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Abstract
In this paper, we study a class of markets, among which we can mention agricultural
and energy markets, characterized by seasonality, i.e., in which demand and/or supply
conditions cyclically alternate with a precise and known periodicity.We propose a new
theoretical framework based on a cobweb model with adaptive expectations, accord-
ingly modified to be consistent with market’s seasonality. The model, consisting in
a second-order non-autonomous difference equation, is investigated with the aim of
understanding how the periodical nature of themarket together with the agents’ expec-
tation formation mechanism affects the resulting dynamics. We analytically prove the
emergence of dynamical scenarios that are missing in the classic cobweb model for
non-seasonal markets, such as quasi-periodic dynamics and an ambiguous role on
stability of the expectation weight. Finally, we discuss their economic rationale with
the help of numerical simulations. In such a peculiar economic framework, agents’
learning plays a key role to explain the dynamical properties of economic observables.

The development of the present work benefits from the invaluable research carried on by Gian Italo Bischi
over the years, which gave impulse to both research about economic modeling and dynamical systems.
The link of the present work to his research activity is twofold. Firstly, as in his earlier contributions
(Bischi and Naimzada 1995, 1997) about dynamical analysis of an economic problem, we deal with the
study of the emergence of complex phenomena in a cobweb model. Moreover, we aim at providing a
feasible, boundedly rational mechanism that describes the agents’ learning. This topic has been central in
the research by Gian Italo, as remarked by his studies on gradient based rule of thumbs (Bischi and
Naimzada 2000), on the role of expectations on dynamics (Bischi et al. 2005), on oligopolies with firms
having incomplete information about the demand function (Bischi et al. 2007), on the role of memory
(Bischi et al. 2015, 2020a, b).
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1 Introduction

The supply and/or consumption patterns characterizing some classes of goods are
affected by the particular time at which they are produced and/or used, with the out-
come of recurrent price fluctuations that follows a broadly predictable sequence. This
peculiarity is referred to as seasonality. The provision of agricultural goods is a clear
example of such a situation. Crop production has to be planned in advance and its
harvest usually takes place in a single, specific season, giving rise to the well-known
“harvest lows” and “post-harvest rally” price behavior (see, e.g., Rahn 1968; Welch
et al. 2011). Another example consists of energy goods, in particular electricity, whose
consumption changes depending on the year period, day of the week or even the hour
of the day, and whose production can be in part affected by time as well (e.g., solar
energy). Being able to understand the seasonal effects in energy markets is fundamen-
tal to forecast price behavior (Parisio and Bosco 2008; Karakatsani and Bunn 2010,
2008a). Finally, among other relevant examples of goods whose supply and/or con-
sumption is affected by seasonality, we can mention clothing, toys and food (Wray
1958; Grant et al. 2010; Soysal and Krishnamurthi 2012). It’s worth mentioning that
such markets are often characterized by peculiar distributions in economic observ-
ables.1

In seasonalmarkets, demand and/or supply curves change over timewith underlying
deterministic patterns, according to the daily, weekly, monthly recurrence of con-
sumption and production. Therefore, qualitatively identical couples of demand/supply
curves arise with cyclical regularity, giving rise to a characteristic and to a large extent
predictable seasonal pattern2 in the resulting price series. Indeed, suppliers are aware
of the market seasonality, and they take their production decision accordingly.

Given the relevance of the previous class of markets, the aim of the present research
is to develop a theoreticalmodel for the study of the evolution of economic observables,
like prices, quantities, in a prototypical market in which demand and supply functions
are affected by seasonality. To this end, we focus on the simplest kind of cyclicity
characterized by period 2. The general market under consideration is unique (as well
as the exchanged good), but it is structured as a sequence of cyclically alternating
phases, each one characterized by a couple of demand/supply functions. For such
reason, the considered class of seasonal markets can be addressed as double-phase
markets, in opposition to the classic framework to which we refer as single-phase
market. The most suitable setting to describe the previous class of markets is the

1 Just as an example, times series of electricity prices are characterized by an elevated volatility, spikes,
with returns’ distributions that show a strong, leptokurtic deviation from normality (see, e.g., Knittel and
Roberts 2005; Bosco et al. 2010).
2 Indeed, stochastic fluctuations may also superimpose to such a cyclical behavior, arising from nondeter-
ministic shocks that affect the demand and/or supply side.
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competitive one,3 so the methodological approach we pursue relies on the cobweb
framework.4

A key problem in the theoretical description of markets lies in modeling the way
agents make production decisions on the basis of their information endowment about
the economic environment, i.e., the way they form expectations about prices. Classic
expectation formation mechanisms proposed in the literature for single-phase mar-
kets, like static (Ricci 1930; Leontief 1934; Ezekiel 1938) and adaptive expectations
(Nerlove 1958) (see (Hommes 2013) for further discussion on expectation mecha-
nisms in cobweb model), are not suitable for a double-phase market, as they are not
shaped to take into account seasonality, so the first problem we have to address is that
of agents’ learning in a double-phase framework. Perfect rationality assumption is
not appropriate for such frameworks, due to the intrinsic complexity of the economic
environment and the inability of such hypothesis to give explanation of the phenomena
characterizing economic variables’ dynamics.

The expectation formation mechanism we propose is grounded on the classic adap-
tive expectations for single-phasemarkets. The agents form their expectations learning
from the last two periods, i.e., in a double-phase framework, from a whole sequence
of market phases, giving more relevance to the last market realization that exhibited
the same couple of demand/supply functions that characterize the next market phase.
The relevance that the agents give to each of the two last observed expectation errors is
encompassed in a phase- weight, and the weighted average of such expectation errors
determines the extent of the adjustment of the previous expected price, as in a single-
phase cobwebmodel, by an expectation weight.We stress that such amechanism is the
unique element in the model that allows for a link between two otherwise independent
market phases. Hence, the agents, in forming their expectations about prices, can learn
from both market phases and, in so doing, transfer information from one phase to the
other. From the mathematical point of view, the resulting model is essentially different
from a cobweb model for a single-phase market and consists of a non-autonomous
difference equation.5 Even if the modeling based on non-autonomous equations is
slightly less common in the economic context with respect to those biological and nat-
ural, we can mention some contributions in which autonomous equations proved not
to be suitable to describe or study economic phenomena. For example, in Clarck and
Munro (1975) a model in capital-theoretic terms for fisheries economics is proposed

3 Agricultural markets are the typical competitive market example provided in microeconomics courses,
and energy markets have been liberalized in the last twenty years.
4 For an introduction and survey on cobweb models we refer to Hommes (2013). A first attempt to describe
seasonal markets through a cobweb model is proposed in Cavalli et al. (2015), while the effect of demand
seasonality in a monopolistic market model is studied in Cavalli and Naimzada (2018).
5 It is well known that if agents takes into account in their expectation formation mechanism several
previously realized prices, then the resulting difference equation is non-autonomous (Cavalli and Naimzada
2015; Bischi et al. 2015), and this has been already applied to cobwebmodels (Carlson 1968;Manning 1971;
Bischi and Naimzada 1997; Gaffney and Pearce 2004), too. However, in such literature the non-autonomous
nature of the resulting equation is due to a refinement of the expectation formation mechanism, while the
economic framework under consideration is left unchanged. In the present contribution, it is a consequence
of the market seasonality, and hence, it is ascribable to the peculiar structure of the economic environment,
which in turn affects the expectation formation mechanism. Moreover, in the present model, the last two
periods taken into account are characterized by a different couple of demand/supply functions.
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and studied, with the aim of identifying an optimal consumption strategy through time.
In this setting, non-autonomous components are used to model price and harvesting
cost shifts.Moser et al. (2016) studied the optimal control problemof renewable energy
production, in which supply is intrinsically time-fluctuating with seasonality. Finally,
Cheban et al. (2013) studied a growth model with endogenous population growth on
the basis of the analysis of quasi-linear non-autonomous difference equations.

Due to the novelty, a relevant part of this contribution is devoted to the study of
analytical properties of the model, to compare it with the classic single-phase cobweb
model. The resulting framework exhibits much more elements of complexity and
ambiguity than that classic, in which instability can just arise by means of a period
doubling bifurcation and the expectation weight has a destabilizing effect. Conversely,
in a double-phase cobweb model, both periodic, chaotic and quasi-periodic dynamics
can arise, even for a given market configuration, and the expectation weight can also
have a stabilizing role. Moreover, we show that when agents form their expectations
on the basis of errors related to both market phases, they can be able to learn how
to correct erratic price dynamics characterizing each phase. The main drivers of the
emergence of new phenomena are discussed, both from the dynamical and economic
points of view, with the help of numerical simulations.

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
double-phase cobweb model, which is then studied from the analytical point of view
in Sect. 3. The dynamical and economic rationale of the results is discussed in Sect. 4.
Conclusions and future perspectives are collected in Sect. 5. Proofs of propositions
are found in Appendix.

2 Double-phase cobwebmodel

We consider a family of markets in which the unique traded good is characterized by
consumption and/or production that varies depending on the particular time at which
the good is exchanged, with a deterministic cyclical recurrence (seasonality) with
period 2. We assume that exchanges occur at discrete times τ ∈ N. We then have a
sequence of market phases, which, thanks to the assumption of deterministic cyclicity
of period 2, can be represented through a sequence of couples of demand/supply
functions (D1, S1) and (D2, S2), each related to a particular market phase. We assume
that demand functions Di : I → R

+, i = 1, 2, where I is a suitable interval, are
smooth and decreasing functions. Similarly, we assume that supply functions Si : J →
R

+, i = 1, 2, where J is a suitable interval, are smooth increasing functions.6 We
remark that the shapes of both demand and supply functions, as well as their domains
I and J ,may depend on the institutional characteristics of the particular market under
consideration. We only assume that Si (J ) ⊂ Di (I ) and that each function Di always
has one intersection with the corresponding function Si , for i = 1, 2.

6 For the sake of simplicity, in this section we assume that all the demand (resp. supply) functions share
the same domain, but such assumption is not essential and can be easily removed. Moreover, note that the
proposed setting also encompasses the situations in which either or both the demand functions are constant
in time (i.e., D1 ≡ D2) or/and the supply function is constant in time (i.e., S1 ≡ S2).
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Fig. 1 Time levels of the double-phase cobweb model. Black color: phase-time level τ. At τ , the market is
characterized by different demand (Di ) and supply (Si ) functions. Red color: period-time t . Each period-
time t collects a whole cycle of 2 consecutive phase-times (color figure online)

We refer to the time level identified by τ as the phase-time level, as it consists of
a sequence of market phases. The phase-time level is graphically sketched in Fig. 1
using black color.

Without loss of generality, we can assume that when τ is odd (respectively, even),
the market is characterized by demand/supply functions D1 and S1, (resp. D2 and
S2). We then have that two phase-times τa > τb are in-phase (i.e., share the same
demand/supply functions couple) when τa = τb + 2n (i.e., when a and b are both
even or odd) for some n ∈ N, while, otherwise, they are out-of-phase (i.e., they are
characterized by different demand/supply functions couples).

In addition to the phase-time level, it is possible to introduce another time perspec-
tive at which study a double-phase market, in which at each time t ∈ N a sequence of
two consecutive couples of demand/supply functions, is simultaneously considered.
We refer to this time level t as period-time level, in which each period-time t collects a
whole period of phase-times.7. The period-time level, superimposed to the phase-time
level, is sketched in Fig. 1 in red color. To give a concrete example, if phase-time
represents the sequence of daytimes and nights (each daytime is followed by a night,
which is in turn followed by a daytime and cyclically so on), each period-time repre-
sents a whole day (which is followed by another whole day), which is characterized
in terms of a daytime-night couple.

The market demand and supply functions for a double-phase market can be,
respectively, described by introducing a unique couple of time periodic functions
D : I × N → R

+ and S : J × N → R
+ defined by

D(pτ , τ ) =
{

D1(pτ ) if τ is odd,

D2(pτ ) if τ is even,
S(pτ , τ ) =

{
S1(pτ ) if τ is odd,

S2(pτ ) if τ is even,
(1)

where pτ is the market price at τ. At each phase-time τ, the demanded and supplied
quantities are, respectively, q D

τ = D(pτ , τ ) and q S
τ = S(πτ , τ ), where πτ is the price

that agents expect for phase-time τ.

7 Phase-time and period-time levels are indeed linked, and we can unambiguously move from τ to t and
vice-versa. The i th phase of period-time t corresponds to phase-time τ = 2(t − 1) + i . Conversely, from
phase-time τ, we can unequivocally obtain the corresponding period-time t = �(τ − 1)/2� + 1 and phase
i = τ − 2(t − 1), where �z� stands for largest integer not greater than z.
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To complete the cobweb model, we need to detail the expectation formation
mechanism. The further complexity of double-phase markets with respect to those
single-phasemakes clear that it is almost impossible for the agents to know each aspect
of the market and to perfectly foresee its future evolution, so it is more appropriate to
consider a boundedly rational expectation formation mechanism for the agents. How-
ever, the agents are indeed aware of the demand and supply seasonality, and so they
know that phase-time τ + 1 will be in phase with phase-time τ − 1 (and not with τ ).

The boundedly rationalmechanismwepropose is groundedon the adaptive expecta-
tions (Nerlove 1958; Chiarella 1988; Hommes 1994, 2013) of the classic single-phase
cobweb framework, for which the next period expected price is adapted from the last
period one on the basis of the last expectation error, i.e., the difference between the last
expected and realized price. In a double-phase setting, information comes from both
in-phase and out-of-phase past market realizations. Even if last in-phase information is
indeed, themost significant (as demand/supply functions at time τ +1will be the same
as those at phase τ − 1, and not as those at time τ ), last out-of-phase prices provide
the latest price information, which might signal particular demand/supply conditions
that are expected to last for some times τ .8 We then assume that expected price πτ+1
is formed anchoring to the previous in-phase expected price πτ−1 and adapting it on
the basis of the past expectation errors. In particular, agents can take into account both
in-phase, pτ−1 − πτ−1, and out-of-phase pτ − πτ expectation errors. The resulting
double-phase adaptive expectation formation mechanism is then

πτ+1 = πτ−1 + ω
[
ν(pτ−1 − πτ−1) + (1 − ν)(pτ − πτ )

]
, (2)

where ω ∈ (0, 1] is the expectation weight and 0 ≤ ν ≤ 1 is the phase-weight, which
specifies the relevance given by the agents to phase errors.We stress that asω increases,
more relevance is given to expectation errors, while, as it decreases, the anchoring bias
to the previous in-phase expected price becomesmore significant. Since in-phase error
pτ−1 − πτ−1 is the most significant for the determination of πτ+1, we assume that
ν > 1 − ν, i.e., ν > 1/2. We underline that phase-weight ν is (inversely) related to
the degree of coupling of different market phases, which is null when ν = 1 (since no
relevance is given to out-of-phase errors) andmaximumwhen ν ≈ 1/2 (since in-phase
and out-of-phase error approximatively have the same relevance). In the former case,
phases are independent, in the sense that the expectation errors at odd phase-times have
no influence on expected prices for even times, and vice-versa. If ν < 1 but still close
to 1 (ν � 1), we have that out-of-phase errors have a small influence on πt+1, and so
in this case we can speak of a weak coupling of phases. As ν decreases, out-of-phase
errors become more and more relevant, and the coupling degree increases. Finally, we
note that for ω = 0, as in classic adaptive expectations, we would have no dynamical
adjustment, as πτ+1 = πτ−1.

8 Such a possibility is not just a merely theoretical chance. Successfully, attempts to provide, through
econometric approaches, predictive techniques for the price dynamics in multiphase markets (like those
pursued for instance in Karakatsani and Bunn (2008a), Karakatsani and Bunn (2008b)) make use of data
coming from both in-phase and out-of-phase market realizations. The effectiveness of such approaches is
a hint of the fact that agents, in order to make their decisions, really take into account prices of different
market phases.
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Imposing temporary equilibrium condition D(pτ , τ ) = S(πτ , τ ), we obtain pτ =
D−1(S(πτ , τ ), τ ), where D−1(qτ , τ ) is

D−1(qτ , τ ) =
{

D−1
1 (qτ ) τ is odd,

D−1
2 (qτ ) τ is even.

Combining (2) and temporary equilibrium condition, we obtain the double-phase cob-
web model for the phase-time level, represented by the second-order non-autonomous
difference equation

πτ+1 = πτ−1+νω
(

D−1(S(πτ−1, τ−1), τ−1)−πτ−1

)
+(1−ν)ω

(
D−1(S(πτ , τ ), τ )−πτ

)
,

(3)
for given initial expected prices π0 and π−1.We stress that the non-autonomous nature
of the present model is intrinsically connected with the seasonality of demand/supply
functions characterizing the market itself, which in turn induces the peculiar form of
adaptive expectations.

In general, the non-autonomous equation (3) does not possess a steady state, because
of the cyclic nature of the demand and supply functions. In single-phase markets, a
temporary equilibrium is a steady state when it clears the market and it is constant
in time. In this sense, we can speak of a steady-state equilibrium. For a double-phase
market, assuming that phase-time τ corresponds to the i th phase of the market, we
can only require that pτ is a market clearing price for phase i (i.e., Di (pτ ) = Si (pτ ))
and that pτ+2n = pτ for any n ∈ N. From a dynamical viewpoint, this corresponds
to a steady cycle9 of period 2.

To be able to introduce a definition of steady-state equilibrium for double-phase
markets, we need to consider model (3) at the period-time level t (see the upper part of
Fig. 1), at whichwe study the evolution of vectorsπ t ∈ R

2, consisting of awhole cycle
of 2 expected prices. Fromπ t , we can then obtain the corresponding vectors of realized
prices and of traded quantities. From the previous considerations and assumptions on
functions Di and Si , we have that there exists a unique vector p∗ = (p1,∗, p2,∗) that
realizes

D(pi,∗, i) = S(pi,∗, i), i = 1, 2. (4)

This allows introducing the following definition.

Definition 1 We say that p∗ is a period steady-state equilibrium if it fulfills (4). We
define each pi,∗ as the i th phase steady-state equilibrium.

The dual time representation of double-phase markets in terms of phase-time
and period-time is intimately related to the representation of the proposed model
in terms of a non-autonomous and autonomous dynamical system. Non-autonomous
dynamical equation (3) was obtained at the phase-time level τ ; to rewrite it at the
period-time level t, we consider functions εi : J → R for i = 1, 2 defined by

9 We highlight that, due to the double-phase nature of the market, classic adaptive expectations πτ+1 =
πτ + ω(pτ − πτ ) are not consistent with such a “cyclical” steady state.
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εi (x) =
(

D−1
i (Si (x)) − x

)
, i = 1, 2, which allows introducing the autonomous

dynamical system

{
π1

t+1 = F1(π1
t , π2

t ) = π1
t + νωε1(π

1
t ) + ω(1 − ν)ε2(π

2
t ),

π2
t+1 = F2(π1

t , π2
t ) = π2

t + νωε2(π
2
t ) + ω(1 − ν)ε1(F1(π1

t , π2
t )),

(5)

where functions Fi : J 2 → R, i = 1, 2 are defined by the right-hand sides of the
previous equations. The autonomous system (5) can be rewritten in the compact vector
form as π t+1 = F(π t )where, setting π t = (π1

t , π2
t ) for t ≥ 0, function F : J 2 → R

2

is defined byF(π t ) = (F1(π
1
t , π2

t ), F2(π
1
t , π2

t )).Theway the autonomous system (5)
is linked to the non-autonomous equation (3) is clarified by the following proposition.

Proposition 1 If π−1, π0 are initial data of the non-autonomous equation (3) and we
take (π1

0 , π2
0 ) = (π−1, π0) as the initial datum of the autonomous system (5), then

π i
t = π2(t−1)+i for any t ≥ 0.

We recall that the existence of two different time levels is a consequence of the
double-phase framework. However, it is also significantly connected to the math-
ematical characterization of the model. In fact, the model is introduced in a more
straightforward way at the phase-time level, but it can be more easily studied at the
period-time level (e.g., its stability can be suitably investigated by means of the wide
literature concerning autonomous systems). Expectation formation mechanism (2),
which is grounded on the sequence of market phases, is more naturally introduced at
the phase-time level. In (5), each element π i

t of vector π t+1 represents the expected
price of a distinct phase, and consequently, each equation of system (5) describes the
evolution of single phase’s prices.

We note that system (5) consists of 2 coupled equations, in general depending on
some or all the components π i of vector π . However, in the extreme case of ν = 1,
expectation mechanism (2) simplifies into

πτ+1 = πτ−1 + ω(pτ−1 − πτ−1), (6)

and model (5) reduces to the diagonal system

π i
t+1 = π i

t + ω
(

D−1
i (Si (π

i
t )) − π i

t

)
, i = 1, 2. (7)

In this case, (6) is close to the classic adaptive expectation formation mechanism and
each π i

τ+1 in (7) only depends on the in-phase previous expected price, so we actually
have 2 distinct, independent equations (which provide independent dynamics). In this
case, the model can then be assimilated to 2 independent classic single-phase cobweb
models with adaptive expectations. For this reason, in what follows we consider the
case of ν = 1 as modeled by 2 independent equations (and not by a single diagonal
system), while we consider all the remaining cases of ν �= 1 as represented by a
single two-dimensional system. We will, respectively, refer to (5) for ν < 1 and to
(7) as coupled and uncoupled model, and by saying uncoupled (respectively, coupled)
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phases we will refer to each phase of the coupled (respectively, uncoupled) model.
We will be mainly interested in studying the behavior of the coupled model, while
the uncoupled model will be treated as an intermediate situation between the classic
single-phase and the coupled double-phase cobweb models.

3 Analysis of themodel

We start studying the possible steady states of system (5) in the following proposition,
which guarantees that the expectation formationmechanism preserves the steady-state
equilibrium.

Proposition 2 The only10 steady state of system (5) is the period steady-state equilib-
rium p∗ = (p1,∗, p2,∗).

Since the expectation mechanism (2) is a generalization of classic adaptive expec-
tations, we can compare the resulting dynamics with those of the single-phase setting
and understand what effects are introduced when agents act in a double-phase setting.
From the stability results of the single-phase cobweb model with adaptive expecta-
tions11 we have that a steady-state equilibrium p∗ is locally asymptotically stable
provided that

1 − 2

ω
<

S′(p∗)
D′(p∗)

= s (< 1) ⇔ ω > ω̄ = 2

1 − s
, (8)

namely if, at p∗, the slope of the supply function is sufficiently small with respect to
the absolute value of the slope of the demand function [the rightmost inequality in (8)
is automatically fulfilled since S′/D′ is negative]. We recall that |s| corresponds to the
ratio between the elasticities of supply and of demand, while ω̄, when belonging to
(0, 1), is the stability threshold on ω above which the equilibrium becomes unstable.
Along the lines of (8), we can introduce the relative slopes of functions Si with
respect to Di at pi,∗, defined by si = S′

i (pi,∗)/D′
i (pi,∗), i = 1, 2, and thresholds

ω̄i = 2/(1− si ) i = 1, 2. In what follows, we will simply refer to each si as to relative
slope or relative elasticity.

The remainder of this section is devoted to the study of the local stability of equilib-
riumwith respect to expectation weight, phase-weight and relative slopes. To describe
the possible dynamical behaviors on varying a parameter ξ (which will be either ω, ν

or si ) inside an interval I = (ξa, ξb)
12 we introduce the following scenarios, which

are sketched in Fig. 2:

10 We note that for the previous result we need ν �= 1/2. If we allowed for ν = 1/2 (namely, if we consider
the arithmetic mean of errors), system (5) would have additional, spurious, steady states.
11 For seminal results about the possible dynamical behaviors of linear and nonlinear cobweb models, we
refer to Ezekiel (1938), Nerlove (1958), Chiarella (1988), Hommes (1994) and Hommes (2013).
12 We describe scenarios for the case of an open interval (ξa , ξb); the same definitions can be easily adapted
to include one or both extrema, too.
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Fig. 2 Possible stability
scenarios with respect to a
parameter ξ. A solid
(respectively, dotted) line is used
for stability (respectively,
instability) intervals

• flip (FD) and Neimark–Sacker (NSD) destabilizing scenarios, if there exists ξ1 ∈
(ξa, ξb) such thatp∗ is stable on (ξa, ξ1) andunstable for ξ ∈ (ξ1, ξb) and for ξ = ξ1
stability is, respectively, lost through a flip and a Neimark–Sacker bifurcation;

• mixed scenario (M), if there exist ξ1 < ξ2, with ξi ∈ (ξa, ξb) such that p∗ is stable
on (ξa, ξ1) ∪ (ξ2, ξb) and unstable on (ξ1, ξ2);

• mixed-destabilizing scenario (MD), if there exist ξ1 < ξ2 < ξ3, with ξi ∈
(ξa, ξb), i = 1, 2, 3, such that p∗ is stable on (ξa, ξ1) ∪ (ξ2, ξ3) and unstable
on (ξ1, ξ2) ∪ (ξ3, ξb);

• unconditionally stable scenario (US), if p∗ is stable on (ξa, ξb).

Finally, we remark that, in the following propositions, we avoid to detail situations
in which stability or instability occur only at the boundary of parameter sets, as they
can be qualitatively encompassed into the other scenarios.

The role ofω and ν on the local asymptotic stability of p∗ is studied in the following
proposition.

Proposition 3 Period steady-state equilibrium p∗ is locally asymptotically stable pro-
vided that

2ων − (ω̄1 + ω̄2) < 0, (9a)

(2ν2 − 2ν + 1)ω2 − 2ν
ω̄1 + ω̄2

2
ω + ω̄1ω̄2 > 0. (9b)

If the steady state loses its stability through a Neimark–Sacker (resp. period doubling)
bifurcation (see Wiggins 1990), then condition (9a) [respectively, (9b)] is violated.

The previous proposition is actually the generalization of the stability condition (8)
to double-phase markets. In agreement with the classic cobweb model, local stability
depends on the expectation weight ω and on the relative slopes at the steady state. We
note that stability conditions (9) are symmetric with respect to ω̄i , i.e., with respect to
the relative slopes si , so we can assume |s1| ≥ |s2|.

Due to the linear (9a) and quadratic (9b) conditions in both ω and ν, we can have
up to three stability thresholds. To obtain a relevant characterization of local stability
on varying ω and ν, we proceed as follows. Assuming a fixed economic setting at
the equilibrium (described by s1, s2), we investigate how increasing the degree of
coupling between phases (namely, decreasing ν from ν = 1 to ν → 1/2) affects the
possible scenarios on varying the expectation weight. To foster understanding of the
results, it’s worth focusing on the very simple situation in which the two phases are
uncoupled (ν = 1). As we are going to show, the dynamical behavior of the coupled
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Fig. 3 Stability scenarios of the uncoupled model (ν = 1). A solid (respectively, dotted) horizontal line is
used for stability (respectively, instability) intervals. Vertical dotted lines subdivide (0, 1) into intervals in
which, for any ω, pi,∗ are both stable (ω ∈ Iss ), p1,∗ is unstable and p2,∗ is stable (ω ∈ Isu ) and pi,∗ are
both unstable (ω ∈ Iuu )

model is strongly influenced by that of the uncoupled one, so in the next proposition
we summarize the possible stability scenarios for the uncoupled model. The proof is
omitted, since it can be easily inferred by (8).

Proposition 4 Let ν = 1. Then,

(I) if maxi=1,2 |si | < 1, both phase steady-state equilibria pi,∗ are stable for any
ω ∈ (0, 1];

(II) if |s1| = |s2| > 1, both phase steady state equilibria pi,∗ are stable for ω <

ω̄1 = ω̄2 and unstable for ω > ω̄1 = ω̄2.
(III) if |s1| > 1 > |s2|, both phase steady-state equilibria pi,∗ are stable for ω < ω̄1,

while for ω > ω̄1 we have that p1,∗ is unstable and p2,∗ is stable;
(IV) if |s1| > |s2| > 1, both phase steady state equilibria pi,∗ are stable for ω < ω̄1,

while for ω̄1 < ω < ω̄2 we have that p1,∗ is unstable and p2,∗ is stable and for
ω > ω̄2 both pi,∗ are unstable.

Stability is always lost through a flip bifurcation.

The four situations described in Propositions 4 are depicted in Fig. 3.
Only when both |si | < 1 (case I) or |s1| = |s2| > 1 (case II) phase steady-

state equilibria p1,∗ and p2,∗ are either both locally stable or both unstable for each
expectation weight. Conversely, if we have different relative slopes at each pi,∗ and
|s1| > 1, for some values of ω only one phase steady-state equilibrium is stable.

What happens when agents, through their expectation mechanism, introduce a cou-
pling between the dynamics of different phases? Firstly, due to the strongly coupled
nature of the dynamical system (5), a whatever weak coupling (ν � 1) causes pi,∗ to
be necessarily either both locally asymptotically stable or both unstable. However, the
phase coupling does not completely cancel out the dynamics of the uncoupled phases,
from which, as we are going to show, it is still possible to infer and understand the
behavior of the coupled model. Observing Fig. 3, we can always subdivide interval
(0, 1] into three (possibly empty) subintervals:

– Iss = (0,min{ω̄1, 1}), in which pi,∗ are both stable;
– Isu = (min{ω̄1, 1},min{ω̄2, 1}), in which p2,∗ is stable while p1,∗ is unstable;
– Iuu = (min{ω̄2, 1}, 1), in which pi,∗ are both unstable.

In the next propositions, we study the possible scenarios as ω increases on either
ω ∈ Iss, ω ∈ Isu or ω ∈ Iuu . We start considering the simplest situation, in which
both phase steady-stable equilibria are stable for ν = 1.
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Proposition 5 Let ω ∈ Iss, then p∗ is stable for any ν ∈ (1/2, 1).

The previous proposition predictably says that coupling stable uncoupled dynam-
ics we always obtain stable dynamics. When instead only one-phase steady-stable
equilibrium is stable for ν = 1, results become more articulated.

Proposition 6 Let ω̄1 < 1 and ω ∈ Isu, then there exist ν2 ≤ ν1, with νi ∈ [1/2, 1)
depending on si , such that

– if ν ∈ (ν1, 1), we have a flip destabilizing scenario for ω ∈ Isu;
– if ν ∈ (ν2, ν1), we have mixed scenario for ω ∈ Isu;
– if ν ∈ (1/2, ν2), we have an unconditionally stable scenario for ω ∈ Isu .

Moreover, the set of values of ω for which the period steady state is locally asymptot-
ically stable becomes increasingly large as ν decreases.

Before commenting Proposition 6, we investigate what happens when both uncou-
pled phase steady-state equilibria are unstable.

Proposition 7 Let ω̄2 < 1 and ω ∈ Iuu, then there exist ν2 < ν1, with ν1 ∈ (1/2, 1]
and ν2 ∈ [1/2, 1) depending on si , such that

– if ν ∈ (ν1, 1), we have an unconditionally unstable scenario for ω ∈ Iuu;
– if ν ∈ (ν2, ν1), a Neimark–Sacker destabilizing scenario occurs for ω ∈ Iuu;
– if ν ∈ (1/2, ν2), we have an unconditionally stable scenario for ω ∈ Iuu .

In particular, we have that ν1 = 1 if and only if |s1| = |s2|. Moreover, the set of values
of ω for which the period steady state is locally asymptotically stable grows as the
coupling become increasingly stronger.

Propositions 6 and 7 deserve several comments. The possible stability loss through
either a flip or a Neimark–Sacker bifurcation is uniquely determined by the dynamical
behavior of the uncoupled model. Period steady-state equilibrium loses stability at
some ω̄ through a period doubling bifurcation only if, for that ω̄, pi,∗ are one stable
and the other unstable for ν = 1, while Neimark–Sacker bifurcation can occur at
some ω̄ only if both pi,∗ are simultaneously unstable for that ω̄ in the uncoupled
model. The other remarkable result is that the expectationweight can have a stabilizing
effect, in the sense that increasing ω may lead dynamics from instability to stability.
This is possible only when p∗ loses stability through a period doubling bifurcation.
Conversely, when stability is lost at some ω̄ through a Neimark–Sacker bifurcation,
Proposition 7 shows that p∗ cannot be locally asymptotically stable for any ω > ω̄.
The emergence of different kinds of unstable dynamics and the possibly ambiguous
role of the expectation weight are two of the most significant dynamical novelties
introduced by the double-phase framework. We will come back on the interpretation
of such important results in Sect. 4.

Focusing on Proposition 6, we have that if the coupling degree is sufficiently small
and p1,∗ and p2,∗ are, respectively, locally asymptotically unstable and stable in the
uncoupled model, a flip bifurcation always occurs as ω varies in Isu . According to
Proposition 6, as ν decreases, the flip destabilizing scenario can evolve in different
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Fig. 4 Possible stability regions in the (ω, ν)-plane when ω̄1 = ω̄2 < 1 (A), when ω̄1 < 1 < ω̄2 (B) and
when ω̄1 < ω̄2 < 1 (C). Red color is used for instability regions. Blue line N is the stability threshold
curve, crossing which p∗ loses stability through a Neimark–Sacker bifurcation. As a comparison, we plot a
vertical dashed line representing the stability thresholds of the uncoupled (ν = 1) model. Horizontal dotted
lines show the possible scenarios on varying ω for fixed ν (color figure online)

ways, depending on the relative slopes |si |. Increasing the coupling degree, we may
have that p∗ becomes unconditionally stable for any ω ∈ Isu or a mixed scenario can
occur, with the consequent return to stability as ω increases. In this last case, suitably
decreasing ν we may also have an unconditionally stable scenario as ω varies in Isu .

Concerning Proposition 7, the remarkable aspect is that when neither p1,∗ nor p2,∗
are locally asymptotically stable for ν = 1, on varying ω ∈ Iuu a Neimark–Sacker
bifurcation always occurs for a suitable coupling degree. In general, we also have that
instability is preserved under too weak couplings, while, depending on |si | and if the
coupling is sufficiently strong, we may have an unconditionally stable scenario as ω

varies in Iuu .

Juxtaposing the cases studied in Propositions 5–7, we are able to obtain stability
regions in (ω, ν) planes, for given slopes s1 and s2. We stress that as s1 and s2 change,
stability regions change as well and some of the scenarios depicted in the next figures
can disappear. In Fig. 4, we always focus on slopes configurations that provide the
maximumpossible number of scenarios simultaneously occurring. For synthetic expo-
sition of the results, we limit to a graphical representation, plotting in the (ω, ν)-plane
different stability regions corresponding to cases (II)–(IV), and we avoid depicting the
unconditionally stable case (I).13.

In Fig. 4A, we consider case (II), namely the very special situation of |s1| = |s2| >

1. In this case, for each ω ∈ (0, 1], pi,∗ are either both stable or both unstable for
ν = 1. Destabilization can only occur though a Neimark–Sacker bifurcation, and, for
a suitably strong phase coupling, dynamics become unconditionally stable.

In Fig. 4B, we consider case (III), in which |s1| > 1 > |s2|. When s1 �= s2, for
a weak coupling the dynamics inherit instability of p∗

1 in the uncoupled model. As
the coupling strength increases, the stability interval becomes larger, and can even-

13 We stress that for case (II) the possible scenarios are obtained juxtaposing the results of Propositions
5 and 7 (this last restricted to the particular case |s1| = |s2|), for case (III) possible scenarios come from
Propositions 5 and 6, while those of case (IV) can be obtained juxtaposing “matching” scenarios resulting
from Propositions 6 and 7 (for example it is not possible to have a flip destabilizing scenario for ω ∈ Isu
followed by an unconditionally stable for ω ∈ Iuu ).
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tually coincide with (0, 1]. Finally, in Fig. 4C we consider case (IV), in which both
pi,∗ become unstable but for different expectation weights (ω̄1 < ω̄2). For a suffi-
ciently weak coupling, instability always occurs through a flip bifurcation, with the
stability threshold that is increasingly close to ω̄1 as ν → 1. Increasing the coupling
strength, the flip destabilizing scenario is replaced by that mixed destabilizing, which
is obtained putting side by side the mixed scenario for ω ∈ Isu and the Neimark–
Sacker destabilizing scenario for ω ∈ Iuu . In this case, both stability and instability
regions are unconnected. Further increasing the coupling degree, the mixed destabi-
lizing scenario reduces to a Neimark–Sacker destabilizing one. Finally, we have a
complete stabilization with respect to ω for sufficiently strong coupling degrees.

Before focusing on the role of the phase-weight and the relative elasticity, we
simply stress how the range of possible scenarios obtained on varying the expectation
weight in a double-phase cobwebmodel (i.e., unconditionally stable, flip destabilizing,
Neimark–Sacker destabilizing, mixed and mixed-destabilizing scenarios) is by far
wider than those obtained in a single-phase cobwebmodel (i.e., unconditionally stable
and flip destabilizing).

From the previous analysis, it is possible to infer the local stability behavior with
respect to the phase-weight. We can have up to three thresholds which can affect
stability, two of them (νF,i , i = 1, 2) coming from the solution of (9b) and the last
one (νN S) from (9a). Depending on ω and si , by investigating the reciprocal positions
of νF,i and νN S as well as their belonging to (1/2, 1), it is possible to show the
scenarios arising on varying ν, which can be inferred considering vertical sections of
the stability regions reported in Fig. 4. We stress that it is possible to prove that the
portrayed situations cover all the possible behaviors with respect to ν. We just briefly
summarize the possible stability scenarios in the following proposition, omitting the
proof.

Proposition 8 For suitable values of expectation weight ω ∈ (0, 1] and relative slopes
at the phase steady-state equilibria, on varying ν we can have an unconditionally
stable, flip destabilizing, Neimark–Sacker destabilizing, unconditionally unstable sce-
narios.

Proposition 8 says that, keeping the remaining parameters fixed, increasing ν has
in general a destabilizing effect. This is in agreement with what suggested by the
previous comments from which, recalling the results of Propositions 6 and 7, the
stability regions with respect to ω becomes increasingly large as ν decreases.

Apart from unconditional scenarios, increasing ν has the sole effect of introducing
instability in the dynamics, which can occur by either flip or Neimark–Sacker bifur-
cations. In particular, on varying the phase-weight, no mixed scenario is possible. The
dual possible route toward instability is determined by the joint effect of ω and si .

Firstly, as noticeable looking at vertical sections of Fig. 4B, when we are in case (III)
of Proposition 4, only unconditionally stable/unstable and flip destabilizing scenarios
with respect to ν can occur. Conversely, when we are in case (IV), all the scenarios
predicted by Proposition 8 can arise (see Fig. 4C). However, in both cases, keeping si

fixed but considering different the expectation weights, stability with respect to ν can
exhibit a quite ambiguous behavior. To this end, we can focus on the stability regions
reported in Fig. 4C, considering a phase-weight ν which is slightly smaller than that at
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Fig. 5 Stability regions (yellow) with respect to ki for different values of ν (color figure online)

the intersection between stability curvesN andF (e.g., in the first plot, for ν ≈ 0.72).
If the expectation weight is close to ω̄2, a slight perturbation on it can lead instability
to either occur through either a flip (for ω � ω̄2) or a Neimark–Sacker (ω � ω̄2)

bifurcation.
In the remainder of this section,we briefly turn our attention to the role of the relative

slopes. Firstly, we note that, for a single-phase cobweb with adaptive expectations, we
may rewrite the stability condition as−1/ω < 1/2

(
S′(p∗)/D′(p∗) − 1

)
.Mimicking

the right-hand side of the previous inequality, we can introduce ki = 1/(2(si −1)), i =
1, 2 and rewrite stability conditions (9a) and (9b) as

{
(k1 + k2) + 2νωk1k2 < 0,

ωk1k2(2ν2 − 2ν + 1) + ν(k1 + k2) + 1 > 0,
(10)

whose graphical solution in (k1, k2)-plane for ω = 1 is reported in Fig. 5 for some
values of ν.14 As we can see, the stability region becomes increasingly large as ν

decreases, in agreement with the previous results about ν.

4 Discussion of the results

In this section, we investigate the conclusions of the analytical investigations of Sect. 3
from dynamical and economic perspectives, focusing on the most relevant deviations
from the results obtained in the classical cobweb framework. In particular, with the
help of numerical experiments, we aim at providing an explanation of the following
new facts:

(a) stabilization can be possible if the agents form their expectations suitably taking
into account out-of-phase price dynamics;

(b) dynamics arising when phases are uncoupled can significantly change when the
agents form their expectations learning from both phases; both periodic, chaotic
and quasi-periodic dynamics can emerge, even for the same given market config-
uration;

14 We remark that it is possible to show that the region defined by (10) is bounded for any ν ∈ (1/2, 1),
even if it becomes increasingly large as ν → 1/2.
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(c) a more cautious updating of expected prices by the agents can be the source of
instability in the dynamics.

According to the theoretical analysis of Sect. 3, all the previous evidences occur for
different market’s configuration and agents’ behavior settings. In what follows, we
focus on just a few scenarios, in order to put in evidence the economic driving forces
that are responsible for the new dynamical phenomena. All the remaining situations
can be explained adopting similar arguments.

We recall that the emergence of instability in the double-phase setting can be
ascribed to two sources, being related either to the market configuration (encompassed
in relative slopes si ) or to the agents’ behavior (encompassed in expectation weight ω
and phase-weight ν). The former one is the unique possible source of instability in a
classic cobweb model with static expectations, as adaptive expectations can just lead
unstable dynamics to become eventually stable as the expectation weight decreases.15

Concerning the role of the market constituents, we stress that the market outcome
pτ , i.e., the price determined by temporary equilibrium condition, lies above (resp.
below) the equilibrium price pi,∗ of the corresponding phase if the expected price
for phase-time τ is below (resp. above) pi,∗. If the relative elasticity of demand with
respect to supply function is small, pτ is closer to pi,∗ than the expected price for
phase-time τ, while, conversely, in the presence of a large relative elasticity, impos-
ing temporary equilibrium condition, price pτ would be farther to pi,∗ than expected
price for phase-time τ. In a single-phase cobweb model, if the agents adopt static
expectations, pτ is assumed as the next period expected price, while under adaptive
expectations, the previous expected price is just partially adjusted toward pτ , and its
relevance is softened as the expectation weight decreases. In a double-phase frame-
work, such two mechanisms act exactly in the same way in each phase, but the agents,
making use of information coming from different phases, foster the emergence of
scenarios that are completely different from those obtained in uncoupled phases.

In what follows, we focus on a specific example in which we introduce seasonality
in the same demand and supply function shapes used in Hommes (1994) and Hommes
(2013). We assume that cyclicity is described by a linear shifting, so, without loss of
generality, we can encompass it in the demand function only. We then set S1(π) =
S2(π) = S(π) = b + tanh(λ(π − c)), where b ≥ 1, λ > 0 and c ≥ 0, and Di (p) =
ai −dp, i = 1, 2,where both ai and d are strictly positive.Moreover, in all simulations
we set b = 1, c = 6 and λ = 10.

Even if the results are more effectively represented at period-time level t, their
explanation is more evident when investigated at the corresponding phase-time level
τ. To help in this, we report the expected price adjustment equations for a couple
of consecutive phase-times, assuming, without loss of generality, that τ + 1 is odd.
Setting gi (x) = D−1

i (S(x)) we have

15 Hommes (1994) it was shown that in a nonlinear (single-phase) framework, chaos can emerge as ω

decreases, in a framework in which static expectations lead dynamics toward a period-2 cycle. However,
the equilibrium is constantly unstable for the involved values of ω and such “qualitative” stabilization is
strictly related to the particular shape of demand and supply functions, and not just to the cobweb model
with adaptive expectations itself.
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πτ+1 = π1
t = πτ−1 + νω

(
g1(πτ−1) − πτ−1

)
+ (1 − ν)ω

(
g2(πτ ) − πτ

)
πτ+2 = π2

t = πτ + νω
(

g2(πτ ) − πτ

)
+ (1 − ν)ω

(
g1(πτ+1) − πτ+1

)
. (11)

In Fig. 6, we report a first family of simulations that are closely related to the sta-
bility scenario of Fig. 4B. We obtained them setting a1 = 8.15, a2 = 7.55 and
d = 1, from which, by numerical estimation, the period steady state equilibrium
results (π1,∗, π2,∗) ≈ (6.1920, 6.0544), with equilibrium relative elasticities given
by |s1| ≈ 7.5 and |s2| ≈ 0.82. The two-dimensional bifurcation diagram16 casts a first
glance on the dynamical behavior as the expectation weight and the coupling among
phases increase. Since in the present setting we have |s2| < 1 < |s1|, just the ele-
ments characterizing the market at odd phase-times are possible sources of instability.
This is evident looking at the couple of bifurcation diagrams in Fig. 6B, obtained on
increasing the expectation weight and in which phases are uncoupled (ν = 1). The
black diagram shows the unconditional stability of π2,∗, while the blue bifurcation
diagram resembles that in Hommes (1994), with a stability loss occurring through a
flip bifurcation, leading to chaotic dynamics that qualitatively simplify into a period-2
cycle for sufficiently large values of ω, when adaptive expectations become close to
those static (ω = 1).

We note that when the agents form their expectation on the basis of information
coming from both market phases, the period-2 cycle for ω ≈ 1 can be replaced by
more complex dynamical behaviors.17 As ν decreases,we have a firstly partial and then
complete stabilization of dynamics, with, respectively, a mixed and unconditionally
stable scenarios on varying ω.

To address the element of novelty we reported at point (a) at the beginning of this
section, we focus on the role of ν, so we set ω = 0.5 and we look at the bifurcation
diagrams reported in Fig. 6C, studying them as ν decreases. In this scenario, the
relevance given by the agents to expectation errors is kept fixed, while they form
expectations taking into account more and more out-of-phase price information as ν

decreases. We can observe a progressive stabilization of price dynamics at odd phase-
times (blue diagram), while prices π2

t (black diagram) undergo an initial increase in
oscillations amplitude, which is then replaced by a decrease in them and finally by a
gradual stabilization. This can be understood with the help of the sequence of time
series reported in Fig. 6D–I, obtained for decreasing values of ν.We recall that, at odd
phase-times, the relative elasticity s1 is large, and this is the source of chaotic behavior
of price π1

t when the two phases are uncoupled (blue line in Fig. 6D). Conversely, the
small relative elasticity s2 allows for quickly convergent price dynamics (black line).
In the latter case, taking into account the information encompassed in the expectation
error, the agents are able to gradually correct wrong price forecasts, while in the former

16 In two-dimensional bifurcation diagrams, for each different combination of parameters, we ran a simu-
lation with initial datum suitably close to the equilibrium values, and we depicted the corresponding point
on (ω, ν) plane using a color that represents the number of points of which the reached attractor consists,
for variable π1

t (e.g., white color points out convergence toward π1,∗, red color toward a period-2 cycle,
while cyan color toward an attractor consisting of more than 32 points).
17 From Fig. 6A, when ν ≈ 0.85, for suitably large values ofω the attractor consists of more than 32 points
(cyan region), pointing out possible chaotic or quasi-periodic dynamics.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 6 A Two-dimensional bifurcation diagram in (ω, ν) plane. B Bifurcation diagrams as ω increases for
the uncoupled. C Bifurcation diagrams as ν increases. D–I Time series for π1

t (blue) and π2
t (black) for

different values of ν and ω = 0.5 (color figure online)

situation erratic price trajectories last, sustained by market outcomes that are far from
π1,∗ when the expected price is close to it.

Now we focus on what happens when agents try to learn from both in-phase and
out-of-phase price information (Fig. 6E–I). If the agents base their learning process
mostly on in-phase information (i.e.,when the phase-weight is close to 1), at odd phase-
times τ + 1 [see also the former equation in (11)] they will give a great relevance to
turbulent price dynamics characterizing the previous odd phase-times τ − 1. Out-of-
phase information is marginally used to form expected price at τ + 1, so the overall
effect is narrow and the turbulent trajectories of π1

t are essentially the same both for
ν = 1 and for ν = 0.99 (blue lines in Fig. 6D, E).

At an even phase-time τ + 2 [see also the latter equation in (11)], agents mostly
rely on price information related to previous even phase-time τ. In this case, the
market outcome would be closer to the corresponding phase equilibrium price than
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the previous expected price, allowing the agents to learn the correct equilibrium price.
However, this does not occur as the effect of learning from out-of-phase expectation
error leads to a spread of the turbulence from π1

t to π2
t . The consequence of this is

evident in the time series related to ν = 0.99, in which π2
t exhibits small, endogenous

and non-periodic oscillations around π2,∗ (black line in Fig. 6E).
When the agents start giving more relevance to out-of-phase information (ν = 0.8,

Fig. 6F), the role of in-phase and out-of-phase expectation errors is more balanced
being the former still the dominant ones. Expected price πτ+1 is mainly affected by
the expectation error at τ − 1, but the agents give to it a reduced relevance with
respect to the previous cases. The consequence is a decrease in the price oscillations
(blue line in Fig. 6F). Conversely, dynamics of π2

t (black line) now exhibit evident
chaotic oscillations around π2,∗, since, as the coupling degree increases, the agents
form expected prices more and more relying on turbulent out-of-phase expectation
errors.

Up to now, the most evident effect is the instability transmission. The agents at
even phase-times try to learn from odd phase-times, and their capability to correct odd
phases expectation errors is impededby the transmission of the errors theymake at even
phase-times. However, price volatility at odd phase-times reduces as well, so we could
say that the agents “transfer” also the stability characterizing a market phase to the
order. Such effects are even more evident if we observe the “parallel” price dynamics
in time series of Fig. 6, namely price growths, peaks and falls simultaneously occur
in both phases, so that phase synchronization does not just consist in the occurrence
of the same (stable/unstable) dynamics. More precisely, the intuition of this is that
when agents form their expectations on the basis of both out-of-phase and in-phase
information, they actually alter price dynamics of a phase introducing elements related
to the dynamics of the other phase. In this sense, as the coupling degree increases, the
dynamics of a given phase more and more bear information about what is going on
in the whole market, and not only inside that phase. It could seem paradoxical that to
correct the forecasting errors in a phase, the agents should give more relevance to the
information related to the “wrong” phase, but actually the expectation errors related to
such out-of-phase-times bear information about both market phases. For this reason, if
the coupling degree further increases, oscillations amplitude and/or complexity in the
dynamics of π1

t declines, while the opposite occurs at even phase-times. It is easy to
understand that we come to a situation in which the price volatility is approximatively
comparable in both phases (Fig. 6G). From here on, oscillations at odd phase-times
decrease (Fig. 6I) and time series at both phases start exhibiting smaller oscillations
with a consequent dynamical simplification leading to convergence (Fig. 6I).

On the basis of the previous considerations, since, as the coupling degree increases,
each phase dynamics feels the effect of both in-phase and out-of-phase price correc-
tions of the agents, expectation errors cannot be just related to a unique, either odd or
even, time phase. Being influenced by them both and bearing information consistent
with them both, they convey knowledge related to the whole market knowledge, and
not just to a market phase knowledge. It is then evident that the agents, when this
happens, giving relevance to both expectations errors, have more chances to correct a
wrong expectation about price grounding on two reliable information than on just one.
The relevant economic result is that, by mixing information from both phases, agents
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(A)

(B) (C) (D)

(E) (F) (G)

Fig. 7 A Two-dimensional bifurcation diagram in (ω, ν) plane. Bifurcation diagrams as ω increases when
ν = 0.52 (B) and ν = 0.68 (C). Bifurcation diagrams as ν increases when ω = 0.64 (D). E–G Time series
for π1

t (blue) and π2
t (black) for different values of ω and ν = 0.52, related to bifurcation diagrams in B

(color figure online)

can be able to learn how to correct a turbulent market outcome taking into account
information coming from the other market phase. In this sense, since the expecta-
tion formation mechanism at even phase-times allows for a correction of expectation
errors, the more such errors bears “memory” of what happened at the other phase (as
remarked also by qualitative synchronization of price dynamics), the more the agents
will be able to learn how to adjust expectation errors in such other phase, and this will
lead to an overall and gradual reduction in errors.

The previous rationale explains the stabilization phenomenon occurring when a
“stable” phase is coupled to an “unstable” one. However, according to Fig. 4C, stabi-
lization is possible even when two unstable phases are coupled. The phenomenon can
be explained againwith similar arguments, even if some of the underlyingmechanisms
basically change, leading to the emergence of quasi-periodic trajectories. To this end,
we consider in Fig. 7 a second family of simulations related to the stability scenario
of Fig. 4C, in which we set a1 = 7.6, a2 = 7.2 and d = 1. In this case, by numerical
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estimation, the period steady-state equilibrium results (π1,∗, π2,∗) ≈ (6.06, 6.13).
and we have 1 < 2.22 ≈ |s2| < |s1| ≈ 7.08, so both phases are unstable when
uncoupled and ω = 1. The two-dimensional bifurcation diagram reports a scenario
characterized by the highest level of ambiguity, among those analytically proved in
Sect. 3, and instability can occur by means of either a flip bifurcation (when entering a
red region from a white one) or a Neimark–Sacker bifurcation (when entering a cyan
region from a white one, see also Fig. 7B). Increasing the expectation weight can give
rise to a mixed-destabilizing scenario (see also Fig. 7C), and, when the equilibrium
loses stability, quasi-periodic dynamics can occur. Moreover, we stress that also when
both uncoupled phases are unstable and exhibit complex dynamics, increasing the
coupling degree can lead to stabilization, as evident from the bifurcation diagram in
Fig. 7D.

In the present setting, when ω = 1, both the uncoupled phases exhibit dynamics
that do not converge toward the equilibrium and, hence, temporary equilibrium condi-
tion has an effect that is partially different from that occurring in the scenario reported
in Fig. 6. In the present scenario both relative elasticities s1 and s2 are large, so also at
even phase-times the temporary equilibrium condition drives an expected price that is
close to the equilibrium away from it. As soon as a phase coupling is introduced, we
indeed have that prices dynamics are both convergent, periodic, quasi-periodic in both
phases. This is in line with what happens in the latter example. What is different now
is that when at a phase-time agents overestimate the equilibrium price, in the subse-
quent phase-time they underestimate it. For example, we do not have any more than a
price peak in a phase corresponds to a price peak in the subsequent one. Conversely,
if in a phase a price reaches a peak, in the subsequent one it reaches a fall. According
to the literature about oscillators, in what follows we refer to this phenomenon as
anti-phase synchronization. To explain this, let us assume for example that agents, in
forming their expectations, give a nearly uniform relevance18 to both in-phase and
out-of-phase expectation errors and consider, for both phases, an initial datum that is
slightly above the corresponding phase equilibrium (first couple of black and blue cir-
cles in Fig. 7E). Since agents overestimate both in-phase and out-of-phase equilibrium
prices, the corresponding expectation errors are both negative and price π1

1 decreases
below the steady-state value (second blue circle in Fig. 7E). For τ = 2, agents form
their expectation also on the basis of this new price information, so they get opposing
information from in-phase and out-of-phase expectation errors. If we compare the
expectation errors corresponding to phase-times τ = 0 (ν(p0 − π0) ≈ −0.004) and
τ = 1 (ν(p1 − π1) ≈ 0.006), respectively, rescaled by the related phase-weight, we
find that in this case the largest contribution comes from that at time τ = 1, and π2

1 is
further pushed above the steady-state value (second black circle in Fig. 7E). The con-
sequence is that at period-time t = 1, expected prices π1

1 and π2
1 are, respectively, an

underestimation and an overestimation of the correspondent component of the period
steady-state equilibrium. The anti-phase synchronization of expected price immedi-
ately occurred after just one period, even starting from a qualitatively synchronized
initial datum. At this point, two subsequent temporary equilibrium conditions produce

18 We assume this just for the sake of simplicity of the subsequent explanation. Using similar arguments it is
possible to explain the occurrence of the same phenomenon also for non-uniformphase-weight distributions.

123



600 F. Cavalli et al.

opposite price mechanisms: if two subsequent expected prices are, respectively, below
and above the corresponding phase equilibrium, themarket outcomes are, respectively,
above and below the corresponding phase equilibrium. Due to the effect of the non-
linearity in demand and supply functions, the deviation from the equilibrium price
π i,∗ is strong when the expected price is close to π i,∗ , while it becomes weaker and
weaker as the expected price significantly departs from it. Assume for example that at
phase-times τ − 1 and τ the expectation error are, respectively, negative and positive,
as a consequence of a slight overestimation and underestimation of the equilibrium
price, respectively. In this case, the most recent expectation error is then that largest
in absolute value and this means that the agents’ will be mostly influenced by the last
out-of-phase market outcome, so they correct the previous in phase expected price
pushing it further up. The opposite occurs at the next phase-time, so expected prices
increasingly deviate from the corresponding equilibria, until it becomes no more sus-
tainable. In this case, the agents’ will be mostly influenced by the last in-phase market
outcome, and this slows down or reverses the expected price movement. The above
described interaction provides the explanation of the emergence of a Neimark–Sacker
bifurcation in double-phase cobweb model, as shown in Fig. 7E. In such scenario,
the expectation weight acts as in a single-phase market. Decreasing ω, the possible
overreactive price variations due to extreme deviation between expected and realized
price can be reduced (Fig. 7F) and even canceled (Fig. 7G) by a suitably cautious
agents’ behavior.

We stress that also in the present market configuration, the agents can be able to
progressively correct their expectations errors by taking into account both in-phase
and out-of-phase information. To explain this, we note that the expectation formation
mechanism described by (11) can be rewritten as

πτ+1 = ν
[
πτ−1 + ω

(
g1(πτ−1) − πτ−1

)]
+ (1 − ν)

[
πτ−1 + ω

(
g2(πτ ) − πτ

)]
= νπ̃1

τ+1 + (1 − ν)π̃2
τ+1,

πτ+2 = ν
[
πτ + ω

(
g2(πτ ) − πτ

)]
+ (1 − ν)

[
πτ + ω

(
g1(πτ+1) − πτ+1

)]
= νπ̃2

τ+2 + (1 − ν)π̃1
τ+2, (12)

from which the double-phase mechanism can be seen as the average of two
single-phase adaptive expectation mechanisms19 π̃ i

τ and π̃
j
τ . For instance, to form

expectations about price at τ + 1, the agents obtain two guesses π̃1
τ+1 and π̃2

τ+1, both
based on a correction of the previous in-phase expected priceπτ−1, butwith the former
that is based on the last in-phase expectation error and the latter that is based on the
last out-of–phase expectation error. Then, they consider a weighted average of them. If
the expectation weight is suitably large, on the basis of the previous explanation of the
mechanism leading to the anti-phase synchronization of prices, it is easy to show that
such two guesses are an overestimation and an underestimation of the corresponding
phase equilibrium prices. We already noted that, as ν decreases, the expectation error

19 To be precise, the expectation formation mechanism related to out-of-phase times is phase shifted, but,
even if unusual, it is equally an adaptive expectation mechanism.
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at a given phase encompasses an increasingly large amount of information related to
both odd and even phases, spread by the agents’ expectation formation mechanisms,
so that they become reliable for learning about the whole market behavior, and not
just about a single phase of it. When this occurs, the agents, looking at two wrong
opposite guesses, are able to progressively correct the expected price by averaging out
to a middling estimate which is increasingly precise. In this situation, we can again say
that as the phases are more and more coupled, the errors of a phase increasingly bears
“memory” of what happened at the other phase (in this case, in the form of a anti-phase
synchronized error), and this again allows for an overall correction of errors.

Up to now, we gave evidence of the new facts reported at points (a) and (b) at the
beginning of this section. Concerning point (c), ω can have a counterintuitive role
on stability, as evident looking at the bifurcation diagrams reported in Fig. 7C, in
which, as ω decreases, a stable equilibrium can become unstable.20. This is the most
ambiguous result arising in a double-phase cobweb model, and it is the effect of a
quite complicated superimposition of market outcomes and agents’ behavior. Reason-
ing as before, it would be easy to see that the two single-phase adaptive mechanisms
produce expected prices that are oscillating around the equilibrium price and that stay
anti-phase synchronized.21 We have explained how such anti-phase synchronization
allows the agents to learn how to correct the in-phase expected price from two con-
secutive wrong (respectively, underestimated and overestimated) expected prices. If
ω is too large, both single-phase adaptive mechanisms provide too erratic prices, and
this prevents error correction. If ω is reduced, the agents average out two opposite
estimations of equilibrium price, and errors cancel out. But for such an outcome, it
is necessary that the two single-phase adaptive mechanisms are “strong enough” to
provide conflicting estimations. Since the two markets are characterized by different
relative elasticities, as ω decreases, one of the two single-phase adaptive mechanisms
will start stabilizing, while the other will again exhibit persistent oscillations. If ω fur-
ther decreases, the agents will average out π̃t

i , which is still characterized by erratic
dynamics, and π̃t

j , which is now slowly converging and no more counter balancing
the over/underestimation of previous phase price, so that the dominating behavior is
that of π̃t

i , and oscillations are now persistent.22 If then ω is again reduced, also the
nonconvergent phase will enter a stabilization process and once again trajectories start
to converge.

The previous discussion also helps in understanding the role of an increase in the
relative slopes on stability, in particular its possible stabilizing effect, as depicted in
Fig. 5. We recall that in the classic single-phase setting, the absolute relative slope |s|
of supply with respect to demand not only affects the stability of the steady state, but
it also influences the convergence speed of the expected price correction. Assume a

20 A similar situation occurs also in the simulation reported in Fig. 6A, when we have a mixed scenario.
The explanation is in line with the intuition provided in what follows for the mixed-destabilizing scenario.
21 We stress that due to the phase shift in the single-phase adaptive mechanisms within brackets in (12),
this actually happens in at least one phase also when just one relative elasticity is large, even if expected
prices are synchronized.
22 As a confirmation of the proposed intuition, if the two relative elasticities are identical, the return to
instability is not possible, while the instability interval is increasingly large as s1 and s2 are more and more
heterogeneous.
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Fig. 8 ACoexistence of the period steady-state equilibrium (cyan and red) with periodic and quasi-periodic
attractors, with the same parameter setting for the simulation in Fig. 7. B, C Basins of attraction for the
(red) period steady-state equilibrium (blue region) and the (black) periodic and quasi-periodic attractors
(yellow region) (color figure online)

given expectationweightω, and let us increase |s|. If |s| is very small, we indeed have a
convergent adjustment of prices toward the steady state, but the relatively too cautious
evaluation of expectation errors give rise to a very slow monotonic convergence. As
|s| increases, we have that the convergence speed increases, as the expectation error
is more and more effectively taken into account and the expected price correction is
increasinglyworthwhile.We come to a situation inwhich the joint effect of expectation
weight and market outcome is “the best possible”, in the sense that it provides the
fastest possible expected price correction toward the steady-state equilibrium.23 If |s| is
further increased, themarket outcome starts providing a too reactive signal for the given
expectation weight, and price correction becomes less and less effective. We initially
observe a non-monotonic but convergent approach of expected price toward the steady
state, which, however, becomes increasingly slower and finally stop converging.

Whenwemove to the double-phase setting,wehave shown that if the agents use both
phase errors, it is possible for them to correct the error in one phase using information
coming from the other phase. The capability to correct an error in a given phase is
then strongly related to the effectiveness of the estimation obtained in the previous out-
of-phase market realization. If a relative slope is small, this (connected to a suitably
small expectation weight) allows for a reduced price adjustment in the “stable” phase,
which then provides a price information that is not sufficiently accurate to be used
in the “unstable” phase to allow for error correction. Conversely, in the presence of
larger relative slopes, we have a more effective price correction that, used in the other
phase, allows the agents to learn how to correct errors also in the more turbulent
phase. Indeed, if relative slopes further increase, the speedup of convergence turns
into an overreaction to previous error and this in turns slower convergence, and hence,
correction in the other phase is no more possible, with instability again occurring.

We remark that such a stabilizing effect for |si | is possible only if one phase, in the
uncoupledmodel, is stable. If both uncoupled phases are unstable, it is possible to show
that increasing relative slopes cannot have a stabilizing effect. The economic intuition

23 From the mathematical point of view, in the classic cobweb model this occurs when ω = 1/(1− s), i.e.,
when the derivative at the steady state of the map describing the cobweb model is null.
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is evident, since in this situation larger relative slopes do not speed up convergence, but
on the contrary they simply more steadily sustain the endogenous price oscillations.

In addition to the previous element of complexity arising from a double-phase set-
ting, we mention the possibility of multistability. Coexistence and path dependency
phenomena are quite common in periodically perturbed dynamical systems (see, e.g.,
Cavalli andNaimzada 2018 and references therein), a familywhich the present dynam-
ical system belongs to.Without the aim of being exhaustive in the description of global
dynamical phenomena, we focus on the last scenario considered in Fig. 7. In Fig. 8A,
we report an enlargement of the bifurcation diagram in Fig. 7C, in which we super-
impose the bifurcation diagram (obtained for ω ∈ [0.58, 0.614]) that converges to
the stable period steady state equilibrium (cyan and red lines), obtained for an initial
datum very close to it. As evident from Fig. 8B, as soon as p∗ becomes again stable
(ω ≈ 0.58), we have that the existing 4-points attractor has a basin (yellow color)
whose extent is much more significant than that of p∗ (blue color). As ω increases, we
have that the basins becomes more scrambled (Fig. 8B), and p∗ more likely attracts
trajectories. This means that, in some cases, the previous economic discussion on the
results can just hold locally, introducing an additional element of complexity. If on
the one hand the introduction of phase coupling can allow for a local stabilization of
the period steady-state equilibrium, from the other hand we can have the emergence
or persistence of coexisting attractors, which still prevent the convergence toward p∗.
The economic rationale is that the correction of phase errors can indeed benefit from
information coming from both phases, but if the out-of-phase error is too large, it can
provide misleading information and this can give rise to persistent oscillations away
from the period steady state equilibrium.

5 Conclusions and future perspectives

In this paper, we have introduced and studied a cobweb model for double-phase mar-
kets. The resulting model exhibits a high degree of complexity in price dynamics,
which grounds on the intrinsic peculiarity of the exchanged good,whosemarket curves
are time-varying, and on the consequent possibility for the agents to use andmix infor-
mation coming from different past market phases in order to form their expectations.
This aspect introduces mutual interdependence between dynamics of different market
phases, fostering the emergence of a vast variety of dynamical scenarios. In contrast
with the classic single-phase framework, we can have multiple stability/instability
thresholds, and dynamics can substantially change (begin periodic, chaotic or quasi-
periodic) depending on both the relevance the agents give to the expectation errors
and to each phase prices. The key element to understand the new phenomena is the
learning mechanism of the agents, which is strictly related to the double-phase nature
of the market. If agents form their expectations about future prices observing both in-
phase and out-of-phase price dynamics, they inherently convey dynamical elements
from one phase to the other, so that, as the coupling degree increases, the observed
price trajectories of each single phase are more and more explanatory of what happens
in both phases, characterizing the market as a whole. Against this background, it is
possible to understand the mechanisms leading to the emergence of quasi-periodic
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dynamics, or the possible ambiguous role of the expectation weight. In particular,
it allows explaining why the agents are more able to correct expected prices if they
take into account both in-phase and out-of-phase price dynamics. The double-phase
approach has very interesting policy implications for markets characterized by known
periodicities. We refer in particular to power exchanges, where demand and supply
are collected by market operators on hourly basis. Electricity prices are formed inde-
pendently for each hour, but the whole series of prices is influenced by firms’ bidding
strategies that are based on expectations formed on the whole price realizations, not
only on a single hour. The multiphase expectation mechanism introduced in this paper
may explain this phenomenon and can become a tool for regulators and market oper-
ators, especially when reasoning on a market reform suitable for accommodating a
high share of renewable energy sources, which are known to increase variability of
equilibrium prices.

The extent of the foundational elements of the double-phase cobwebmodel required
comprehensive analytical and interpretative investigations, which left no space for
dealing with other facets of multiphase markets modeling. In future researches, we
aim to extend the investigations in several directions. Firstly, we want to deepen the
mathematical analysis of the global dynamical properties of the model, which, due
to the length of the local stability analysis and to the need of economic explanation
of the many phenomena arising, we decided to postpone to a future work. A second
improvement can be the endogenization of the phase-weight choice, in order to under-
stand how the agents can refine their learning strategy by choosing to what extent take
into account the observed price dynamics of each phase. Moreover, we want to gen-
eralize the proposed modeling approach to multiphase markets, taking into account
high period cyclicity. Finally, the main goal is to apply the modeling approach to the
description of real markets affected by seasonality, in particular to wholesale energy
markets. To this end, we have to take into account the main characteristics of the
market, in particular in terms of demand/supply functions, and to introduce a proper
stochastically perturbed version of the model. The aim is to check if the elements of
complexity and ambiguity arising in a double-phase framework are able to explain
the occurrence of stylized facts characterizing economic observables of such markets.
Preliminary results show that the double-phase framework allows reproducing quali-
tative and quantitative stylized facts of real time series, with an agreement in the results
that improve as the coupling between phases increases.
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Appendix

Proof of Proposition 1 Without loss of generality, let us assume that τ is odd. Recalling
the definition of functions εi we can rewrite (3) as πτ+1 = πτ−1 + νωε1(πτ−1) +
(1 − ν)ωε2(πτ ) while considering (3) at the even phase-time τ + 1 we have

πτ+2 = πτ + νω(D−1(S(πτ , τ ), τ ) − πτ ) + (1 − ν)ω(D−1(S(πτ+1, τ + 1), τ + 1) − πτ+1)

= πτ + νωε2(πτ ) + (1 − ν)ωε1(πτ+1))

= πτ + νωε2(πτ ) + (1 − ν)ωε1(πτ−1 + νωε1(πτ−1) + (1 − ν)ωε2(πτ ))

Recalling the definition of functions Fi , we have (π1
t+1, π

2
t+1) = (πτ+1, πτ+2), for

any t, τ , which allows us to conclude the proof. ��
Proof of Proposition 2 Identity p∗ = F(p∗) is a straightforward consequence of (4).
Now we need to show that if p = F(p), then p = p∗. From (5), we immediately
obtain{

νωε1(p1) + ω(1 − ν)ε2(p2) = 0,

νωε2(p2) + ω(1 − ν)ε1(F1(p1, p2)) = νωε2(p2) + ω(1 − ν)ε1(p1) = 0,

which is n homogeneous square linear system, whose unknown vector is (ε1(p1),
ε2(p2))T and the coefficient matrix is A = (1− ν, ν; ν, 1− ν). We have det(A) �= 0,
since ν �= 1/2. This means that its unique solution is the null vector. Recalling (4),
we have that the unique solutions of εi (pi ) = 0 are pi = pi,∗, for i = 1, 2. ��
Proof of Proposition 3 Let JF (π) be the Jacobian matrix of map F defined by (5) and
let J ∗

F = JF (p∗). By direct computation, we have

J ∗ =
(

νω(s1 − 1) + ω2(s1 − 1)(s2 − 1)(ν − 1)2 + 1 −ω(s2 − 1)(ν − 1)
−ω(s1 − 1)(ν − 1)(s2νω − νω + 1) νω(s2 − 1) + 1

)
.

In a two-dimensional difference equation, a steady state is locally asymptotically stable
provided that ⎧⎨

⎩
1 − Tr(J ∗) + det(J ∗) > 0,
1 − det(J ∗) > 0,
1 + Tr(J ∗) + det(J ∗) > 0.

(13)

Using Tr(J ∗) = νω(s1 + s2 − 2) + ω2(s1 − 1)(s2 − 1)(ν − 1)2 + 2 and det(J ∗) =
(νω(s1−1)+1)(νω(s2−1)+1) in system (13) and recalling the definition of ω̄1 and
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ω̄2, it is easy to see that the first condition in (13) is unconditionally fulfilled, while
the second and the third one provide (9).

Let us introduce

ϕ2(ω, ν) = ων − ω̄1 + ω̄2

2
, ϕ3(ω, ν) = (2ν2 − 2ν + 1)ω2 − 2ν

ω̄1 + ω̄2

2
ω + ω̄1ω̄2.

��
Proof of Proposition 5 We need to show that if 0 < ω ≤ ω̄1, then ϕ3(ω, ν) > 0 for
any ν ∈ (1/2, 1]. We indeed have ϕ3(0, ν) > 0, while

ϕ3(ω̄1, ν) ≥ (2ν2 − 3ν + 1)ω̄2
1 + (1 − ν)ω̄2ω̄1 ≥ 2(ν − 1)2ω̄2

1 > 0

where we used ω̄2 ≥ ω̄1. From ∂ωϕ3(ω, ν) = 2ω(2ν2 − 2ν + 1) − ν(ω̄1 + ω̄2), we
have ∂ωϕ3(ω̄1, ν) = (4ν2 − 5ν + 2)ω̄1 − νω̄2 ≤ 2ω̄2(2ν2 − 3ν + 1) < 0, where we
used ω̄2 ≥ ω̄1 and that 2ν2−3ν+1 < 0 for ν ∈ (1/2, 1). The previous considerations
prove that ϕ3(ω, ν) is positive at the ending points of [0, ω̄1] and strictly decreasing,
independently of ν. Noting that ϕ2(ω, ν) > 0 for ω ∈ Iss allows concluding. ��

The (possible) solutions of ϕ3(ω, ν) = 0 with respect to ω are given by

ωF,i = ν

2ν2 − 2ν + 1

ω̄1 + ω̄2

2
±

√
ν2ω̄2

1 − 6ν2ω̄1ω̄2 + ν2ω̄2
2 + 8νω̄1ω̄2 − 4ω̄1ω̄2

2(2ν2 − 2ν + 1)
,

(14)
for i = 1, 2, as well as the (possible) solution of ϕ2(ω, ν) = 0, defined by

ωN S = 1

ν
· ω̄1 + ω̄2

2
. (15)

To prove Propositions 6 and 7, we start considering conditions (9) on larger sets than
Isu and Iuu . Firstlywe prove some preliminaryLemmas, inwhichwe assume ω̄1 < ω̄2.

Lemma 1 Let us consider the curve defined by Γ = {(ω, ν) ∈ [ω̄1,+∞) × [0, 1] :
ϕ3(ω, ν) = 0}. For (ω, ν) ∈ [ω̄1, ω̄2) × [0, 1], we then have that

(1) Γ can be explicitly represented a through function g : [ω̄1, ω̄2) → [0, 1], which
is strictly decreasing in [ω̄1, ωm) and strictly increasing in (ωm, ω̄2), where ωm ∈
(ω̄1, ω̄2);

(2) the solution(s) of g(ω) = ν̂ is ωF,1(ν) for ν̂ ≥ (ω̄1+ω̄2)/(2ω̄2) and are ωF,1(ν) ≤
ωF,2(ν) for g(ωm) ≤ ν̂ < (ω̄1 + ω̄2)/(2ω̄2), while for ν̂ < g(ωm) we have no
solutions.
Conversely, for (ω, ν) ∈ [ω̄2,+∞) × [(ω̄1 + ω̄2)/(2ω̄2), 1], we have that

(3) Γ can be explicitly represented through a function h : [(ω̄1 + ω̄2)/(2ω̄2), 1] →
[ω̄2,+∞) which is strictly increasing in [(ω̄1 + ω̄2)/(2ω̄2), νM ) and strictly
decreasing in (νM , 1], where νM ∈ ((ω̄1 + ω̄2)/(2ω̄2), 1).
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Proof Firstly we note that since ϕ3(ω, ν) is a second degree polynomial with respect
to both ω and ν, we have that intersecting Γ with either ω = k or ν = k we find at
most two solutions. Now we prove each point.

(1) We start considering Γ on the subset (ω, ν) ∈ [ω̄1, ω̄2] × [0, 1]. In particular,
solving ϕ3(ω, ν) = 0 with respect to ν we find

ν±(ω) = 2ω + ω̄1 + ω̄2 ± √
Δ(ω)

4ω

provided thatΔ(ω) = −4ω2+4ω(ω̄1+ ω̄2)+ ω̄2
1 −6ω̄1ω̄2+ ω̄2

2 ≥ 0. SinceΔ(ω)

is a concave parabola and Δ(ω̄1) = Δ(ω̄2) = (ω̄1 − ω̄2)
2, we have that Δ(ω) > 0

for ω ∈ [ω̄1, ω̄2] and both ν+(ω) and ν−(ω) are well defined. Moreover, a simple
direct check shows that ν−(ω) > 0 for each ω ∈ [ω̄1, ω̄2].
We have that ν+(ω) ≥ 1 for ω ∈ [ω̄1, ω̄2]. In fact, noting that ν+(ω̄1) = (ω̄1 +
ω̄2)/(2ω̄1) > 1, ν−(ω̄1) = 1, ν+(ω̄2) = 1 and ν−(ω̄2) = (ω̄1 + ω̄2)/(2ω̄2) < 1,
if there existed some ω̃ ∈ (ω̄1, ω̄2) such that ν+(ω̃) ≤ 1, then ϕ3(ω, 1) = 0
would necessarily have more than two solutions. Similar arguments show that if
ω ∈ [ω̄1, ω̄2] we have ν−(ω) ∈ [0, 1]. This means on [ω̄1, ω̄2) curve Γ coincides
with function g = ν−|[ω̄1,ω̄2).

Since ν′−(ω̄1) = −1/ω̄1 < 0 and ν′−(ω̄2) = (ω̄2 − ω̄1)/(2ω̄2
2) > 0, thanks

to the regularity of ν−, from the intermediate value theorem we have at least an
ωm ∈ (ω̄1, ω̄2) such that ν′−(ωm) = 0.Moreover,ωm is the unique stationary point
of ν−, as, otherwise, ϕ3(ω, k) = 0 would have more than two solutions (possibly
considered with their ownmultiplicity) for some k ∈ [0, 1].Thismeans that ν−(ω)

is strictly decreasing for ω ∈ [ω̄1, ωm) and strictly increasing for ω ∈ (ωm, ω̄2],
and attains its minimum at (ωm, νm = ν−(ωm)). Recalling that g = ν−|[ω̄1,ω̄2)

concludes the proof.
(2) If we set ν̂ ∈ [0, 1] and we solve ϕ3(ω, ν̂) = 0 for ω ∈ R we either find two

solutions ωF,1(ν) ≤ ωF,2(ν) or no solutions. If ωF,i (ν) ∈ [ω̄1, ω̄2), we indeed
must have g(ωF,i (ν)) = ν̂. Noting that ν−(ω̄2) < 1, we can conclude the proof
of this point using the monotonicity properties of ν− shown at point 2).

(3) We consider Γ on the subset (ω, ν) ∈ [ω̄2,+∞) × [0, 1]. In this case, we could
show that ϕ3(ω, ν) = 0 does not implicitly define a function ν = f (ω), so we
solve ϕ3(ω, ν) = 0 with respect to ω. We start noting that ϕ3(ω, ν) = 0 does not
have any solution in [ω̄2,+∞)×[0, ν−(ω̄2) = (ω̄1+ω̄2)/(2ω̄2)). If fact, from the
monotonicity considerations on ν−(ω), ϕ3(ω, ν) = 0 already has two solutions in
[ω̄1, ω̄2)×[νm, (ω̄1 + ω̄2)/(2ω̄2)),while if (ω, ν) ∈ [ω̄1,+∞)×[0, νm)we have
no solutions, as otherwise, from the intermediate value theorem, we should have at
least another solutionofϕ3(ω, ν) = 0 in (ω̄2,+∞)×[νm, (ω̄1+ω̄2)/(2ω̄2)).Sowe
restrict to [ω̄2,+∞)×[(ω̄1+ω̄2)/(2ω̄2), 1]. From themonotonicity considerations
on ν−(ω), ϕ3(ω, ν) = 0 has just one solution in [ω̄1, ω̄2)×[(ω̄1 + ω̄2)/(2ω̄2), 1],
so the other one must be in [ω̄2,+∞) × [(ω̄1 + ω̄2)/(2ω̄2), 1]. Such solution,
recalling (14), coincides with ω = ωF,2(ν). So we define h = ωF,2(ν).

It is sufficient to note that h′(1) = −ω̄2 < 0 and h′((ω̄1 + ω̄2)/(2ω̄2)) =
(2ω̄2

2)/(ω̄2 − ω̄1) > 0. Thanks to the regularity of h, proceeding as in the
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proof of 2), from the intermediate value theorem we have a unique νM ∈
((ω̄1 + ω̄2)/(2ω̄2), 1) such that h′(νM ) = 0. This concludes the proof. ��

Lemma 2 Let (ω, ν) ∈ [ω̄1, ω̄2) × [0, 1). Then conditions (9) are fulfilled if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω̄1 ≤ ω < ωF,1(ν) for ν ≥ ω̄1 + ω̄2

2ω̄2
(16a)

ω̄1 ≤ ω < ωF,1(ν) ∨ ωF,2(ν) < ω < ω̄2 for g(ωm) ≤ ν <
ω̄1 + ω̄2

2ω̄2
(16b)

ω̄1 ≤ ω < ω̄2 for 0 ≤ ν < g(ωm) (16c)

Let (ω, ν) ∈ [ω̄2,+∞) × [0, 1]. Then conditions (9) are no fulfilled if ν ∈ [(ω̄1 +
ω̄2)/2ω̄2, 1] and are satisfied if ω < ωN S(ν) when ν ∈ [0, (ω̄1 + ω̄2)/2ω̄2).

Proof We start proving that for (ω, ν) ∈ [ω̄1, ω̄2) × [0, 1] conditions (9) reduce to
ϕ3(ω, ν) > 0. It is evident that ϕ3(ω, ν) > 0 is necessary. To prove that it is also
sufficient, we start noting that if (ω, ν) ∈ A1 = [ω̄1, ω̄2) × [0, (ω̄1 + ω̄2)/2ω̄2), then
ϕ2(ω, ν) < 0 and condition (9a) is fulfilled, so (9) reduces to ϕ3(ω, ν) > 0. Con-
versely, if (ω, ν) ∈ s2 = [ω̄1, ω̄2) × [(ω̄1 + ω̄2)/2ω̄2, 1], from point 2) of Lemma 1,
we have that ϕ3(ω, ν) > 0 is equivalent to ω < ωF,1(ν). Condition ϕ2(ω, ν) < 0 is
equivalent to ω < ωN S(ν), so conditions (9) reduce to ω < min{ωF,1(ν), ωN S(ν)}.
To conclude, it is sufficient to show that ωF,1(ν) < ωN S(ν), which is proved by not-
ing that, from ν/(2ν2 − 2ν + 1) < 1/ν, we can write ωF,1(ν) < ν

2ν2−2ν+1
ω̄1+ω̄2

2 <

1
ν

ω̄1+ω̄2
2 < ωN S(ν).Recalling thatϕ3(ω, ν) is a seconddegree polynomialwith respect

to ω and that the coefficient of ω2 is strictly positive, point 2) of Lemma 1 straightfor-
wardly leads to conclusion.

For the last part of the lemma, we note that if ν ∈ [(ω̄1 + ω̄2)/2ω̄2, 1) and ω > ω̄2,

then condition (9b) is not satisfied. Conversely, if ν ∈ (0, (ω̄1 + ω̄2)/2ω̄2), from the
first part of this Lemma, we have that condition (9b) is satisfied. Solving ϕ2(ω, ν) < 0
concludes the proof. ��
Proof of Proposition 6 Since ω̄1 < 1, interval Isu is not empty. To specify ν1 and
ν2, we need to restrict the results of Lemma 2 to Isu × (1/2, 1). In particular, we
consider the four possible situations depending on whether ωm < min{ω̄2, 1} and
on whether νm > 1/2. In what follows we set ωSU = min{ω̄2, 1} so that we have
Isu = (ω̄1, ωSU ). Similarly, we define νSU = limω→ωSU g(ω). We remark that when
ω̄2 > 1, the previous limit can be replaced by the function evaluation g(ωSU ) = g(1).
Finally, both ωm and νm = g(ωm) are those defined in Lemmas 1 and 2.

Case (1): ωm < ωSU and νm > 1/2. In this case, recalling point 2) of Lemma
1, g is strictly decreasing in [ω̄1, ωm) and strictly increasing in (ωm, ωSU ) and we
take ν1 = νSU and ν2 = νm . If ν ∈ (ν1, 1), the flip destabilizing scenario is a
consequence of (16a), if ν ∈ (ν2, ν1) the mixed scenario is a consequence of (16b)
and if ν ∈ (1/2, ν2) the unconditionally stable scenario is a consequence of (16c).

Case (2): ωm ≥ ωSU and νm > 1/2. In this case g is decreasing in Isu and we take
ν1 = ν2 = νSU . If ν ∈ (ν1, 1) = (g(ωSU ), 1), the flip destabilizing scenario is a con-
sequence of (16a), interval (ν2, ν1) is empty and if ν ∈ (1/2, ν2) the unconditionally
stable scenario is a consequence of (16c).
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Case (3): ωm < ωSU and νm ≤ 1/2. This means that g is strictly decreasing in
[ω̄1, ωm) and strictly increasing in (ωm, ωSU ). We need to distinguish between two
situations. If νSU > 1/2, there existωA, ωB ∈ Isu such that forω ∈ [ωA, ωB]we have
g(ω) ≤ 1/2. In this case we choose ν1 = νSU and ν2 = 1/2, so that if ν ∈ (ν1, 1), the
flip destabilizing scenario is a consequence of (16a), if ν ∈ (ν2, ν1) the mixed scenario
is a consequence of (16b) and interval (1/2, ν2) is empty. Conversely, if g(1) ≤ 1/2,
there exists ωA ∈ Isu such that for ω ∈ [ωA, ωSU ) we have g(ω) ≤ 1/2. In this case
we choose ν1 = ν2 = 1/2, so if ν ∈ (ν1, 1) = (1/2, 1), the flip destabilizing scenario
is a consequence of (16a) while intervals (ν2, ν1) and (1/2, ν2) are both empty.

Case (4): ωm ≥ 1 and νm ≤ 1/2. In this case g is strictly decreasing in Isu . We
need to distinguish between two situations. If νSU > 1/2, then g(ω) > 1/2 for any
ω ∈ Isu, so we choose ν1 = ν2 = νSU as in Case (2). Conversely, if νSU ≤ 1/2,
there exists ωA ∈ Isu such that for ω ∈ [ωA, ωSU ) we have g(ω) ≤ 1/2. In this case
we choose ν1 = ν2 = 1/2 as in the latter situation of Case (3). The actual occurrence
of each situation is proved by Fig. 4B, C. Finally, the last part of the proposition is a
consequence of point (1) of Lemma 1. In fact since ν = g(ω) is strictly decreasing
on [ω̄1, ωm), we have that ω = g−1(ν) = ωF,1(ν) is strictly decreasing on (νm, 1],
too, and then ωF,1(ν) increases as ν decreases. Similarly proceeding, we obtain that
ωF,2(ν) is strictly decreasing. Hence, interval (ωF,1(ν),min{ωF,1(ν), 1}) reduces as
ν decreases. ��

Proof of Proposition 7 Since ω̄2 < 1, interval Iuu is not empty. As in the Proof of
Proposition 6, we need to restrict the results of Lemma 2 to Iuu × (1/2, 1) in order to
provide explicit expressions for ν1 and ν2. From the second part of Lemma 2, we have
that the only significant stability condition is ϕ2(ω, ν) < 0. Moreover, since from
Lemma 2 stability conditions are not satisfied if and only if ν ≥ (ω̄1 + ω̄2)/2ω̄2, we
can take ν1 = (ω̄1 + ω̄2)/2ω̄2. We stress that ν1 = 1 if and only if ω̄1 = ω̄2, in which
case we do not have unconditional instability.

For ν2, we consider two possible situations depending on whether (ω̄1 + ω̄2)/2 ≤
1/2 or not.

Case (1): (ω̄1 + ω̄2)/2 ≤ 1/2. In this case we have ωN S(ν) < 1 for any ν ∈
(1/2, (ω̄1 + ω̄2)/(2ω̄2)) and we set ν2 = 1/2.

Case (2): (ω̄1 + ω̄2)/2 > 1/2. In this case we have ωN S(ν) ≤ 1 if ν ∈ [(ω̄1 +
ω̄2)/2, (ω̄1 + ω̄2)/(2ω̄2)) and ωN S(ν) > 1 if ν ∈ (1/2, (ω̄1 + ω̄2)/2), so we set
ν2 = (ω̄1 + ω̄2)/2.

Finally, the last part of the proposition can be proved using monotonicity consid-
erations, as in the proof of Proposition 6. ��
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