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Abstract

This research develops the scheme proposed in the paper Pollard [J Inst Actuar 96(2):
251-264, 1970], which is based on a two-state model for the analysis of 1-year mortal-
ity, but the results are also valid for the probabilities related to other types of insurance
events such as disablement and accidents. We extend the Pollard’s original scheme
into time-discrete models with more states (active-invalid-dead) together with further
investigation into multi-year time horizon. Additionally, hypotheses for real-valued
individual frailty are assumed in the models. As the baseline probabilistic structure,
we have adopted a traditional three-state model in a Markov context. We focus on an
insurance portfolio. Our outputs of interest are based on the probability distributions
of the annual payouts for term insurance policies providing lump sum benefits both
in case of death and in case of permanent disability. The analysis of the probability
distributions allows us to assess the risk profile of the insurance portfolio, and thus
to suggest appropriate actions in terms of premiums and capital allocation. In this
regards, we adopt the percentile principle.
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1 Introduction

The use of multistate models and, in particular, of Markov structures to represent the
biometric features of insurance products in the area of insurance of the person can
be dated back to the seminal contribution by Hoem (1969). Later contributions to life
insurance and related fields, based on multistate models, are given by Amsler (1988),
Hoem (1988) and Waters (1984).

Moving to actuarial textbooks which present the actuarial structure of life and
health insurance contracts in terms of multistate models, we quote (Haberman and
Pitacco 1999; Norberg 2002) and, as specifically regards long-term care insurance,
Denuit et al. (2019). Health insurance, and, more specifically disability insurance
are presented by Pitacco (2014). The value of disability insurance from an economic
perspective is addressed for example by Chandra and Samwick (2009).

As noted by Pitacco (2019), heterogeneity of a population in respect of mortality
(and disability) is due to differences among the individuals, which are caused by
various risk factors. Some risk factors are observable, while others are unobservable.
The set of observable risk factors clearly depends on the type of population addressed. It
follows that the scientific and technical literature dealing with heterogeneity modelling
is manifold.

The long-term and multi-year characteristics of the life insurance contracts and of
many health insurance contracts imply difficulties in expressing the impact of unob-
servable heterogeneity on the individual risk profile. The early contributions to this
topic must be credited to Beard (1959) (in the actuarial context) and Vaupel et al.
(1979) (in the demographic context).

Among the features which heavily affect the risk profile of an insurance portfolio,
uncertainty in the parameters of the stochastic models should be carefully considered.
This topic has raised great interest in the insurance field; see, for example, Cairns
(2000). Parameter uncertainty has a significant impact on the risk profile of a life
annuity portfolio or a pension plan; see Pitacco et al. (2009) and references therein.
As regards uncertainty in the assessment of probabilities (of death in particular) an
interesting model has been proposed by Olivieri and Pitacco (2009), while a simple
quantification is proposed by Olivieri and Pitacco (2015). The latter is here adopted
to express uncertainty in the assessment of probabilities of disablement.

The main contribution of the present paper consists in implementing a stochastic
approach to the assessment of the annual payouts of a portfolio of life insurance
policies also providing lump sum benefits in the case of permanent disability. The
“shift” from deterministic to stochastic approach has been realized as follows.

1. Referring to a two-state, 1-year setting, interesting generalizations of the classical
binomial model have been proposed by Pollard (1970), where the presence of both
observable heterogeneity and uncertainty is allowed. In line with generalization
proposed by Valente (2017), we have defined the following general settings:

(a) by adding appropriate probability distributions to quantify the uncertainty;
(b) by allowing for unobservable heterogeneity.
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Heterogeneity and uncertainty in a multistate framework 119

2. Inour model, we have assumed, as the “baseline” setting, a three-state model with
a Markov structure. This structure has been adopted, in absence of uncertainty,
for homogeneous portfolios as well as for portfolios with observable heterogene-
ity. The presence of either uncertainty or unobservable heterogeneity calls for
more general settings: the resulting structure we have defined consists of Markov
processes conditional on the outcomes of the unknown quantities which express
uncertainty or unobservable heterogeneity.

3. We have applied the model, structured as described under 1(a), 1(b) and 2, to a
portfolio of multi-year policies providing death and permanent disability benefits.
In line with the need for stochastic assessments, we have calculated, via stochastic
simulation, the (empirical) distributions of the payouts for benefits paid in case
of death in the active state, in case of death in the disability state, and in case of
disablement. The results achieved provides a clear picture of the risk profile of the
portfolio throughout time.

The remainder of the paper is organized as follows. Starting from the classical
multistate model with a Markov structure, described in Sect. 2, a generalized portfolio
model embedding possible uncertainty and unobservable heterogeneity has been built-
up and described in Sect. 3. Then, in Sect. 4 the generalized model is implemented to
perform assessment of the portfolio risk profile; a number of numerical results are
presented and discussed.

Finally, suggestions for future research work are provided in the concluding Sect. 5.

2 A three-state model

In this Section an implementation of the Markov model described above is proposed.
A time-discrete framework is assumed, with the year as the time unit.

2.1 Application to an insurance cover

We consider an insurance cover providing lump sum benefits in case of death and in
case of disablement causing a permanent disability.

The state space is

L=A{a,i,d} )

where:

a = active (or healthy);

i = disabled (or invalid);
d = dead.

Benefits are assumed to be paid at the end of the year in which a relevant event
occurs. The benefit amounts are as follows:

Bj if the individual dies in the year, being in the active state, that is, if the transition
a — d occurs;

B if a disablement occurs and the individual is alive at the end of the year, that
is, if the transition a — i occurs;
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120 D. Tabakova, E. Pitacco

Bj3 if a disablement occurs and the individual dies before the end of the year, that
is, if the transitions a — i — d occur.

Because of the benefit structure we have defined, the set of transitions is as follows:
T ={(a,i), (a,d), (i, d)) 2

We disregard recovery. The above setting can represent a simple insurance package.
Assuming B3 > Bj, we indeed recognize the structure of a term insurance policy with
a basic death benefit B, supplementary benefit in case of death because of accident
given by B3 — Bj, and benefit B; in the case of disablement leading to permanent
disability, provided the individual is alive at the end of the year.

2.2 The basic Markov structure

We describe the probabilistic structure required by the three-state model defined above.
We adopt the Hamza notation (commonly used in the actuarial framework; see for
example Haberman and Pitacco 1999).

For an active individual age x, we define the following probabilities:

— p¥% = probability of being active at age x + 1;

— ¢y“ = probability of dying within 1 year, the death occurring in state active (a);

— py' = probability of being disabled at age x + 1;

— qy' = probability of dying within 1 year, the death occurring in state disability (i);

— p¢ = probability of being alive at age x + 1;

— gq¢ = probability of dying within 1 year [the state of time at death being either
active (a) or invalid (i)];

— w, = probability of becoming disabled within 1 year.

Obvious relations hold among the above probabilities (see, for example, Pitacco 2014);
in particular:

P+ P = P
i +qi = qi;
pitai =1
pf\cli + C]ffi = Wy.

Given the definition of the benefit structure, disablement and death constitute two
exit causes. Hence, probabilities related to individuals in state invalid (at the beginning
of the year) are not relevant.

We note that the probability qf(’i refers to an event consisting of two transitions,
that is, a — i and i — d. The following approximation is frequently adopted in the

actuarial practice (see, for example, Pitacco 2014):

i
g4~ w, @)

2
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where ¢! generically denotes the mortality of disabled people. The following approx-
imation, which will be useful in the following, can then be derived:

gl -
Wy (1 - 7") ~ pd! “)

The three-state Markov model we have described constitutes the baseline setting
to define the portfolio stochastic structure. A first (trivial) generalization is required
if the insurance portfolio is split, thanks to observable risk factors, into subportfolios,
each one consisting of homogeneous risks. The generalization consists in assigning
different probabilities to individuals belonging to different subportfolios.

We note that, given the benefit structure as defined in Sect.2.1, our three-state
model can be interpreted, as a model with three causes of “decrement”, all the causes
implying that the individual leaves the portfolio:

1. transition a — d, implying benefit By;
2. transition a — i, implying benefit By;
3. transitions @ — i — d, implying benefit Bs.

2.3 Allowing for frailty or uncertainty

Lack of information might imply a (more or less significant) margin of vagueness in
assigning the above probabilities. In particular, this may be caused by:

— heterogeneity due to unobservable risk factors, which implies individual frailty;
— uncertainty in stating the same probability for all the individuals belonging to the
portfolio (or to a subportfolio).

Our modelling choice consists in representing the vagueness, in both the above
situations, by considering the probabilities as random quantities and assigning to these
quantities four-parameter beta distributions.

Numerical values of the probabilities will be determined via stochastic simulation.
One or more assumptions and one or more set of probabilities are needed according
to the portfolio structure: see Sect. 3.1.

3 The insurance portfolio
3.1 Portfolio structures

In this Section we define, in stochastic terms, a set of portfolio structures, each one
labelled as “case”.

Generally speaking, uncertainty and frailty might affect all the probabilities
involved in the calculations. Here, we only focus on the probabilities of disable-
ment (see below). More details will be provided in Sect.4, when defining a specific
insurance portfolio. In all the cases, we assume that the portfolio initially consists of n
individuals, all aged x¢. Each individual risk is covered by a m-year insurance policy.
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122 D. Tabakova, E. Pitacco

Table 1 Parameters of the first Heligman—Pollard law

A B C D E F G H

0.00054 0.01700 0.10100 0.00013 10.7200 18.67 1.46400 x 1073 1.11000

The age-patterns of mortality are described by the first Heligman—Pollard law
which, in terms of the mortality odds, is given by the following expression:

9x  _ pG+B) | pe—Enx—IF)’ 4 & px )

1_qx

We note that the first term represents infant mortality, the second term represents
young-adult hump, the third term represents adult-old mortality (see Heligman and
Pollard 1980). A given set of parameters is assumed for the mortality of active people,
that is for the probabilities ¢{“. The parameters are specified in Table 1 (see Sect.4.3)
and have been chosen to reflect the mortality experience in portfolios of standard risks.
For the mortality of disabled people we assume:

¢t = (14 p) ¢t (6)

that is, a multiplicative model expressing extra mortality, assuming that x can represent
an average increase in mortality for the members of the group.

Probability of disablement is assumed constant over the whole age range involved.
More precisely, we have adopted the approximation (4), assuming a constant w.

In the case of frailty or uncertainty, the probability of disablement is a random
quantity, denoted with W. From the outcome of W, the same approximation for p%
is applied.

3.1.1 Case 1

The insurance portfolio consists of one homogeneous group; all individuals have the
same known probability of disablement, w.
Summarizing: homogeneity, no uncertainty.

3.1.2 Case 2
A heterogeneous portfolio, thanks to observable heterogeneity, is arranged in r sub-
portfolios, with given sizes ny, ny, ..., n,, such that Z;zl n; = n. Each subportfolio

includes individuals with the same probability of disablement. Probability of disable-
ments are w; < wy < --- < w,. We define the average probability of disablement as

follows: .
n
W = § —Lw; (7

and assume that w = w, that is the probability of disablement in Case 1.
Summarizing: observable heterogeneity, deterministic group sizes, no uncertainty.
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3.1.3 Case3

The insurance portfolio consists of one homogeneous group; all individuals have the
same unknown probability of disablement, W. Hence, W is a random variable with
probability distribution Beta(e, 8, y, §). We note that «, § are the shape parameters,
whereas y is the lower bound and § is the upper bound, so that (y, § ] is the interval
of possible outcomes.

Summarizing: homogeneity, uncertainty.

3.14 Case 4

The insurance portfolio consists of one heterogeneous group; all individuals have
unknown probability of disablement. Let W) denote the random variable express-
ing the probability of disablement for the individual i, i = 1,2, ..., n. All the W®
have the same probability distribution Beta(«, 8, y, §). This case represents the situ-
ation of individual frailty. Thus, each individual may have a different probability of
disablement, but this probability is unknown.

Summarizing: unobservable heterogeneity, continuous frailty modelling.

3.1.5 Case5

A heterogeneous portfolio, thanks to observable risk factors, is arranged in r subport-
folios. However, the sizes of the subportfolios, Ny, Na, ..., N,, are random because
of unobservable individual heterogeneity, and the vector

MZ(N17N27"'5NV)

has multinomial distribution with parameters (n, f1, f2, ..., fr), suchthatn = Ny +
No+---4+ Ny and f1 + fo +--- 4+ f» = 1. The probabilities of disablement within
each subportfolio w; are given, and such that w; < wz < --- < w,. This multinomial
scheme can represent in a discrete framework the individual frailty, thus providing an
approximation of the continuous frailty model as defined by Case 4.

Summarizing: unobservable heterogeneity, discrete frailty modelling.

3.1.6 Case 6

A heterogeneous portfolio, thanks to observable risk factors, is arranged in r subportfo-

lios, each with known size, that is, n1, ny, . .., n,. All individuals in the subportfolio

J have the same unknown probability of disablement, W;. Hence, W; is a random

variable with probability distribution Beta(c;, B;, v, 8;), j=1...,r.
Summarizing: observable heterogeneity, uncertainty.
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3.2 Outflows
3.2.1 Benefits

The benefit structure has already been defined in Sect.2.1. The benefit amounts are
the same for all the individuals belonging to the portfolio.

3.2.2 Annual payouts

The benefits define the insurer’s annual payouts.
— Xp(¢) = annual random payout at time ¢ for benefits By; h = 1, 2, 3.

wherer = 1,2, ..., m, with m the common term of all the individual policies. X () =
X1()+X2(1)+X3(1)

Our main target is to quantify the payout randomness in terms of probability dis-
tributions fort =1, 2, ..., m.

3.3 Facing the annual payouts

Random payouts constitute the insurer’s liability, which must be met by appropriate
assets. Hence, a calculation principle is needed, in order to summarize a sequence of
random amounts in terms of deterministic quantities.

Usually, a share of the total amount meeting the liability, i.e. the premiums, is
provided by the policyholders, while the remaining share, i.e. the capital allocated, is
provided by the insurer.

3.3.1 Premiums

We only focus on natural premiums, which are defined as the annual expected costs
to the insurer. Technical equilibrium in each policy year is then achieved. The natural
premium arrangement is particularly interesting in the context of group insurance,
when the employer acts as the sponsor of the scheme and then pays the premiums.
In this case, the annual total premium amount paid by the employer is usually given
by the sum of the individual natural premiums, and hence can vary according to the
composition of the insured group.

3.3.2 Capital allocation

Capital allocation aims at insurer’s solvency. The assets provided by the premium
collection plus the assets backing the shareholders’ capital must face, according to
some specified principle, the insurer’s liabilities. Of course, a time horizon must be
stated. In what follows, we will refer to a 1-year time horizon; actually, this choice is
in line with both the current solvency logic and the natural premium arrangement that
we are adopting.
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3.3.3 The percentile principle

In what follows, we will determine, for each year, the amounts of assets facing, accord-
ing to the percentile principle (that is, according to the Value at Risk logic), the random
value of the payout for benefits falling due in that year.

Hence, we will not distinguish between assets financed by the premium collection
and assets backing the shareholders’ capital.

In formal terms, according to the percentile principle, we have to find, for t =
1,2, ..., m, the amount A(¢) such that:

Pr{X(t) > A(t)} = ¢ ®)

where € denotes an assigned (small) probability.
More in detail, we can state the following requirements. Find, fort = 1,2,...,m
and h = 1, 2, 3, the amounts A, (¢) such that:

Pr{X;(t) > Ap(1)} = € &)

Requirements defined by conditions (9) can be interesting as they provide informa-
tion about the specific impact of each type of benefit on the total requirement. From
a product design perspective, a high impact might suggest a redesign of the insur-
ance product and even the removal of a benefit, or at least the reduction in the related
amount.

4 Stochastic analysis: Numerical results

4.1 Calculation procedures

Probability distributions of the random variables X (7), X»(#), X3(¢) (and then X (2)),
fort = 1,2,...,m, must be determined. Calculations will be performed via sim-

ulation. Hence, simulated distributions of the variables X(t), X»(¢), X3(t) will be
calculated.

4.2 An overall scheme
The structure of the simulation procedure depends, of course, on the type of portfo-

lio and the relevant probabilistic structure. A first insight into the diverse procedure
structures is provided by Fig. 1.

4.2.1 Specific procedures: Cases 1 and 2
Portfolio structures labelled as Cases 1 and 2 require the simplest procedures. In the

absence of both individual frailty and uncertainty, the probabilities involved in the
three-state model are completely defined. In detail, one set of probabilities is given
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126 D. Tabakova, E. Pitacco

CASES INPUT OUTPUT

Empirical distributions

- Xi(1)
Markov assumption(s)

Three-state model(s)

Beta @ Xo(1)
distribution(s)
3,4, 6 i f 7
Multinomial
X3(0)

distribution

Fig.1 Calculation procedures

for the Case 1, more sets are required for the Case 2, where heterogeneous portfolio
is split into homogeneous subportfolios. In these cases the simulation procedure is
directly applied to each individual belonging to the portfolio; see step (@) in Fig. 1.

4.2.2 Specific procedures: Cases 3,4and 6

Uncertainty or frailty feature Cases 3, 4, and 6. Hence, the simulation procedure must
start with the generation of (pseudo-)random numbers beta-distributed; see step (® in
Fig. 1. In detail:

— the presence of uncertainty in Case 3 calls for the simulation of the random variable
W, whose outcome is applied to all the risks in the portfolio;

— the presence of individual frailty in Case 4 requires the simulation of the random
variables W®_ i = 1,2,...,n, all with the same beta distribution; then, the
outcomes represent the individual frailty levels;

— Case 6 combines:

(i) observable heterogeneity, which allows us to split the portfolio into » homo-
geneous subportfolios, with sizes ny, na, ..., n;;
(ii) uncertainty in disability rate which affects all individuals in each subportfolio.

Hence, the simulation of random variables W, beta-distributed with Beta(«, B;,
vj.8j), j =1,...,r,is needed.

In all the above cases, step (@) then follows.
4.2.3 Specific procedures: Case 5
In Case 5 the sizes of the subportfolios are random. So the first step in the calculation

procedure consists in simulating the subportfolio sizes according to a multinomial
distribution with parameters n, f1, f2, ..., fr; see step (© in Fig. 1.
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An alternative procedure to determine the values of the parameters f1, f2, ..., fr
is the following one.

Split the range of outcomes, § — y, of the random variable W, with distribution
Beta(e, B, ¥, §), into r subintervals, each with size s = (§ — y)/r.

Let f(w) denote the probability density function of the beta distribution; calculate,
for j =1,2,...,r, the following probabilities:

szPr{(j—l)s<W§js}=/js f(w)dw (10)

(=1s

Calculate the conditional expected value related to each subinterval, and set:

wsz(WI(j—l)s<W§js)=i/” w f(w)dw (11)
Ti Ji-ns

Finally, the subportfolio sizes are simulated according to the multinomial distri-
bution with parameters n, fi1, f2,..., fr-

We note that, this way, a continuous-frailty setting can be approximated by adopting
a discrete setting, for which the frailty levels are given by the quantities w;, j =
1,2,...,r as defined by Eq.(11).

4.3 Defining the portfolio: input data

The numerical examples are based on the following input data.

4.3.1 General data

The following input data are used in all the Cases.

— Number of simulations 100,000 for each case.

Portfolio initial size n = 10, 000.

— Insureds’ initial age xo = 40.

Policy term m = 25.

Benefits B| = By = B3 = 1000 monetary units.

Mortality of active people following the Heligman—Pollard law [see Eq. (5)], with

the parameters suggested by Olivieri and Pitacco (2015) for mortality of assured

people, given in Table 1.

— Mortality of disabled people according to the multiplicative model [see Eq. (6)],
with u = 0.30. This percentage has been chosen to represent an average increase
in mortality experienced in disability insurance.

— In all the Cases in which uncertainty in probability of disablement is accounted for,
the beta distribution Beta(w, 8, y, §) have been chosen to represent a reasonable
range (y, 8] of possible outcomes, and reasonable concentration—dispersion via
parameters «, f.
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Table2 Case 2—Subportfolio

sizes and probabilities of / " Wi

disablement 1 2000 0.015
2 6000 0.020
3 2000 0.025

Table 3 Case 5—Parameters of .

the multinomial distribution and / fi v

probabilities of disablement 1 0.043139459 0.003373745
2 0.123561732 0.007722715
3 0.171613562 0.012573115
4 0.185302973 0.017495855
5 0.170889089 0.022437165
6 0.137297730 0.027378369
7 0.094414976 0.032304236
8 0.052093299 0.037187443
9 0.019244005 0.041943619
10 0.002443175 0.046184713

Table 4 Case 6—Subportfolio

sizes and parameters of the beta / " & b Vi 5

distributions 1 2000 22 5.13 0 0.05
2 6000 22 3.30 0 0.05
3 2000 22 2.20 0 0.05

4.3.2 Case-specific data
Case 1 only requires the value w of the probability of disablement, assumed indepen-
dent of the attained age:

- w=0.02

In Case 2 the portfolio is split into  subportfolios, with different given probabilities
of disablement:

-r=23;
— subportfolio sizes and probabilities of disablement: see Table 2.

Case 3 represents the uncertainty situation in terms of probability of disablement
W, following a beta distribution:

- W ~ Beta(2.2,3.3,0,0.05).

Case 4 represents the situation of random individual frailty, W®, following a beta
distribution:

- WO ~ Beta(2.2,3.3,0,0.05), fori =1,2,...,n.
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Fig.2 Case | versus Case 2,
distribution of X (5)

4.00%-

3.00%-

2.00%-

Frequency

1.00%-

0.00%-

Fig.3 Case 1 versus Case 2,
distribution of X (25)

4.00% -

5, 3.00%-

Frequenc
N
8
R

1.00% -

0.00%-

Distribution of total annual benefits payout
attimet=5
Cases

Case 1
. Case 2

160000 200000 240000
Amounts
Distribution of total annual benefits payout
attime t=25
Cases

Case 1
. Case 2

120000 150000 180000 210000 240000

Amounts

Case 5 requires the simulation of subportfolio random sizes, according to the multi-
nomial distribution with probabilities f;, and related probability of disablements w;
see Table 3. We recall that the high number of subportfolios has been chosen aiming
to approximate the individual frailty by adopting a discrete setting.

In Case 6 the portfolio is split into r subportfolios, with different random probability

of disablement beta-distributed:

-r=3;

— parameters of the beta distributions: see Table4.

We note that parameters have been chosen to obtain the same weighted mean, that

is 2%, hence to achieve comparability.
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Fig.4 Case | versus Case 3, Distribution of total annual benefits payout
distribution of X (5) attimet=5
Cases
15.0%-
Case 1
- Case 3
5 10.0%-
c
[0}
3
o
o
[T
5.0%-
0.0%- A
0 100000 200000 300000 400000
Amounts
Fig.5 Case 1 versus Case 3, Distribution of total_ annual benefits payout
distribution of X (25) at time =25
Cases
i Case 1
9.00% . Case 3
>
8 6.00% -
) A 0
>
o
o
w
3.00% -
0.00% -

80000 120000 160000 200000 240000
Amounts

4.4 Simulated distributions

Simulated distributions are plotted in the following figures (Figs.2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12 and 13) aiming to compare in each figure the features of two diverse
heterogeneity settings.

4.4.1 Case 1 versus Case 2
We assess the effect of splitting the portfolio into homogeneous subportfolios thanks to

observable risk factors. We see that, in our multi-year, three-state framework, splitting
the portfolio is not effective for all the distributions considered, unlike the 1-year,
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Fig.6 Case 1 versus Case 4, Distribution of total annual benefits payout
distribution of X (5) attimet=5
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. Case 4
3.00%-
>
(&)
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Fig.7 Case 1 versus Case 4, Distribution of total annual benefits payout
distribution of X (25) attimet=25
Cases
4.00% - Case 1
. Case 4
>, 3.00%-
o
| o=
(0]
|
O
O 2.00%-
w
1.00%-
0.00%-
150000 200000
Amounts

two-state framework (see for more details, Valente 2017). We note that, in both the
cases, the setting is totally deterministic.

4.4.2 Case 1versus Case 3

In both the cases the portfolio is not split into subportfolios. We analyze the impact of
uncertainty in the assessment of the probability of disablement. We note that uncer-
tainty in the probability of disablement affects, at the same time and to the same extent
all the individuals in the portfolio. On the contrary, the frailty (see the next compar-
ison) separately affects each individual determining a lower impact on the portfolio
risk profile.
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Fig.8 Case 4 versus Case 5,
distribution of X (5)

Fig.9 Case 4 versus Case 5,
distribution of X (25)

4.4.3 Case 1 versus Case 4

Frequency

Frequency

4.00%-
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3.00% -
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Distribution of total annual benefits payout
attimet=5

Cases

. Case 4

Case 5

160000 200000 240000
Amounts

Distribution of total annual benefits payout
attimet=25
Cases

. Case 4
Case 5

150000 200000
Amounts

In Case 4 the portfolio is not split into subportfolios. Individual frailty is modelled as
a continuous variable. Unlike the case of uncertainty, the presence of individual frailty
does not heavily impact on the portfolio risk profile.

4.4.4 Case 4 versus Case 5

Frailty is modelled as a continuous or a discrete variable, respectively. Discrete mod-
elling is realized via grouping with random group sizes. We note that, in terms of
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Fig. 10 Case 2 versus Case 6, Distribution of total annual benefits payout
distribution of X (5) attimet=5
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Fig. 11 Case 2 versus Case 6, Distribution of total annual benefits payout

distribution of X (25) attime t=25
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simulated distributions, results almost coincide. Thanks to this fact, discrete frailty
modelling can be considered as an interesting practical alternative.

4.4.5 Case 2 versus Case 6

In both the cases, the portfolio is split into subportfolios. Case 2 is totally deterministic
(see above), whereas in Case 6 uncertainty is allowed for and affects each subportfolio
separately. Uncertainty heavily impacts on the portfolio risk profile.
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Fig. 12 Case 3 versus Case 6, Distribution of total annual benefits payout
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Fig. 13 Case 3 versus Case 6, Distribution of total annual benefits payout
distribution of X (25) attime t =25
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4.4.6 Case 3 versus Case 6

We look at the effect of splitting the portfolio into homogeneous subportfolios due to
the observable risk factors. Unlike previous comparison (see Case 1 versus Case 2) in
both the cases, the settings consider uncertainty in the assessments of the probability
of disablement. The impact is evident on Figs. 12 and 13: splitting the portfolio into
homogeneous subportfolios lowers the dispersion.

@ Springer



Heterogeneity and uncertainty in a multistate framework 135

Fig. 14 Percentiles for total Total annual benefits payout at time t = 1
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4.5 Assets required

In Figs. 14 and 15 the total amounts of assets facing the liabilities are shown for
various percentiles, at time t = 1 and r = 5, respectively. We note that, because of
the uncertainty effect, the assets required are much higher in Case 3 than in Case 1. In
Figs. 16, 17 and 18 the assets required for the percentile 95% are displayed. We note
that requirements of course decrease with time and then with decreasing portfolio size
and hence the decreasing insurers liabilities. Finally, Fig. 19 shows the ratio between
assets required (according to 95% percentile) and expected value of the total payout.
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Fig. 16 95% percentiles for
X(@),t=1,...,25, Case 1

Fig. 17 95% percentiles for
X(@),t=1,...,25,Case 3

Assets

Assets

Percentile 0.95

230000
220000
210000
200000
0 5 10 15 20 25
Aniversary
Percentile 0.95
°
[ ]
350000 1@
[ ]
°
[ ]
°
300000 - °
°
()
°
°
250000 1 ® .
°
[ J
® o
°
%
[ ]
200000 - %e0
0 5 10 15 20 25
Aniversary

We see, also from this perspective, the heavy impact of uncertainty in the probability

of disablement.

5 Concluding remarks and outlook

Probability distributions of the annual payouts in an insurance portfolio constitute the
main topic dealt with in the present paper. In particular, we have addressed a portfolio
of term insurance policies providing lump sum benefits both in case of death and in

case of permanent disability.
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Fig. 18 95% percentiles for Percentile 0.95
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The analysis of probability distributions allows us to assess the riskiness inherent
in the portfolio, and hence to suggest appropriate actions in terms of premiums and
capital allocation. In this regard, we have adopted the percentile principle.

Among our achievements, we stress the impact of uncertainty and frailty on the risk
profile of the portfolio, in particular in terms of assets to allocate in order to face the
portfolio riskiness. Other significant results relate to the effect of splitting the portfolio

into (more or less homogeneous) subportfolios.

The model we have proposed can be generalized in several ways, and can be imple-
mented for other purposes. As regards possible generalizations:
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1. the benefit structure can be extended, for example to include the payment of recur-
rent benefits such as disability annuities;

2. the multistate model can be extended from three to four states in order to represent
diverse degrees of disability severity.

Numerical results obviously depend on modelling choices and parameter values.
Specific implementations in particular aim at sensitivity analysis. For example:

— to assess the impact of the (initial) portfolio size and hence the diversification
effect produced by risk pooling (as regards the random fluctuation risk);

— to assess the impact of a sudden jump in mortality and/or disability, thus according
to the logic of stress testing.
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