
Decisions in Economics and Finance (2022) 45:35–56
https://doi.org/10.1007/s10203-021-00334-x

Monetary risk measures for stochastic processes via Orlicz
duality

Christos E. Kountzakis1 · Damiano Rossello2

Received: 5 March 2020 / Accepted: 14 May 2021 / Published online: 29 May 2021
© The Author(s) 2021

Abstract
In this article, we extend the framework of monetary risk measures for stochastic pro-
cesses to account for heavy tailed distributions of random cash flows evolving over
a fixed trading horizon. To this end, we transfer the L p-duality underlying the rep-
resentation of monetary risk measures to a more flexible Orlicz duality, in spaces of
stochastic processes modelling random future evolution of financial values in contin-
uous time over a finite horizon. This contributes, on the one hand, to the theory of
real-valued monetary risk measures for processes and, on the other hand, supports a
new representation of acceptability indices of financial performance.

Keywords Concave monetary utility functionals · Monetary risk measures for
processes · Orlicz space duality · Acceptability indices

JEL Classification C02 · C44 · G11 · G20

1 Introduction

Coherent measures of risk for processes as introduced in Cheridito et al. (2004) gen-
eralize the well-developed point-in-time framework for quantifying market risk. The
main idea is to define a mapping acting on suitable spaces of stochastic processes
modelling possible realizations of cash flow over a finite time horizon. Practically, the
need of such risk measure may be attributed to regulatory institutions who want to
compute the numerical value of losses potentially incurred at any time of a trading
horizon. Indeed, since the early 1990s, the point-in-time value at risk, defined as quan-
tile of a profit and loss probability distribution at the end of a fixed trading horizon,
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has been a widely used quantitative measure of market risk for regulatory purposes
(cf. Basel Committee on Banking Supervision 2006 and Basel Committee on Banking
Supervision 2019). But major deficiencies of this risk measure are well known: firstly,
the actual size of losses is ignored; secondly it is not subadditive, then violating the
axiomatic definition of coherence in the sense of Artzner et al. (1999); lastly, it does
not account for the whole magnitude of potential losses within a trading horizon. The
first two items have been addressed by introducing the expected shortfall risk measure,
which is coherent and sensitive to the tail of the profit and loss distribution (see Artzner
et al. 1999; Acerbi and Tasche 2002; Rockafeller and Uryasev 2002). Moreover, the
recent market risk framework of the Basel Accords admits the expected shortfall as
an adequate risk measure because of its ability in providing sufficiently conservative
risk estimates. This and a constant demand for quantitative measures which depends
on all extremes in a trading horizon push forward the recent academic contributions
on the subject. In particular, considering the running minimum of a profit and loss
process and applying the point-in-time definition of value at risk to the resulting real-
valued distribution have been recently studied in Bhattacharyya et al. (2009), Bakshi
and Panayotov (2010), Boudoukh et al. (2004) and termed as intra-horizon risk. Other
directions have been explored for example by Goldberg and Mahmoud (2017) where
intra-horizon risk measures are in connection with the well-known maximum draw-
down. However, all these risk measures are not coherent in the sense of Cheridito et al.
(2004). A possible remedy to the lack of coherence has been recently studied in Farkas
et al. (2020), replacing the point-in-time expected shortfall to the distribution of the
profit and loss’s running minimum.
Along the lines of the above theoretical and practical issues, the current article
describes the duality 〈R∞,A 1〉, and in general the transfer of the L p-duality to
spaces of stochastic processes through the dual pairs 〈R p,A q〉, for conjugate expo-
nents p, q ∈ [0,+∞]. The set R p for p ∈ [1,+∞] contains càdlàg processes
satisfying a moment condition concerning the running maximum of the reflected pro-
cess, see Sect. 2. In particular, the set R∞ contains bounded càdlàg processes, while
a ∈ A 1 are bi-variate stochastic processes acting as integrators in the bi-linear form
〈X , a〉, see Cheridito et al. (2004) and Sect. 2. The proper choice of a ∈ A 1 gives
raise to interesting examples of risk measurement for processes, see (Cheridito et al.
2004, Section 5). The space A q generalizes to the case q > 1 for conjugate expo-
nents p−1+q−1 = 1, and contains bi-variate processes satisfying amoment condition
concerning the variation of both components, see again Sect. 2. In view of all these
premises, the purpose of our paper is twofold:

– Given two Orlicz spaces of stochastic processes RΦ,A Ψ , with correspond-
ing conjugate Young functions Φ,Ψ , we define Orlicz duality by the dual pair
〈RΦ,A Ψ 〉;

– We define convex and coherent monetary risk measures on these spaces and then
provide their representation accordingly. For the coherent case, we additionally
provide a representation result for special classes of financial performance mea-
sures.

The reason for using Orlicz spaces in finance, and more specifically in risk analysis,
is highlighted if we recall the set-inclusion scheme as provided, for example, by
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Monetary risk measures for stochastic processes via Orlicz duality 37

(Cheridito and Li 2009, Example 4.1.3):

L∞ ⊂ MΦ ⊂ L p ⊂ LΨ ⊂ L1,

for any p ∈ (1,∞) and every λ > 0, where Φ(x) = eλ x − 1 induces the Orlicz norm
‖ · ‖Φ and similarly

Ψ (y) =
{
0, if y�λ
y
λ
log

( y
λ

) − y
λ

+ 1, if y > λ

induces the Orlicz norm ‖ · ‖Ψ . The families LΦ and LΨ contain those random vari-
ables describing discounted future net worth for which ‖ · ‖Φ and ‖ · ‖Ψ are finite.
Recall that LΨ is an Orlicz space and MΦ is the Orlicz heart1 of the conjugate Orlicz
space LΦ. Since any Orlicz norm might be used to estimate the tail of a probabil-
ity distribution, especially if based on exponential functions which give much more
weight in the tails, the above set-inclusions imply that every random variable in L1

having finite Kullback–Leibler divergence (hence finite relative entropy) under dif-
ferent probability measures is a non-heavy tailed random variable. This also implies
that the use of Orlicz duality far from L p spaces has a specific risk-analytic mean-
ing: The Young function Φ of the Orlicz heart MΦ represents a ‘moment-function’,
while the conjugate Young function Ψ of the Orlicz space LΨ can be interpreted as
a risk functional. See “Appendix A” for a quick review of Orlicz spaces. In words,
since models in finance and insurance as profits/losses at a terminal date or cumulative
returns are better described by unbounded random variables and they can be derived
by corresponding unbounded stochastic processes, our contribution is to define risk
measures for processes whose paths are not necessarily bounded. To this scope, we use
the dual pair 〈RΦ,A Ψ 〉where in general the moment condition satisfied by processes
belonging to RΦ is based on the Luxemburg norm ‖ · ‖Φ and RΦ acts as an Orlicz
heart modelling unbounded financial paths such that R∞ ⊆ RΦ ⊂ R0. We do not
pursue the extension argument of Cheridito et al. (2006) fromR∞ toR0. For the sake
of completeness, notice that A q ⊆ A Ψ ⊆ A 1 for conjugate exponents p, q (for the
exact definition of A Ψ see Sect. 2).
The present article is organized as follows: Section 2 sets up the proper spaces of
stochastic processes to work with. In particular, Sect. 2.1 adequately motivates our
contribution with respect to that of Cheridito and Li (2009). In Sect. 3, risk measures
on Orlicz spaces of stochastic processes are defined, and robust representation results
are provided. Section 4 yields the connection between such risk measures and accept-
ability indices of performances for processes. The financial and mathematical duality
is formally established, and a representation result is proved.Moreover, the differences
between the current contribution and that of Cherny and Madan (2009) are pointed
out. Section 5 contains some concluding remarks.

1 Actually, a maximal subspace of Orlicz classes which includes L p spaces for p ∈ [1,∞).
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2 Notations and Definitions

We model the evolution of a (discounted) cash flow over a finite time-interval rather
than handling only terminal cash flows. A stochastic process X = (Xt )t∈[0,T ] serves to
the scope, for each scenario resulting from trading over the investment horizon [0, T ],
where T ∈ (0,∞). Its realizations can be interpreted as possible (discounted) profit
and loss realizations of a given financial position over the valuation time interval.
Except the setting of Sect. 4, X does not represent necessarily a whole zero-cost self-
financed portfolio, rather it can be understood as a profit and loss process starting
at X0 = z where z ∈ R represents the profit/loss accumulated until the start of the
time horizon, since profits/losses from a financial position can be rolled over multiple
valuation periods.
The stochastic base (Ω,F ,F, P), where F = (Ft )t∈[0,T ], satisfies the usual con-
ditions, namely the probability space (Ω,F , P) is complete, the filtration F is
right-continuous, and the sub-σ -algebra F0 contains all the P-null sets of F . As
usual, we set L p := L p(Ω,F , P) for p ∈ [0,+∞]. The vector space of càdlàg and
F-adapted processes is denoted byR0.Almost surely (a.s.) equal random variables are
identified as well as indistinguishable processes on the filtered space, Xt (ω) = Yt (ω)

is understood P-a.s. and for all t ∈ [0,+∞]. The usual partial ordering on R0 is
defined as:

X �Y ⇐⇒ Xt (ω)�Yt (ω), for every t ∈ [0,+∞] and all X ,Y ∈ R0.

Let X∗ := supt∈[0,T ] |Xt |. If Φ is a Young function, we may define the following
Banach lattice of stochastic processes:

RΦ :=
{
X ∈ R0

∣∣ ‖X∗‖Φ < ∞
}

, (1)

where ‖ · ‖Φ is the Luxemburg norm acting on the associated Orlicz space LΦ. For the
conjugate Young functionΨ ,we introduce the following space of bi-variate stochastic
processes:

A Ψ :=

⎧⎪⎪⎨
⎪⎪⎩
a : [0, T ] × Ω → R2

a = (a1, a2) right-continuous, finite variation
a1 predictable, a1,0 = 0
a2 optional, purely discontinuous
Var(a1) + Var(a2) ∈ (LΦ)∗

⎫⎪⎪⎬
⎪⎪⎭

where (LΦ)∗ is the dual space of LΦ, which is either LΨ or MΨ . Recall that X ∈ R0

is optional whenever it is measurable on [0, T ] × Ω equipped with the σ -algebra
generated by the all themembers ofR0; if X ismeasurable on [0, T ]×Ω equippedwith
theσ -algebra generated by the adapted left-continuous processes, then it is predictable.
Hence, an increasing process ai : [0, T ] × Ω → R (i.e. F-adapted, with positive
right-continuous and increasing paths) induces a measure dai,t (ω). In case ai has
right-continuous paths with finite variation, its unique decomposition ai = a+

i − a−
i

into two right-continuous increasing processes induces two P-a.s. positivemeasures on
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Monetary risk measures for stochastic processes via Orlicz duality 39

[0, T ] with disjoint support. The total variation of such process is the random variable
Var(ai ) := a+

i,T + a−
i,T . Moreover, if ai is optional, then a+

i , a−
i are too. When ai

is predictable, then a+
i , a−

i are too. The duality between RΦ and A Ψ is established
through the bi-linear form

〈X , a〉 := E

⎡
⎢⎣

∫
(0,T ]

Xt−da1,t +
∫

[0,T ]
Xtda2,t

⎤
⎥⎦ ,

such that |〈X , a〉|�‖X‖RΦ ‖a‖A Ψ , where2

‖X‖RΦ := ‖X∗‖Φ

and

‖a‖A Ψ := ‖Var(a1) + Var(a2)‖Ψ .

2.1 Motivation of the Paper

Our contribution in the present article is different from that of Cheridito and Li (2009)
for two reasons. First, the representation of (−∞,+∞]-valued convex and coherent
monetary riskmeasures for possibly unbounded càdlàg processes X ∈ RΦ we provide
in Sect. 3.1 can be reduced to the case of random variables on Orlicz hearts provided
that T = 0. Indeed, this entails RΦ = MΦ and A Ψ = LΨ . The Orlicz spaces
of stochastic processes RΦ,A Ψ are Banach lattices, but in our proofs of the main
representation results (see Theorems 1 and 2) we do not use neither the monotonicity
of functionals on Banach lattices whose domain has non-empty interior equal to their
algebraic interior, nor any growth condition satisfied by the penalty function used in
the robust representation (for the definition of a penalty function in the current context
see Sect. 3.1). Observe that in general, MΦ ⊆ LΨ butRΦ � A Ψ even ifR p can be
identified with the topological dual of A q , for conjugate exponents p, q. Moreover,
by (Cheridito et al. 2004, Remark 3.9) the Orlicz heart RΦ ⊆ R p is different for
each probability measure governing the underlying randommechanism, which can be
interpreted as a subjectivemodelling of riskmeasures for processes. Second, for T > 0
only in our setting it is possible to start from a stochastic process whose paths model
the evolution of profits and losses or cumulative returns over a finite trading horizon.
To be more specific, let ρ̃ : MΦ → R be a convex monetary risk functional acting on
random variables X ∈ MΦ modelling possibly unbounded cash flows, represented as

ρ̃(X) = sup
Z∈A

{
EP(X · Z) − γ̃ (Z)

}
,

2 For p = ∞ and q = 1 one has ‖X‖R∞ := ‖X∗‖∞ and ‖a‖A 1 := ‖Var(a1) + Var(a2)‖1.
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40 C. E. Kountzakis, D. Rossello

where A is the set containing those nonnegative random variables with EP(Z) = 1,
for some penalty term γ̃ : A → [−∞,+∞). Thus, define

γ (a) :=
⎧⎨
⎩

γ̃ (Z), if a = (0, Z1{θ � t}) for some Z ∈ A
and a [0, T ] − valued random variable θ

−∞, otherwise.

Then, by (Cheridito et al. 2004, Remark 3.7) together with (Cheridito et al. 2004,
Proposition 8, Remark 3.9) and Theorem 1, we have

ρ(X) = inf
a∈B1

{〈X , a〉 − γ (a)} = ρ̃

(
inf

t∈[0,T ] Xt

)
,

for stochastic processes X ∈ RΦ. As a consequence, the approach of Cheridito and
Li (2009) cannot handle directly a whole path generating by a trading strategy over a
finite time horizon. It is worth noting that the setB1 can be identified withDσ ∩A Ψ ,

where the set Dσ used in Cheridito et al. (2004) contains those bi-variate processes
a ∈ A 1+ such that ‖a‖A 1 = 1.
The practical relevance of our approach is to deal with processes representing possible
paths of profits and losses from a position or portfolio, as derived by Brownianmotion,
jump-diffusion processes of more general Lévy processes, and accounting for intra-
horizon risk rather than merely expected end-of-horizon loss. In fact, for the non-
coherent case, Bakshi and Panayotov (2010) already pointed out the importance of
quantify the magnitude of losses within a trading horizon, especially in a mark-to-
market environment. But differently fromBakshi and Panayotov (2010) we can handle
intra-horizon risk using convex and in particular coherent risk measure for processes.
For example, choosing the Young function Φ(x) = x p for p ∈ (1,+∞), we have
RΦ = R p and A Ψ = A q , for conjugate exponents p, q so that by the reasoning
above we get the coherent risk measure for processes

ρ(X) := − 1
β

β∫
0

VaRc

(
inf

t∈[0,T ] Xt

)
dc

for any β ∈ (0, 1), where VaRc( · ) is the usual point-in-time value at risk and
inf t∈[0,T ] Xt is the running minimum of the underlying position over the horizon.
In this case, we have that ρ̃ above is the usual expected shortfall risk measure, which
is applied to a path-transformation given by the running minimum. In contrast to our
approach, Boudoukh et al. (2004), Bakshi and Panayotov (2010) and Bhattacharyya
et al. (2009) use the non-coherent risk measure for processes based only on the static
value at risk, what the authors called intra-horizon risk measure. For a more recent
contribution based on the point-in-time expected shortfall as a risk functional, com-
bined with the path-transformation given by the running minimum, see Farkas et al.
(2020), where in addition an interesting connection with first-passage probabilities is
established.
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Monetary risk measures for stochastic processes via Orlicz duality 41

3 Risk measures on Orlicz spaces of processes

In this section, we apply the special Orlicz spaces previously introduced to obtain
a new definition of risk measures for processes. Our approach as in Cheridito et al.
(2004) is to look at a whole path modelling net worths or financial returns over a fixed
horizon and then deduce a risk quantification which is by no mean truly dynamic but
nevertheless is able to account for the entire history of profits and losses of a traded
position. Since we use a static risk measure acting on a proper domain of financial path
(i.e. stochastic processes picked from the corresponding Orlicz space), it is beyond
the scope of this paper to treat properties possessed by dynamic risk measures such as
time-consistency.

Definition 1 (General Properties) Amonetary riskmeasure for processes is a mapping
ρ : RΦ → R satisfying the following two properties:

(M) Monotonicity ρ(X)�ρ(Y ) for all X ,Y ∈ RΦ such that X �Y
(T) Translation invariance ρ(X + m 1) = ρ(X) − m for all X ∈ RΦ and m ∈ R,

where 1 = (I{t})t∈[0,T ] is the process equal to 1 at any date within the horizon, i.e.
I{t} = 1 at time t and zero elsewhere.

We call a monetary risk measure for processes convex if it also satisfies

(C) Convexity ρ(λX + (1 − λ)Y )�λρ(X) + (1 − λ)ρ(Y ) for all X ,Y ∈ RΦ and
λ ∈ (0, 1).

A convex monetary risk measure for processes is called coherent if it fulfils

(P) Positive homogeneity ρ(λX) = λρ(X) for all X ∈ RΦ and λ ∈ R+.

Observe that under (P), property (C) is equivalent to

(S) Subadditivity ρ(X + Y )�ρ(X) + ρ(Y ), for all X ,Y ∈ RΦ.

We also refer to concavemonetary utility function f : RΦ → Rwhich is the negative
of a convex monetary risk measure for processes, f = −ρ. Whenever ρ is coherent,
we call f coherent too.

Remark 1 The stochastic process 1 is a strictly positive functional on the cone A Ψ+ ,

which contains the bi-variate increasing processes of A Ψ with nonnegative optional
and purely discontinuous components, a1, a2 �0. By B1 we denote the base defined
by 1 on the cone: B1 = {a ∈ A Ψ+ | 〈1, a〉 = 1}. This behaves as the set of Radon–
Nykodym derivatives in the robust representation of a point-in-time monetary risk
measure. Observe that the set A Ψ+ can be identified with the topological dual (RΦ)∗
of the Orlicz heart RΦ.

3.1 Representation results

We are in position to establish a robust representation for convex and coherent risk
measures for processes, using the Orlicz duality introduced so far. We also obtain
strong and weak continuity of such convex and coherent risk measures for processes,
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42 C. E. Kountzakis, D. Rossello

under some additional assumptions. A penalty function γ : B1 → R corresponding
to a convex risk measure ρ, which admits a σ(RΦ,A Ψ )-closed acceptance set Cρ ={
X ∈ RΦ

∣∣ ρ(X)�0
}
, is defined for a fixed bi-variate process a ∈ B1 as

γ (a) := sup
{〈−X , a〉 − ρ(X)

∣∣ X ∈ RΦ
}
.

Here, γ (a) is the conjugate function of ρ(X). It is easily shown that γ (a) ∈
(−∞,+∞] for all a ∈ B1. Thanks to the characterization of the penalty function and
to Lemma 1 (see “Appendix C”), we may provide the following two representation
results for convex and coherent risk measures, respectively.

Theorem 1 If ρ : RΦ → R is a convex risk measure for processes, then

ρ(X) = sup
{〈−X , a〉 − γ (a)

∣∣ a ∈ B1
}
, (2)

for every X ∈ RΦ.

Before stating the following theorem and subsequent results, we recall that for a
coherent ρ the cone Cρ has a polar set C0ρ := {

a ∈ A Ψ
∣∣ 〈X , a〉�0

}
, for every

acceptable X ∈ Cρ.

Theorem 2 If ρ : RΦ → R is a coherent risk measure for processes and Cρ is
σ(RΦ,A Ψ )-closed, then

ρ(X) = sup
{
〈−X , a〉 ∣∣ a ∈ B1 ∩ C0ρ

}
, (3)

for every X ∈ RΦ.

The connection between convex monetary risk measures for processes and concave
monetary utility functions is given below, see Delbaen (2012).

Corollary 1 A concave monetary utility function f : RΦ → R with σ(RΦ,A Ψ )-
closed upper-level set C f = {X ∈ RΦ | f (X)�0}, admits the dual representation

f (X) = inf
{〈X , a〉 + γ (a)

∣∣ a ∈ B1
}
, (4)

where γ (a) = − inf{〈X , a〉 | X ∈ C f }.
Eventually, we provide the following couple of continuity results.

Theorem 3 A convex risk measure for processes ρ : RΦ → R as given in Theorem
1 is a Lipschitz function, provided that 1 defines a bounded base on A Ψ+ . Then, ρ is
norm and weakly continuous.

Theorem 4 A coherent risk measure for processes ρ : RΦ → R as given in Theorem
2 is a Lipschitz function, provided that 1 defines a bounded base on A Ψ+ . Then, ρ is
norm and weakly continuous.
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4 Monetary risk measures for processes and acceptability indices

The balance between reward and risk associated with a given investment strategy
is a central theme in the industry of managed funds. Performance measures have
been tailored to quantify this balance. Cherny and Madan (2009) provided a first
unified framework to define the mathematical properties of such measures, beyond
the classical Sharpe ratio expressed as a reward-to-variability index of performance
(i.e. expected excess return divided by standard deviation). In fact, risk-adjusted return
on capital (RAROC) is built upon the ratio of mean excess return to some different
measure of risk. Based on a point-in-time perspective, Cherny and Madan (2009)
treat a performance measure as an acceptability index (AI) based on some desirable
properties emphasizing the “duality” between AIs and coherent risk measures for
random variables modelling terminal cash flows.
In this section, the process X ∈ RΦ models the realizations of a (discounted) cash flow
over a valuation horizon [0, T ], possibly as profits and losses even in percentage form;
X is produced by a zero-cost self-financed portfolio. There is a transition from a point-
in-time performance measure for a random variable representing terminal cash flows,
to the process X . We claim that a static index of performance α acts on processes and
yields numerical values, requiring a coherent risk measure which records all possible
stressed scenarios during the horizon. A larger α means better performance: the larger
the reward associated with the X ’s paths (adjusted for a coherent risk measure for
processes at any time within the horizon) the higher its degree of acceptability. A
performance α valued at +∞ can be understood as an “arbitrage opportunity”, in
particular if Xt (ω) > 0 for every t ∈ [0, T ] and ω ∈ Ω, see the concept of arbitrage
consistency stated in Sect. 4.1. By means of the X ’s realizations, we are able as
well to retain all the information involved as time elapses. In this section, we use
Theorems 2 and 4 to establish a duality relationship between coherent risk measures
for stochastic processes defined over Orlicz spaces, and performance measures given
over the same spaces. Our representation of an AI is not meant to be dynamic, since
it relies on coherent monetary risk measures yielding a numerical evaluation rather
than a sequence of conditional risk measures (random variables). Indeed, dynamic
risk measures account for the information available at the risk assessment when (on
some filtered probability space) it is updated according to different notions of time
consistency, see Acciaio and Penner (2011) and the references therein.
Before to state the main theorem, we formally set the axiomatic definition of an AI
for processes.

Definition 2 A map α : RΦ → [0,+∞] is an acceptability index for processes if it
satisfies the following three properties. Quasi-concavity given a pair X ,Y ∈ RΦ and
for every λ ∈ [0, 1] such that α(X)� x and α(Y )� x it holds

α(λX + (1 − λ)Y )� x . (5)

Monotonicity for any X ,Y ∈ RΦ

X �Y ⇒ α(X)�α(Y ). (6)
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Scale invariance for every λ > 0 and X ∈ RΦ

α(λX) = α(X). (7)

Quasi-concavity is equivalent to the convexity of the acceptance set

C α
x := {

X ∈ RΦ
∣∣α(X)� x

}
.

Thus, a diversified position performs better than its components since x =
min{α(X), α(Y )}. Moreover, acceptable cash flows are valued monotonically: pro-
vided X is dominated by Y then α is an increasing and Y is at least as acceptable as
X . By scale invariance any acceptance set C α

x is a convex cone: α measures to what
extent moving away from marginal trades underlying the random cash flow X results
in a new investment direction based on alternative pricing equations. The performance
of an investment should not depend upon the initial endowment because λX is based
on a trade in the same direction of X and has the same level of acceptance. Notice that,
compared with (Cherny and Madan 2009, Axiom 1.4), we do not require the Fatou
property. For the case of bounded realizations of X , see Kountzakis and Rossello
(2020). The relationship between risk measures and AIs in the current setting is better
understood if we recall the analogous duality between static AIs defined for X ∈ L∞
as

α(X) = sup
{
x ∈ R+

∣∣ inf
Q∈Dx

EQ(X)�0
}
,

see (Cherny and Madan 2009, Theorem 1), and static coherent risk measures ρ(X) =
sup

{
EQ(−X)

∣∣Q ∈ D
}
, where (Dx )x∈R+ is a family of sets of probability measures

(increasing in x) such that Dx ⊂ D and D is a certain set of probability measures
absolutely continuous with respect to P. Indeed, it is easily seen

α(X) = sup
{
x ∈ R+

∣∣ ρx (X)�0
}
, for every X ∈ L∞.

Now, coherent risk measures represented as in Theorem 2 of the current article can
be indexed by x ∈ R+. Hence, x �→ ρx (X) is a map evaluating the performance of
a trading strategy over the entire horizon and for every acceptability level x > 0. For
a family (ρx (X))x∈R+ of such coherent risk measures any member is required to be
increasing in x ,

ρx (X)�ρy(X), for every 0 < x � y, X ∈ RΦ fixed.

It suffices to let

ρx (X) := inf
{
m ∈ R

∣∣ α(X + m 1)� x
}
, for every x ∈ R+, X ∈ RΦ, (8)

and take the infimum over m ∈ R of both sets

{
m ∈ R

∣∣ α(X + m 1)� y
} ⊂ {

m ∈ R
∣∣ α(X + m 1)� x

}
,

123



Monetary risk measures for stochastic processes via Orlicz duality 45

for any 0 < x � y. Any map in this increasing family can be represented via an AI
for processes, see Lemma 2 in “Appendix C”. Moreover, we can represent AIs in
terms of an increasing family of coherent risk measures for processes, see Lemma 3
in “Appendix C”. Hence, we have the following duality relationship between coherent
risk measures and AIs for processes:

Corollary 2 (a) If α : RΦ → [0,+∞] is an AI for processes, then there exists an
increasing family (ρx )x∈R+ of coherent risk measures for processes such that the
following representation holds:

α(X) := sup {x ∈ R+ | ρx (X)�0} . (9)

(b) If (ρx )x∈R+ is an increasing family of coherent risk measures for processes, then
there exists an AI for processes such that for every x ∈ R+ the following repre-
sentation holds:

ρx (X) := inf
{
m ∈ R

∣∣ α(X + m 1)� x
}
, for every X ∈ RΦ, (10)

where inf ∅ = +∞ and sup∅ = 0.

A subset of a vector space is a wedge if it is convex and it has the property that for any
element lying in the set we also have that its scaled version (by a nonnegative constant)
belongs to the same set. Second, an indexed family of sets (Gx )x∈R+ is increasing if
x � y implies Gx ⊂ Gy, for every x, y ∈ R+.

Theorem 5 Let α : RΦ → [0,+∞] be an AI with acceptability sets C α
x = {X ∈

RΦ | α(X)� x}, for every x > 0, beingwedges. Then, there exists an increasing family
(Gx )x∈R+ ⊂ A Ψ such that

α(X) = sup
{
x ∈ R+

∣∣∣ inf
g∈Gx

〈X , g〉�0
}
, (11)

with inf ∅ = +∞ and sup∅ = 0.

To clarify the practical relevance of the above result, we provide the following example.
Since each set Gx in the representation of AIs as in Theorem 5 can be identified with
a subset of Dσ ∩ A Ψ (see3 Sect. 2.1), we pick the bi-variate process

ã := 1

1 + x
b + x

1 + x
a, x ∈ R+, a, b ∈ Dσ ∩ A Ψ

where

b = (b1,t , b2,t )t∈[0,T ] := (0, 1{u � t})t∈[0,T ].

3 Essentially, each Gx can be viewed as a subset Bx ⊂ B, such that (Bx )x∈R+ is again an x-increasing
family.
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We have the following chain of equivalences:

α(X)� x ⇐⇒ E(XT )

ρ(X)
� x

⇐⇒ E(XT )� − x · inf
a∈Dσ ∩A Ψ

〈X , a〉

⇐⇒ 1

1 + x
E(XT ) + x

1 + x
inf

a∈Dσ ∩A Ψ
〈X , a〉�0

⇐⇒ inf
a∈Dσ ∩A Ψ

[
1

1 + x
E(XT ) + x

1 + x
〈X , a〉

]
�0

⇐⇒ inf
a∈Dσ ∩A Ψ

〈
X ,

1

1 + x
· b + x

1 + x
· a

〉
�0

⇐⇒ inf
ã∈Gx

〈X , ã〉�0.

In the convex combination defining ã, the first term b projects the paths of profit/loss
X = (Xt )t∈[0,T ] onto the terminal date T through the expectation; the second term a
pertains to the representation of the monetary risk measure for processes ρ(X). Note
that E(XT ) < +∞ by the assumption X ∈ RΦ, for example by choosing Φ(x) = x p

with p ∈ (1,+∞). As by-product, the ratio

α(X) = E(XT )

ρ(X)

is an AI for not necessarily bounded stochastic processes whosemarginal distributions
have finite pth moments. Notice that by convention α(X) = +∞whenever ρ(X)�0,
as in the static case. Therefore, our approach to AIs improves on the static one as
given by Cherny and Madan (2009) because the latter handles one-dimensional ran-
dom variables but is not suitable for random cash flows evolving over the horizon as
represented by stochastic processes.

Remark 2 The above performance ratio α(X) is an AI whose risk measure can be
specialized as a convexor a coherent riskmeasure for processes. For example, choosing
the bi-variate process a as we did in Sect. 2.1 one gets

ρ(X) = ρ̃

(
inf

t∈[0,T ] Xt

)
,

and additionally considering the point-in-time weighted value at risk ρ̃( · ) =
WVAR( · ) used in (Cherny and Madan 2009, Section 3.6) this entails

ρ̃(X) = −
∫
R

y d(hx (FX (y))),

where for every x ∈ R+ the concave distortion hx (u) := min{β−1 u, 1} is such
that β = 1 + x, and for notational convenience X = inf t∈[0,T ] Xt is the running
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minimum of the profit/loss X with distribution function FX . Observe that one also
needs EP((Z − u)+)� h̃x (u) for every u ∈ R+ such that h̃ is the convex conjugate
of the concave distortion h, see (Cherny and Madan 2009, Section 3.6) for further
details.

4.1 Arbitrage consistency

We provide a further result on arbitrage consistency. Intuitively, a position producing
such a X with a very high (positive) performance should be interpreted as an arbitrage
opportunity, for every scenario and every time within the horizon. Given the duality
betweenAIs and families of coherent riskmeasures for processes, as stated inCorollary
2 above, there is also a polar set C α,0

x ⊂ RΦ of the acceptability set C α
x , for every

x ∈ R+.

Proposition 1 Letα : RΦ → [0,+∞] be an AI defined through a family of monotone,
coherent risk measures for processes (ρx )x∈R+ in RΦ+ and the order unit 1 of RΦ.

Then, α is arbitrage consistent with respect toRΦ+ .

For the sake of completeness, we link the above result to the theory of no arbitrage
in continuous time. More specifically, we need the extension of the classical Kreps–
Yan separation theorem to rule-out arbitrage opportunities, to Orlicz spaces of cash
flow processes over the trading horizon. The subspace of those processes representing
portfolio values which are replicable at time T by a self-financing trading strategy
with zero initial cost, is denoted by K . The precise definition follows.

Theorem 6 Let Ψ be some N-function and let
〈
A Ψ ,RΦ

〉
be the commodity-price

duality, where K is the subspace of the replicated portfolio values satisfying the
property of no-free lunch:

(K − A Ψ+ )
σ(A Ψ ,RΦ) ∩ A Ψ+ = {0}.

This implies the existence of some f0 ∈ RΦ , such that f0(X) > 0, for every X ∈
A Ψ+ \ {0}.
Theorem 6 is based, on the one hand, on standard arguments from the theory of Orlicz
spaces, seeKrasnoselski and Sobolev (1955) andRao andRen (1991), and, on the other
hand, on arguments from the theory of no-arbitrage in continuous time. In particular,
Theorem6 is anOrlicz space’s version of (Delbaen andSchachermayer 2006, Theorem
5.2.3) where the dual pair 〈E, E∗〉 is considered now in the special form E = A Φ

and E∗ = RΦ. Recall that as a crucial ingredient in the proof, the Hahn–Banach
theorem is in its version for separating hyperplanes. The following corollary arises
from the fact that (LΦ)∗ = LΦ , provided Φ both satisfies the Δ2-condition and is an
N -function (see “Appendix A”), i.e. the topological dual (A Φ)∗ of the space A Φ is
justRΦ.

Corollary 3 Let Φ be some Δ2-function and let
〈
A Φ,RΦ

〉
be the commodity-price

duality, where K is the subspace of the replicated portfolio values, satisfying the
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property of no-free lunch:

(K − A Φ+ )
σ(A Φ,RΦ) ∩ A Φ+ = {0}.

This implies the existence of some f0 ∈ RΦ , such that f0(X) > 0, for every X ∈
A Φ+ \ {0}.

5 Conclusions

A recent research stream proposes to define monetary risk measures over spaces of
appropriate stochastic processes instead of random variables, yielding a theoretical
framework for special kinds of risk measures which are currently used in the finance
industry to capture the magnitude of losses potentially incurred at any time of a trading
horizon. We contribute to this theory by extending the seminal analysis in Cheridito
et al. (2004) to the case of Orlicz spaces of processes modelling random cash flow
that have not necessarily bounded realizations. Then, we apply coherent monetary
risk measures for processes to acceptability indices of performance. Our approach
depends upon mappings defined on Orlicz spaces of processes and paired via duality
with proper conjugate spaces. Although these mappings entail numerical values and
are not meant to be dynamic, we hope that our contribution could enrich the literature
supporting the use of intra-horizon risk as recently treated in Farkas et al. (2020). We
also try to provide an add-in to the corresponding literature on performance measures
for processes as studied in Kountzakis and Rossello (2020).
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Appendix A: A short summary of Orlicz spaces

Let Φ be a continuous function which is in addition convex, even, satisfying the
conditions Φ(0) = 0, Φ(−x) = Φ(x)�0 for every x ∈ R and limx→∞ Φ(x) = ∞.

We call Φ a Young function. The conjugate function of Φ is defined as:

Ψ (y) := sup
x � 0

{xy − Φ(x)}, for every y�0.
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For any Young function Φ, let LΦ be the linear space

{
X ∈ L0(Ω,F , P)

∣∣ EP(c X) < ∞, for some c > 0
}
,

calledOrlicz Space; the expectation EP is taken with respect to the probability measure
P. Any LΦ admits two equivalent norms: A Luxemburg Norm, given by

‖X‖Φ = inf
{
λ > 0

∣∣ EP(Φ(X λ−1))�1
}
,

and an Orlicz Norm defined on LΨ as

‖X‖∗
Φ = sup

{
EP(X Y )

∣∣ ‖Y‖Ψ �1
}
.

For both norms, the partial ordering � in the P-a.s. sense makes LΦ a Banach lattice.
For an Orlicz space LΦ given by the Young function Φ, there exists an associated
Orlicz heart MΦ defined as:

{
X ∈ L0(Ω,F , P)

∣∣ EP(c X) < ∞, for every c > 0
}
.

Thus, 〈MΦ, LΦ〉 is a dual pair of Orlicz spaces, see (Cheridito and Li 2009, Section
4.1).
Let us denote LΦ+ = {X ∈ LΦ | X �0} the positive cone of LΦ.

Definition 3 A Young function Φ defined on R and satisfying the conditions

(1) limx→0
Φ(x)
x = 0

(2) limx→∞ Φ(x)
x = ∞

(3) Φ(x) = 0 implies x = 0,

is called a N -Young function.

Definition 4 AYoung functionΦ defined onR satisfies theΔ2-property if there exists
a constant k > 0 and x0 ∈ R such that Φ(2x)�kΦ(x), for every x � x0.

For a full treatment of Orlicz spaces see the classical Krasnoselski and Sobolev (1955)
andRao andRen (1991). A systematic review is also contained in Edgar and Sucheston
(1992).

Appendix B: A short summary of ordered linear spaces

An ordered linear space E is a vector space endowed with a partial ordering relation,
i.e. a binary relation denoted � which is:

– reflexive, x � x for every x ∈ E;
– antisymmetric, x � y and y� x implies x = y;

123



50 C. E. Kountzakis, D. Rossello

– transitive, x � y and y� z implies x � z;
– compatible with the linear structure of E, i.e. if x � y then λ · x �λ · y for every

λ ∈ R+ and x + z� y + z, for every z ∈ E .

The positive cone of the ordered linear space is the set E+ := {x ∈ E | x �0}, where
by a cone C ⊂ E we mean a set satisfying the properties

– C + C ⊂ C;
– λC ⊂ C, for every λ ∈ R+;
– C ∩ (−C) = {0}.

Any cone defines a partial order on E as follows: x �C y ⇐⇒ x − y ∈ C . If E is
in addition a normed space, then given its topological dual E∗ we call a functional
f ∈ E∗ a positive functional with respect to the cone E+ provided f (x)�0 for every
x ∈ E+. If f (x) > 0 for every x ∈ E+ \ {0}, then it is a strictly positive functional
on the cone. A base B ⊂ E+ is a set containing those b such that λ · b = x, for every
x ∈ E+ \ {0} and λ > 0. The base B defined by some strictly positive functional
f is the subset B f = {x ∈ E+, | f (x) = 1}. A bounded base B f corresponds to
a uniformly monotonic functional f ∈ E∗, such that there exists some t > 0 which
yields f (x)� t ‖x‖. For a full reference to linear spaces and the alike see Aliprantis
and Border (2006).

Appendix C: Useful Lemmas

The following result complements the Fenchel–Moreau dual characterization of the
penalty function used in the main robust representation result of Sect. 3.1 (Theorem
1).

Lemma 1 Let γ̂ (a) := sup{〈−X , a〉 | X ∈ Cρ}. Then, γ̂ (a) = γ (a).

Proof We have that γ (a)� γ̂ (a), because for any X ∈ Cρ it holds 〈−X , a〉 −
ρ(X)� 〈−X , a〉 and then

sup
{〈−X , a〉 − ρ(X)

∣∣ X ∈ RΦ
}

� sup
{〈−X , a〉 − ρ(X)

∣∣ X ∈ Cρ

}
� sup

{〈−X , a〉 ∣∣ X ∈ Cρ

}
.

For the reverse inequality, we take any X ∈ RΦ and set X ′ = X + ρ(X) 1. We notice
that ρ(X ′) = 0, hence X ′ ∈ Cρ and consequently γ̂ (a)� 〈−X , a〉 = 〈−X , a〉−ρ(X).

By taking the supremum of 〈−X , a〉−ρ(X) all over X ∈ RΦ we get γ̂ (a)�γ (a) for
every a ∈ B1, and the proof is complete. ��
The following two lemmas are used in Corollary 2.

Lemma 2 Let ρx (X) be defined as in (8), for every x ∈ R+ and X ∈ RΦ. If α :
RΦ → [0,+∞] is an AI for processes, then ρx (X) is a coherent risk measure for
processes.
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Proof First, we prove (M) of Definition 1. Take any x ∈ R+ and X ,Y ∈ RΦ such
that X �Y . By monotonicity of the AI we have

α(Y + m 1)�α(X + m 1), for every m ∈ R.

Thus, we deduce

{
m ∈ R

∣∣ α(X + m 1)� x
} ⊃ {

m ∈ R
∣∣ α(Y + m 1)� x

}
,

and taking the infimum of both sets we get

ρ(X) := inf
{
m ∈ R

∣∣ α(X + m 1)� x
}

�
{
m ∈ R

∣∣ α(Y + m 1)� x
} := ρ(Y ).

To prove (P) of Definition 1, it suffices to call for the scale invariance of α. Take
m1,m2 ∈ R such that

α(X + m1 1)� x and α(Y + m2 1)� x,

for every X ,Y ∈ RΦ and x ∈ R+. By quasi-concavity of α, for any λ ∈ [0, 1] we
have

α(λX + λm1 1 + (1 − λ)Y + (1 − λ)m2 1)� x,

at the same acceptability level x > 0.Choosingλ = 1
2 and using again scale invariance

of the AI entails

α(X + Y + (m1 + m2) 1)� x .

Therefore, the scalarm1+m2 belongs to the set
{
m ∈ R

∣∣ α(X+Y +m 1)� x
}
and it is

greater than or equal to the infimum over the same set, which in turn is just ρ(X +Y ).

This inequality holds true for allm1 and allm2 belonging to
{
m ∈ R

∣∣ α(X+m 1)� x
}

and to
{
m ∈ R

∣∣ α(Y +m 1)� x
}
, respectively. As a consequence, taking the infimum

with respect to m1 and then m2 we get

ρ(X) + ρ(Y )�ρ(X + Y ).

To prove (T) of Definition 1, we exhibit the following chain of equalities, for every
x ∈ R+ and X ∈ RΦ :

ρ(X + c 1) := inf{m ∈ R | α(X + c 1 + m 1)� x}
= inf{m ∈ R | α(X + (c + m) 1)� x}
= inf{c + m ∈ R | α(X + (c + m) 1)� x} − c

= inf{r ∈ R | α(X + r 1)� x} − c

=: ρ(X) − c.

��
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Lemma 3 Let (ρx (X))x∈R+ be an increasing family of coherent risk measures for
every X ∈ RΦ. Then, the map α : RΦ → [0,+∞] defined as

α(X) := sup
{
x ∈ R+

∣∣ ρx (X)�0
}

(12)

is an AI for processes (we assume sup∅ = 0).

Proof Let x > 0, then by monotonicity (M) of Definition 1 we have

ρx (X)�ρx (Y ), for all X ,Y ∈ RΦ such that X �Y .

For any x0 ∈ {
x ∈ R+

∣∣ ρx (X)�0
}
we also have ρx0(X)�0,which together with (M)

entails

ρx0(X)�ρx0(Y )�0, for all X �Y .

As a consequence, the set inclusion

{
x ∈ R+

∣∣ ρx (X)�0
} ⊃ {

x ∈ R+
∣∣ ρx (Y )�0

}

holds, and taking supremum of both sides the monotonicity of AI is proved. To check
quasi-concavity of α, we first pick X ,Y ∈ RΦ such that α(X)� x0 and α(Y )� x0
whenever x0 ∈ (0,+∞]. By definition (12) of AI together with (M) of ρx we have

ρx (X)�ρx0(X)�0 and ρx (Y )�ρx0(Y )�0,

for all x < x0. This combined with property (P) of ρx yields

ρx (λX) = λρx (X)�0, ρx ((1 − λ)Y ) = (1 − λ)ρx (Y )�0,

for every λ ∈ [0, 1]. Moreover, by subadditivity (S) of ρx and again for every x < x0
we additionally have

ρx (λX + (1 − λ)Y )�0

which entails sup
{
x ∈ R+

∣∣ ρx (λX + (1 − λ)Y )�0
}

� x0. Eventually, this combined
with definition (12) of AI yields α(λX + (1− λ)Y )� x0 and quasi-concavity follows.
Finally, scale invariance of AI follows immediately from (P) of ρx in Definition 1
(positive homogeneity). ��

Appendix D: Proofs of themain results

Proof (Theorem 1) By the first expression of γ , we have that

ρ(X)� sup
{〈−X , a〉 − γ (a)

∣∣ a ∈ B1
}
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for every X ∈ RΦ. To get the desired equality, we have to prove there is no Y ∈ RΦ

such that the above is a strict inequality. In fact, we can find some m ∈ R yielding

ρ(Y ) > m > sup
{〈−Y , a〉 − γ (a)

∣∣ a ∈ B1
}
,

and consequentlyρ(Y+m 1) > 0.This implies the singleton {Y+m 1} does not belong
to the acceptance set Cρ. Indeed, the latter is σ(RΦ,A Ψ )-closed and the singleton is
σ(RΦ,A Ψ )-compact. Both sets are convex; thus, there exist some non-null b ∈ A Ψ ,

some r ∈ R and some ε > 0 such that

〈Y + m 1, b〉�r + ε > r � 〈X , b〉, for all X ∈ Cρ,

by the strong form of the separation theorem in locally convex spaces. The bi-linear
form associated with b takes negative values on Cρ. Otherwise we can find some
X0 ∈ Cρ with 〈X0, b〉 > 0, but then the above separation inequalities are violated
since in this case limλ→+∞〈λX0, b〉 > 〈 X + 1, b〉. Henceforth, we may assume
−b = a ∈ B1 and then

〈Y + m 1, a〉 > sup
{〈−X , a〉∣∣X ∈ Cρ

} = γ (a).

This implies 〈Y , a〉 − γ (a) > m and consequently m > 〈Y , a〉 − γ (a) > m, a
contradiction. As a by product, the equality in the representation of ρ must hold. ��
Proof (Theorem 2) Given X ∈ Cρ we have X + 1 ρ(X) ∈ Cρ. If a ∈ B1 ∩ C0ρ then
〈X , a〉 + ρ(X)�0, which equals ρ(X)� 〈−X , a〉. Moreover, for every ε > 0 and
X ∈ Cρ we have {X − (ρ(X)− ε) 1} /∈ Cρ. Due to the coherence of ρ, the acceptance
set is convex and by assumption is also closed. The singleton {X − ε 1} is compact
and convex. Therefore, there exist some non-null a0 ∈ A Ψ , some s ∈ R and δ > 0
such that

〈X , a0〉� s > s + δ � 〈X − (ρ(X) − ε) 1, a0〉.

Moreover, due to the coherence of ρ the acceptance set is a cone and we have s = 0.
This implies 〈1, a0〉 = 1 provided that a0 ∈ B1 ∩ C0ρ. We finally get

sup
{
〈−X , a〉 ∣∣ a ∈ B1 ∩ C0ρ

}
+ ε � 〈−X , a0〉 + ε �ρ(X),

and since ε is arbitrary the representation (3) holds. ��
Proof (Corollary 1) By definition f = −ρ. This together with the dual representation
(2) in Theorem 1 yield

f (X) = − sup
{〈−X , a〉 − γ (a)

∣∣ a ∈ B1
} = inf

{〈X , a〉 + γ (a)
∣∣ a ∈ B1

}
.

Since by Lemma 1 γ (a) = sup{〈−X , a〉 | X ∈ Cρ}, then the penalty function equals
− inf{〈X , a〉|X ∈ C f }. Finally, C f = Cρ because f (X)�0 ⇐⇒ ρ(X)�0. ��
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Proof (Theorem 3) Either γ (a) = ∞ or γ (a) < ∞, and we have:

∣∣ sup〈−Y , a〉 − sup〈−X , a〉∣∣�
∣∣ sup〈X − Y , a〉∣∣�‖X − Y‖Φ ‖a‖Ψ ,

where the supremum are taken all over a ∈ B1 for fixed X ,Y ∈ RΦ. Since by
assumption 1 defines a bounded base on A Ψ+ the above inequalities are majorized by
c‖X − Y‖Φ, where c > 0. Therefore,

∣∣ρ(X) − ρ(Y )
∣∣�c‖X − Y‖Φ

which implies norm and weak continuity as well. ��

Proof (Theorem 4) Take a ∈ B1 ∩ C0ρ and proceed as in the proof of Theorem 3. ��

Proof (Corollary 2) (a) It suffices to set (ρx )x∈R+ as

ρx (X) := inf
{
m ∈ R | α(X + m 1)� x

}
, for all x ∈ R+, X ∈ RΦ.

By Lemma 2, the above is an increasing family of coherent risk measures for
processes. Thus, for each acceptability level x > 0 we define

α(X) := sup
{
x ∈ R+ | ρx (X)�0

}
,

and note that for every k > α(X) we also have ρx (X) > 0. As a consequence,

inf
{
m ∈ R | α(X + m 1) > k

}

and moreover α(X) = α(X + 0 1) < k for every k > α(X) as defined above, and
this shows that

α(X)� sup
{
x ∈ R+ | ρx (X)�0

}
.

Since in a similar fashion we can prove the reverse inequality, then we are done.
(b) Let α : RΦ → [0,+∞] be defined by

α(X) := sup
{
x ∈ R+ | ρx (X)�0

}
,

where ρx is taken from the corresponding family of increasing coherent risk mea-
sures for processes. By Lemma 3, α is an AI for processes and

ρx (X) := inf
{
m ∈ R | α(X + m 1)� x

}
, for all x ∈ R+, X ∈ RΦ.

��
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Proof (Theorem 5) Let us assume α is an AI. By definition the acceptability sets form
a decreasing family, i.e. C α

y ⊂ C α
x whenever x � y for every x, y ∈ R+, i.e. the

acceptability sets are decreasing in x for a fixed path X ∈ RΦ. If we define

ρx (X) := inf
{
m ∈ R

∣∣ α(X + m 1)� x
}
, for every x ∈ R+, X ∈ RΦ,

then by Lemma 2 the map ρx is a coherent risk measure for processes which is also
continuous in the sense of Theorem 4, provided that 1 is a bounded base on A Ψ+ .

According to the same Theorem 4, for ρx there exists a representation set Gx ⊂
B1 ∩ C 0

ρx
⊂ A Ψ , where C 0

ρx
:= {a ∈ A Ψ | 〈X , a〉�0} is the polar set of Cρx :=

{X ∈ RΦ | ρx (X)�0}. As a consequence,

ρx (X) = sup
g∈Gx

〈−X , g〉�0 ⇐⇒ ρx (X) = − inf
g∈Gx

〈X , g〉�0.

Considering a whole family (ρx (X))x∈R+ , if C α
y ⊂ C α

x then Gx ⊂ Gy, for every
x � y : the functionals representing the coherent risk measure ρx produced by C α

x are
enough to represent the coherent risk measure ρy produced by C α

y and we are done. ��
Proof (Proposition 1) The dual representation in the proof of Theorem 5 becomes
ρx (X) = sup

π∈C α,0
x

π(−X) or equivalently −ρx (X) = inf
π∈C α,0

x
π(X). Moreover,

taking X ∈ C α
x yields −ρx (X)�0. Assuming that (ρx )x∈R+ is a family of monotone,

coherent risk measures for processes in RΦ, we have that any ρx is monotone with
respect to the subset RΦ+ which implies RΦ+ = C α

0 for the corresponding polar sets.

As a consequence, if x > 0, then C α,0
x ⊂ C α,0

0 . Thus, for the corresponding AI, we
have

α(X) = sup
{
x ∈ R+ | inf

π∈C α,0
x

π(X)�0
}

= sup {x ∈ R+ | − ρx (X)�0} = ∞,

which is arbitrage consistency. ��
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