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Abstract
Cyber risks and particularly data breaches constitute one of the new frontiers of risk
modeling for insurers across the world. We use the cointegration methodology to
uncover the relation between data breaches and Bitcoin-related variables. We perform
our analyses on two different datasets of data breaches. In both cases, we provide
statistical evidence of a bidirectional lead–lag relation in the short run between the
variables under investigation. Moreover, the existence of a cointegrating vector sug-
gests that this relation is likely to persist in the long run. To evaluate the quantitative
implications of the relations found, we complement the study with Granger causal-
ity tests, impulse response analyses and variance decompositions of the forecasting
errors.

Keywords Emerging risks · Cyber risk · Data breaches

1 Introduction

Concerns on cybersecurity threats are growing across all sectors of the global economy,
as cyber risks have increased and cyber criminals have become progressively more
dangerous.

In the last years, many stealthy and sophisticated cyber attacks targeted public
and private sector organizations. The annual cost of cybercrime study conducted by
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Ponemon Institute1 confirms that, combined with the expanding threat landscape,
organizations are noticing a steady rise in the number of security breaches: The average
number hasmoved from130 in 2017 to 145 in 2018 (+11% last year,+67% last 5 years).
The impact of these cyber attacks on organizations, industries and society is relevant,
as the total cost of cybercrime for each company has increased from $11.7million
in 2017 to a new high of $13.0million in 2018 (+12% last year, +72% last 5 years).
The 2018 study reports that the global average cost of a data breach is up 6.4%
over the previous year to $3.86million. The average cost for each lost or stolen record
containing sensitive and confidential information has also increased by 4.8% year over
year to $148. According to the Online Trust Alliance,2 the number of cyber attacks
worldwide doubled in 2017 to 160,000, although endemic underreporting means that
the true figure could be as high as 350,000.

Despite the improvements in security countermeasures and practices, the statistics
presented above highlight how cyber insurance represents an important tool for risk
managers to mitigate the economic impact of cyber attacks. The demand for cyber
insurance is expected to experience a huge growth, as people and companies become
aware of the economic risk behind cyber attacks. However, the market for cyber insur-
ance is undersized, mainly because insurance and reinsurance companies are still
unprepared to offer coverage for such kind of risks. As KPMG highlights in one of its
report3 on cyber insurance, insurers still need to improve their modeling capabilities
with respect to these specific types of risk.

With the availability of new databases, academic research has started offering its
contribution to understanding a particular class of cyber risk, namely data breaches.
The literature on cyber risk and information security is plenty of papers in the area of
information technology, while less work has been proposed in economics, finance and
insurance. A comprehensive reference for an overview on the latter is Xu et al. (2018).
In the study, the authors discuss a statistical analysis of a breach incident dataset
obtained from the Privacy Rights Clearinghouse4 and use stochastic processes to fit
and predict inter-arrival times and breach sizes. The work includes a detailed review
of prior contributions on the topic: Among others, it is worth mentioning Eling and
Loperfido (2017) that analyzes the PRC Database with some actuarial insights, and
the related studies on data breach statistical evaluations such as Maillart and Sornette
(2010); Edwards et al. (2016);Wheatley et al. (2016, 2019, 2020). The PRCDatabase
is also used in Farkas et al. (2019): The authors investigate the heterogeneity of the
reported cyber claims using regression trees. The economical value of cyber risk is
discussed in Eling and Wirfs (2019) where the authors focus the attention on cyber
losses from an operational risk database and analyze the dataset with methods from

1 The Ponemon Institute is dedicated to independent research and education that advances responsible
information and privacy management practices within business and government. For the past 13 years, the
Ponemon Institute has conducted an annual Cost of a Data Breach Study in order to measure exactly how
much lost and stolen records could cost companies around the world. More details can be found on the
official Web site https://www.ponemon.org/.
2 Allianz Barometer 2018, https://www.internetsociety.org/ota/. Last accessed December 2019.
3 https://assets.kpmg/content/dam/kpmg/xx/pdf/2017/07/cyber-insurance-report.pdf, pag 10.
4 P. R. Clearinghouse. Privacy Rights Clearinghouse’s Chronology of Data Breaches. Accessed: Dec. 2019.
[Online]. Available: https://www.privacyrights.org/data-breaches.
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statistics and actuarial science. As far as cyber insurance is concerned, a review of
the available scientific approaches for the analysis of the cyber insurance market is
Marotta et al. (2017), where the authors offer insights from both market and scientific
perspectives.

In this paper, we go a step ahead in the understanding of data breaches by providing
a dynamic analysis in which we find a causal relation between the intensity of data
stolen and some metrics of the cryptocurrency market. Our original conjecture is as
follows: If hackers perform data attacks to make a profit, they must somehow cash
the attack. In this case, some cryptocurrencies offer the quickest and most anonymous
way to monetize the attack. To test our postulate, we perform, on two distinct datasets
of data breaches, a rigorous cointegration analysis between the daily number of stolen
data, the daily Bitcoin’s price and the daily number of transactions in Bitcoin. In
addition, we run Granger causality tests between the three variables. In both datasets,
we find strong empirical evidence of the existence of a causal relationship between the
number of data breaches and the Bitcoin-related variables both in the short run and in
the long run.

To the best of our knowledge, we provide for the first time a set of easily measurable
variables that explain data breaches. Thus, our findings offer new insights into the
statistical estimation and forecasts of data breaches. This might guide insurers and
reinsurers in the process of building new products that offer protection against such
kinds of risk.

In the remaining of the paper, we proceed as follows: In Sect. 2, we summarize the
methodology used. In Sect. 3, we describe the datasets used and present the results
of the cointegration analysis and Granger causality tests. To quantify the impact of
Bitcoin-related variables on data breaches, we perform an impulse response analy-
sis and a variance decomposition of the forecasting errors. In Sect. 4, we conclude
highlighting our results and suggesting new directions of research.

2 Methodology: cointegration analysis

Cointegration analysis has been widely used in finance and economics. Among the
other applications, it has been employed to investigate the lead–lag relationship
between spot and futures prices (see for instance Tse 1995) and the integration and
efficiency of international bond market (Mills and Mills 1991; Ciner 2007). As for
the applications involving economic data, many authors have relied on cointegration
analysis to test the purchasing power parity (Pippenger 1993; Chen 1995) or to exam-
ine the expectations theory of the term structure of interest rates (see Campbell and
Shiller 1987; Shea 1992, among others).

A d-dimensional time series Yt is said to be cointegrated of order (a, b) if each
series is integrated of order a,5 i.e., each series becomes stationary after taking first
differences a times, and there exists a linear combination of the d variables, Ỹt = β ′Yt

with β nonzero d × 1 vector, such that Ỹt is integrated of order a− b. As with several
economic time series, we are interested in the case in which a = b = 1, meaning that

5 We use the notation I (a) for a time series that is integrated of order a.
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each of the one-dimensional components of Y t has a unit root (i.e., it is integrated of
order one), and their linear combination Ỹt is instead I (0). Hence, the starting point of
cointegration analysis consists in establishing the order of integration of all the series
of interest.

2.1 Unit root tests

The first step needed in a cointegration analysis involves testing if all the time series
in Yt are integrated of order one. To this end, besides the usual augmented Dickey–
Fuller (ADF) tests, we consider the ADF-GLS test of Elliott et al. (1996). The authors
proposed a variant of the ADF test which involves an alternative method of handling
the parameters pertaining to the deterministic term: These are estimated first via gen-
eralized least squares, and in a second stage an ADF regression is performed using the
GLS residuals. The usual ADF tests are based on the t-statistic on φ in the following
regression:

Δyi,t = μt + φyi,t−1 +
p∑

j=1

γiΔyi,t− j + εi,t , (1)

where yi,t is the i th component ofYt . The null hypothesis of a unit root isφ = 0, tested
against the alternative φ < 0. Therefore, large negative values of the test statistic lead
to the rejection of the null. If all the components of Yt are found to be I (1), then the
econometrician can move to the next step, i.e., the Johansen procedure. Its aim is to
establish whether Yt is cointegrated and, if this is the case, how many cointegrating
relations exist.

2.2 The Johansen procedure

A general vector autoregression (VAR) model with deterministic part μt of the form:

Yt = μt + Π1Yt−1 + · · · + ΠkYt−k + εt , t = 1, . . . , T , (2)

can be rewritten using the following vector error correction (VECM) specification6:

ΔYt = μt + ΠYt−1 + Γ 1ΔYt−1 + · · · + Γ k−1ΔYt−k+1 + εt (3)

where

Γ i = −(Πi+1 + · · · + Πk), i = 1, . . . , k − 1,

Π = −(I − Π1 − · · · − Πk),

and Δ is the first difference operator, i.e., ΔYt = Yt − Yt−1.

6 To derive the VECM specification, it suffices to use, for i = 2, . . . , k, the identity Yt−i = Yt−1 −∑i−1
h=1 ΔYt−h in the VAR equation.
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We implement the tests developed by Johansen (1991) to test the hypothesis that
Yt is cointegrated of order (1, 1). Such hypothesis involves r , the rank of Π. If r ≤
d − 1, one can write Π = αβ ′ where α and β are d × r matrices. The matrix β

contains r linear cointegration parameter vectors, whereas α is a matrix consisting of
d error-correction parameter vectors (the so-called loadings). Themaximum likelihood
estimate ofα is obtained using theOLS regression ofΔYt onΔYt−1, . . .,ΔYt−k+1 and
a constant. Denote by ε̂0t the residuals. Similarly, the maximum likelihood estimate
of β can be obtained from the OLS regression of Yt on ΔYt−1, . . ., ΔYt−k+1 and a
constant. In this case, denote by ε̂1t the residuals. Given the residuals, it is possible to
calculate for j = 0, 1 the matrices Si j = T−1 ∑T

t=1 ε̂i t ε̂
′
j t . Let λ̂1 > · · · > λ̂d be the

eigenvalues obtained from solving the eigenvalue system
∣∣∣λS11 − S10S

−1
00 S01

∣∣∣ = 0,

and (ψ̂1, . . . , ψ̂d) the corresponding eigenvectors. The estimate for β, β̂, is obtained
as the juxtaposition of the eigenvectors associated with the r largest eigenvalues, and
the one for α is obtained as α̂ = S01β̂. Two Johansen’s maximum likelihood tests, the
maximal eigenvalue test and the trace test, can then be used to determine the number
of cointegration vectors. The statistic from the maximal eigenvalue test for the null
hypothesis of r cointegration vectors against the alternative of r + 1 cointegration
vector is λ̂max = −T log(1 − λ̂r+1). The trace test statistic for the null hypothesis of
at most r cointegration vectors is λ̂trace = −T

∑d
i=r+1 log(1 − λ̂i ). If the results are

consistent with the hypothesis of at least one cointegration vector, one then uses the
maximum likelihood method to test the hypotheses regarding the restriction on β.

3 The relation between data breaches and Bitcoinmetrics

3.1 Data

In this paper, we look for short-term and/or long-term relations between data breaches
and Bitcoin-related variables. More specifically, we perform two distinct analyses
based on two publicly available databases of data breaches.

The first database is taken from the Chronology of Data Breaches provided by
the Privacy Rights Clearinghouse7 (PRC). The PRC dataset is publicly available and
constantly updatedon thePRCWeb site andhas beenused in other recent investigations
(see for instance, Eling and Loperfido 2017;Maillart and Sornette 2010; Edwards et al.
2016; Wheatley et al. 2016; Farkas et al. 2019; Wheatley et al. 2019, 2020).

The second dataset is obtained from the Breach Level Index (BLI) Data Breach
Database, a centralized, global database of data breaches with calculations of their
severity based on multiple factors. The BLI tracks publicly disclosed breaches and
also allows organizations to do their own risk assessment since, on the basis of a
few simple inputs, it calculates their risk score, overall breach severity level, and
summarizes possible actions to reduce the risk score. The dataset has been downloaded

7 The Privacy Rights Clearinghouse is a US non-profit organization founded in 1992 whose aim is the
privacy protection for US citizens by empowering individuals and advocating for positive change. The
dataset is available at https://privacyrights.org/data-breaches.

123

https://privacyrights.org/data-breaches


146 D. De Giovanni et al.

from the Web site of Gemalto, part of the Thales Group, one of the world leaders in
digital security.8

We mention that the databases do not necessarily contain all of the hacking breach
events because there may be unreported ones. The exposure to this type of risk is
not easy to be tracked, since the population of potential victims that would report to
registers is not stable through time or, at least not known in opposition to the type of
information that comes from an insurer that might have a clearer view on the exposure,
for example. Many organizations are not aware they have been breached or they are
not required to report it according to the reporting laws. PRCs Chronology is limited
to those reported in the USA. If a data breach affects individuals in other countries, it
is included only if individuals in the USA are also affected. The data contain only the
number of records affected by data breaches and do not include financial losses.

The PRC database is organized in industries and type of attack. The BLI database
also includes the country interested by the breach.

As for the Bitcoin-related variables, we are mainly interested in the daily price and
the daily number of transactions of Bitcoins. Our data source is taken from DataHub,
9 a project by Datopian and Open Knowledge International that provides publicly
available high-quality datasets. As for the cryptocurrency, we focus on the historical
prices (USD), on the number of transactions happening on the public blockchain during
a given day.

The period of time we refer to, considering the dimensions of the datasets and in
order to make them comparable, goes from January 1, 2013, to December 31, 2018.
Thework aims at investigating the idea that some breaches are treated by criminal orga-
nizations to make money: For this reason, the analysis focuses on malicious breaches
related to hackers while negligent breaches and other sub-categories of malicious
breaches included in the databases (i.e., insider, payment card fraud, ransomware,
accidental unknown) have been ignored.

When researchers apply cointegration, both the sample size and the time span are
relevant. Hakkio and Rush (1991) argue that cointegration is a long-run concept and
hence long spans of data are needed for cointegration tests to have power and that
gains from using more frequently sampled observation while keeping the same time
span are “more apparent than real.” The Monte Carlo study of Zhou (2001), while
confirming the importance of the time span, reveals that increasing the data frequency
may yield substantial power gains. Since the considered time series on data breaches
goes back only to 2013 and is obviously available only at a daily frequency, in the
present paper, we use the longest span at the highest possible frequency. We believe
that the time span is long enough to have reliable results regarding the short-term and
long-term relations between the variables of interest.

The dynamic behavior of data breaches is represented by integer-valued time series
displaying an unusual pattern which resembles a point process. Figure 1 plots the two
time series generated with the datasets used. The figure clearly shows the impulsive
nature intrinsic in time series of this kind. In such cases, standard cointegration analysis

8 We downloaded the database from https://breachlevelindex.com in April 2019. However, to the best of
our knowledge, the accessibility policy of Gemalto seems to be changed.
9 https://datahub.io/.
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Fig. 1 Plot of the observed time series. Left panel: PRC dataset. Right panel: BLI dataset. All plots are in
logarithmic scale for visualization purposes

cannot be applied directly to the time series.10 Our empirical strategy to overcome
this problem is to extrapolate from the original dataset a new latent time series that
generated the observed pattern of data breach. Then, we perform the cointegration
analysis using the extrapolated latent time series instead of the observed data. This
approach is quite common in cointegration analysis. We refer to Niu and Melenberg
(2014) for cointegration analysis which uses latent factors.

We report additional details in the subsequent subsection.

3.2 Time series of counts and their intensities

Integer-valued GARCH models (henceforth INGARCH) constitute a popular class
of models for time series of counts. Although the name might suggest some sort of
affinitywith thewell-knownGARCHmodels, INGARCHs are auto-regressivemoving
average processes constructed to model the dynamics of phenomena that are discrete.
An INGARCH model allows the conditional expected value of a discrete random
variable (or some transformation) that models a countable phenomenon to depend
on its previous values and on previous observations of the phenomenon itself. As a
general discussion of such processes is far beyond the scope of the present paper, we
restrict ourselves to the presentation of model used to extract the latent time series and
refer to Weiß (2018) for an outstanding introduction on INGARCH models.

Let Bt be the observed breach size at time t .We assume that the conditional distribu-
tion of Bt |(B0, . . . , Bt−1) of the observed breach size given the previous realizations

follows a Negative Binomial distribution N B
(
s, pt = μt

s+μt

)
with probability mass

P(Bt = k) = Γ (s + k)

Γ (k + 1)Γ (s)

(
μt

s + μt

)k (
s

s + μt

)s

,

so thatwehave E (Bt |(B0, . . . , Bt−1)) = μt andVar (Bt |(B0, . . . , Bt−1)) = μt+μ2
t
s .

In addition, we allow λt = log(μt ) to follow an ARMA process of order (p, q) of the
following type:

10 We are extremely grateful to an anonymous reviewer for pointing out this issue.
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Fig. 2 Estimated logarithmic conditional expectations of the INGARCH model. Left panel: PRC dataset.
Right panel: BLI dataset

λt = a0 +
p∑

i=1

ai log (Bt−i + 1) +
q∑

j=1

b jλt− j .

This model appeared the first time in Fokianos and Tjøstheim (2011). It is a general-
ization of the basic INGARCH model that allows for both positive and negative serial
correlation. The choice of a logarithmic scale for the observed time series is needed to
ensure the positivity of the conditional expectationμt . Fokianos and Tjøstheim (2011)
also show that adding a constant to the logarithmic transformation of the time series
does not alter the estimation process. Although originally proposed in association with
a Poisson distribution for the observed time series, the strong over-dispersion present
in the breach data motivates our choice of a negative binomial distribution.

We use maximum likelihood to fit the INGARCH model with the main goal to
extrapolate the time series of (logarithmic) conditional expected values λt . We plot
the resulting extrapolated time series in Fig. 2 and observe that the dynamic patterns
of the latent time series are well suited for standard cointegration analysis. Thus, in
what follows we will use the extrapolated time series to question cointegration by
using λt instead of the original dataset. Accordingly, we specify the vector in (1) and
(2) as Yt = (

Ct , Pt , λht
)′
, where Ct and Pt are, respectively, the logarithm of the

daily number of transactions in Bitcoin and the daily Bitcoin’s price and λht as the
logarithmic conditional expectation h = PRC, BLI.

3.3 Empirical evidence

The standard cookbook of cointegration analysis requires first a preliminary test to
check the order of integration of the time series under investigation. According to
the methodology explained in Sect. 2, to check whether or not each time series is
integrated of order one, we perform the ADF-GLS test based on regressions (1) for
each variable and each first-order difference and report the results in Table 1. From
Table 1, we conclude that the time series under investigation are integrated with order
of integration one. Indeed, the unit root tests performed on the levels of each variable
under consideration lead to not rejecting the null hypothesis of φ = 0, suggesting that
the time series has a unit root,while thefirst-order difference leads to the rejection of the
null hypothesis, meaning that stationarity is achieved after applying the first difference
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Table 1 Unit root tests by means
of ADF-GLS

Variable Lags t-value p-value

Ct 79 0.834 0.891

ΔCt 0 −35.656 4.96E-21

Pt 99 −0.922 0.317

ΔPt 21 −7.479 1.07E-12

λPRCt 142 −0.391 0.544

ΔλPRCt 0 −50.1001 0.0001

λBLIt 132 0.549398 0.8349

ΔλBLIt 21 −84.8524 0.0001

Table 2 Johansen’s cointegration tests for the PRC dataset

λ̂trace λ̂max
Rank Eigenvalue Statistics p value Statistics p-value

0 0.128 507.110 0.000 277.010 0.000

1 0.106 230.100 0.000 227.630 0.000

2 0.001 24.695 0.116 24.695 0.116

operator. In what follows, we discuss the results from vector error-correction model
for each of the two datasets.

PRC dataset

Having established that all the series involved in the analysis are I (1), here we
determine whether there exists a cointegration relation between the variables. The
Johansen’s tests are based on the rank of the matrixΠ of equation, r . The null hypoth-
esis r = 0 implies no cointegration, while r > 0 (r = 1, . . . , d − 1) means that
there are r cointegrating relations. In the latter case, r distinct linear combinations of
the variables—the cointegrating vectors—represent the long-run relation between the
components of themultivariate time series. Table 2 presents the Johansen’s tests on the
PRC dataset, where we follow the Box–Jenkins’ model selection technique to select
the optimal order in the VAR model (3), identified to be 8 according to the Bayesian
information criterion (BIC). Both the trace test and the maximal eigenvalue test agree
to accept the null hypothesis r = 2.

Having identified r = 2 the rank of Π, we proceed by estimating the vector error-
correction model with one cointegrating vector. Table 3 reports the resulting vector
error-correction model for data breaches of PRC dataset, the daily number of trans-
actions of Bitcoin and the Bitcoin’s price, from which we identify both a short-run
and a long-run relation between the lagged variables ΔCt and ΔλPRCt and a long-run
relation between ΔPt and ΔλPRCt .

In Table 3, the coefficients of the vector auto-regression marked as underlined high-
light the short-run relation between the lagged logarithm of conditional expectations
of data breaches and the lagged logarithm of the number of transactions in Bitcoin.
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Table 3 Vector error-correction estimation. PRC dataseta,b

ΔPt ΔCt ΔλPRCt
Statistics p value Statistics p-value Statistics p value

Intercept 0.055 0.749 −1.018 0.009 201.072 0.000

ΔPt−1 −0.092 0.120 −0.440 0.001 0.236 0.564

ΔPt−2 −0.107 0.052 −0.302 0.015 0.263 0.491

ΔPt−3 −0.112 0.027 −0.190 0.095 0.218 0.535

ΔPt−4 −0.084 0.065 −0.127 0.210 0.114 0.716

ΔPt−5 −0.028 0.472 0.002 0.979 −0.069 0.799

ΔPt−6 0.032 0.305 0.062 0.378 0.053 0.807

ΔPt−7 0.011 0.613 0.041 0.406 0.079 0.608

ΔCt−1 0.027 0.007 −0.420 0.000 −0.158 0.021

ΔCt−2 0.017 0.100 −0.444 0.000 0.195 0.008

ΔCt−3 0.005 0.613 −0.429 0.000 0.263 0.000

ΔCt−4 0.024 0.030 −0.359 0.000 0.135 0.076

ΔCt−5 0.014 0.180 −0.438 0.000 0.198 0.007

ΔCt−6 0.016 0.134 −0.188 0.000 0.063 0.395

ΔCt−7 0.014 0.148 0.163 0.000 −0.326 0.000

ΔλPRCt−1 0.005 0.689 −0.078 0.007 0.626 0.000

ΔλPRCt−2 0.005 0.671 −0.077 0.004 −0.180 0.029

ΔλPRCt−3 0.005 0.654 −0.073 0.002 −0.135 0.066

ΔλPRCt−4 0.006 0.525 −0.067 0.001 −0.063 0.320

ΔλPRCt−5 0.006 0.438 −0.029 0.074 −0.087 0.085

ΔλPRCt−6 0.004 0.347 −0.025 0.014 −0.013 0.668

ΔλPRCt−7 0.003 0.390 −0.005 0.496 −0.009 0.694

Ψ PRC,1 −0.915 0.000 0.617 0.000 −0.194 0.655

Ψ PRC,2 0.001 0.000 −0.002 0.000 0.029 0.000

aAdditional details about the estimation are provided in Appendix 1.
bCointegrating vectors: β1 = (1, 0, −0.08233), β2 = (0, 1, −55.434); adjustment vectors: α1 =
(−0.91548, 0.61663,−0.19402), α2 = (0.00146,−0.002388, 0.02903)

More precisely, almost all the lagged variables ΔC have a strong negative impact on
the lagged conditional expectations of data breaches today, as one may observe from
the value and the highly significance of the regression coefficients. This suggests that
the number of transactions in Bitcoin might be a good predictor for data breaches.
The intuition behind this result is that hackers prepare themselves to monetize the
data attack (either by selling the data or by extorting money to the legitimate data
proprietor) some days before, by operating on the Bitcoin market.

Furthermore, when looking at the equation for the Bitcoin transaction in the short-
run component of the estimated VECMmodel, we find that almost all lagged variables
ΔλPRC are statistically significant when regressing ΔCt . This result, coupled with the
one regarding the equation forΔλPRCt , implies that there is a lead–lag relation between
data breaches and transactions in Bitcoins and the relation is bidirectional. Hence, our
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On the determinants of data breaches 151

results confirm that some of the movements in cryptocurrency markets depend on
illegalities (in our case cyber attacks). Also looking at Table 3, we find no short-
run link between lagged conditional expectations of data breaches and Bitcoin price.
Although the number of transactions has a strong impact on data breaches, this link is
not necessarily reflected in a short-run impact on Bitcoin price.

The long-run relation between the variables under investigation is described by the
existence of two cointegrating variables Ψ

BRC,1
t = Pt − 0.08233λPRCt and Ψ

BRC,2
t =

Ct − 55.434λPRCt , obtained by the estimation procedure detailed in Sect. 2.2. The
double-underlined coefficient in Table 3 highlights that changes of Δλt are affected
with very high statistical significance by the second cointegrating variable. Since
both the logarithm of the number of transactions and the logarithm of conditional
expectations of data breaches enter the second cointegrating vector, we highlight that
the short-run impact found is likely to persist in the long time. Our conjecture about the
intuitionbehind this long-term linkbetween transactions inBitcoin anddata breaches is
as follows. On the one hand, once the hackers have monetized the breach, they possess
a bunch of Bitcoins that will later be used in some different contexts. On the other hand,
a remunerative data breach creates incentives to prepare more cyber attacks, which
in turn create the needs of more transactions in Bitcoin. We also find high statistical
significance of both cointegrating variables in the equation for the change in Bitcoin
prices. This implies that the effects of Bitcoin metrics and conditional expectations
of data breach will impact also on Bitcoin returns in the long run. For instance, the
negative and significant coefficient associated with Ψ 1 indicates that if the difference
between the linear combination of Bitcoin price and the logarithm of the conditional
expectations of data breaches is positive in one period, the price will fall during the
next period to restore equilibrium, and vice versa.

Summarizing the empirical evidence discussed in this section, the change of
expected number of data breaches recorded in the PRC dataset is statistically (and
negatively) influenced in the short run by its lagged variables ΔλPRCti , i = 1, . . . , 3,11

and by the lagged levels of the number of transactions in Bitcoin some days before the
attack. In the long run, deviations from the cointegration link, whose components are
data breaches and transactions of Bitcoin, cause changes in the data breach intensities.

BLI dataset

The cointegration analysis of the BLI dataset fully confirms the existence of a strong,
statistically significant, link between data breaches and number of transactions in Bit-
coin, both in the short run and in the long run. Table 4 reports Johansen’s cointegration
tests and highlights the existence of two cointegrating vectors. The optimal order for
the VAR model is once again 8 and has been selected according to Box–Jenkins’
technique. The strong significance of underlined coefficients in Table 5 indicates the
short-term relation. More specifically, the lagged variablesΔCt−1,ΔCt−2 andΔCt−6
impact heavily on the lagged value of the logarithmic conditional expectations of data
breaches. We also find statistical significance for the reverse relation, especially in

11 See the statistical significance of coefficients highlighted in bold in Table 3. This is a statistical evidence
that hackers usually perform their attacks to different organizations in a small period of time.
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Table 4 Johansen’s Cointegration Tests for BLI dataset

λ̂trace λ̂max
Rank Eigenvalue Statistics p-value Statistics p value

0 0.110 392.760 0.000 235.540 0.000

1 0.074 157.220 0.000 154.930 0.000

2 0.001 22.898 0.130 22.898 0.130

the variables ΔλBLIt−6 and ΔλBLIt−7. This confirms the intuition provided in the previous
section for which data breaches have a statistical effect in the number of transactions
in Bitcoin. The analysis also confirms the lack of a significant short-term relation
between data breaches and price of Bitcoin.

The two cointegrating variables Ψ
BLI,1
t = Pt − 0.524λBLIt and Ψ

BLI,2
t = Ct −

354.95λBLIt , obtained by inserting the estimated cointegrating of Table 5 into the
VECM equation (3), describes the long-term relation among the three variables under
investigation. We see that changes in logarithmic expectations of data breaches are
due to changes in lagged logarithms of the number of transactions, the cointegrating
variable itself (double-underlined coefficient of Table 5) and lagged logarithm of data
breaches (bold coefficients in Table 5). This highlights once again the autoregressive
structure of data breaches. Once again, the short-term relation between Bitcoinmetrics
and data breach is reflected in a long-run impact in the Bitcoin rate of return.

3.4 Granger causality tests

In this section, we perform a series of Granger causality tests (Granger 1969, 1988;
Sims 1972) to provide further evidence on the lead–lag relationships between data
breaches and Bitcoin metrics. Granger causality test is a standard tool for uncovering
lead–lag relationships among economic variables. With reference to the most success-
ful applications, wemention Chan (1992); Abhyankar (1998) among others. However,
it is worthmentioning that novel methodologies for determining time-dependent lead–
lag relations based on optimal thermal paths appeared recently, as inMeng et al. (2017);
Xu et al. (2017).

We use first differences of the variables
(
Ct , Pt , λht

)′
and perform the tests on

both bivariate and trivariate VAR models. In the case of bivariate models, testing for
instance the null that ΔCt does not Granger-cause Δλt , amounts to estimating the
VAR comprising the two variables, and testing the null that the coefficients associated
with the first variable are all zero in the equation for Δλt , against the alternative that
at least one is different than zero. In the case of the trivariate model (like the one in
Eq. (3)), we perform the same test, but the VAR model includes also the remaining
variable. We choose the order of autoregression according to the best Bayesian infor-
mation criterion. We report the results in Tables 6 and 7. Underlined p values indicate
rejection of the null hypothesis and thus Granger causality between the variables under
investigation.We observe that both tables agree in all the cases under consideration but
in one. Moreover, the results are fully consistent with the VECM models previously
considered.
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Table 5 Vector error-correction estimation. BLI dataseta,b

ΔPt ΔCt ΔλBLIt
Statistics p-value Statistics p-value Statistics p-value

Intercept 0.056 0.725 −0.291 0.422 129.025 0.000

ΔPt−1 −0.097 0.101 −0.475 0.000 −0.048 0.898

ΔPt−2 −0.110 0.047 −0.338 0.007 0.100 0.777

ΔPt−3 −0.115 0.024 −0.226 0.049 0.242 0.453

ΔPt−4 −0.084 0.063 −0.164 0.110 0.140 0.627

ΔPt−5 −0.027 0.496 −0.017 0.847 0.106 0.670

ΔPt−6 0.034 0.279 0.056 0.430 −0.041 0.838

ΔPt−7 0.012 0.588 0.042 0.404 −0.010 0.943

ΔCt−1 0.027 0.005 −0.417 0.000 −0.224 0.000

ΔCt−2 0.016 0.120 −0.450 0.000 −0.162 0.016

ΔCt−3 0.002 0.886 −0.431 0.000 −0.063 0.344

ΔCt−4 0.021 0.056 −0.355 0.000 −0.068 0.326

ΔCt−5 0.012 0.246 −0.455 0.000 0.016 0.812

ΔCt−6 0.013 0.203 −0.212 0.000 0.177 0.008

ΔCt−7 0.013 0.181 0.160 0.000 0.075 0.234

ΔλBLIt−1 0.003 0.820 −0.013 0.609 −0.649 0.000

ΔλBLIt−2 −0.004 0.693 −0.007 0.781 −0.506 0.000

ΔλBLIt−3 −0.008 0.415 −0.007 0.751 −0.355 0.000

ΔλBLIt−4 −0.008 0.393 −0.009 0.677 −0.241 0.000

ΔλBLIt−5 −0.010 0.238 −0.021 0.261 −0.181 0.001

ΔλBLIt−6 −0.011 0.102 −0.033 0.026 −0.123 0.003

ΔλBLIt−7 −0.004 0.215 −0.024 0.003 −0.043 0.056

ΨBLI,1 −0.910 0.000 0.646 0.000 0.173 0.665

ΨBLI,2 0.001 0.000 −0.001 0.000 0.002 0.000

a Additional details about the estimation are provided in the Appendix
bCointegrating vectors: β1 = (1, 0, −0.524), β2 = (0, 1, −354.95); adjustment vectors: α1 =
(−0.91, 0.646, 0.173), α2 = (0.00136,−0.001016, 0.0024)

3.5 Impulse response analysis

Having discovered a causal link between Bitcoin metrics and conditional expecta-
tions of data breaches recorded in two different databases, we analyze the impulse
response function (IRF) of the estimatedVECM to evaluate the response of conditional
expectations of data breaches with respect to unexpected shocks of the Bitcoin-related
variables. The possibility of studying impulse responses in the context of cointegration
analysis and the feasibility of combining the two approaches has been demonstrated
by Lütkepohl and Reimers (1992).

In what follows, the IRF of variable i to shock j is defined as the sequence of
the elements in the i th row and j th column of the matrices {Φk}k=0,1,.... Assuming
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Table 6 Granger causality tests for bivariate VARs

Null Test stat p-value

PRC dataset

ΔλPRCt Does not Granger cause ΔCt F(15, 1990) 4.7275 0

ΔPt Does not Granger cause ΔCt F(21, 1972) 2.445 0.0003

ΔCt Does not Granger cause ΔPt F(21, 1972) 1.5969 0.0418

ΔλPRCt Does not Granger cause ΔPt F(16, 1987) 0.58303 0.8988

ΔCt Does not Granger cause ΔλPRCt F(15, 1990) 8.5168 0

ΔPt Does not Granger cause ΔλPRCt F(16, 1987) 1.3138 0.1791

BLI dataset

Null Test stat p-value

ΔλBLIt Does not Granger cause ΔCt F(14, 1992) 1.7334 0.0434

ΔPt Does not Granger cause ΔCt F(21, 1971) 2.4406 0.0003

ΔCt Does not Granger cause ΔPt F(21, 1971) 1.5963 0.042

ΔλBLIt Does not Granger cause ΔPt F(10, 2004) 1.1557 0.3165

ΔCt Does not Granger cause ΔλBLIt F(14, 1992) 4.6984 0

ΔPt Does not Granger cause ΔλBLIt F(10, 2004) 0.42712 0.9341

Table 7 Granger causality tests for trivariate VARs

Null Test Stat p-value

PRC dataset

ΔλPRCt Does not Granger cause ΔCt F(13, 1983) = 3.4644 0

ΔPt Does not Granger cause ΔCt F(13, 1983) = 5.058 0

ΔCt Does not Granger cause ΔPt F(13, 1983) = 1.8495 0.0314

ΔλPRCt Does not Granger cause ΔPt F(13, 1983) = 0.95824 0.4909

ΔCt Does not Granger cause ΔλPRCt F(13, 1983) = 10.5 0

ΔPt Does not Granger cause ΔλPRCt F(13, 1983) = 0.9807 0.4678

BLI dataset

Null Test Stat p-value

ΔλBLIt Does not Granger cause ΔCt F(14, 1978) 1.7534 0.0402

ΔPt Does not Granger cause ΔCt F(14, 1978) 3.2021 0

ΔCt Does not Granger cause ΔPt F(14, 1978) 1.4278 0.1317

ΔλBLIt Does not Granger cause ΔPt F(14, 1978) 1.1912 0.2749

ΔCt Does not Granger cause ΔλBLIt F(14, 1978) 4.5617 0

ΔPt Does not Granger cause ΔλBLIt F(14, 1978) 0.58771 0.8767
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Fig. 3 Impulse response point estimates and 95% confidence bands. a: Shock variable Pt , response variable
λPRCt . b: Shock variableCt , response variable λPRCt . c: Shock variable Pt , response variable λBLIt . d: Shock
variable Ct , response variable λBLIt

that the error term in (2)–(3) can be written as a linear combination of mutually
uncorrelated shocks with unit variance, i.e., εt = Hut , these matrices are obtained
as Φk = ∂Y t

∂ut−k
= ∂Y t

∂εt−k
H . The matrix H is assumed to be lower triangular, and

its estimate is obtained as the Cholesky decomposition of the estimated variance
covariance matrix of εt (see Lütkepohl 2006, Chapter 9). Choosing H to be lower
triangular implies that, in general, the ordering of variables in the vectorYt is important.
Since we are interested in the effects of Bitcoin-related variables on data breaches, we
put the latter as the last variable in the ordering, so that in this setting the variable Delta
λ responds instantaneously to shocks associated with the remaining two variables.
However, we have verified that, in our case, a different order does not change much
the estimated impulse response function.

Figure 3 reports point estimates and 95% confidence intervals of the response of λh ,
h = PRC, BL I , with respect to exogenous shocks of Bitcoin’s price and number of
transactions of one standard deviation, for a period of 120 days, although the impact of
the Ct variable seems stronger in the short run (up to about two weeks), especially for
the BLI dataset. For both datasets, the impulse response estimates associated with the
Ct variable cross the zero axis more often than the ones associated with the Bitcoin’s
price do. More specifically, Panels (a) and (b) refer to changes of PRC data breaches,
while panels (c) and (d) refer to changes of BLI data breaches due to shocks of Bitcoin-
related variables. We note that the logarithm of the number of transactions in Bitcoins
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Table 8 Variance decomposition of forecast errors of data breaches intensities

PRC BLI
Days Variance of forecast error C (%) P (%) λPRC (%) Variance of forecast error C (%) P (%) λBLI (%)

1 0.0048 0.05 0.04 99.91 0.274 0.03 0.01 99.96

5 0.0101 0.36 0.04 99.59 0.357 0.36 0.04 99.60

10 0.0133 0.76 0.05 99.20 0.361 0.96 0.08 98.97

15 0.0153 0.74 0.04 99.22 0.362 1.06 0.09 98.86

30 0.0181 0.60 0.13 99.27 0.362 1.10 0.12 98.78

60 0.0195 0.73 0.81 98.45 0.362 1.11 0.17 98.72

90 0.0198 1.12 1.84 97.04 0.362 1.11 0.22 98.66

120 0.02 1.58 2.90 95.53 0.362 1.11 0.27 98.62

180 0.0203 2.42 4.65 92.93 0.362 1.12 0.34 98.54

240 0.0205 3.08 5.89 91.02 0.362 1.12 0.39 98.48

360 0.0208 4.02 7.31 88.67 0.363 1.13 0.47 98.40

has a relevant impact on the future data breaches in both datasets. The size of the
response is significantly different from zero, and the phenomenon continues to persist
in the long run.

The confidence intervals associated with the points estimates are very tight in the
BLI dataset, indicating low variability in the estimates, less tight in the PRC dataset.
Less relevant is the response with respect to unexpected shocks of the Bitcoin’s price,
at least until 15 days. Since after about 15 days the confidence interval is above the zero
line, the impact of a shock of the Bitcoin’s price on data breaches becomes positive and
significant in the case of the PRC dataset. On the other hand, a shock of the Bitcoin’s
price has a negative and significant impact after about 15 days on the data breaches
from the BLI dataset. The effect of a shock of Bitcoin’s price starts declining after 10
days and almost vanishes by the 30th day in both datasets.

3.6 Variance decomposition of forecasting errors

In this section, we offer further details on the contribution of each Bitcoin-related
variable to the forecast power of the estimated VAR model.12

The variance of forecast error after h steps for variable i , ω2
h;i , is defined as the

element in position i in the main diagonal of the matrix
∑h

k=0 ΦkΦ
′
k . The contribution

of variable j to the variance of forecast error after h steps for variable i is calculated as

VDFEh;i, j =
∑h

k=0(φk;i, j )2
ω2
h;i

, where φk;i, j is the element in the i th row and j th column

of matrix Φk .
Table 8 presents the variance decomposition of forecasting errors (VDFE) associ-

ated with the VECM estimations presented in Tables 3 and 5. VDFE is a classical tool

12 We have performed a complete variance decomposition analysis of the forecasts errors, showing also
the contribution of data breaches to the forecast power of the VAR model. However, to keep the paper in
focus, we omit the presentation of such results. We make this additional material available upon request.
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used by econometricians to understand the impact of exogenous shocks of a given
(independent) variable on the forecasting errors of a different (dependent) variable. In
other words, VDFE helps us understand the contribution of Bitcoin-related variables
in the forecasting power of our model for data breaches.

Looking at the results presented in Table 8, we see that, in the PRC dataset, the
contribution of number of transactions in Bitcoin in explaining the variance of fore-
casting errors of data breaches is irrelevant when the forecasting horizon is short (up to
5 days). However, for forecasting horizon greater than 5 days an exogenous shock in
the independent variable is able to explain up to 4% of the variance of the forecasting
vector. The contribution of Bitcoin’s price seems to be to be even more important, as
it can explain up to 7.3% of the total variance. In total, for the PRC dataset, Bitcoin
metrics are able to explain more than 11.3% of the total variance of the forecasting
errors. The VDFE of the BLI dataset displays a reduced relevance of Bitcoin metrics.
The number of transactions in Bitcoins is able to explain at most 1.1% of the entire
variance and Bitcoin’s prices only up to 0.47%.

4 Concluding remarks

In this paper, we uncover the strong, bidirectional, relation between data breaches
and Bitcoin-related variables. Our analysis suggests that in the short run the lagged
values of the number of transactions in Bitcoin have a strong negative impact on data
breaches today. In the long run, the existence of a cointegrating vector including all
variables under investigation implies that the short-run relation will persist in the long
run. Moreover, we find almost identical results on two different datasets, confirming
the robustness of our result. The impulse response analyses highlight the relevant
quantitative impact of both the number of transactions and the Bitcoin price on future
data breaches, while the variance decomposition of the forecasting errors suggests that
the same variable can explain up to 5% of the variability.

Our results might open up new research directions. First, on the econometric side,
a deeper understanding of the relation between cyber risk and cryptocurrencies might
be helpful. Indeed, one might wonder whether the relations found in this paper extend
to other class of cyber risk and to different cryptocurrencies. With the availability of
new datasets of cyber attacks, such analyses are going to become feasible in the near
future. Second, on the actuarial side, the next step is to create a risk model for data
breaches which includes exogenous factors as cryptocurrency-related variables. This
might improve the forecasting procedures and give insurers a better understanding of
cyber risk. An analysis of the impact of our findings on classical actuarial measures
might also be of great interest. On the other hand, the relevance of cryptocurrencies
in an international financial context is increasing. In this scenarios, understanding the
connections among cryptocurrencies, macroeconomic variables and other factors such
as data breaches is surely an interesting point to further explore.
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Additional details of VECM estimation

See Tables 9, 10, 11 and 12.

Table 9 Detailed statistics for
VECM: BLI dataset

ΔCt ΔPt ΔBBLI
t

Mean dependent var 0.000 0.001 0.000

S.D. dependent var 0.061 0.126 0.653

Sum of squared residuals 3.770 19.250 153.115

S.E. of regression 0.043 0.098 0.276

R2 0.507 0.402 0.823

Adjusted R2 0.501 0.395 0.821

ρ̂ −0.001 −0.024 0.001

Durbin–Watson statistics 2.000 2.048 1.995

Log-likelihood = 5,094; AIC =−4.95; BIC =−4.742; HQC =−4.874

Table 10 Cross-section
covariance matrix: BLI dataset

ΔPt ΔCt ΔλBLIt

ΔPt 0.0018581 0.000338 0.000333

ΔCt 0.0003377 0.009493 −0.000852

ΔλBLIt 0.0003331 −0.00085 0.075501

Table 11 Detailed statistics for VECM: PRC dataset

ΔPt ΔCt ΔλPRCt

Mean dependent var −0.000069 0.001 −0.000283

S.D. dependent var 0.061 0.126 0.774

Sum of squared residuals 3.778 19.043 181.849

S.E. of regression 0.043 0.097 0.301

R2 0.506 0.408 0.850

Adjusted R2 0.500 0.401 0.849

ρ̂ −0.001111 −0.018177 −0.011623

Durbin–Watson statistics 1.999 2.036 2.022

Log-likelihood = 4940.226; AIC = −4.796; BIC = −4.588; HQC = −4.720
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Table 12 Cross-section
covariance matrix: PRC dataset

ΔPt ΔCt ΔλPRCt

ΔPt 0.00186 0.00034 0.00027

ΔCt 0.00034 0.00939 −0.00271

ΔλPRCt 0.00027 −0.00271 0.08963
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