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Abstract
This paper presents a stylized model of interaction among boundedly rational hetero-
geneous agents in a multi-asset financial market to examine how agents’ impatience,
extrapolation, and switching behaviors can affect cross-section market stability.
Besides extrapolation and performance based switching between fundamental and
extrapolative trading documented in single asset market, we show that a high degree
of ‘impatience’ of agents who are ready to switch to more profitable trading strategy
in the short run provides a further cross-section destabilizing mechanism. Though
the ‘fundamental’ steady-state values, which reflect the standard present-value of the
dividends, represent an unbiased equilibrium market outcome in the long run (to a
certain extent), the price deviation from the fundamental price in one asset can spill-
over to other assets, resulting in cross-section instability. Based on a (Neimark–Sacker)
bifurcation analysis, we provide explicit conditions on how agents’ impatience, extrap-
olation, and switching can destabilize the market and result in a variety of short and
long-run patterns for the cross-section asset price dynamics.
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1 Introduction

A well-established strand of research on financial market dynamics emphasizes the
impact of behavioral heterogeneity on market stability in an evolutionary framework,
in which asset prices, investors’ beliefs, and trading strategies coevolve over time,
via ‘expectations feedback’ processes (see, e.g., Hommes 2013 and the recent survey
Dieci and He 2018). While large, computationally oriented agent-based models (e.g.,
LeBaron 2006) naturally allow for great flexibility and a rich modeling of hetero-
geneity at the micro-level, they necessarily rely on extensive numerical simulations.
As such, they are limited in providing clear-cut and easily interpretable analytical
results about the way how certain behavioral assumptions (and associated parame-
ters) affect market dynamics and stability. On the other hand, analytical tractability
of market stability requires the introduction of substantial simplifications, aimed at
reducing the dimension and complexity of the resulting dynamical systems. Such
simplifications consist in focusing on a stylized market with few assets, assuming few
and well-identified belief-types or behavioral rules (typically, fundamental traders and
trend-followers) and, in particular, relying on a limited set of parameters to capture
a variety of behavioral sources of instabilities in financial markets, such as market
sentiment, extrapolation and herding.1 Among such behavioral forces, a number of
papers on market stability have focused on the parameters capturing investors’ ten-
dency to extrapolate recent market trends, through adaptive expectations schemes or
more sophisticated rules based on the use and comparison of moving averages, similar
to real-world technical analysis (see, e.g., Chiarella et al. 2006; He and Li 2008; He and
Zheng 2010). More important, a large body of literature has emphasized the role of the
so-called intensity of switching (or intensity of choice), namely, investors’ propensity
to change their strategy depending on the strategies’ relative performances, within a
multinomial logit framework. As is well known, increasing the intensity of choice
results in the majority of agents simultaneously switching to the rule that performed
best in the past, thus destabilizing the financial market and paving theway to a ‘rational
route to randomness’ (Brock and Hommes 1998; Hommes 2013). Furthermore, early
heterogeneous-agent models usually rely on a simplified setting with one risky asset
and a riskless asset. Although a number of models with multiple risky assets were also
developed (see Westerhoff 2004; Westerhoff and Dieci 2006 for early examples), a
theoretical analysis on cross-section market stability in a general multi-asset market
setting is rather difficult and this issue has not been fully explored yet.

This paper builds a general framework, yet still analytically tractable, to deal with
the joint destabilizing effect of such forces in a multi-asset market. In particular, this
paper seeks to describe and investigate in greater detail the impact of the tendency of
investors to revise their strategies based on their relative performances. While models
based on the logit dynamics rely on a unique parameter (the intensity of switching)
which, in its infinite limit, allows the whole population of traders to switch across
competing strategies in one time step, here we adopt a more realistic view that some
market participants are ‘patient’, or ‘confident’ about their strategy and never change

1 See, e.g. Lux (1998), Bischi et al. (2006), Boswijk et al. (2007), He and Li (2007) and the surveysHommes
(2006), Chiarella et al. (2009).
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it over time, while the others are ‘impatient’ and have performance-based adaptive
behavior, governed by a discrete-choice logit model based on observed profitability in
the short run. Therefore, while the latter behave as short-term speculators, the former
may be regarded as long-term investors. The intensity of choice parameter thus governs
the share of adaptive, switching investors, while two additional parameters govern
the size and the composition of the exogenous proportion of confident, long-term
investors. Dieci et al. (2006) first developed and investigated this idea in a framework
with a single risky asset. By extending this idea to a multi-asset framework with
possibly heterogeneous and time-varying parameters governing investors’ first and
second moment beliefs, we explore additional destabilizing mechanisms in cross-
section market. Although well known equilibrium relationships (resulting in standard
‘fundamental prices’) characterize themodel’s steady state, which represents the long-
run outcome of the economy under certain conditions, a loss of asymptotic stability of
this ‘fundamental steady state’may occur via the joint effect of a variety of parameters,
among which extrapolation, intensity of switching and the share of (im)patient agents
play a prominent role. Initial price deviations from equilibrium resulting from excess
demand/supply tend to be amplified by market forces in this case. Moreover, due to
investors’ updating rules for their second-moment beliefs (including asset covariances)
and the resulting portfolio adjustments, price fluctuations arising for one asset can spill
over to other assets, too. Despite the richness of the resulting scenarios, we are able
to obtain significant simplifications and clear-cut analytical results.

The rest of the paper is organized as follows. In Sect. 2 we first introduce the
basic notations and represent excess demand and price adjustment of each asset as
a function of the shares of patient and impatient fundamental traders and trend fol-
lowers, then derive investors’ optimal asset holdings in a mean-variance framework
and specify how investors form and update their first and second moment beliefs on
asset prices. We further describe the way strategy shares evolve based on observed
relative profitability and connect the model building blocks into a high-dimensional
recursive system and characterize its (fundamental) steady state. In Sect. 3 we pro-
vide analytical results about the local asymptotic stability of the steady state in the
parameter space and discuss their economic implications and the joint role of different
behavioral forces in bringing about a loss of stability and self-sustained cross-section
price fluctuations. In Sect. 4 we illustrate and support our analytical results by means
of numerical and graphical examples showing the impact of extrapolation, intensity
of choice and impatience. Section 5 summarizes and draws some key conclusions and
possible avenues for future research.

2 Model

Below we first introduce the basic ideas and notations and illustrate the main building
blocks of a financial market model characterized bymultiple risky assets (and one risk-
free asset) and investors’mean variance portfolio choice under two types of beliefs that
result in fundamental-based and trend-follower trading strategies.We then introduce an
impatience parameter to differentiate short-term investors from long-term investors,
and adaptive switching behavior between the two strategies among the short-term
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investors. Finally, we derive a high-dimensional and quite general dynamical system
that governs the time evolution of prices, investors’ beliefs and strategy shares and
characterize its steady-state behavior. The model builds on and generalizes both the
single-risky asset model of Dieci et al. (2006) and the baseline multi-asset framework
developed by Chiarella et al. (2007).

2.1 Impatience and short/long-term investment

Our multi-asset model is based on the interplay of fundamental traders (type f ) and
trend followers (type c), who rely on fundamental and extrapolative expectations,
respectively, resulting in different trading strategies.2 There are n risky assets and
one risk-free asset. At time t , let the population fractions of investors who use the
fundamental and trend-following strategies be q f

t and qc
t , respectively. Over the time

period from t to t + 1, market price pi,t+1 of risky asset i (i = 1, 2, ..., n) is adjusted
to the excess demand, so that the price change is expressed as:

pi,t+1 − pi,t = μ
(

q f
t z f

i,t + qc
t zc

i,t − zs
i

)
, μ > 0, (1)

where z j
i,t , j ∈ { f , c}, represents the optimal demand on risky asset i of agent j in

group j (to be determined later), zs
i is the available quantity (in terms of supply per

investor) of asset i , i = 1, 2, ..., n, and μ measures the speed of price adjustment.3

We now introduce ‘impatience’, a key feature of the model. Within each type of
investors, some are long-term investors who are patient (or confident) and do not
change their trading strategies over time; they correspond to fixed shares n f and nc

of the total number of investors, respectively. The others are short-term investors who
are impatient (or less confident) and they are constantly ready to switch to better
performed strategy over time. They correspond to proportions h f

t and hc
t = 1 − h f

t
(of the residual population share 1 − n f − nc), respectively. Broadly speaking, they
may also be regarded as short-term speculators, in contrast to long-term investors.
Besides generalizing the basic framework developed by Dieci et al. (2006) directly,
the model is also close in spirit to Palczewski et al. (2016) where, in an evolutionary
finance framework, investors can shift (only part of) their funds between competing
portfolio managers with different investment styles, and the total amount of freely
flowing capital is treated as an exogenous parameter, broadly corresponding to the
proportion 1 − n f − nc of impatient short-term speculators in our setup.4

2 They can also be treated as different fund styles offered to investors.
3 The price setting rule in (1) captures disequilibrium price adjustment to order imbalances. It characterizes
a ‘market maker’ inventory mechanism that is commonly used in the literature, in which the adjustment
parameter μ may reflect the adverse selection, market risk tolerance and liquidity. It can be thought of as a
convenient, tractable way to model asset prices in a market setting in which investors’ (excess) demand is
matched by underlying changes in the market maker’s inventory position.
4 Note that Taylor and Allen (1992) provide empirical evidence that some market participants always stick
to their (technical or fundamental) rules and regard them as mutually exclusive tools of analysis. Note also
that other ways have been proposed in the literature to introduce constraints to agents’ switching. These
include the so called ‘asynchronous updating’ of strategies (Diks and van der Weide 2005; Hommes et al.
2005), by which a fraction of traders stick to their choice in the previous period. Although this mechanism
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It follows that the actual shares of each group in time period t are given by:

q f
t = n f + (1 − n f − nc)h f

t , qc
t = nc + (1 − n f − nc)hc

t = 1 − q f
t .

Population shares q f
t and qc

t can be rewritten in a way that better emphasizes the role
played by the exogenous fixed share of confident investors and the composition (or
strategy mix) of the investors who are impatient and adaptively rational. This can be
done by defining new parameters and variables, as follows:

n0 = n f + nc, m0 = n f − nc

n0
= n f − nc

n f + nc
,

mt = h f
t − hc

t = 2h f
t − 1,

from which h f
t = (1 + mt )/2, hc

t = (1 − mt )/2, n f = n0(1 + m0)/2, nc = n0(1 −
m0)/2 and finally:

{
q f

t = 1
2 [n0 (1 + m0) + (1 − n0) (1 + mt )] ,

qc
t = 1

2 [n0 (1 − m0) + (1 − n0) (1 − mt )] .

Parameter n0 captures the magnitude of the population of patient, long-term investors.
Conversely, 1−n0 can be interpreted as the degree of impatience or short-term invest-
ment. Intuitively, a high degree of impatience (a low n0) means less long-term and
more short-term investment, which would destabilize market price from its long-run
equilibrium. Parameter m0 ∈ [−1, 1] measures the relative difference among patient
and long-term investors who use fundamental strategy comparingwith trend following
strategy. Given the stabilizing role of fundamental trading, a high m0 would stabilize
the market price to its long-run equilibrium. While variable mt ∈ [−1, 1] captures
the varying composition of the population of impatient switching investors.5 Intu-
itively, when the switching is significant, market price fluctuations are reinforced,
which would destabilize the price. We will show that our results are in line with these
intuitions.

Based on this change of parameters, price adjustment Eq. (1) can be rewritten as
follows,

pi,t+1 − pi,t = μ

2

{(
z f

i,t + zc
i,t

)
+ [mt + n0(m0 − mt )]

(
z f

i,t − zc
i,t

)
− 2zs

i

}
, (2)

in which,

st := mt + n0(m0 − mt ) = n0m0 + (1 − n0) mt = q f
t − qc

t ,

Footnote 4 continued
is somehow close in spirit to our dichotomy between patient and impatient agents, it results in different
dynamics, where herding behavior is also at work.
5 Note the two extreme cases n0 = 1, which describes the situation in which all agents are patient and long-
term investors, and n0 = 0, in which all agents are impatient and short-term investors who endogenously
switch their strategies over time.
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is just the difference between total shares of fundamental traders and trend follow-
ers at time t . As illustrated below, the right-hand side of Eq. (2) ultimately depends
on observed price history and realized profits, through quantities z f

i,t , zc
i,t and mt .

Before deriving a complete model for the joint dynamics of asset prices and its steady-
state equilibrium, the next subsections specify how investors’ beliefs, asset demands
z j

i,t , j ∈ { f , c}, i = 1, 2, ..., n and time-varying investors’ shares captured by vari-
able mt are obtained, based on a number of assumptions which are common in the
heterogeneous-agent literature.

2.2 Mean-variance portfolio choice of multi-assets

Investor j invests in portfolios of a riskless asset (with a risk-free gross return R = 1+
r ) and n risky assets, indexed by i = 1, · · · , n (with n ≥ 1) to maximize the expected
CARA utility u j (w) = −e−θ j w of one-period-ahead wealth w. Parameter θ j denotes
the constant absolute risk aversion (CARA) of investor j . Let pt = (p1,t , · · · , pn,t )

�
and dt = (d1,t , · · · , dn,t )

� denote the vectors of prices and dividends of the n risky
assets at time t , respectively. Under the conditional normal assumption, the portfolio
choice of investor j is given by the standard mean-variance choice; that is, the optimal
portfolio (in terms of number of shares) of investor j for the risky assets is given by
the following n-dimensional vector,

z j
t := (z j

1,t , . . . , z j
n,t )

� = θ−1
j (�

j
t )

−1[E j
t (pt+1 + dt+1) − Rpt ], (3)

where E j
t (xt+1) and �

j
t := [Cov

j
t (xi,t+1, xk,t+1)]n×n , i, k = 1, 2, ..., n, are investor

j’s subjectively conditional expectation and variance-covariance matrix of the end-of-
period payoff (vector) xt+1 := pt+1 + dt+1 of the risky assets. While the conditional
first-moment beliefs about dividends are assumed to be homogenous (and correct)
across agent-types with E j

t (dt+1) = d, we next introduce heterogenous beliefs result-
ing in fundamental and extrapolative trading strategies.

2.3 Heterogeneous beliefs

As regards the fundamental trading strategy, investors rely on the belief that asset
prices tend to mean revert toward the assets’ perceived fundamental prices (assumed
constant), p∗ = (p∗

1, . . . , p∗
n), while the second-moments of the payoff are assumed

constant, namely, �
f
t = �0 := (σik)n×n . More precisely, price expectations are

specified as

E f
t (pt+1) = pt + α(p∗ − pt ) = (1 − α)pt + αp∗,

where α ∈ [0, 1] measures the speed of mean-reverting. The larger α is, the faster
the expected prices E f

t (pi,t+1) revert to p∗
i , i = 1, 2, ...n. Alternatively, parameter α

can be interpreted as the confidence in the fundamental prices. By allowing different
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mean-reverting speed across different assets, we have

E f
t (pt+1) = pt + A(p∗ − pt ),

where A := diag[α1, . . . , αn], with αi ∈ [0, 1], i = 1, 2, ..., n. For the moment,
we treat fundamental prices p∗ as an exogenous vector of parameters. We will see in
Sect. 2.6 that it can be determined by the standard discounted dividend, adjusted by
investors’ risk tolerance and fundamental volatility, playing the role of an unbiased
long-run equilibrium for all investors.

As to the trend following strategy, investors believe that the price trend based on
the moving average of history prices will continue. The moving averages of the first
and second moments, ut and Vt , are updated recursively according to

ut = δut−1 + (1 − δ)pt , Vt = δVt−1 + δ(1 − δ)(pt − ut−1)(pt − ut−1)
�. (4)

As discussed in Chiarella et al. (2005, 2007), such updating rules (4) are equivalent
to time averages with geometrically declining weights, where parameter δ ∈ (0, 1) is
directly related to the weight of historical information.6 In the learning literature, this
also refers to constant-gain learning, which has been evidenced in experimental stud-
ies. Accordingly, by allowing different extrapolation parameters for different assets,
investors update their expected prices and conditional covariance of the future payoffs
by

Ec
t (pt+1) = pt + �(pt − ut ), �c

t = �0 + λVt ,

where ut and Vt are defined in (4), � = diag[γ1, · · · , γn], γi > 0 (i = 1, 2, ..., n)
measures the ‘strength’ of trend extrapolation on the price deviation from its moving
average for asset i , and λ > 0 measures the sensitivity of the second-moment estimate
to the sample variance-covariance matrix.7 Together with (4), this describes the condi-
tional first and second moment of the trend following strategy. Our assumptions about
second-moment beliefs have a common part �0, which may be broadly interpreted as
variance/covariance beliefs about the fundamentals and dividends of the risky assets.

2.4 Speculative switching

To characterize the speculation among short-term agents, we model the dynamics
of time-varying shares h f

t and hc
t (and their difference mt := h f

t − hc
t ) follow-

ing the discrete-choice switching model adopted in a large body of literature on
heterogeneous-agent models (see, e.g. Hommes 2013). The proportion h j

t of agents

6 Note that, with thememory parameter δ and geometric decayedweights, (4) provides a consistent estimate
of the first and second moments. See also Bretschneider (1986) and Chiarella et al. (2006) for related
‘exponential smoothing’ models of mean and variance estimations.
7 Different from fundamental trading strategy, price extrapolation can increase market price risk. By taking
Vt into account, trend followers adjust their demand based on the perceived payoff risk accordingly.
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734 R. Dieci, X. He

of type j ∈ { f , c} in period t depends on the success of their strategy in the past, as
captured by a suitable measure of relative fitness, v j

t . More precisely, we assume:

h j
t = eβv

j
t

Zt
, Zt =

∑
j∈{ f ,c}

eβv
j
t ,

which results in

mt = h f
t − hc

t = 1 − exp(−β(v
f

t − vc
t ))

1 + exp(−β(v
f

t − vc
t ))

= tanh

(
β

2
(v

f
t − vc

t )

)
, (5)

where parameter β > 0 is the intensity of choice, or intensity of switching, and v
j
t is

the fitness measure of strategy j = f , c.
FollowingBrock andHommes (1998),we specify the fitnessmeasure as the realized

profits of the portfolio in the previous period, namely:

v
j
t := π

j
t − C j , π

j
t :=

(
z j

t−1

)�
(pt + dt − Rpt−1), (6)

where π
j

t measures an investor’s realized excess profit/loss from holding the risky
asset portfolio z j

t−1 (vs. investing all available wealth in the risk-free asset) and C f ,
Cc ≥ 0 are interpreted as (information) costs of the fundamental-based and trend
following strategy.8 Although here we assume C f > Cc ≥ 0, which captures the
idea that fundamental analysis is more costly, parameters C f and Cc may also be
reinterpreted in terms of predisposition effects toward one or the other strategy (see,
e.g., Franke and Westerhoff 2012).

2.5 Complete dynamic model

Although actual dividends dt do affect realized profits and the evolution of strategy
shares through Eqs. (5) and (6)—and regardless of other possible realistic sources of
noise affecting price evolution (1)—here we focus on the complete dynamic model
in a deterministic setting, by assuming constant dividends, dt = d. Based on the
assumptions and notation introduced above, the nonlinear multi-asset heterogeneous-
agent model results in the following recursive equation for the asset price vector pt

8 One may replace π
j

t with more general profitability measures, such as the ‘risk-adjusted’ profits intro-
duced by Hommes (2001) [and further generalized by Chiarella et al. (2013)], defined as:

π̃
j

t :=
(
z j

t−1

)�
(pt + dt − Rpt−1) − θ j

2

(
z j

t−1

)�
�

j
t−1z

j
t−1,

or weighted time averages of past profits (see Hommes et al. 2012). This generally results in additional
higher-order terms and has limited effect on the local stability, though the global dynamics can be greatly
affected.
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(where zs = (zs
1, · · · , zs

n)� denotes the constant supply vector):

pt+1 = pt + μ

2

{(
z f

t + zc
t

)
+ [(1 − n0)mt + n0m0]

(
z f

t − zc
t

)
− 2zs

}
(7)

where:

z f
t = θ−1

f �−1
0

[
A(p∗ − pt ) + d − rpt

]
,

zc
t = θ−1

c (�0+λVt)
−1 [

�(pt − ut ) + d − rpt
]

(8)

whereas ut and Vt are updated recursively according to (4). Moreover, from (5) and
(6), variable mt can be expressed as

mt = tanh

(
β

2
(π


t − 
C)

)
, (9)

where

π

t := π

f
t −πc

t =
(
z f

t−1 − zc
t−1

)�
(pt +d− Rpt−1), 
C := C f −Cc > 0. (10)

Based on priceEq. (7) and demand functions (8), and by reformulatingEqs. (4), (9) and
(10) for time step t +1, one can represent the complete dynamic model through a map
by which the state of the system at time t + 1, identified by (pt+1,ut+1,Vt+1, mt+1),
depends on the state at time t , (pt ,ut ,Vt , mt ).

2.6 Fundamental steady-state price

Despite the large dimension of the dynamical system in the general case of n assets,
insightful analytical results about the steady state solution and its stability properties
are possible. Below we illustrate some general properties of the model’s steady state
and show how a fundamental steady-state (FSS) price can be derived.

Note first that, in steady-state, denoted using an overbar, p̄ = ū and V̄ = 0, by
which optimal portfolios at the steady-state read

z̄ f = θ−1
f �−1

0

[
d−r p̄ + A(p∗ − p̄)

]
, z̄c = θ−1

c �−1
0 (d − r p̄) , (11)

while the steady-state differential between the investors’ (varying) shares becomes

m̄ = tanh

(
β

2
(π̄
 − 
C)

)
, (12)

and

π̄
 = π̄ f − π̄c =
(
z̄ f − z̄c

)�
(d−r p̄). (13)
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Finally, based on (7), the steady-state prices are implicitly defined by market clearing
condition of zero excess demand, which takes the following general form:

(
z̄ f + z̄c

)
+ [(1 − n0)m̄ + n0m0]

(
z̄ f − z̄c

)
= 2zs . (14)

Note that the optimal steady-state asset holdings (11) are linear functions of p̄ and,
as a consequence, π̄
 in (13) is a quadratic function of p̄, whereas (12) is nonlinear
in π̄
. It follows that general condition (14) characterizing steady-state prices is a
nonlinear equation in p̄, for which an explicit solution does not appear possible.

However, a substantial simplification arises from assuming that (i) all investors
have the same risk-aversion coefficient (θ f = θc = θ ) and (ii) the perceived expected
price under fundamental belief is consistent with the fundamental steady-state price,
namely, p∗ = p̄.9 Consequently, one obtains

z̄ f = z̄c = zs = θ−1�−1
0 (d − r p̄), m̄ = tanh

(
−β

2

C

)
, (15)

which implies that all investors have the same consistent and unbiased belief about
the fundamental. In fact, from Eq. (15), the fundamental steady-state price turns out
to be given by

p̄ = p∗ = 1

r

(
d−θ�0zs) . (16)

This is consistent with the standard dividend discounting fundamental value. The
adjustment for risk appearing in Eq. (16), via the ‘risk-adjusted dividend’ dad j :=
d−θ�0zs , is consistent with the fact that higher risk (and risk aversion) and larger
asset supply reduce the equilibrium price and hence increase the return required by
investors in equilibrium.

3 Investor behavior and steady-state stability

This section examines the stability of the FSS (15)–(16) of dynamical system (7)–(10)
and provides economic intuition on the stability conditions with respect to investor
behavior. We provide the analytical derivation of the local stability of FSS in the
Appendix.

Note that, as shown in the Appendix, our model can be represented through the
iteration of a discrete map of dimension N = 1

2 (n
2 + 5n + 2), which also represents

the dimension of the Jacobian matrix at the FSS, denoted by J. However, a preliminary
result established in the Appendix shows that the stability of the steady state actually

9 Assumption (i) is common practice in the heterogeneous-agent literature. Assumption (ii)—which is
implicit in a large body of literature—avoids that the perceived long-run equilibrium prices of fundamental
investors are systematically biased,which seems unreasonable, especially in an asymptotically stable regime
of the steady-state solution.
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depends on the behavior of 2n eigenvalues of J, since the remaining eigenvalues are
smaller than one in modulus for any value of the parameters.10

More importantly, by assuming thatmatrix�0 is diagonal (�0 = diag[σ 2
1 , · · · , σ 2

n ]),
a much simplified set of conditions on the stability can be obtained, which is stated
in Proposition 1 below. This assumption corresponds to a situation in which the n
assets (or asset classes, or industry segments) are uncorrelated, at least in investors’
beliefs about fundamentals and dividends of such assets. Besides highly simplifying
our analysis, this benchmark assumption will ensure that asset comovements arising
when the market is not at its steady state are purely driven by investor behavioral
characteristics. The following Proposition, proven as a special case in the Appendix,
states our main result about the stability of the FSS.

Proposition 1 Suppose that �0 = diag[σ 2
1 , . . . , σ 2

n ]. Then the fundamental steady
state (15)–(16) of dynamical system (7)–(10) is Locally Asymptotically Stable (LAS)
in the region of the parameter space defined by the following set of double inequalities:

B F
i < γi (1 − s̄) < BNS

i , i = 1, 2, ..., n, (17)

when11

αi (1 + s̄) + 2r <
8θσ 2

i

μ(1 − δ)
, (18)

where

B F
i := 1 + δ

2δ

[
αi (1 + s̄) + 2r − 4θσ 2

i

μ

]
, BNS

i := αi (1+ s̄)+ 2r + (1 − δ)

δ

2θσ 2
i

μ

(19)
and s̄ := (1 − n0)m̄ + n0m0. In addition, a parameter change which determines
the violation of any of the right inequalities in (17)—all other inequalities being
satisfied—results in a Neimark–Sacker bifurcation. Similarly, violation of any of the
left inequalities in (17) determines a Flip bifurcation.

Note that s̄ represents the steady-state level of aggregate variable st = (1−n0)mt +
n0m0 = q f

t − qc
t on the difference of shares between the total fundamental investors,

q f
t , and trend followers, qc

t . At the steady state, a higher (lower) s̄ indicates the
dominance of the fundamental investors (trend followers). Thus, γi (1 − s̄) measures
the overall activity of the trend followers in terms of their dominance and extrapolation
behavior, while αi (1 + s̄) measures the overall activity of the fundamental investors
in terms of their dominance and mean-reverting behavior. Therefore, by examining
the trading activity of heterogenous investors, Proposition 1 provides the stability
conditions in a neat way to capture the joint impact of extrapolation, mean-reverting,

10 For example, in the case of two assets (n = 2), we can focus on the 4 eigenvalues of the submatrix
associated to variables pt and ut , whereas the full Jacobian matrix has dimension 8. Note that, as explained
in the Appendix, we regard matrix Vt as a set of n(n + 1)/2 dynamic variables, namely, n variances and
n(n − 1)/2 different covariances.
11 Note that condition (18) corresponds to B F

i < BNS
i , which basically ensures that the region of stability

of the FSS in the parameter space is non-empty.
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strategy switching, and impatience of investors. More precisely, we provide following
implications of Proposition 1.

3.1 Extrapolative trading andmean-reverting

The stability conditions (17) and (18) in Proposition 1 characterize a trade-off between
the mean-reverting trading of the fundamental investors and extrapolative trading
of trend followers. Intuitively, mean-reverting trading of the fundamental investors
stabilizes market prices, while extrapolative trading from the trend followers on the
price trend results in price momentum in short-run, destabilizing market prices. This
trade-off leads to the following three implications.

First, when the mean-reverting trading is sufficiently weak [so that (18) holds],
the FSS is stable when the extrapolative trading is moderate [so that (17) holds]. In
this case, the mean-reverting of the fundamental investors dominates the trade-off,
stabilizing the FSS.

Second, again when (18) holds, the FSS becomes unstable when the extrapolative
trading is strong [so that the right part of (17) is violated, i.e., γi (1− s̄) > BNS

i ]. In this
case, the extrapolative trading of trend followers dominates the trade-off, destabilizing
the FSS. Furthermore, due to the Neimark–Sacker bifurcation, market price fluctu-
ates around the steady-state fundamental price. This destabilizing mechanism through
Neimark–Sacker bifurcation is well documented in agent-based literature for single
risky asset. We show that the same mechanism also carries to the market with many
risky assets. Intuitively, when the extrapolative trading becomes more significant, the
FSS becomes unstable. Combining with mean-reverting trading from the fundamen-
tal investors, this then generates price momentum in short-run and mean-reverting in
long-run. Numerically, we show in Sect. 4 that such instability mechanism for individ-
ual asset can spill over to other assets. This nonlinear mechanism via Neimark–Sacker
bifurcation can potentially explain time-series momentum in short-run and mean-
reverting in long-run, along with cross-section momentum, that have been studied
extensively in empirical finance literature.12

Third, when the mean-reverting trading becomes more significant [so that (18) is
violated], it dominates the trade-off, by making the stability region empty. Interest-
ingly, a similar mechanism is also at work when the extrapolative trading is weak
while mean-reverting trading is moderate such that

γi (1 − s̄) <
2θσ 2

i

μ

(1 − δ)

δ
(20)

and
2δ

1 + δ
γi (1 − s̄) + 4θσ 2

i

μ
< αi (1 + s̄) + 2r <

8θσ 2
i

μ(1 − δ)
. (21)

12 See He et al. (2018) for an account of such empirical literature and a dynamic heterogeneous-agent
model of cross-section momentum trading.
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In this case, Proposition 1 implies that a flip bifurcation occurs for αi at αi = α∗
i

satisfying 2δ
1+δ

γi (1 − s̄) + 4θσ 2
i

μ
= α∗

i (1 + s̄) + 2r . Therefore, when extrapolative
trading is less active [such that (20) holds], a moderate mean-reverting trading [so that
(21) holds] can also lead to instability of the fundamental price via a flip bifurcation.13

3.2 Impatience and investor sentiment

We now explore the effect of patience, measured by the population of long-term
investors no, and investor sentiment, measured by the difference of population shares
between the fundamental investors and trend followers st = (1 − n0)mt + n0m0 =
q f

t − qc
t .

The effect of investors’ patience or confidence depends on the sign of quantity
m0 − m̄. Note that m0 measures the population difference between the fundamental
investors and trend followers among long-term patient investors, while m̄ is the analo-
gous difference among the short-term impatient investors, at the steady state. We may
interpret condition m0 > m̄ as the ‘relative dominance’ of fundamental investors over
the trend followers, namely14

n f >
1 + m̄

1 − m̄
nc. (22)

In this case, the steady-state value s̄ of investor sentiment st increases in n0, which
increases the impact of the fundamental investors but reduces the impact of the trend
followers. Generally speaking, based on (17), this tends to reduce the chance of a
Neimark–Sacker bifurcation. Thus, whenever investor sentiment increases in the share
of patient long-term investors, this tends to stabilize the market, while the opposite is
true when investor sentiment increases in the share of impatient short-term investors.
This however goes opposite with the relative dominance of the trend followers [so
that condition (22) is violated]. In this case, even an increase in the patient long-
term investors can destabilize the market. Therefore, more patient investors do not
necessarily stabilize market, particularly when there is more extrapolative trading
among them. Intuitively, the market becomes more stable when there are more patient
and fundamental traders and less impatient and trend followers.

3.3 Speculative switching and information cost

In the literaturewith single risky asset, it iswell documented that increasing speculative
switching, measured by parameter β, can destabilize the market. Proposition 1 shows
that this also holds with many risky assets, provided that extrapolation is large enough

for at least one asset. Since m̄ = tanh
(
−β

2
C
)

< 0, s̄ decreases with β. As a

13 Note that the generic i th left-hand inequality in (17) is automatically satisfied whenever B F
i < 0 for

asset i . This typically happens if αi is sufficiently small. On the other hand, violation of the condition B F
i <

γi (1− s̄) typically requires sufficiently large mean-reverting trading αi , sufficiently weak extrapolation γi
and large μ (i.e., strong price reaction to the excess demand).
14 Note that since m̄ < 0, the dominance of n f over nc in (22) can hold even with a lower share of patient
fundamental traders.
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consequence, starting from a situation of stability, increasing values of β shift quantity
γi (1− s̄) upwards and boundaries BNS

i and B F
i downwards, until possibly γi (1− s̄) ≥

BNS
i for some i , at which value a Neimark–Sacker bifurcation occurs. Intuitively,

increasing speculative switching increases the speculative trading among short-term
investors and hence destabilizes the market. Note also that, as long as information
cost differential 
C = C f − Cc > 0, its impact on the local stability of the steady
state is similar to that of parameter β, i.e., an increasing cost of fundamental analysis
is destabilizing, ceteris paribus.15 This not only shows that the information costs
parameter is quite relevant (including its sign) but may also affect the stability of the
market. This observation may have interesting policy implications for our model. For
instance, policy makers may promote better information with respect to the market’s
fundamental values, thereby decreasing information costs. Alternatively, some papers
also study how policy makers may use transaction taxes or profit and/or wealth taxes
to reduce the fitness disadvantage of the stabilizing fundamental expectation rule (see,
e.g., Westerhoff and Dieci 2006; Martin et al. 2021).

Finally, perhapsmore surprisingly, an increase in speculative switching can increase
the dominance of fundamental investors among patient investors and stabilize the
market to a certain extent. From (22), an increase in β makes the relative dominance
hold evenwith a smaller population of patient fundamental investorsn f , which reduces
the flip bifurcation boundary and hence the chances of price overshooting and regime
switching.

3.4 Cross-section spill-over effect

As remarked above, the reduction of the stability conditions to a set of independent
inequalities associated to each asset is a consequence of the simplified structure of
J which arises from assuming that �0 is diagonal. However, this does not mean that
fluctuations arising due to changes of parameters ‘associated’ to one asset (e.g., when
γi increases and/or αi decreases until the boundary BNS

i is crossed), remain confined
to that asset. In fact, the crossing of boundary BNS

i leads to a local bifurcation of
the steady state. However, due to the endogenous covariance estimation of trend fol-
lowers (which is not captured in the local stability condition), this potentially affects
the behavior of all dynamic variables, including the prices of all assets. This bench-
mark scenario of independence provides two further insights to rich cross-section
phenomena in financial markets. (i) With many risky assets, the spill-over of short-run
momentum and long-run reversal of one asset (explored above) to others can generate
cross-section momentum, which is well documented in empirical finance literature.
Our analytical results and the following numerical illustration - carried out in the
benchmark scenario—highlight the fact that cross-section momentum may be actu-
ally driven by behavioral factors. Of course, in general, such forces can amplify the
impact of other existing interlinkages due to correlated fundamentals. (ii) Focusing on
the independent stability condition for each asset provides flexibility to accommodate

15 However, under the more general interpretation of 
C in terms of predisposition effects, discussed in
Sect. 2.4, the sign of both
C and m̄ may turn out to be reversed and such parameters may have a completely
different impact on the dynamics and stability.
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many different price behaviors among different asset, particularly among different
asset classes, including the coexistence of stability of some assets and instability of
the others, cross-section momentum among some asset classes and regime switching
price dynamics among the others, depending on asset characteristics.

The rich dynamics provided by our model can be further illustrated numerically.
Within certain parameter ranges outside the stability region, the prices of some assets
may still converge to their steady-state values in the long run, as shown in the numerical
examples in Sect. 4.

4 Cross-section price dynamics

This section presents the results of some numerical simulations about the impact of
extrapolation parameters, intensity of choice and investor impatience. The main focus
is to confirm and illustrate the different ways and mechanisms a Neimark–Sacker
bifurcation may occur (as proven analytically in the previous section) and to discuss
some typical qualitative scenarios emerging as a consequence of this phenomenon, in
particular, the co-existence of assets with stable and unstable long-run price behavior.
The baseline parameter setting, which includes three risky assets, is one for which the
FSS is locally asymptotically stable, yet not far from the Neimark–Sacker bifurcation
boundary defined by the right-hand sides of (17), as shown in Table 1.

As a consequence, from Eq. (16), fundamental asset prices become p∗ =
[100, 100, 100]�, while the steady-state mix of switching investors is determined
as m̄ = −0.1974 (which implies s̄ = −0.0987), that is, there are roughly 40% fun-
damental traders and 60% trend followers in the population of impatient, short-term
investors, at the steady state. On the other hand, by assuming m0 = 0, we keep a fixed
(50%, 50%) mix of fundamental investors and trend followers among the population
of patient, long-term traders. We would like to stress that our parameter selection in
Table 1 has the main purpose of qualitatively producing boom-bust cycles as a con-
sequence of the stability loss of the steady state, without worrying about calibration
issues, e.g., regarding the duration of the cycles. However, just for the sake of con-
creteness, based on the assumed values of the parameters (in particular d, r and σ 2

i ,
i = 1, 2, 3), we may roughly regard the time unit as being one quarter or one month.16

4.1 The effect of extrapolation

The ‘critical thresholds’ γNS
i := BNS

i /(1 − s̄) for the extrapolation parameters are
given by 0.1350, 0.2050, 0.1714 for assets 1, 2 and 3, respectively. Under the baseline
selection, with an initial condition characterized by pi slightly above or ui slightly
below their steady-state levels, i = 1, 2, 3, and by an initial value of m below m̄
(implying more initial trend followers than at the steady state), prices slowly converge
to their steady-state levels after an initial, moderate price spike and, accordingly,

16 For instance, by regarding the time unit as one quarter, the assumed variance parameter σ 2
i , i = 1, 2, 3,

imply volatilities σi of 5%, 10%, 8% of the fundamental price levels, respectively, in annual terms.
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Table 1 Baseline parameter setting

Parameter Description Baseline value

μ Price adjustment coefficient 0.125

n0 := n f + nc Share of non-switching agents 0.5

m0 := (n f − nc)/n0 Mix of non-switching agents 0

r Risk-free rate 0.005

d := [d1, d2, d3]� Asset dividends [1.125, 1, 1.3]�
zs := [zs

1, zs
2, zs

3]� Asset supply stocks [10, 2, 5]�
θ Risk aversion coefficient 0.01

β Intensity of choice 0.8


C Cost differential 0.5

[α1, α2, α3] Mean-reversion coefficients [0.125, 0.125, 0.125]
[γ1, γ2, γ3] Extrapolation coefficients [0.1325, 0.2025, 0.1625]
δ Memory parameter 0.975

λ Sensitivity to past comovements 0.5

�0 = diag[σ 2
1 , σ 2

2 , σ 2
3 ] 2nd moment beliefs (exogenous) diag[6.25, 25, 16]

impatient (variable) investor shares approach their long-run levels, as captured by the
slow convergence of variable m (Fig. 1, left panels).

By increasing (only) extrapolation parameter γ3 beyond its threshold γNS
3 to the

new level γ3 = 0.1875 (Fig. 1, right panels), endogenous and wider price oscillations
emerge, as the result of the loss of stability. Accordingly, large fluctuations also affect
the dynamics of variable m. It is remarkable that, although an increase of parameter
γ3 reflects a change in investors’ beliefs about the trend of asset 3 only, the prices
of other assets can also be indirectly destabilized, even in the long run. Note that,
with this particular parameter selection, asset 2 still tends to approach its steady-
state level in the long run, while assets 1 and asset 3 display persistent and somehow
irregular fluctuations, as one can check numerically over (much) longer time horizons.
In fact, due to the assumed diagonal structure of matrix �0 (implying no exogenous
correlations between assets), a Neimark–Sacker bifurcation does not necessarily lead
to persistent fluctuations of all assets, as already reported in multi-asset models related
to ours (e.g., Chiarella et al. 2013).

Relatedly, as one can easily prove, the state space of dynamical system (7)–(10)
has further invariant sets Si , i = 1, 2, ..., n, that are characterized by pi = ui = p∗

i as
well as by the i th row (and column) of matrix V being equal to zero, i.e., by the price
of asset i being at rest, regardless of the behavior of other assets. Thus, the dynamics
depicted in Fig. 1, right panels, will end up taking place on an attractor belonging to
S2 in the long run, featuring fluctuations of assets 1 and 3 only.17 Finally, the emerging

17 The dynamics along similar attractors—lying in invariant submanifolds of the phase space—is driven
by suitable restrictions of the dynamical system. Our numerical examples suggest that such objects may in
fact be attractors for the complete dynamical system, as well (thanks to some transverse stability proper-
ties), which is not easy to prove in general. See Bischi and Cerboni Baiardi (2015, 2017) for a theoretical
discussion and insightful applications to economic dynamics. The outstanding work of Gian Italo and col-
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Fig. 1 Neimark–Sacker bifurcation as the effect of stronger extrapolative behavior on asset 3 (due to
parameter γ3). Parameters according to the baseline setting in Table 1, except γ3 = 0.1875 in the right
panels. Left panels: difference m between fundamental investors and trend followers shares of switching
agents (top) and asset prices pi , i = 1, 2, 3 (bottom) under the baseline setting, where γ3 = 0.1625 and
the FSS is stable. Right panels: variables m (top) and pi , i = 1, 2, 3 (bottom) beyond the Neimark–Sacker
boundary for parameter γ3, namely, with γ3 = 0.1875. Asset prices 1, 2 and 3 are in black, green and red,
respectively. Initial condition with all variables at their steady-state level, except p1,0 = p∗

1 +0.5 = 100.5,
p3,0 = p∗

3 + 0.5 = 100.5, u2,0 = p∗
2 − 0.2 = 99.8 and initial value of m equal to m̄ − 0.1 = −0.2974

(Color figure online)

patterns of co-movement between different assets seem nontrivial and varying over
time. Similar phenomena can also be observed by assuming increased extrapolation
on other assets, starting from the baseline case. Such spill-over is most likely driven
by the optimal portfolio effect through the endogenous covariance updating from the
trend followers.

4.2 The effect of speculative switching

Increasing values of the intensity of choice β have destabilizing effects, as well, as
commonly reported by the heterogeneous-agent literature.18 Note that, by solving for

laborators in the field of global properties of discrete-time dynamical systems has long been, and continues
to be, a source of inspiration for us.
18 Parameter β is inversely related to the variance of the noise term in random utility models (see, e.g.,
Anderson et al. 1993). The larger β is, the stronger investors perceive the signal coming from observed
performance differentials among strategies/forecasting rules, which generally has a destabilizing impact
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β the set of (right-hand sides of) conditions (17)–(19), one obtains:

β < min
i

βNS
i , βNS

i := 1


C
ln

(
1 + �i

1 − �i

)
(23)

where

�i := 1

(1 − n0)(αi + γi )

[
n0m0(αi + γi ) + αi − γi + 2r + 1 − δ

δ

2θσ 2
i

μ

]
,

provided that−1 < �i < 1 for any i .19 Figure 2 shows the dynamics generated under
a value of parameter β beyond the Neimark–Sacker bifurcation boundary defined by
conditions (23).

More precisely, against the baseline parameters of Table 1 corresponding to the
left panels of Fig. 1 (where β = 0.8), Fig. 2 corresponds to β = 1.40, a value which
exceeds each of the analytical thresholds (βNS

1 , βNS
2 , βNS

3 ) = (0.889, 0.870, 1.087).
Simulations are run over a very long time window, in order to both show the mar-
ket’s reaction to its initial displacement from steady state and provide the intuition of
its asymptotic dynamics. In this particular case, the fluctuations emerging from the
Neimark–Sacker bifurcation will remain alive only for assets 1 and 2, whereas the
price of asset 3 will approach its steady-state level p∗

3 in the long run (second panel).
However, the final outcome appears to be sensitive to the particular value of β and
may deviate from that displayed in Fig. 2, under slightly different parameter selec-
tions. For instance, one can check that while β = 1.15 generates again an asymptotic
situation similar to Fig. 2, for β = 1.30 the price of asset 2 will converge to p∗

2 , with
persistent oscillatory behavior affecting only assets 1 and 3. Therefore, based on the
invariant sets introduced above, the asymptotic dynamics for β = 1.15, β = 1.30,
β = 1.40, take place on S3, S2 and again S3, respectively. Together with risk-adjusted
optimal portfolios based on the endogenous covariance estimation of trend followers,
this illustrates another possible way speculative switching may turn out to be ‘stabi-
lizing’. That is, even in a situation when the FSS is not locally stable, investors may
cyclically adjust their portfolio in a way that involves only a limited number of assets,
by keeping their demand of the remaining assets constant, as shown by the demand
patterns of fundamental traders and trend followers in the bottom panels of Fig. 2.
Such demand patterns, along with their varying impact captured by variable m in the
top panel, provide some intuition about the mechanisms behind the price movements
represented in the second panel.

on the dynamics. An even more general interpretation and micro-foundation is provided by Mattsson and
Weibull (2002).
19 More generally, and more precisely, no Neimark–Sacker bifurcation can take place on increasing param-
eter β if �i ≥ 1 for any i , which is typically the case when extrapolation parameters γi are low enough
for all assets. If �i < 1 only for some i , condition (23) must be formally restricted to a suitable subset of
assets.
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Fig. 2 Dynamics beyond the Neimark–Sacker bifurcation boundary, as the effect of a higher value of the
intensity of choice β. Top panel: difference m between fundamental investors and trend followers shares
of switching agents. Second panel: asset prices pi , i = 1, 2, 3. Third panel and bottom panel: fundamental

investors and trend followers demand (asset holdings) z f
i and zc

i , respectively, i = 1, 2, 3. Assets 1, 2 and
3 are in black, green and red, respectively. Parameters according to the baseline setting in Table 1, except
β = 1.4. Initial condition as in Figure 1 (though the initial value of m is equal to m̄ − 0.1 = −0.4364 in
this case). The dynamics of m and pi , i = 1, 2, 3, can be contrasted with the left panels of Fig. 1, where
β = 0.8, other things being equal (Color figure online)
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4.3 The effect of impatience

Finally, by assuming m0 − m̄ > 0, an increase in the share of potentially switching
agents (i.e., a reduction of parameter n0) has an effect similar to increasing the intensity
of choice. As discussed above, this may be interpreted as increasing investors’ degree
of impatience (see also Palczewski et al. 2016). For fixed extrapolation parameters γi ,
i = 1, 2, 3, and intensity of choice β, a larger population of impatient investors who
are ready to change their strategy/forecasting rule can destabilize the dynamics and
prevent long-run convergence to steady state. The stability threshold for parameter n0
can be made explicit by rearranging (the right-hand sides of) stability conditions (17
)–(19), as follows:

n0 > max
i

nNS
0,i nNS

0,i := 1

m0 − m̄

[
1

αi + γi

(
γi − αi − 2r − 1 − δ

δ

2θσ 2
i

μ

)
− m̄

]
,

(24)

provided that 0 < nNS
0,i < 1.20

In Figure 3 we slightly deviate from our baseline parameter setting by assum-
ing γ3 = 0.17, λ = 1. Under this setting, the above thresholds nNS

0,i are given as

(nNS
0,1, nNS

0,2, nNS
0,3) = (0.446, 0.458, 0.474) and therefore, by decreasing parameter n0,

a Neimark–Sacker bifurcation takes place at n0 = maxi nNS
0,i

∼= 0.474. While for,
e.g., n0 = 0.6 we observe dynamics very similar to that in the left panels of Fig. 1,
Fig. 3 shows the evolution of the market corresponding to n0 = 0.35 (left panels) and
n0 = 0.25 (right panels), under our baseline initial condition. In the top and middle
panels, in spite of quite similar dynamics of variable m and prices pi in the two cases
during a long initial time interval, the two situations become substantially different at
the end of the selected time interval (from about t = 400 to t = 500), due to a drastic
increase of the variable share of trend followers (which adds to the assumed reduction
of the exogenous share of patient investors from 0.35 to 0.25). In addition, the bottom
line of panels shows the price developments after a very long transient, when it is clear
that the existing attractors have qualitative different properties in the two cases, with
the price of asset 3 being at rest for n0 = 0.25, whereas all three asset are subject to
endogenous long-run fluctuations for n0 = 0.35.

As already pointed out in Sect. 3, both an increase of parameter β and a decrease
of n0 result— via different mechanisms—in an increase of the total share qc

t of trend
followers (i.e., in a reduction of the investor sentiment variable st ) in the steady-
state solution, which is what really affects the local asymptotic stability of the FSS.
However, the endogenous covariance estimation and risk-adjusted optimal portfolio
choice of trend followers may sometimes have stabilizing effects.

20 Similar to the previous analysis of parameter β, a Neimark–Sacker bifurcation cannot occur by varying
parameter n0, if nNS0,i ≤ 0 for any i , which is again typically the case when extrapolation γi is weak for all

assets. If nNS0,i > 0 only for some i , Eq. (24) must be formally restricted to a suitable subset of assets.
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Fig. 3 Dynamics of m and pi , i = 1, 2, 3 (black, green and red, respectively), with different values of
parameter n0, selected outside the region of stability in the parameter space: n0 = 0.35 in the left panels,
n0 = 0.25 in the right panels. Top panels: difference m between fundamental trader and trend follower
shares of switching agents. Middle panels: asset prices. Bottom panels: asymptotic behavior of asset prices,
after removing a very long transient. Other parameters as in our baseline selection, except γ3 = 0.17, λ = 1.
Initial condition as in Fig. 1 (Color figure online)

5 Conclusion

In this paper,we introduce a stylized dynamicmodel of amulti-asset financialmarket in
the presence of investors with heterogeneous expectations and having some degree of
‘impatience’ (i.e., being ready to change their strategy over time up to a certain extent)
to provide insight into the potentially destabilizing effect of various behavioral forces
in financial markets and the complex way it can bring about cross-section instabilities.
The dynamics of asset prices is driven by disequilibrium adjustments as a consequence
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of excess demand/supply of myopic mean-variance investors with different types of
beliefs about future price developments. In addition to price expectations, investors
possibly update their second moment beliefs, as well. A steady-state solution to this
model (Fundamental Steady State—FSS) reflects well-established equilibrium condi-
tions between dividends, the risk-free rate and investors’ risk perceptions, resulting in
standard ‘fundamental prices’ of the risky assets. Such equilibrium prices represent
the long-term outcome of the model under ‘normal’ ranges of the main behavioral
parameters, even if the market is initially displaced from such fundamental equilib-
rium. However, a loss of asymptotic stability of the FSS may take place under other
ranges of the behavioral parameters. Besides the impact of sufficiently large extrap-
olation, characterizing trend-followers’ beliefs, further behavioral elements play a
major role in the dynamics and can act as destabilizing forces, leading to a regime of
persistent joint price fluctuations and cross-section instabilities. These are the inten-
sity of choice, characterizing investors’ propensity to switch their strategy based on
observed performance differentials, and a parameter capturing the population share of
potentially switching investors (or, symmetrically, the complementary share of fixed-
strategy investors), which is related to the degree of investors’ ‘impatience’ in this
setting. While the destabilizing impact of the intensity of choice is well documented
in the literature, the latter is still largely unexplored. Building on, and generalizing
the elementary one-risky-asset framework of Dieci et al. (2006), this paper provides a
complete analytical treatment of the local asymptotic stability conditions of the FSS
in the parameter space, in the benchmark case when investors’ perceived correlations
among assets are fully determined endogenously (i.e., in the absence of exogenous
correlations between dividends/fundamentals of different assets). Among other things,
the paper shows that an increase of the proportion of impatient, potentially switching
investors can have dramatic destabilizing effects. This may also be interpreted as the
effect of an increase of the share of short-term speculators, in contrast to long-term
investors. Besides generalizing the preliminary insights offered by Dieci et al. (2006),
our results are in agreement with Palczewski et al. (2016), who report similar effects
of an increase of the amount of capital which flows freely among competing fund
managers with different investment styles, in an evolutionary finance framework with
multiple risky assets. Further extensions of our model that incorporate exogenous
covariances, noisy dividends and a richer supply structure, can potentially generate
more realistic cross-section price dynamics and market anomalies.

A second contribution of our paper consists in emphasizing the substantial (and
somehow surprising) differences between the way instabilities arise and show up in a
multiple-risky-asset setting, in contrast to a baseline one-risky-asset setting. Intuitively,
in a single-risky-asset setting, the expectations feedback process in disequilibrium
conditions (by which observed price movements determine expectations updating
and subsequent changes to asset demand and portfolio compositions, which again
contributes to keep price fluctuations alive) remains confined to a unique asset (as the
price and return of the riskless asset are fixed, by assumption). Generally speaking,
and different from the one-asset case, in a multiple asset framework expectations
updating for one asset has immediate effect on the quantity demanded of other assets,
as well [see Eq. (3)], particularly if investors also update their second-moment beliefs
based on observed asset comovements [Eq. (4)]. Even a few examples provided in
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our paper indicate how wide a range of possible dynamic patterns and joint price
movements a loss of stability of the FSS can bring about in a multi-asset setting.
Therefore, once a regime of persistent price fluctuation arises due to, e.g., a Neimark–
Sacker bifurcation, this also implies a continuing evolution of investors first- and
second-moment beliefs and portfolio compositions, which may result in cross-section
instabilities involving multiple assets. However, this scenario is compatible with long
run-patterns in which only a subset of the existing assets display price fluctuations.
That is, optimal diversification in an unstable regime may require changes in amounts
held for only a subset of available assets, with fixed optimal amounts for the remaining
assets. Moreover, additional simulations not reported here21, confirm that such long-
run patterns are very sensitive to small parameter changes.

Finally, our analytical results in the general case of n assets correspond to a sim-
plified situation in which investors regard dividends (and fundamental prices) as
uncorrelated across assets, so that the only possible price correlation patterns emerge
from observed comovements in disequilibrium conditions. Although analytical results
seem impossible in the case of general correlations (resulting in a non-diagonal matrix
�0), preliminary simulations show that the effect of the main parameters on steady-
state stability is still qualitatively similar to that illustrated in this paper.22 Anyway,
further analysis should focus more systematically on the case when an ‘exogenous’
asset correlation component is also at work, as the effect of common shocks or of
broader, economy-wide interdependencies, while an ‘endogenous’ correlation similar
to the one illustrated heremay still come into play and add to the exogenous component
due to behavioral forces. Chiarella et al. (2005, 2007) offer preliminary insights in a
deterministic setting and Schmitt and Westerhoff (2014) provide interesting develop-
ments and empirical calibrations in a more general setting with different sources of
noise. Furthermore, suitable stochastic versions of our baseline model could be use-
ful to improve our knowledge on how changing risk-return patterns in asset markets
can be affected by investors’ behavioral characteristics, along the lines indicated in
Chiarella et al. (2013), Chiarella et al. (2013).
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Appendix: Local asymptotic stability of the steady state

By omitting time subscripts and using the symbol ′ to denote a one-step advancement
in time, we rewrite the map driving the time evolution of the model into four groups
of equations, corresponding to variables p,u,V, m, as follows:

p′ = p + μ

2

{(
z f + zc

)
+ [(1 − n0)m + n0m0]

(
z f − zc

)
− 2zs

}
:= F(p,u,V, m) (25)

u′ = δu + (1 − δ)p′ = δu + (1 − δ)F(p,u,V, m) (26)

V′ = δV + δ(1 − δ)(p′ − u)(p′ − u)� = δV + δ(1 − δ) (F(p,u,V, m) − u)

(F(p,u,V, m) − u)� (27)

m′ = tanh

{
β

2

[(
z f − zc

)� (
p′ + d − (1 + r)p

) − 
C

]}

= tanh

{
β

2

[(
z f − zc

)�
(F(p,u,V, m) + d − (1 + r)p) − 
C

]}

:= G(p,u,V, m) (28)

where

z f = z f (p) = θ−1�−1
0

[
A(p∗ − p) + d − rp

]
,

zc(p,u,V) = θ−1(�0+λV)−1 [
�(p − u) + d − rp

]

As will become clear from the structure of the Jacobian matrix of the map (25)–(28),
computed at the FSS, local asymptotic stability is affected only by certain blocks
of derivatives, for which we provide the necessary details below. In doing so, it is
useful to regard (with some abuse of notation) the block of variables corresponding to
symmetric matrixV as rearranged into a vector with q = n+(n2−n)/2 = n(n+1)/2
components (n variances plus (n2 − n)/2 different covariances).

Denote, in general, by Dx� the (partial) Jacobian matrix of function�with respect
to the block of variables x, at the FSS. For the demand functions, one obtains:

Dpz f = −θ−1�−1
0 (A + rI), Dpzc = θ−1�−1

0 (�−rI), Duzc = −θ−1�−1
0 �

and, in particular:

Dp

(
z f + zc

)
= θ−1�−1

0 (� − A − 2rI), Dp

(
z f − zc

)
= −θ−1�−1

0 (A + �).

Therefore, since recursive equation for prices (25) is linear in p and u, one obtains:

DpF = I + μ

2
θ−1�−1

0 [(� − A − 2rI) − s̄(A + �)] ,

DuF = μ

2
θ−1�−1

0 (s̄ − 1) �,
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where s̄ := n0m0 + (1 − n0)m̄. Also, since (25) is linear in m, demand functions z f

and zc do not depend on m, and z̄ f − z̄c = 0 at the steady state, it turns out that:

DmF = μ

2
(1 − n0)

(
z̄ f − z̄c

)
= 0.

As regards the recursive definitions for u and V, denoting by Q(p,u,V, m) and
Z(p,u,V, m) the right-hand sides of (26) and (27), respectively, one immediately
obtains:

DpQ =(1 − δ)DpF, DuQ =δI + (1 − δ)DuF, DmQ =(1 − δ)DmF = 0,

DVZ =δI, DpZ =DuZ = 0, DmZ = 0.

In particular, the great simplifications arising in the last set of derivatives depend on
the fact that all the partial derivatives of the term

(
p′ − u

) (
p′ − u

)� include some
multiplicative factor of the type (p′

i − ui ), which vanishes at the FSS.
Finally, as regards the recursive Eq. (28) for variable m, one obtains, at the steady

state:

∂G

∂m
= β

2

[
1 − tanh2

(
β

2
(π̄
 − 
C)

)]
∂

∂m

[(
z̄ f − z̄c

)�
(d − r p̄)

]
= 0,

again because z f and zc do not depend on m and z̄ f = z̄c.

The Jacobian matrix J of map (25)–(28) has dimension N = (n + n + q + 1) =
5n+n2

2 + 1. As regards the study of the roots of the characteristic polynomial of J,
S(ζ ) := det(J−ζ I), our previous results show that both matrix J−ζ I and its square
submatrix associated with variables (p,u,V), have block triangular structures, which
greatly simplifies this task. More precisely, matrix J−ζ I can be partitioned as follows
(here we indicate, for clarity, the dimension of each identity matrix involved):

J−ζ IN =

⎛
⎜⎜⎝

DpF − ζ In DuF DVF 0
(1 − δ)DpF (δ − ζ )In + (1 − δ)DuF (1 − δ)DVF 0

0 0 (δ − ζ )Iq 0
DpG DuG DVG −ζ

⎞
⎟⎟⎠

and therefore:

S(ζ ) := det(J−ζ IN ) = −ζ(δ − ζ )qP(ζ ),

where P(ζ ) is the determinant of the upper-left block of J−ζ IN , corresponding to
variables (p,u), namely:

P(ζ ) = det(M(ζ )),

M(ζ ) :=
(

DpF − ζ In DuF
(1 − δ)DpF (δ − ζ )In + (1 − δ)DuF

)
=

(
M1(ζ ) M2
M3 M4(ζ )

)
. (29)
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It follows that one root of S(ζ ) is equal to 0 and q additional roots are equal to
δ, 0 < δ < 1. Stability thus depends only on the 2n roots of P(ζ ). For instance,
in the case of n = 2 risky assets, stability depends on the joint behavior of four
eigenvalues and a loss of stability occurs when one of them becomes larger than
1 in modulus, as a consequence of parameter changes. Although the above result
represents a substantial simplification to the original problem, the analytical study of
(29) still appears prohibitive, in general. However, a complete analytical treatment is
still possible in a benchmark case, in which matrix �0 is diagonal (the ‘exogenous’
component of asset covariances is zero). Note that in this case, all four square blocks
M1(ζ ),M2,M3,M4(ζ ) are themselves diagonal matrices. Based on Schur’s formula
for the determinant of block matrices (see, e.g., Gantmacher 1959, p. 46), one has:

det(M(ζ )) = det(M1(ζ )M4(ζ ) − M2M3)

= det
[
(δ − ζ )

(
DpF − ζ In

) − (1 − δ)ζ DuF
]

=
n∏

i=1

[(δ − ζ )(ai − ζ ) − (1 − δ)ζbi ] , (30)

where, for i = 1, 2, ..., n:

ai = 1 + μ

2θσ 2
i

[
(γi − αi − 2r) − s̄(αi + γi )

]
,

bi = μ

2θσ 2
i

γi (s̄ − 1),

are the diagonal elements of DpF and DuF, respectively, in the case when �0 =
diag(σ 2

1 , σ 2
2 , ...σ 2

n ). Each factor of (30), namely

Qi (ζ ) := ζ 2 − (ai + δ + (1 − δ)bi )ζ + δai i = 1, 2, ..., n

is a second-degree polynomial ‘associated’ to a particular asset. The roots of Qi (ζ )

are smaller than one in modulus if and only if the following conditions jointly hold:

Qi (1) > 0, Qi (−1) > 0, Qi (0) < 1,

which results, respectively, in the following system of inequalities:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ

2θσ 2
i

[αi (1 + s̄) + 2r ] > 0

μ

2θσ 2
i

(1 + δ) [αi (1 + s̄) + 2r ] < 2(1 + δ) + μ

2θσ 2
i

2δγi (1 − s̄)

μ

2θσ 2
i

[
γi (1 − s̄) − αi (1 + s̄) − 2r

]
<

1 − δ

δ

(31)

In particular, whenever the third (resp. second) condition of (31) is violated—all other
conditions being satisfied—the modulus of the two complex conjugate roots ofQi (ζ )
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becomes larger than one (resp. one real root of Qi (ζ ) becomes smaller than −1).
Since the first inequality of (31) is always satisfied in the parameter space, by making
quantity γi (1− s̄) explicit in the second and third inequalities, one finally obtains the
more synthetic and intuitive form of the stability conditions stated in Proposition 1,
Eqs. (17)–(19), expressed in terms of n stability intervals for quantities γi (1 − s̄),
i = 1, 2, ..., n, provided that condition (18) holds.
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