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Abstract
We calibrate a novel multifactor stochastic volatility model that includes as special
cases the Heston-based model of De Col et al. (J Bank Finance 37(10):3799–3818,
2013) and the 3/2-based model of Baldeaux et al. (J Bank Finance 53:34–48, 2015).
Using a dataset on vanilla option quotes in a triangle of currencies, we find that the
risk neutral approach typically fails for the calibrated model, in line with the results
of Baldeaux et al. (2015).
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1 Introduction

This paper aims to draw the attention to a more general modeling approach than avail-
able under the classical no-arbitrage paradigm in finance. Historically, Long (1990)
was the first who observed that one can rewrite the risk neutral pricing formula as a
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2 A. Gnoatto et al.

conditional expectation under the real-world probability measure where the so-called
numéraire portfolio (NP) acts as numéraire. The benchmark approach postulates only
the existence of the NP and no longer relies on the rather restrictive classical no-
arbitrage assumptions, which are equivalent to the existence of an equivalent risk
neutral probability measure. Under this much weaker assumption, one can still per-
form all essential tasks of valuation and riskmanagement. The only condition imposed
is that the NP, which is in the long run the pathwise best performing portfolio, remains
finite in finite time. Obviously, when this assumption is violated for a model, then
some economically meaningful arbitrage must exist, causing the candidate for the NP
to explode. In this case, the respective model makes not much theoretical and practical
sense. Note that, when a finite NP exists, various forms of classical arbitrage may be
present in the market; see, e.g., Loewenstein and Willard (2000) and Heston et al.
(2007) for various examples in the literature on bubbles.

The current paper illustrates the divergence of the benchmark approach from the
classical approach by focusing on the currency market, which is one of the most active
markets. We present and calibrate a hybrid model describing the dynamics of a vector
of foreign exchange (FX) rates and the associated interest rates. We extend and unify
the FX multifactor stochastic volatility models of De Col et al. (2013) and Baldeaux
et al. (2015) by means of the general transform formula presented in Grasselli (2017).
The resulting general model that we develop allows for the simultaneous presence of
multiple stochastic volatility factors both of square root (seeHeston 1993) and 3/2 type
(see Heston 1997; Platen 1997). More explicitly, the square root of each CIR factor
appears in both the numerator and the denominator of the diffusion terms. Based on
Grasselli (2017), we refer to this model as the 4/2 model. Our specification for the
volatility process spans a large class of dynamics ranging from the 3/2 to the Heston
model. This means that we can let market data dictate the relative importance of the
two stochastic volatility effects that we consider. While the 4/2 model might appear
as an involved choice, we will show in Sect. 3.3 that it naturally emerges, e.g., in a
simple Heston setting for a suitable choice of the risk premium. Moreover, such CIR
factors can be freely combined in order to drive stochastic interest rates. Therefore,
the model is suitable for the valuation of long-dated FX products, for which interest
rate risk becomes a relevant risk factor, see the discussions in Gnoatto and Grasselli
(2014).

The framework we propose is general to the extent that for suitable parameter
combinations our model may not admit the existence of an equivalent risk neutral
probability measure for some economies. In spite of this feature, the problem of
pricing and hedging contingent claims can always be solved under the more general
benchmark approach of Platen and Heath (2010), with in addition the possibility to
apply benchmarked riskminimization for hedging, as developed, e.g., inDu and Platen
(2016).

Despite the richness of our framework, it is possible to efficiently solve and imple-
ment the pricing of plain vanilla instruments via Fourier-based techniques, seeCarr and
Madan (1999) and Lewis (2001). Semi-analytical closed form solutions for products
such as European FX options can be computed thanks to the availability of the exact
formula for the joint Fourier transform of the model’s state variables, see Grasselli
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Calibration to FX triangles of the 4/2 model under the… 3

(2017). The flexibility of the 4/2 model has also been exploited in recent contributions
of Detemple and Kitapbayev (2018) and Cheng et al. (2019).

We test our model on real datasets of vanilla FX options by performing several
calibration experiments. Our empirical results are twofold. On the one side, we confirm
the empirical findings of Baldeaux et al. (2015) on the violation of the risk neutral
pricing paradigm. The appearance of such violations may change over time and across
currencies. In fact, our multiple calibration experiment seems to suggest the presence
of regime switches in traded FX-option prices between the standard risk neutral and the
real-world pricing approach. Such a feature calls for a modeling framework which is
able to span both valuation principles, which is provided by the benchmark approach.

The paper is structured as follows: In Sect. 2, we introduce the general multi-
currency modeling framework and recall some notions from the benchmark approach.
Section 3 motivates and formally introduces the 4/2 model as a unifying framework
for stochastic volatility models driven by the CIR process as the Heston-based model
of De Col et al. (2013) and the 3/2-based model of Baldeaux et al. (2015). The 4/2
model extends the Heston model and allows for the possibility of a failure of the
risk neutral paradigm. The analytical tractability of the 4/2 model is demonstrated in
Sect. 4, which constitutes a prerequisite for an efficient model calibration, presented
in Sect. 5. Section 6 concludes, while we gather in the appendix the proofs.

2 General setup

In this section, we present the generalmodeling framework of the benchmark approach
for a foreign exchange (FX) market. Section 2.1 provides a general setup driven by a
multi-dimensional diffusion process.

2.1 Specification of the currencymarket

Weuse superscripts to reference different currencies and employbold letters for vectors
and subscripts for elements thereof. Unless specified by a suitable superscript, all
expectations are considered with respect to the real-world probability measure P. We
model the currency market on a probability space

(
Ω,FT̄ ,P

)
, where T̄ < ∞ is a

finite time horizon. On this space, we introduce a filtration (Ft )0≤t≤T̄ to model the
evolution of available information, satisfying the usual assumptions. The above filtered
probability space supports a standard d-dimensionalP-BrownianmotionZ = {Z(t) =
(Z1(t), . . . , Zd(t)), 0 ≤ t ≤ T̄ } for modeling the traded uncertainty. The constant N
denotes the number of currencies in the model, whereas d is the number of risk factors
we employ.

In each economy, we postulate the existence of a money market account, i.e., the
i-th money market account, when denominated in units of the j-th currency, evolves
according to the relation

dBi (t) = Bi (t)r i (t)dt, Bi (0) = 1, 0 ≤ t ≤ T̄ ; (2.1)
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4 A. Gnoatto et al.

with theR-valued, adapted i th short rate process r i = {r i (t), 0 ≤ t ≤ T̄
}
. We denote

by Si, j = {
Si, j (t), 0 ≤ t ≤ T̄

}
the continuous exchange rate process between cur-

rency i and j . Here, Si, j (t) denotes the price of one unit of currency i in units of
currency j , meaning that, e.g., for i = USD and j = EUR and Si, jt = 0.92 we have,
in line with the standard FORDOM convention, that the price of one USD is 0.92 EUR
at time t .

Let us follow (Platen and Heath 2010; Heath and Platen 2006) and introduce a
family of primary security account processes via

Bi, j (t) = Si, j (t)B j (t), 0 ≤ t ≤ T̄

for i �= j . Obviously, for i = j we have Bi,i (t) = Bi (t). We take the perspec-
tive of a generic currency referenced with superscript i and introduce the vector of
money market accounts of the form Bi (t) = (

Bi,1(t), . . . , Bi,N (t)
)
, i = 1, . . . , N .

Given this vector of primary security accounts, an investor may trade on them. This is
represented by introducing a family of predictable Bi -integrable stochastic processes
δ = {

δ(t) = (δ1(t), . . . , δN (t)) , 0 ≤ t ≤ T̄
}
for i = 1, . . . , N , called strategies.

Each δ j (t) ∈ R denotes the number of units that an agent holds in the j th primary
security account at time t . Let us introduce the process Vi,δ = {Vi,δ(t), 0 ≤ t ≤ T̄

}
,

which describes the value process in i th currency denomination corresponding to the
portfolio strategy δ, i.e.,

Vi,δ(t) =
N∑

j=1

δ j (t)B
i, j (t). (2.2)

The strategy δ is said to be self-financing if

dVi,δ(t) =
N∑

j=1

δ j (t)dB
i, j (t). (2.3)

In line with Platen and Heath (2010), we assume limited liability for all investors.
For this purpose, we introduce V+ as the set of all self-financing strategies forming
strictly positive portfolios. For our purposes, we will be interested in a particular
strategy δ� ∈ V+, which yields the growth optimal portfolio (GOP), which can be
shown to be equivalent to the numéraire portfolio (NP) and is defined as follows:

Definition 2.1 A solution δ� of the maximization problem

sup
δ∈V+

E

[
log

(
Vi,δ(T )

Vi,δ(0)

)]
,

for all i = 1, . . . , N and 0 ≤ T ≤ T̄ is called a growth optimal portfolio strategy.
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Calibration to FX triangles of the 4/2 model under the… 5

It has been shown in Platen and Heath (2010) that the GOP value process is unique in
an incomplete jump-diffusion market setting. We summarize the discussion above in
the following assumptions.

Assumption 2.1 We assume the existence of the growth optimal portfolio (GOP)
and denote by Di = {Di (t) ∈ (0,+∞), 0 ≤ t ≤ T̄

}
, i = 1, . . . , N the value of the

GOP denominated in the i th currency. The dynamics of the GOP are given by

dDi (t)

Di (t)
= r i (t)dt + 〈π i (t),π i (t)dt + dZ(t)〉, Di (0) > 0 (2.4)

for t ∈ [0, T̄ ] and i = 1, . . . N , where for N , d ∈ N, the N -dimensional family of
predictable, Rd -valued stochastic processes π = {

π i (t) = (π i
1(t), . . . , π

i
d(t)), 0 ≤

t ≤ T̄
}
represent the market prices of risk with respect to the i th currency denomina-

tion. The processes π i are assumed to be integrable with respect to the d-dimensional
standard Brownian motion Z.

The GOP can be shown to be in many ways the best performing portfolio. In
particular, in the long run its value outperforms almost surely those of any other strictly
positive portfolios. Here, we assume that it remains finite in finite time in all currency
denominations. If we were to consider a model where the GOP explodes in any of the
currency denominations, then themodel would allow an obvious form of economically
meaningful arbitrage, since one could generate, in that currency denomination, in finite
time, unboundedwealth fromfinite initial capital. Given the uniqueness of theGOP, all
exchange rates Si, j (t) can be uniquely determined as ratios of different denominations
of the GOP in the respective currencies.

Assumption 2.2 The family of exchange rate processes Si, j = {Si, j (t), 0 ≤ t ≤ T̄
}

is determined by the ratios

Si, j (t) = Di (t)

D j (t)
, (2.5)

for 0 ≤ t ≤ T̄ and i, j = 1, . . . , N .

Given Assumption 2.2, it is immediate to compute via a direct application of the Itô
formula the dynamics of all exchange rates and all primary security accounts in all
currency denominations.

Lemma 2.1 The exchange rate Si, j (t) under the real-world probability measure P

evolves according to the dynamics

dSi, j (t)

Si, j (t)
= (r i (t) − r j (t))dt + 〈π i (t) − π j (t),π i (t)dt + dZ(t)〉,

Si, j (0) = si, j > 0,

(2.6)
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6 A. Gnoatto et al.

and the generic j th primary security account Bi, j , in i th currency denomination and
under the real-world probability measure P, evolves according to the dynamics

dBi, j (t)

Bi, j (t)
= r i (t)dt + 〈π i (t) − π j (t),π i (t)dt + dZ(t)〉,

Bi, j (0) = bi, j ,

(2.7)

for i, j = 1, . . . , N and t ∈ [0, T̄ ].

2.2 The benchmark approach

In the present paper, we evaluate contingent claims under the benchmark approach of
Platen andHeath (2010). Under this approach, price processes denominated in terms of
the GOP are called benchmarked price processes. More precisely, for i, j = 1, . . . N ,
let us introduce the benchmarked price process

B̂ j =
{
B̂ j (t) := Bi, j (t)

Di (t)
, 0 ≤ t ≤ T̄

}
.

We call B̂ j the benchmarked jth primary security account. Note that B̂ j does not
depend on the index i of the currency denomination we started from. Given (2.7)
and (2.4), upon an application of the Itô formula, it is immediate to conclude that
all benchmarked price processes B̂ j form P-local martingales. Even more, they are
nonnegative P-local martingales. Hence, due to Fatou’s lemma, they are also P-
supermartingales. Analogously, we also have that benchmarked nonnegative portfolio
values V̂δ(t) := Vi,δ(t)/Di (t) form P-supermartingales. Besides, the exclusion of
forms of economically meaningful arbitrage, which are equivalent to the explosion of
the GOP, forms of classical arbitrage that are excluded under classical no-arbitrage
assumptions may exist in our model, see, e.g., Loewenstein and Willard (2000).

Let us now introduce for the i th currency denomination theRadon–Nikodymderiva-
tive process, denoted by Λi = {Λi (t), 0 ≤ t ≤ T̄

}
, by setting

Λi (t) = B̂i (t)

B̂i (0)
, i = 1, . . . , N . (2.8)

This is the risk neutral density for the putative risk neutral measure Q
i of the i th

currency denomination. It arises, e.g., when we consider replicable claims and assume
the existence of an equivalent risk neutral probability measure Qi . As each Λi equals
the corresponding benchmarked savings account B̂i (up to a constant factor), it is
clear that Λi is a P-local martingale, for i = 1, . . . , N . The classical assumption in
the foreign exchange literature that there exists an equivalent risk neutral probability
measure for each currency denomination corresponds to the requirement that each
process Λi is a true martingale for i = 1, . . . , N . Such a requirement is rather strong
and may be empirically rejected, see, e.g., Heath and Platen (2006), the findings
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Calibration to FX triangles of the 4/2 model under the… 7

in Baldeaux et al. (2015) and the necessary and sufficient conditions of Hulley and
Ruf (2019). Hence, in the present paper, we shall allow each Λi to be either a true
martingale or a strict local martingale. To work in such a generalized setting requires
a more general pricing concept than the one provided under the classical risk neutral
paradigm. In the following, we will employ the notion of real-world pricing: a price
process Vi = {

Vi (t), 0 ≤ t ≤ T̄
}
, here denominated in i th currency, is said to be

fair if, when expressed in units of the GOP Di , forms a P-martingale, this means its
benchmarked value forms a trueP-martingale, see Definition 9.1.2 in Platen andHeath
(2010). For a fixed maturity T ∈ [0, T̄ ], we letHi (T ) = Vi (T ) be anFT -measurable
nonnegative contingent claim, expressed in units of the i th currency denomination
such that

E

[
Ĥi (T )

∣∣∣Ft

]
= E

[Hi (T )

Di (T )

∣∣∣∣Ft

]
< ∞,

for all 0 ≤ t ≤ T ≤ T̄ , i = 1, . . . , N . The benchmarked fair price V̂
i
(t) =

Vi (t)/Di (t) of this contingent claim is the minimal possible price and given by the
following conditional expectation under the real-world probability measure P:

V̂
i
(t) = E

[
Ĥi (T )

∣∣∣Ft

]
, (2.9)

which is known in the literature as real-world pricing formula, see Corollary 9.1.3 in
Platen and Heath (2010). Note that benchmarked risk minimization, described in Du
and Platen (2016), gives (2.9) generally. In case Λi is a true martingale we obtain,
by changing in (2.9) from the real-world probability measure P to the equivalent risk
neutral probability measure Qi , the risk neutral pricing formula

Vi (t) = E

[
Bi (t)

Bi (T )

Bi (T )

Bi (t)

Di (t)

Di (T )
Hi (T )

∣∣∣∣Ft

]

= E

[
Λi (T )

Λi (t)

Bi (t)

Bi (T )
Hi (T )

∣∣∣∣Ft

]
= E

Qi
[

Bi (t)

Bi (T )
Hi (T )

∣∣∣∣Ft

]
. (2.10)

This shows that the real-world pricing formula generalizes the classical risk neutral
valuation formula and the Radon–Nikodym derivative for the respective risk neutral
probability measure is given by (2.8). In general, due to the supermartingale property
of benchmarked price processes in the case when Λi is a strict supermartingale, a
formally obtained risk neutral price is greater than or equal to the real-world price, see
Du and Platen (2016).

3 The 4/2model

To demonstrate the fact that in reality there may exist hedgeable securities that are
less expensive than their associated formally obtained risk neutral price processes,
we need some model that can potentially capture this phenomenon when it is present
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8 A. Gnoatto et al.

in the market. One such model is the one introduced by Grasselli (2017), called the
4/2 model, that unifies several well-known models. In Sect. 3.2, we state the precise
conditions under which the crucial martingale property of the benchmarked savings
account fails for the 4/2 model.

3.1 Formal presentation of the 4/2model

To provide a concrete specification of themarket prices of risk, we proceed to introduce
an R

d -valued nonnegative stochastic process V = {
V(t) = (V1(t), . . . , Vd(t)), 0 ≤

t ≤ T̄
}
, called the volatility factor process. The kth component Vk of the vector process

V is assumed to solve the SDE

dVk(t) = κk(θk − Vk(t))dt + σkVk(t)
1/2dWk(t),

Vk(0) = vk > 0,
(3.1)

for t ∈ [0, T̄ ], where the parameters κk > 0, θk > 0, σk > 0, are admissible in the
sense of Duffie et al. (2003), k = 1, . . . , d. In addition, to avoid zero volatility factors,
we impose the following assumption.

Assumption 3.1 For every k = 1, . . . , d, the parameters in (3.1) satisfy the relation

2κkθk − σ 2
k ≥ 0. (3.2)

We also allow for nonzero correlation between assets and their volatilities via the
following condition:

Assumption 3.2 The Brownian motions Z and W have a covariation satisfying

d〈Wk, Zl〉(t)
dt

= δklρk, k, l = 1, . . . , d, (3.3)

where δkl denotes the Dirac delta function for the indices k and l.

We then proceed to provide a general specification for the family of market prices of
risk.

Assumption 3.3 We assume that the i th market price of risk vector π i (t) is a projec-
tion of the common volatility factor V, along a direction parametrized by a constant
vector ai ∈ R

d and a projection of the inverted elements of V along another direction
parametrized by bi ∈ R

d , according to the following relations

π i (t) = Diag1/2(V (t))ai + Diag−1/2(V (t))bi , i = 1, . . . , N , (3.4)

where Diag1/2(u) denotes the diagonal matrix whose diagonal entries are the respec-
tive square roots of the components of the vector u ∈ R

d . The family of short-rate
processes r i , i = 1, . . . , N is assumed to be given in the form

r i (t) = hi + 〈H i ,V(t)〉 + 〈Gi ,V−1(t)〉, (3.5)
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Calibration to FX triangles of the 4/2 model under the… 9

where V−1 is a vector whose components are the inverses of those of V.

Under Assumption 3.3, we can express the dynamics of the GOP as

dDi (t)

Di (t)
=
(
r i (t) + (ai )	Diag(V (t))ai + (bi )	Diag−1(V (t))bi + 2(ai )	bi

)
dt

+ (ai )	Diag1/2(V (t))dZ(t) + (bi )	Diag−1/2(V (t))dZ(t).

Here,we suppress the explicit formulation of the dependence of r i onV . Consequently,
the dynamics of the exchange rate Si, j is given by the SDE

dSi, j (t)

Si, j (t)
=
(
(r i (t) − r j (t)) + 2(ai )	bi − (ai )	b j − (a j )	bi

+ (ai )	Diag(V (t))(ai − a j ) + (bi )	Diag−1(V (t))(bi − b j )
)
dt

+ ((ai − a j )	Diag1/2(V (t)) + (bi − b j )	Diag−1/2(V (t)))dZ(t).
(3.6)

Notice that the dynamics of the exchange rates are fully functionally symmetric w.r.t.
the construction of product/ratios thereof, see Gnoatto (2017).

3.2 Strict local martingality

In this subsection, we investigate the conditions under which the i th benchmarked

savings account, B̂i (t) = Bi (t)
Di (t)

, is a strict P-local martingale, i = 1, . . . , N . As

observed in Sect. 2.2, B̂i (t), after normalization to one at the initial time, corresponds
to the Radon–Nikodym derivative for the putative risk neutral measure of the i th
currency denomination. Should B̂i (t) be a strict P-local martingale, we note that
classical risk neutral pricing is not applicable. However, real-world pricing in line
with (2.9) is still applicable, see Platen and Heath (2010) and provides the minimal
possible price.

Given (2.7) and (2.4), the dynamics of B̂i (t) are given by the SDE

d B̂i (t) = −B̂i (t)((ai )	(Diag(V (t)))1/2dZ(t)

+ (bi )	(Diag(V (t)))−1/2dZ(t)). (3.7)

Upon integration of the above SDE, we obtain

E

[
B̂i (t)

]
= B̂i

0

d∏

k=1

E

[
ξ ik(t)

]
,

123



10 A. Gnoatto et al.

where we define the exponential local martingale process ξ ik = {ξ ik(t) , t ≥ 0
}
via

ξ ik(t) := exp

{
−ρk

∫ t

0

(
aikVk(s)

1/2 + bikVk(s)
−1/2

)
dWk(s)

−1

2
ρ2
k

∫ t

0

(
aikVk(s)

1/2 + bikVk(s)
−1/2

)2
ds

}
. (3.8)

The putative change ofmeasure with respect to the i th currency denomination involves

dW̃k(t) = dWk(t) + ρk

(
aikVk(t)

1/2 + bikVk(t)
−1/2

)
dt,

where under classical assumptions W̃k should be a Wiener process under the putative
risk neutral measureQi . Under this measure, the process Vk would then solve the SDE

dVk(t) = κk(θk − Vk(t))dt − ρkσk

(
aikVk(t) + bik

)
dt + σkVk(t)

1
2 dW̃k(t)

=
(
κkθk − ρkσkb

i
k

)
dt − κk

(

1 + ρkσkaik
κk

)

Vk(t)dt + σkVk(t)
1
2 dW̃k(t).

(3.9)

Under P, the process Vk does not reach 0 if the Feller condition is satisfied, i.e.,

2κkθk ≥ σ 2
k ,

while under the putative risk neutral measure, the process Vk would not reach 0 if the
corresponding Feller condition would be satisfied, that is

2κkθk ≥ σ 2
k + 2ρkσkb

i
k .

Therefore, the process Vk would have a different behavior at 0 under the twomeasures,
provided that

σ 2
k ≤ 2κkθk < σ 2

k + 2ρkσkb
i
k . (3.10)

In this case, the putative risk neutral measure would not be an equivalent probability
measure and classical risk neutral pricing would not be well-founded.

Remark 3.1 Let us comment on the failure of the martingale property. There is a
significant body of literature that studies the failure of the martingale property in the
context of stochastic volatility models. A first result in this direction is provided in
Andersen and Piterbarg (2007) in their Proposition 2.5, that investigates the cases in
which the discounted asset price is a strict local martingale.

Recently Desmettre et al. (2021) studied changes of the drift in one-dimensional
diffusions. Their results are specialized to the Heston model in their Sect. 3. However,
it is important to notice that their results start from a different perspective with respect
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Calibration to FX triangles of the 4/2 model under the… 11

to ours: their results state that, in the one-dimensional Heston model, if the Feller
condition under the given historical measure P is satisfied, then the model always
admits an equivalent localmartingalemeasure (ELMM). The situation in their analysis
becomes even problematic for the Heston model in the case when the Feller condition
under the everything underpinning historical measure P is violated: their Theorem
3.4 states that, unless the condition in their Eq. (3.3) is satisfied, the Heston model
admits no pricing measure. Our Assumption 3.1 states that the Feller condition is
satisfied under the underlying measure P. We can instead obtain a violation of the
Feller condition under the candidate martingale measure Q

i , i.e., the putative risk
neutral measure of the i th currency denomination. If this happens, then we conclude
that there is no ELMM.

The most general answer to the question whether a local martingale is a uniformly
integrable martingale has been provided so far by Hulley and Ruf (2019) in their
Theorem 1.1 in terms of sufficient and necessary conditions.

In order to get an intuition of what is the typical path behavior when dealing with
true and strict local martingales, we simulate some paths of the Radon–Nikodym
derivative for the putative risk neutral measure of the i th currency denomination

B̂i (t) = Bi (t)
Di (t)

according to the corresponding SDE (3.7), together with the respective
quadratic variation processes, for time horizon t = 10 years. In this illustration, we
consider a one-factor specification of the 4/2 model (i.e., d = 1) and fix the param-
eters as follows: κ = 0.49523; θ = 0.53561; σ = 0.67128; V (0) = 1.4338; ρ =
−0.89728; a = 0.047360. These parameter values were obtained via a calibration to
market data as of 22April 2015.We let the parameter b range in the interval [−0.4, 0.4]
in order to generate situations in which the process B̂i is a true martingale (b positive)
or a strict local martingale (b negative). We see in Fig. 1 that the quadratic variation
of the strict local martingale process almost explodes from time to time and increases
through these upward jumps visually much faster than in the case corresponding to the
true martingale process, in line with the well-known unbounded expected quadratic
variation process for square integrable strict local martingales, see, e.g., Lemma 5.5.2
in Platen and Heath (2010).

Finally, let us observe that we can compute the prices of zero coupon bonds for
all currency denominations, meaning that it is a priori possible to devise a model for
long-dated FX products, in the spirit of Gnoatto and Grasselli (2014), where a joint
calibration to FX surfaces and yield curves is performed. Depending on the parameter
values, our general framework may be interpreted both from the point of view of
real-world pricing and classical risk neutral valuation, respectively:

• Should market data imply the existence of a risk neutral probability measure for
the i th currency denomination, then it would be possible to equivalently employ
the i th money market account as numéraire.

• In the other case, i.e., when risk neutral pricing is not possible for the i th currency
denomination due to the strict local martingale property of the i th benchmarked
money market account, then discounting should be performed via the GOP.
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Fig. 1 Simulation of the Radon–Nikodym derivative for the putative risk neutral measure of the i th currency

denomination B̂i (t) = Bi (t)
Di (t)

given by the SDE (3.7), together with the relative quadratic variation process.

The time horizon is t = 10 years. We consider a one-factor specification of the model (i.e., d = 1), and
we fix the parameters as κ = 0.49523; θ = 0.53561; σ = 0.67128; V (0) = 1.4338; ρ = −0.89728; a =
0.047360. Parameter b ranges between [−0.4, 0.4]. For b positive, the process is a true martingale, while
for b negative the process is a strict local martingale

3.3 The 4/2model as a unifying framework

In this subsection, we show how the 4/2model unifies the 3/2 and theHestonmodel. To
achieve this, we consider, for simplicity, two currencies with D1(t) denoting the GOP
in domestic currency and D2(t) denoting the GOP in foreign currency. For example,
S1,2(t) = D1(t)/D2(t) can follow a stochastic volatility model of Heston type (see
Heston 1993), where

dS1,2(t)

S1,2(t)
=
(
r1(t) − r2(t)

)
dt +√V (t) (dZ(t) + λ(t)dt) ,

S1,2(0) = s1,2 > 0,

dV (t) = κ(θ − V (t))dt + σV (t)1/2
(
ρdZ(t) +

√
1 − ρ2dZ⊥(t)

)
,

V (0) = v > 0. (3.11)

Here, Z⊥ = {
Z⊥(t), 0 ≤ t ≤ T̄

}
is a P-Brownian motion independent of Z , κ >

0, θ > 0, ρ ∈ [−1, 1] with the predictable processes r1, r2 and λ.
In the remainder of the section, we will repeatedly employ the following ter-

minology: Heston (type) model, 3/2 (type) model, 4/2 (type) model. Let us now
clarify the respective models. In the following, we consider a, b ∈ R, and let
Di = {

Di (t), 0 ≤ t ≤ T̄
}
denote a generic place-holder for a GOP process satis-

fying a scalar diffusive stochastic differential equation (SDE). Moreover, let V ={
V (t), 0 ≤ t ≤ T̄

}
be a square root process as given in (3.11). A model is said

to be of Heston type (resp. of 3/2 type, resp. of 4/2 type) if the diffusion coeffi-
cient in the dynamics of the GOP Di is proportial to a

√
V (t) (resp. b/

√
V (t), resp.

(a
√
V (t) + b/

√
V (t))).
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Calibration to FX triangles of the 4/2 model under the… 13

The question we would like to address is the following: Given a specification of the
market price of risk process λ for the domestic currency denomination of securities,
what are the associated dynamics of the domestic and foreign specifications of the
GOP?

Lemma 3.1 Consider a two-currency model, where the exchange rate model for S1,2

is of Heston type (3.11). The following statements hold true:

1. If λ(t) = a
√
V (t), a ∈ R, then the GOP denominations D1 and D2 follow both

Heston-type models.
2. If λ(t) = b√

V (t)
, b ∈ R, then the GOP denomination D1 follows a 3/2 model,

whereas D2 follows a 4/2 model.
3. If λ(t) = a

√
V (t) + b√

V (t)
, a, b ∈ R, then the GOP denominations D1 and D2

follow both 4/2 type models.

The proof for this result is given in “Appendix A.”
Note that if we had started in (3.11) with the volatility 1/

√
V (t), then for λ(t) =

b/
√
V (t) we would have always fallen into the class of 4/2 type models. Lemma

3.1 highlights an interesting interplay between several well-known financial models.
It shows that the 4/2 model arises naturally from a standard Heston model when
the market price of risk belongs to the essentially affine class (see Duffee 2002).
Furthermore, it demonstrates that the 4/2 model provides a general framework that
nests other popular model choices.

Different specifications of themarket price of risk do not only impact on the shape of
theGOPdynamics. In fact, depending on the calibrated values of themodel parameters,
we may incur situations where classical risk neutral pricing is no longer possible
because an equivalent risk neutral probability measure does not exist. To see this, we
observe that from a direct inspection of the dynamics in (3.11) in the Heston model
setting, it is tempting to define the following two continuous processes

ZQ1
(t) := Z(t) +

∫ t

0
λ(s)ds

ZQ2
(t) := Z(t) +

∫ t

0

(
λ(s) −√V (s)

)
ds, (3.12)

which, if the assumptions of the Girsanov theorem were in both cases fulfilled, would
then be Q1- (resp. Q2-) Brownian motions. Let us assume that under the real-world
probabilitymeasureP, the Feller condition (seeKaratzas andShreve 1991, Section 5.5)
is fulfilled by the parameters of the volatility process V , i.e., we have 2κθ − σ 2 ≥ 0,
so that the square root process V remains strictly positive P-a.s. for all t ∈ [0, T̄ ].
The following lemma shows that, depending on the specification of λ, it is possible
to obtain a variance process V under the putative risk neutral measure that may not
satisfy the Feller condition, implying that the putative risk neutral measure may fail
to be equivalent to the real-world probability measure.

Lemma 3.2 Consider a two-currency model, where the dynamics of the exchange
rate S1,2 is of the Heston type (3.11), such that the variance process V fulfills the
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14 A. Gnoatto et al.

Feller condition, i.e., 2κθ − σ 2 ≥ 0. Let ZQ1
, ZQ2

, as in (3.12), be the candidate
Brownian motions under the putative risk neutral measures Q1 and Q

2, respectively.
The following holds:

1. For the putative risk neutral measure Q1, we get:

(a) If λ(t) = a
√
V (t), a ∈ R, then the drift of the variance process V underQ1 is

κ (θ − V (t)) − σρaV (t)

and the Feller condition is always satisfied under Q1, which is then a true
equivalent martingale measure.

(b) If λ(t) = a
√
V (t) + b√

V (t)
, a, b ∈ R, then the drift of the variance process V

under Q1 equals

κ (θ − V (t)) − σ
√
V (t)ρ

(
a
√
V (t) + b√

V (t)

)

and the Feller condition may be violated, implying that Q1 may not be equiv-
alent to P.

(c) If λ(t) = b√
V (t)

, b ∈ R, then the drift of the variance process V under Q1 is

κ (θ − V (t)) − σρb

and the Feller condition may be violated, implying that Q1 may not be equiv-
alent to P.

2. For the putative risk neutral measure Q2, we have

(a) If λ(t) = a
√
V (t), a ∈ R, then the drift of the variance process V under Q2

equals

κ (θ − V (t)) − σρ(a − 1)V (t)

and the Feller condition is always satisfied under Q2, which is then a true
equivalent martingale measure.

(b) If λ(t) = a
√
V (t) + b√

V (t)
, a, b ∈ R, then the drift of the variance process V

under Q2 equals

κ (θ − V (t)) − σ
√
V (t)ρ

(
(a − 1)

√
V (t) + b√

V (t)

)

and the Feller condition may be violated, implying that Q2 would be in such
case not equivalent to P.

(c) If λ(t) = b√
V (t)

, b ∈ R, then the drift of the variance process V under Q2 is

κ (θ − V (t)) − σρb + σρV (t)
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Calibration to FX triangles of the 4/2 model under the… 15

and the Feller condition may be violated, implying that Q2 would be in such
case not equivalent to P.

The proof of these statements is straightforward using our previous notation and
relationships and, therefore, omitted.

4 Valuation of derivatives

In the present section, we solve the valuation problem for various contingent claims.
The general valuation tool will be given by the real-world pricing formula (2.9).
We concentrate on plain vanilla European FX options, for which a semi-closed form
valuation is available by means of Fourier techniques. These require the knowledge
of the characteristic function of the log-underlying, given below in Theorem 4.1,
which provides as a by-product a closed form valuation formula for benchmarked
zero-coupon bonds.

We first provide the calculation of the discounted conditional Fourier/Laplace trans-
form of xi, j (t) := ln(Si, j (t)), which will be useful for option pricing purposes. Let us
consider a European call option C(Si, j (t), Ki, j , τ ) at time t , i, j = 1, . . . , N , i �= j,
on a generic exchange rate process Si, j with strike Ki, j , maturity T = t + τ and face
value equal to one unit of the foreign currency. We denote via Y i (t) = log(Di (t)) the
logarithm of the GOP in i th currency denomination. Hence, the log-exchange rate may
be written as xi, j (t) = log(Si, j (t)) = Y i (t) − Y j (t). Let us introduce the following
conditional expectation

φ
i, j
t,T (z) = Di (t)E

[
1

Di (T )
eizx

i, j (T )

∣∣∣∣Ft

]

= eY
i (t)

E

[
e−Y i (T )+iz(Y i (T )−Y j (T ))

∣∣
∣Ft

]
,

(4.1)

for i = √−1. For z = u ∈ R, we will use the terminology of a discounted character-
istic function, whereas for z ∈ Cwhen the expectation exists, the function φ

i, j
t,T will be

called a generalized discounted characteristic function. If we denote by Ψt,T (z) the
joint conditional (generalized) characteristic function of the vector of GOP denomi-
nations Y (T ) = (Y 1(T ), . . . ,Y N (T )), that is

Ψt,T (ζ ) := E

[
ei〈ζ,Y (T )〉

∣∣
∣Ft

]
, ζ ∈ C

N , (4.2)

then we have

φ
i, j
t,T (z) = Di (t)Ψt,T (ζ ), (4.3)

for ζ being a vector with ζi = z + i, ζ j = −z and all other entries being equal to
zero. Now, from the real-world pricing formula (2.9), the time t price of a call option
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16 A. Gnoatto et al.

can be written as the following expected value:

C(Si, j (t), Ki, j , τ ) = Di (t)E

[
1

Di (T )

(
Si, j (T ) − Ki, j

)+∣∣
∣∣Ft

]
.

Following Lewis (2001), we know that option prices may be interpreted as a convo-
lution of the payoff and the probability density function of the (log)-underlying. As a
consequence, the pricing of a derivative may be solved in Fourier space by relying on
the Plancherel/Parseval identity, see Lewis (2001),wherewe have for f , g ∈ L2(R,C)

∫ ∞

−∞
f (x)g(x)dx = 1

2π

∫ ∞

−∞
f̂ (u)ĝ(u)du

for u ∈ R and f̂ , ĝ denoting the Fourier transforms of f , g, respectively. Applying
the reasoning above in an option pricing setting requires some additional care. In fact,
most payoff functions do not admit a Fourier transform in the classical sense. For
example, it is well-known that for the call option one has

Φ(z) =
∫

R

eizx
(
ex − Ki, j

)+
dx = −

(
Ki, j

)iz+1

z(z − i)
,

provided we let z ∈ C with Im(z) > 1, meaning that Φ(z) is the Fourier transform of
the payoff function in the generalized sense. Such restrictions must be coupled with
those that identify the domain where the generalized characteristic function of the
log-price is well defined. The reasoning we just reported is developed in Theorem 3.2
in Lewis (2001), where the following general formula is presented (here, we write φi, j

for φ
i, j
t,T in order to simplify notation):

C(Si, j (t), Ki, j , τ ) = 1

2π

∫

Z
φi, j (−z)Φ(z)dz, (4.4)

with Z denoting the line in the complex plane, parallel to the real axis, where the
integration is performed. The article (Carr and Madan 1999) followed a different
procedure by introducing the concept of a dampened option price. However, as Lewis
(2001) and Lee (2004) point out, this alternative approach is just a particular case of
the first one. In Lee (2004), the Fourier representation of option prices is extended
to the case where interest rates are stochastic. Moreover, the shifting of contours,
pioneered by Lewis (2001), is employed to prove Theorem 5.1 in Lee (2004). There
the following general option pricing formula is presented:

C(Si, j (t), Ki, j , τ )

= R
(
Si, j (t), Ki, j , α

)
+ 1

π

∫ ∞−iα

0−iα

Re

(
e−izki, j φ

i, j (z − i)

−z(z − i)

)
dz. (4.5)
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Here, ki, j = log(Ki, j ), α denotes the contour of integration and the term coming
from the application of the residue theorem is given by

R
(
Si, j (t), Ki, j , α

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φi, j (−i) − Ki, jφi, j (0), if α < −1

φi, j (−i) − Ki, j

2 φi, j (0), if α = −1

φi, j (−i) if − 1 < α < 0
1
2φ

i, j (−i) if α = 0

0 if α > 0.

(4.6)

The following theoremprovides the explicit computation of the generalized discounted
characteristic function.

Theorem 4.1 The joint conditional generalized characteristic functionΨt,T (·) in (4.2)
is given by

Ψt,T (ζ ) = exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)}

×
d∏

k=1

exp

⎧
⎨

⎩

N∑

i=1

[
(T − t)

(
1 − ρ2

k

2

N∑

j=1

iζ iiζ j
(
aikb

j
k + a j

k b
i
k

)

+ iζ i aikb
i
k + iζ i

κkρk

σk

(
bik − θka

i
k

))

− Vk(t)iζ i
ρkaik
σk

− iζ i
ρkbik
σk

log(Vk(t))

]}

×
(

βk(t, Vk)

2

)mk+1

Vk(t)
− κk θk

σ2k (λk + Kk(t))
−
(

1
2 + mk

2 −αk+ κk θk
σ2k

)

× e
1

σ2k

(
κ2k θk (T−t)−√

AkVk (t) coth

(√
Ak (T−t)

2

)
+κk Vk (t)

)
�

(
1
2 + mk

2 − αk + κkθk
σ 2
k

)

�(mk + 1)

× 1F1

(
1

2
+ mk

2
− αk + κkθk

σ 2
k

,mk + 1,
β2
k (t, Vk)

4(λk + Kk(t))

)

, (4.7)

where

mk = 2

σ 2
k

√√
√√
(

κkθk − σ 2
k

2

)2

+ 2σ 2
k νk,

Ak = κ2
k + 2μkσ

2
k ,

βk(t, x) = 2
√
Akx

σ 2
k sinh

(√
Ak (T−t)

2

) ,

Kk(t) = 1

σ 2
k

(√
Ak coth

(√
Ak(T − t)

2

)
+ κk

)
,
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and

αk = −ρk

σk

N∑

i=1

iζ i bik (4.8)

λk = −ρk

σk

N∑

i=1

iζ i aik (4.9)

μk = −
N∑

i=1

⎛

⎝iζ i H i
k + iζ i

2
(aik)

2 + 1 − ρ2
k

2

N∑

j=1

iζ iiζ j aika
j
k + iζ iρka

i
k
κk

σk

⎞

⎠

(4.10)

νk = −
N∑

i=1

⎛

⎝iζ i Gi
k + iζ i

2
(bik)

2 + 1 − ρ2
k

2

N∑

j=1

iζ iiζ j bikb
j
k

−iζ iρkbik
σk

(

κkθk − σ 2
k

2

))

. (4.11)

Let be given the functions

f 1k (−Im(ζ )) := κ2
k + 2σ 2

k

(

−
N∑

i=1

[
−Im(ζ i )Hi

k

− Im(ζ i )

2
(aik)

2 + 1 − ρ2
k

2

N∑

j=1

Im(ζ i )Im(ζ j )aika
j
k − Im(ζ i )ρka

i
k
κk

σk

⎤

⎦

⎞

⎠

f 2k (−Im(ζ )) :=
(

κkθk − σ 2
k

2

)2

+ 2σ 2
k

(

−
N∑

i=1

[
−Im(ζ i )Gi

k − Im(ζ i )

2
(bik)

2

+1 − ρ2
k

2

N∑

j=1

Im(ζ i )Im(ζ j )bikb
j
k + Im(ζ i )ρkbik

σk

(

κkθk − σ 2
k

2

)⎤

⎦

⎞

⎠

f 3k (−Im(ζ )) :=
κkθk + σ 2

k
2 +

√
f 2k (−Im(ζ ))

σ 2
k

f 4k (−Im(ζ )) := ρk

σk

N∑

i=1

Im(ζ i )aik +
√

f 2k (−Im(ζ )) + κk

σ 2
k

,

in conjunction with the following conditions

(i) f 1k (−Im(ζ )) > 0, ∀k = 1, . . . , d;
(ii) f 2k (−Im(ζ )) ≥ 0, ∀k = 1, . . . , d;
(iii) f 3k (−Im(ζ )) > 0, ∀k = 1, . . . , d;
(iv) f 4k (−Im(ζ )) ≥ 0, ∀k = 1, . . . , d.
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The transform formula (4.7) is well defined for all t ∈ [0, T ] when the complex vector
iζ belongs to the strip Dt,+∞ = At,+∞ × iRN ⊂ C

N , where the convergence set
At,+∞ ⊂ R

N is given by

At,+∞ :=
{
−Im(ζ ) ∈ R

N
∣∣∣ f lk (−Im(ζ )), l = 1, . . . , 4 satisfying (i) − (iv)

}

Moreover, for iζ ∈ Dt,t� = At,t� × iRN with

At,t� :=
{
−Im(ζ ) ∈ R

N
∣
∣∣ f lk (−Im(ζ )), l = 1, . . . , 3 satisfying (i) − (iii) and

f 4k (−Im(ζ )) < 0 for some k
}

⊃ At,+∞

the transform is well defined until the maximal time t� given by

t� = min
k s.t. f 4k (−Im(ζ ))<0

1√
Ak

log

(

1 − 2
√
Ak

κk + σkρk
∑N

i=1 Im(ζ i )aik + √
Ak

)

. (4.12)

Proof See “Appendix B.” ��
The general transform formula above is a powerful tool, however, checking the

validity of (4.7), may not be very practical in a calibration setting. For this reason, we
provide a simple, yet handy, criterion. The price Pi (t, T ) at time t ∈ [0, T ], 0 ≤ T ≤
T̄ of a zero coupon bond for one unit of the i th currency to be paid at T , i = 1, . . . , N ,
is given by the following conditional expectation

Pi (t, T ) := Di (t)E

[
1

Di (T )

∣∣∣
∣Ft

]
= φ

i, j
t,T (0). (4.13)

The criterion is provided by the next lemma.

Lemma 4.1 Let −1 < α < 0 and z ∈ C with z = u + iα. Assume

Pi (t, T ) ∨ P j (t, T ) < ∞,

then

Di (t)E

[
1

Di (T )

(
Si, j (T )

)−α
∣∣∣∣Ft

]
< ∞,

moreover, the discounted characteristic function φi, j (z) admits an analytic extension
to the strip

Z = { z ∈ C| z = u + iα, α ∈ (−1, 0)} .

Proof See “Appendix C.” ��
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Given the result inLemma4.1,we shall proceed to calibrate themodel by employing
the generalized Carr–Madan formula of Lee, i.e., (4.5), by setting

R
(
Si, j (t), Ki, j , α

)
= φi, j (−i).

5 Model calibration to FX triangles

In line with De Col et al. (2013), Gnoatto and Grasselli (2014) and Baldeaux et al.
(2015), we perform a joint calibration to a triangle of FX implied volatility surfaces.
More specifically, we consider the data set employed in Gnoatto and Grasselli (2014),
featuring implied volatility surfaces for EURUSD, USDJPY and EURJPY as of July
22nd2010.Wechoose such adate so as to obtain a calibration that canbe approximately
compared with the one of De Col et al. (2013), based on data as of July 23rd 2010.
We perform our calibration to options with expiry dates ranging from one up to 18
months and moneyness ranging from 15 delta put up to 15 delta call, and we consider
a total of 126 contracts. The model we consider for the calibration is the full 4/2
stochastic volatility model, i.e., both the Heston and the 3/2 effects are simultaneously
considered. As we calibrate options with maturity up to 18months, we do not consider
stochastic interest rates due to the limited interest rate risk, see Gnoatto and Grasselli
(2014). In line with the references above, we choose the following penalty function

∑

i

(
σ
imp
i,mkt − σ

imp
i,model

)2
,

where σ
imp
i,mkt is the i th observed market volatility and σ

imp
i,model is the i th model-derived

implied volatility. For each option contract, σ imp
i,model is constructed along the following

steps: first, given a set of model parameters, (4.5) for−1 < α < 0 is employed so as to
obtain the correspondingmodel derived price, secondly, the obtained price is converted
into σ

imp
i,model, via a standard implied volatility solver. As far as the implementation of

(4.5) is concerned, we approximated the integral via a 4096-point FFT routine, with
grid spacing equal to 0.1, so that the improper integral is truncated at the point e409.
The corresponding strike range is then given by

[
e−31.4159, e31.4159

]
and Simpson’s

rule weights are introduced for increased accuracy, see Carr and Madan (1999). The
FFT returns then a vector of option prices for a fixed grid of strikes. Option prices for
the strikes of interest are obtained via a linear interpolation. We assume that the model
is driven by two square root factors. The parameters we need to calibrate are given by
those appearing in the dynamics of each square root process, i.e.,κk , θk, σk, Vk(0), k =
1, 2, coupled with a two-dimensional vector of correlations and six two-dimensional
vectors of projections for each currency area, i.e., ai , bi , i = 1, 2, 3, meaning that
we proceed to estimate a total of 22 parameters. Clearly, in order to prevent instability
and over-parametrization issues, simplified versions of the model may be considered.

The result of the calibration is presented in Fig. 2a for July 22nd, 2010, while the
corresponding parameters are reported in Table 1. We obtain a good fit over all three
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Table 1 Parameter values
resulting from the calibration
procedure of a two factor
specification with deterministic
interest rate

Parameter Value Parameter Value

V1(0) 0.8992 V2(0) 1.3011

κ1 1.1705 κ2 0.5110

θ1 0.6853 θ2 0.5206

σ1 0.3980 σ2 0.6786

ρ1 − 0.8637 ρ2 − 0.8925

ausd1 0.0729 ausd2 0.0621

aeur1 0.0218 aeur2 0.0414

a
jpy
1 0.1497 a

jpy
2 0.0687

busd1 0.0192 busd2 0.0678

beur1 0.1805 beur2 0.0578

b
jpy
1 − 0.0601 b

jpy
2 − 0.0712

Market data as of July 22nd, 2010. Each column corresponds to a
volatility factor

Table 2 This table reports the Feller test under different (putative) measures as introduced in Sect. 3.2

Measure Test Value Risk neutral pricing possible

P 2κkθk − σ 2
k 1.4459

0.0715

Q
usd 2κkθk −

(
σ 2
k + 2ρkσkb

usd
k

)
1.4591 YES

0.1536

Q
eur 2κkθk −

(
σ 2
k + 2ρkσkb

eur
k

)
1.5700 YES

0.1415

Q
jpy 2κkθk −

(
σ 2
k + 2ρkσkb

jpy
k

)
1.4046 NO

− 0.0147

Market data as of July 22nd, 2010. The values of the test for V1 (upper value) and V2 (lower value) are
obtained from the calibrated parameters reported in Table 1

surfaces we consider, in line with De Col et al. (2013). This shows that a satisfactory
calibration of themodel can be achieved. It allows us to perform the following analysis,
which constitutes an interesting empirical result of the current paper. Given the set of
parameters we obtain from the calibration, we can try to analyze whether market data
of FX options are supporting the common use of classical risk neutral pricing. Our
approach is so flexible, that we can, in the setting of a single model, span both the
risk neutral valuation and the pricing under the real-world measure. Such an analysis
is summarized in Table 2. We consider different measures for pricing: the real-world
probability measure P, and the putative risk neutral measuresQusd,Qeur andQjpy. For
each measure, we compute the corresponding Feller condition for each square root
process.
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Fig. 2 Simultaneous FX calibration. Market data as of July 22nd, 2010. Market volatilities are denoted
by crosses, model volatilities are denoted by circles. Moneyness levels follow the standard Delta quoting
convention in the FX option market. DC and DP stand for “delta call” and “delta put,” respectively
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Under the real-world probability measure P, we observe that the Feller condition
2κkθk ≥ σ 2

k is satisfied by both V1 and V2. We next proceed to perform the same
analysis under the two putative risk neutral measures Q

usd and Q
jpy, respectively.

We observe that for the first one we still have that both processes do never reach
zero, whereas for Qjpy we have that the Feller condition is not satisfied by the second
component. As discussed in Sect. 3.2, if at least one of the square root processes has a
different behavior under the putative risk neutral measure, then we have that classical
risk neutral pricing is not well founded. In summary, we have a situation where market
data suggest that for the USD currency denomination risk neutral pricing is potentially
applicable, while in the JPY denomination it is not theoretically founded.

We also perform a second calibration experiment. The structure of the sample of
the dataset is the same as in the previous case and market data were provided as of
Feb 23rd, March 23rd, April 22nd, May 22nd and June 22nd 2015. Essentially, we are
taking the perspective of a derivative desk following the market practice that involves
a periodic model re-calibration across different trading dates. Such analysis allows
us to provide some first evidence regarding the stability of the parameter estimates
we obtain. By looking at Table 3, we observe a satisfactory stability of the calibrated
parameters. A relevant change in the estimates is observed only between the February
and March calibration. The quality of the fit is comparable with the one obtained in
our first calibration and the above mentioned papers of Baldeaux et al. (2015) and De
Col et al. (2013).

Calibrated parameter values are listed in Table 3, whereas the Feller condition under
all measures is reported in Table 4. We observe in this case a violation of the Feller
condition for the second factor under the Qusd putative risk neutral measure, whereas
for the Qjpy measure the condition is passed. For Qeur, instead, we observe that the
condition is initially passed and then, starting from April 22nd, we have repeated
violations. The overall results of our analysis allow us to suggest that markets are
subject to what we may term as regime switches in pricing between the classical risk
neutral and themore general real-world pricing approach. Such a feature would clearly
provide a strongmotivation for the introductionofmodels that are able to accommodate
both valuation frameworks, like the 4/2 type specification that we propose.

6 Conclusion

In this paper, we introduced a more general modeling approach than available under
the classical no-arbitrage paradigm in finance and insurance. In the context of a flex-
ible model for exchange rates calibrated to market data, we showed that the classic
risk neutral paradigm can fail. The main mathematical phenomenon underlying these
surprising effects is the potential strict supermartingale property of benchmarked sav-
ings accounts under the real-world probability measure, as suggested in several cases
by our calibration exercise on the foreign exchange option market. The presented
results represent only an example for new phenomena that can be captured under the
benchmark approach.

There is ample room formany new research questions and interesting related studies
in insurance and finance. Our stochastic volatility model allows for a nonlinear market
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Table 3 Parameter values resulting from the repeated calibration procedure of a two factor specification
with constant interest rates

Parameter 02.23.2015 03.23.2015 04.22.2015 05.22.2015 06.22.2015

V1(0) 0.73431 1.1740 1.1719 1.1736 1.1801

V2(0) 1.1943 1.4352 1.4338 1.4356 1.4345

κ1 0.46330 0.48651 0.48812 0.48968 0.48950

κ2 0.52193 0.49237 0.49523 0.49191 0.49282

θ1 0.35253 0.29821 0.29999 0.30107 0.30082

θ2 0.75203 0.53498 0.53561 0.53464 0.53455

σ1 0.49603 0.49110 0.49443 0.49604 0.49561

σ2 0.66899 0.66938 0.67128 0.67135 0.67102

ρ1 − 0.99327 − 0.86543 − 0.85665 − 0.86540 − 0.86434

ρ2 − 0.94111 − 0.89690 − 0.89728 − 0.89706 − 0.89558

ausd1 0.12445 0.13047 0.12885 0.12399 0.12616

ausd2 0.062812 0.036533 0.047360 0.058480 0.058355

aeur1 0.045806 0.038959 0.049467 0.053229 0.058580

aeur2 0.044107 0.054640 0.051325 0.045735 0.048780

a
jpy
1 0.16458 0.15589 0.14943 0.14803 0.14984

a
jpy
2 0.057533 0.080895 0.073395 0.067905 0.073300

busd1 − 0.10105 − 0.041716 − 0.057950 − 0.059954 − 0.055886

busd2 − 0.11178 − 0.094706 − 0.12360 − 0.12433 − 0.12753

beur1 − 0.065631 − 0.041879 − 0.063733 − 0.072158 − 0.074323

beur2 0.0076657 − 0.037459 − 0.039780 − 0.044664 − 0.041933

b
jpy
1 − 0.059432 − 0.047197 − 0.053469 − 0.054806 − 0.055076

b
jpy
2 − 0.065707 − 0.051282 − 0.058217 − 0.062116 − 0.056492

Res. Norm. 0.0131 0.0121 0.0106 0.0269 0.0141

price of volatility risk, a desiderable property in order to explain nonlinear effects
under the real-world probability measure for the risk factors. Second, we performed
our calibrations at some particular trading dates. Recently, Deep Neural Networks
(DNN)-based algorithms have been introduced in finance in order to deal with robust
calibration and hedging of large portfolios, see, e.g., Stone (2019), Horvath et al.
(2021), Bayer and Stemper (2019) and references therein. These DNN algorithms are
flexible and fast, but still require a learning phase,which typically takes a lot of time and
needs the pricing technology to feed the network. In this sense, our results should not
be seen in competition with DNN since, on the contrary, they are a useful ingredient.
Finally, much more information could be extracted from a statistical estimation on a
time series of option prices or the underlying GOP. The proposed 4/2 model allows
for the possibility of a failure of the classical risk neutral pricing assumption and
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deserves more theoretical and numerical investigation. In view of this, our paper aims
to stimulate further studies.
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A Proof of Lemma 3.1

Let us first observe from (3.11) and (3.6) that in the present setting, we have π1(t) =
λ(t) and π2(t) = λ(t) − √

V (t).
Given the general specification of the GOP dynamics, we immediately have for

Case 1:

dD1(t)

D1(t)
= r1(t)dt + a

√
V (t)

(
a
√
V (t)dt + dZ(t)

)
,

dD2(t)

D2(t)
= r2(t)dt + (a − 1)

√
V (t)

(
(a − 1)

√
V (t)dt + dZ(t)

)
,

which are both Heston-type models.
For Case 2, we have

dD1(t)

D1(t)
= r1(t)dt + b√

V (t)

(
b√
V (t)

dt + dZ(t)

)
,

dD2(t)

D2(t)
= r2(t)dt +

(
b√
V (t)

−√V (t)

)((
b√
V (t)

−√V (t)

)
dt + dZ(t)

)
,

so that D1 follows a 3/2 model (see Heston 1997; Platen 1997), whereas D2 follows
a 4/2 type model (see Grasselli 2017). On the other hand, for Case 3, we have

dD1(t)

D1(t)
= r1(t)dt +

(
a
√
V (t) + b√

V (t)

)((
a
√
V (t) + b√

V (t)

)
dt + dZ(t)

)
,

dD2(t)

D2(t)
= r2(t)dt +

(
(a − 1)

√
V (t) + b√

V (t)

)

×
((

(a − 1)
√
V (t) + b√

V (t)

)
dt + dZ(t)

)
,

which are both 4/2 type processes.
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B Proof of Theorem 4.1

We start by directly considering the conditional expectation for Ψt (ζ ). We perform
several manipulations so that the results of Grasselli (2017) can be directly employed.
To this end, we parametrize the correlation structure from Assumption 3.2 by writing

Z(s) = Diag(ρ)W(s) +
√
Id − Diag(ρ)2W⊥(s),

so that we have

Ψt (ζ ) = exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)}

× E

[

exp

{
N∑

i=1

(
iζ i

∫ T

t
〈H i , V (s)〉 + 〈Gi , V (s)−1〉ds

+iζ i

2

∫ T

t
π i (s)	π i (s)ds + iζ i

∫ T

t
π i (s)	dZ(s)

)}∣∣∣∣Ft

]

= exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)
}

× E

[

exp

{
N∑

i=1

(
iζ i

∫ T

t
〈H i , V (s)〉 + 〈Gi , V (s)−1〉ds

+iζ i

2

∫ T

t
π i (s)	π i (s)ds +

∫ T

t
iζ iπ i (s)	Diag(ρ)dW(s)

)}

×E

[

exp

{
N∑

i=1

∫ T

t
iζ iπ i (s)	

√
Id − Diag(ρ)2dW⊥(s)

}∣∣∣
∣∣
V

]∣∣∣
∣∣
Ft

]

= exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)}

× E

[

exp

{
N∑

i=1

(
iζ i

∫ T

t
〈H i , V (s)〉 + 〈Gi , V (s)−1〉ds

+ iζ i

2

∫ T

t
π i (s)	π i (s)ds +

∫ T

t
iζ iπ i (s)	Diag(ρ)dW(s)

+1

2

∫ T

t

(
N∑

i=1

iζ iπ i (s)	
)(

Id − Diag(ρ)2
)( N∑

i=1

iζ iπ i (s)

)

ds

)}∣∣∣
∣∣
Ft

]

= exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)
}
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×
d∏

k=1

E

[

exp

{
N∑

i=1

(
iζ i

∫ T

t
Hi
k , Vk(s) + Gi

k, Vk(s)
−1ds

+ iζ i

2

∫ T

t
π i
k(s)

	π i
k(s)ds +

∫ T

t
iζ iπ i

k(s)
	ρkdlWk(s)

+1 − ρ2
k

2

∫ T

t

(
N∑

i=1

iζ iπ i
k(s)

)2

ds

⎞

⎠

⎫
⎬

⎭

∣∣
∣∣∣∣
Ft

⎤

⎦ .

Let us rewrite the final term in the exponent as follows

1 − ρ2
k

2

∫ T

t

(
N∑

i=1

iζ iπ i
k(s)

)2

ds

= 1 − ρ2
k

2

⎛

⎝
∫ T

t

(
N∑

i=1

iζ i aik
√
Vk(s)

)2

+
N∑

i=1

N∑

j=1

iζ iiζ j
(
aikb

j
k + a j

k b
i
k

)

(
N∑

i=1

iζ i bik
1√
Vk(s)

)2

ds

⎞

⎠

= 1 − ρ2
k

2

⎛

⎝
∫ T

t
Vk(s)ds

⎛

⎝
N∑

i=1

N∑

j=1

iζ iiζ j aika
j
k

⎞

⎠+
N∑

i=1

N∑

j=1

iζ iiζ j
(
aikb

j
k + a j

k b
i
k

)

+
∫ T

t

1

Vk(s)
ds

⎛

⎝
N∑

i=1

N∑

j=1

iζ iiζ j bikb
j
k

⎞

⎠

⎞

⎠ .

Hence, we have

Ψt (ζ ) = exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)}

×
d∏

k=1

exp

⎧
⎨

⎩
1 − ρ2

k

2

N∑

i=1

N∑

j=1

iζ iiζ j (aikb
j
k + a j

k b
i
k)(T − t)

+
N∑

i=1

iζ i aikb
i
k(T − t)

}

× E

[

exp

{
N∑

i=1

(

iζ i
∫ T

t
Hi
k Vk(s) + Gi

k

Vk(s)
ds + iζ i

2
(aik)

2
∫ T

t
Vk(s)ds

+ iζ i

2
(bik)

2
∫ T

t

1

Vk(s)
ds + iζ iρka

i
k

∫ T

t

√
Vk(s)dWk(s)

+ iζ iρkb
i
k

∫ T

t

1√
Vk(s)

dWk(s)
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+ 1 − ρ2
k

2

⎛

⎝
∫ T

t
Vk(s)ds

⎛

⎝
N∑

i=1

N∑

j=1

iζ iiζ j aika
j
k

⎞

⎠

+
∫ T

t

1

Vk(s)
ds

⎛

⎝
N∑

i=1

N∑

j=1

iζ iiζ j bikb
j
k

⎞

⎠

⎞

⎠

⎞

⎠

⎫
⎬

⎭

∣∣∣
∣∣∣
Ft

⎤

⎦

= exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)}

×
d∏

k=1

exp

⎧
⎨

⎩
1 − ρ2

k

2

N∑

i=1

N∑

j=1

iζ iiζ j (aikb
j
k + a j

k b
i
k)(T − t)

+
N∑

i=1

iζ i aikb
i
k(T − t)

}

E

⎡

⎣exp

⎧
⎨

⎩

N∑

i=1

⎛

⎝iζ i H i
k +iζ i

2
(aik)

2+ 1 − ρ2
k

2

N∑

j=1

iζ iiζ j aika
j
k

⎞

⎠
∫ T

t
Vk(s)ds

+
N∑

i=1

⎛

⎝iζ i Gi
k + iζ i

2
(bik)

2 + 1 − ρ2
k

2

N∑

j=1

iζ iiζ j bikb
j
k

⎞

⎠
∫ T

t

1

Vk(s)
ds

+
N∑

i=1

(
iζ iρka

i
k

∫ T

t

√
Vk(s)dWk(s)

+iζ iρkb
i
k

∫ T

t

1√
Vk(s)

dWk(s)

)}∣∣∣∣Ft

]
.

Let us recall the well-known relations

∫ T

t

√
Vk(s)dWk(s) = 1

σk
(Vk(T ) − Vk(t)) −

∫ T

t

κk

σk
(θk − Vk(s))ds

and

∫ T

t

1√
Vk(s)

dWk(s) = 1

σk
ln

Vk(T )

Vk(t)
−
∫ T

t

κkθk
σk

− σk
2

Vk(s)
ds + κk

σk
(T − t).

Substitution of the above relations yields

Ψt (ζ ) = exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)
}

×
d∏

k=1

exp

⎧
⎨

⎩
1 − ρ2

k

2

N∑

i=1

N∑

j=1

iζ iiζ j (aikb
j
k
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+a j
k b

i
k)(T − t) +

N∑

i=1

iζ i aikb
i
k(T − t)

}

× E

[

exp

{
N∑

i=1

(
iζ i H i

k + iζ i

2
(aik)

2

+1 − ρ2
k

2

N∑

j=1

iζ iiζ j aika
j
k + iζ iρka

i
k
κk

σk

⎞

⎠
∫ T

t
Vk(s)ds

+
N∑

i=1

⎛

⎝iζ i Gi
k + iζ i

2
(bik)

2 + 1 − ρ2
k

2

N∑

j=1

iζ iiζ j bikb
j
k

−iζ iρkbik
σk

(

κkθk − σ 2
k

2

))∫ T

t

1

Vk(s)
ds

+
N∑

i=1

[
iζ iρka

i
k

(
Vk(T ) − Vk(t)

σk
− κkθk

σk
(T − t)

)

+ iζ iρkb
i
k

(
1

σk
log

(
Vk(T )

vk(t)

)
+ κk

σk
(T − t)

)]}∣∣∣∣Ft

]

= exp

{
N∑

i=1

iζ i
(
Y i (t) + hi (T − t)

)
}

×
d∏

k=1

exp

⎧
⎨

⎩

N∑

i=1

(T − t)

⎛

⎝1 − ρ2
k

2

N∑

j=1

iζ iiζ j (aikb
j
k + a j

k b
i
k)

+iζ i aikb
i
k + iζ i

κkρk

σk

(
bik − θka

i
k

))

− Vk(t)iζ i
ρkaik
σk

− iζ i
ρkbik
σk

log(Vk(t))

}

× E

[
Vk(T )−αk e

−λkVt (T )−μk
∫ T
t Vk (s)ds−νk

∫ T
t

1
Vk (s) ds

∣∣∣∣Ft

]
,

where we introduced (4.8)–(4.11). The result is obtained via an iterated application of

Theorem D.1 from Grasselli (2017) with a = κkθk, b = κk, σ = σ 2
k
2 and τ = T − t
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E

[
Vk(T )−αk e

−λkVk (T )−μk
∫ T
t Vk (s)ds−νk

∫ T
t

ds
Vk (s)

]

=
(

βk(τ, Vk(t))

2

)mk+1

Vk(t)
− κk θk

σ2k (λk + Kk(τ ))
−
(

1
2+mk

2 −αk+ κk θk
σ2k

)

× e
1

σ2k

(
κ2k θk (T−t)−√

AkVk (t) coth

(√
Ak (T−t)

2

)
+κkVk (t)

)
�

(
1
2 + mk

2 − αk + κkθk
σ 2
k

)

�(mk + 1)

× 1F1

(
1

2
+ mk

2
− αk + κkθk

σ 2
k

,mk + 1,
β2
k (τ, Vk(t))

4(λk + Kk(τ ))

)

,

(B.1)

with

mk = 2

σ 2
k

√√√√
(

κkθk − σ 2
k

2

)2

+ 2σ 2
k νk, (B.2)

Ak = κ2
k + 2μkσ

2
k , (B.3)

βk(τ, Vk(t)) = 2
√
AkVk(t)

σ 2
k sinh

(√
Ak (T−t)

2

) , (B.4)

Kk(τ ) = 1

σ 2
k

(√
Ak coth

(√
Ak(T − t)

2

)
+ κk

)
. (B.5)

Concerning the convergence set, we have

E

[ ∣∣∣ei〈ζ,Y (T )〉
∣∣∣
∣∣∣Ft

]
= E

[
e−〈Im(ζ ),Y (T )〉

∣∣∣Ft

]

so that we are induced to study the regularity at the point −Im(ζ ). Now, for each
k = 1, . . . , d Equations (D.3) up to (D.6) from Grasselli (2017) allow us to obtain
conditions i–iv on f lk (−Im(ζ )), l = 1, . . . , 4. Also, (4.12) can be directly inferred
from (D.13). The conclusions on the convergence set follow along the arguments of
Grasselli (2017).

C Proof of Lemma 4.1

Let −1 < α < 0, then we have

φi, j (z) = Di (t)E

[
1

Di (T )
eizx

i, j (T )

∣∣∣
∣Ft

]

≤ Di (t)E

[
1

Di (T )
e−αxi, j (T )

∣∣∣∣Ft

]
= Di (t)E

[
1

Di (T )

(
Di (T )

D j (T )

)−α
∣∣∣∣∣
Ft

]

.
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We introduce, in line with Section 7.3.3 of Baldeaux and Platen (2013), a forward
measure PT with associated numéraire given by the zero coupon bond price process
Pi (., T ) = {

Pi (t, T ), 0 ≤ t ≤ T
}
. Recall that the minimal possible benchmarked

price of a derivative is a martingale under the benchmark approach, hence, the bench-
marked zero coupon bond price allows us to define the following density process

∂PT

∂P

∣
∣∣∣Ft

= Zt := Pi (t, T )Di (0)

Pi (0, T )Di (t)
, t ≤ T .

Using such a forward measure, in conjunction with Jensen’s inequality for concave
functions, allows us to write

Di (t)E

[
1

Di (T )

(
Di (T )

D j (T )

)−α
∣∣
∣∣∣
Ft

]

= Pi (t, T )EPT

[(
Di (T )

D j (T )

)−α
∣∣
∣∣∣
Ft

]

≤ Pi (t, T )EPT
[(

Di (T )

D j (T )

)∣∣
∣∣Ft

]−α

= Pi (t, T )

(
Di (t)

Pi (t, T )

)−α

E

[(
1

D j (T )

)∣∣
∣∣Ft

]−α

= Pi (t, T )

(
Di (t)

D j (t)

)−α (
P j (t, T )

Pi (t, T )

)−α

= Pi (t, T )
(
Si, j (t)

)−α
(
P j (t, T )

Pi (t, T )

)−α

,

which prove the finiteness of the characteristic function. The analytic extension to the
set Z is then a direct consequence of Theorem 7.1.1 in Lukacs (1970).

D The general transform of the CIR process

For convenience, we recall the formula inGrasselli (2017) giving the general transform
for the CIR process X = {Xt , t ∈ [0, T ]} that extends formulas in Craddock and
Lennox (2009) to the case

Et

[
X−α
T e−λXT −μ

∫ T
t Xsds−ν

∫ T
t

ds
Xs

]
. (D.1)

Theorem D.1 (Grasselli 2017) Assume that Xt satisfies the SDE

dXt = (a − bXt )dt +√2σ XtdWt , X0 = x > 0, (D.2)

with a, b, σ > 0 and a > σ (Feller condition). Given α,μ, ν, λ such that

b2 + 4μσ ≥ 0 (D.3)

(a − σ)2 + 4σν ≥ 0 (D.4)

1

2
+ a

2σ
+ 1

2σ

√
(a − σ)2 + 4σν > α, (D.5)

λ ≥ −
√
b2 + 4μσ + b

2σ
(D.6)
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then the transform (D.1) is well defined for all t ≥ 0 and is given by

E

[
X−α
t e−λXt−μ

∫ t
0 Xsds−ν

∫ t
0

ds
Xs

]

=
(

β(t, x)

2

)m+1

x− a
2σ (λ + K (t))

−
(
1
2+m

2 −α+ a
2σ

)

× e
1
2σ

(
abt−√

Ax coth
(√

At
2

)
+bx

)
�
( 1
2 + m

2 − α + a
2σ

)

�(m + 1)

× 1F1

(
1

2
+ m

2
− α + a

2σ
,m + 1,

β2(t, x)

4(λ + K (t))

)
,

(D.7)

with

m = 1

σ

√
(a − σ)2 + 4σν, (D.8)

A = b2 + 4μσ, (D.9)

β(t, x) =
√
Ax

σ sinh
(√

At
2

) , (D.10)

K (t) = 1

2σ

(√
A coth

(√
At

2

)

+ b

)

. (D.11)

If

λ < −
√
b2 + 4μσ + b

2σ
, (D.12)

then the transform is well defined for all t < t�, with

t� = 1√
A
log

(

1 − 2
√
A

b + 2σλ + √
A

)

. (D.13)
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