a
nd

ar
e
av
ai
la
bl
e
up

on
re
qu

es
t

123



702 D. Radi et al.

Ta
bl
e
9

L
is
to

f
th
e
E
ur
op
ea
n
co
m
pa
ni
es

to
w
hi
ch

th
e
C
D
S
sp
re
ad
s
us
ed

fo
r
th
e
ca
lib

ra
tio

ns
re
fe
r
to

an
d
th
ei
r
S&

P’
s
cr
ed
it
ra
tin

g

C
om

pa
ny

S&
P’
s
ra
tin

g
C
om

pa
ny

S&
P’
s
ra
tin

g
C
om

pa
ny

S&
P’
s
ra
tin

g

A
lli
an
z
SE

A
A

G
ec
in
a
SA

A
-

A
ho
ld

D
el
ha
iz
e
N
V

B
B
B

D
eu
ts
ch
e
B
ah
n
A
G

A
A

IN
G
G
ro
ep

N
V

A
-

L
af
ar
ge

SA
B
B
B

Sa
no
fi
SA

A
A

K
er
in
g
SA

A
-

L
A
N
X
E
SS

A
G

B
B
B

ap
oB

an
k
eG

A
A
-

K
le
pi
er
re

SA
A
-

M
ed
io
ba
nc
a
Sp

A
B
B
B

D
Z
B
A
N
K
A
G

A
A
-

K
on
in
kl
ijk

e
D
SM

N
V

A
-

N
at
ur
gy

SA
B
B
B

H
an
no
ve
r
R
E

A
A
-

Sc
hn
ei
de
r
E
le
ct
ri
c
SE

A
-

N
X
P
B
V

B
B
B

M
un
ic
h
R
e

A
A
-

So
de
xo

SA
A
-

Po
st
N
L
N
V

B
B
B

Sh
el
lP

L
C

A
A
-

T
ha
le
s
SA

A
-

Pu
bl
ic
is
G
ro
up
e
SA

B
B
B

Sc
or

SE
A
A
-

V
in
ci
SA

A
-

R
ep
so
lS

A
B
B
B

A
ir
bu
s
SE

A
+

A
kz
o
N
ob

el
N
V

B
B
B
+

Te
le
fo
ni
ca

E
ur
op

e
B
V

B
B
B

B
M
W

A
G

A
+

A
IB

PL
C

B
B
B
+

Te
le
fo
ni
ca

SA
B
B
B

B
N
P
Fo

rt
is
SA

A
+

B
N
L
Sp

A
B
B
B
+

U
ni
C
re
di
tS

pA
B
B
B

B
N
P
Pa
ri
ba
s
SA

A
+

B
an
ki
nt
er

SA
B
B
B
+

V
eo
lia

SA
B
B
B

R
ab
ob

an
k
N
V

A
+

B
er
te
ls
m
an
n
SE

B
B
B
+

V
iv
en
di

SA
B
B
B

C
re
di
tA

gr
ic
ol
e
C
IB

A
+

C
ap
ge
m
in
iS

E
B
B
B
+

W
en
de
lS

E
B
B
B

C
re
di
tA

gr
ic
ol
e
SA

A
+

C
on

tin
en
ta
lA

G
B
B
B
+

A
be
rt
is
SA

B
B
B
-

C
re
di
tL

yo
nn

ai
s
SA

A
+

D
an
on

e
SA

B
B
B
+

A
cc
or

SA
B
B
B
-

IN
G
B
an
k
N
V

A
+

D
eu
ts
ch
e
B
an
k
A
G

B
B
B
+

A
uc
ha
n
SA

B
B
B
-

K
B
C
B
an
k
N
V

A
+

D
eu
ts
ch
e
Te
le
ko
m

A
G

B
B
B
+

E
di
so
n
Sp

A
B
B
B
-

LV
M
H
SE

A
+

E
nd
es
a
SA

B
B
B
+

E
D
P
SA

B
B
B
-

Si
em

en
s
A
G

A
+

E
ne
lS

pA
B
B
B
+

E
D
P
Fi
na
nc
e
B
V

B
B
B
-

To
ta
lS

A
A
+

H
ei
ne
ke
n
N
V

B
B
B
+

H
ei
de
lb
er
gC

em
en
tA

G
B
B
B
-

U
ni
le
ve
r
N
V

A
+

Ib
er
dr
ol
a
SA

B
B
B
+

O
T
E
SA

B
B
B
-

A
X
A
SA

A
Ph

ili
ps

N
V

B
B
B
+

Pe
ug

eo
tS

A
B
B
B
-

123



A revised version of the Cathcart… 703

Ta
bl
e
9

co
nt
in
ue
d

C
om

pa
ny

S&
P’
s
ra
tin

g
C
om

pa
ny

S&
P’
s
ra
tin

g
C
om

pa
ny

S&
P’
s
ra
tin

g

B
an
co

Sa
nt
an
de
r
SA

A
N
N
G
ro
up

N
V

B
B
B
+

R
en
au
lt
SA

B
B
B
-

B
FC

M
SA

A
O
ra
ng

e
SA

B
B
B
+

Sc
ha
ef
fle

r
A
G

B
B
B
-

B
A
SF

SE
A

Pe
rn
od

R
ic
ar
d
SA

B
B
B
+

Su
ed
zu
ck
er

A
G

B
B
B
-

E
rs
te
B
an
k
A
G

A
R
B
I
A
G

B
B
B
+

U
B
I
B
an
ca

Sp
A

B
B
B
-

H
en
ke
lA

G
A

Te
le
ko
m

A
us
tr
ia
A
G

B
B
B
+

V
al
eo

SA
B
B
B
-

H
el
ab
a

A
T
F1

SA
B
B
B
+

L
eo
na
rd
o
Sp

A
B
B
+

L
in
de

A
G

A
Te
rn
a
Sp

A
B
B
B
+

Sm
ur
fit

K
ap
pa

PL
C

B
B
+

M
er
ck

K
G
aA

A
H
V
B
A
G

B
B
B
+

T
IM

Sp
A

B
B
+

So
ci
et
e
G
en
er
al
e
SA

A
V
ol
ks
w
ag
en

A
G

B
B
B
+

M
ill
en
ni
um

B
C
P
SA

B
B

W
fd

U
ni
ba
il-
R
od

am
co

SE
A

V
W
FS

A
G

B
B
B
+

IN
E
O
S
G
ro
up

SA
B
B

A
eg
on

N
V

A
-

W
ol
te
rs
K
lu
w
er

N
V

B
B
B
+

N
ie
ls
en

C
o
B
V

B
B

A
ir
L
iq
ui
de

SA
A
-

B
an
co

Sa
ba
de
ll
SA

B
B
B

R
ex
el
SA

B
B

A
B
In
B
ev

N
V

A
-

B
an
ki
a
SA

B
B
B

A
tla

nt
ia
Sp

A
B
B
-

A
SF

SA
A
-

B
ay
er

A
G

B
B
B

E
U
C
A
R
SA

B
B
-

B
B
V
A
SA

A
-

C
ar
re
fo
ur

SA
B
B
B

T
hy

ss
en
kr
up

p
A
G

B
B
-

B
an
k
of

Ir
el
an
d
PL

C
A
-

Sa
in
t-
G
ob

ai
n
SA

B
B
B

T
U
I
A
G

B
B
-

B
ou

yg
ue
s
SA

A
-

L
uf
th
an
sa

A
G

B
B
B

U
PC

H
ol
di
ng

B
V

B
B
-

C
om

m
er
zb
an
k
A
G

A
-

D
C
L
SA

B
B
B

C
M
A
C
G
M

SA
B
+

M
ic
he
lin

SC
A

A
-

D
V
B
B
an
k
SE

B
B
B

A
lp
ha

B
an
k
SA

B

D
ai
m
le
r
A
G

A
-

E
.O
N
SE

B
B
B

G
ro
up
e
C
as
in
o
SA

B

E
D
F
SA

A
-

Fr
es
en
iu
s
SE

B
B
B

N
ov
afi
ve
s
SA

S
B

E
nB

W
A
G

A
-

H
oc
ht
ie
f
A
G

B
B
B

Se
le
ct
a
B
V

B

E
ng

ie
SA

A
-

In
fin

eo
n
Te
ch
no

lo
gi
es

A
G

B
B
B

E
ni

Sp
A

A
-

In
te
sa

Sa
np

ao
lo

Sp
A

B
B
B

123



704 D. Radi et al.

(21) in three different days, that is on February 3, 2020, on February 1, 2019, and on
February 1, 2018. Finally, Table 9 reports the list of the 142 companies considered in
the study.
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