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Abstract
This paper extends the conventional DEA models to a robust DEA (RDEA) frame-
work by proposing new models for evaluating the efficiency of a set of homogeneous 
decision-making units (DMUs) under ellipsoidal uncertainty sets. Four main con-
tributions are made: (1) we propose new RDEA models based on two uncertainty 
sets: an ellipsoidal set that models unbounded and correlated uncertainties and an 
interval-based ellipsoidal uncertainty set that models bounded and correlated uncer-
tainties, and study the relationship between the  RDEA models of these two sets, 
(2) we provide a robust classification scheme where DMUs can be classified into 
fully robust efficient, partially robust efficient and robust inefficient, (3) the proposed 
models are extended to the additive DEA model and its efficacy is analyzed with 
two imprecise additive DEA models in the literature, and finally, (4) we apply the 
proposed models to study the performance of banks in the Italian banking industry. 
We show that few banks which were resilient in their performance can be robustly 
classified as partially efficient or fully efficient in an uncertain environment.
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1 Introduction

Data envelopment analysis (DEA) is a nonparametric optimization model for assess-
ing the relative performance of a set of peer decision-making units (DMU) with 
multiple inputs and multiple outputs. Specifically, the DEA model is based on linear 
programming to measure the efficiency of the i-th DMU under evaluation relative 
to the other DMUs of the set. The model was initially proposed under the constant 
returns to scale assumption of a firm’s production activity by Charnes et al. (1978) 
and later extended to the variable returns to scale by Banker et al. (1984). The mul-
tiple advantages of the DEA make it an important analysis tool for benchmarking 
in various scientific areas such as operational research, decision analysis, manage-
ment science, social science, etc. However, the learning procedure through which 
DMUs are benchmarked against each other implicitly assumes precision in data and 
ignores the uncertainties and noise inherent in the inputs and outputs. Hence, the 
traditional models as proposed in Charnes et al. (1978) and Banker et al. (1984) can 
be practically unsuitable in application. For instance, in many applications, some of 
the data are only known within specified bounds or in ordered relations while oth-
ers are described vaguely such that the real values are unknown or uncertain. These 
uncertainties when neglected can affect the reliability of the efficiency scores and 
the stability of management decisions.

The classical approach to deal with uncertainties in management decisions is the 
stochastic programming and sensitivity analysis (see Land et al. 1993; Olesen and 
Petersen 1995; Cooper et al. 1998). To address the issue of imprecision and uncer-
tainty which conceivably have potential feasibility and optimality concerns in DEA, 
many researchers adopt advanced deterministic models such as imprecise DEA, 
fuzzy DEA and the robust DEA (RDEA). We refer the reader to Zhu (2003) and 
Hatami-Marbini et al. (2011) for extensive reviews of these approaches.

The RDEA approach was proposed by Sadjadi and Omrani (2008) to deal with 
uncertainties in input and output data. The approach offers to immunize the uncer-
tain inputs and outputs data of DMUs in a user-defined uncertainty set and provides 
a probability guarantee for reliable efficiency scores, robust discrimination and rank-
ing of DMUs. The RDEA is based on the robust optimization (RO) technique which 
was initially introduced by Soyster (1973) and extended by the likes of Ben-Tal and 
Nemirovski (1998, 1999, 2000) and El Ghaoui et al. (1998). The theory and appli-
cations of the RO have been reviewed in Bertsimas et al. (2011) for a wider read-
ing. A good background and review of the RO to DEA have also been provided in 
Mensah (2019). When applying the RO to DEA, two main techniques are enhanced 
to characterize the uncertainties in the input and output data: scenario-based and 
uncertainty set-based techniques. The former is proposed by Mulvey et  al. (1995) 
and researched further by Laguna (1998). Its application to DEA includes the works 
of Zahedi-Seresht et al. (2017) and Esfandiari et al. (2017). The scenario-based RO, 
however, has a drawback of changing the structure of the deterministic program.

On the other hand, uncertainty set-based techniques have been developed in Ben-
Tal and Nemirovski (1998, 1999, 2000), Bertsimas and Sim (2004). The general 
concept of this approach thrives on formulating an alternative optimization model 
called the robust counterpart which seeks all or most possible realization of the 
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uncertain parameters in decision-maker-defined uncertainty set. Broadly speaking, 
a major modeling concern of the RO in this direction is the design of a tractable1 
robust formulation for the nominal problem that guarantees constraints feasibility 
with high probability. To deal with model tractability and conservativess of robust 
solutions, different robust concepts: reliability of the robust solution (Ben-Tal and 
Nemirovski 2000), price of robustness (Bertsimas and Sim 2004), adjustable robust-
ness (Ben-Tal et al. 2004) and light robustness (Fischetti and Monaci 2009; Mensah 
and Rocca 2019) among others have been proposed in the past few years. These con-
cepts are largely based on two main sets: the ellipsoidal uncertainty sets of Ben-Tal 
and Nemirovski (1999, 2000) and a family of polyhedral uncertainty sets otherwise 
called the budget of uncertainty of Bertsimas and Sim (2004). These  sets ensure 
model tractability and offer the decision maker the ability to control the conserva-
tiveness of the robust solution. The main disadvantage of the former, however, is 
that the nominal linear optimization model is transformed into a nonlinear problem 
which can be computational demanding.

Bertsimas and Sim (2004) model approach preserves the linearity of the nomi-
nal problem. As a result, the concept has been applied to different classes of DEA 
problems. For instance, Shokouhi et al. (2010) proposed a general RDEA model in 
which inputs and outputs are constrained in an uncertainty set with data uncertain-
ties covering the interval DEA approach. The authors applied the robust approach of 
Bertsimas and Sim (2004) and Monte Carlo simulation to compute for the range of 
Gamma values for the conformity of the ranking of the DMUs. Omrani (2013) intro-
duced an RDEA to find the common set of weights (CSW) in DEA with uncertain 
data under a similar uncertainty set. In a related paper, Salahi et al. (2016) devel-
oped an optimistic RO approach for the CSW in DEA. Arabmaldar et al. (2017) pro-
posed a robust super-efficiency DEA model. Toloo and Mensah (2019) studied the 
computational complexity RDEA models in their reduced form using the concept 
of the budget of uncertainty. It is noteworthy that, RDEA models with ellipsoidal 
uncertainty seem to be relatively unexplored. To the best of our knowledge, Sadjadi 
and Omrani (2008), Lu (2015), Wu et al. (2017), Salahi et al. (2018) and Lu et al. 
(2019) are the only few researchers who have made advances to RDEA considering 
uncertainty in an ellipsoid. Most of these studies are, however, limited to output data 
uncertainty due to the larger concern of considering input data uncertainty in the 
equality normalization constraint. Uncertainty in the constraints of the DEA models 
must be strictly satisfied to obtain a feasible solution for the RDEA counterpart. The 
issue equality constraint in RDEA is well addressed in Toloo and Mensah (2019) 
and considered in this paper.

This paper will focus on the ellipsoidal uncertainty sets introduced in Ben-Tal 
and Nemirovski (1999, 2000) to identify inefficiencies of DMUs using the risk 
preference of the decision maker (DM). From the mathematical point of view, 
the ellipsoidal uncertainty set provides a convenient entity and offers the deci-
sion maker the ability to control the conservativeness of the efficiency solution to 

1 By tractability, we mean the existence of an explicit polynomial time algorithm to an equivalent formu-
lation of the nominal optimization problem.
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different data perturbations via the semi-axis of the ellipsoid. These sets are also 
practically useful for modeling correlation (if they exist) among the inputs (out-
put) data which is relevant to prevent the effect of correlation on the efficiency 
mean (Farzipoor Sean et  al. 2005). To be more specific, we adopt an  ellipsoi-
dal uncertainty set to model unbounded distribution of uncertainties while input 
and output data with bounded random distribution are modeled with an interval-
based ellipsoidal uncertainty set. Another contribution of this paper provides a 
classification scheme based on the proposed models. The scheme allows DMUs 
to be classified into fully robust efficient, partially robust efficient and robust inef-
ficient. We further extend our robust approach to the non-radial additive model 
where a newly proposed robust additive model is compared with peer imprecise 
additive models proposed in Lee et al. (2002) and Matin et al. (2007).

The structure of the paper is as follows. Section 2 will provide the background of the 
DEA and RDEA models. This is followed by RDEA models developed from the two 
ellipsoidal uncertainty sets in Sect. 3. A robust classification scheme and a numerical 
example are also given in this section. Section 4 will extend the RDEA approach to 
a robust additive DEA model and will compare it to some imprecise DEA models in 
the literature. The penultimate section illustrates the applicability of the RDEA mod-
els with banking studies in Italy. Finally, Sect. 6 will provide conclusions and further 
research.

2  Background

2.1  The DEA models

Consider n DMUs indexed as j = 1,… , n where each DMUj consumes m inputs 
xj =

(
x1j,… , xmj

)
 to produce s outputs yj =

(
y1j,… , ysj

)
 which are denoted by 

( xj, yj) ∈ ℝ
m+s. Charnes et al. (1978) proposed the following fractional DEA program-

ming to maximize the ratio of the weighted sum of outputs to the weighted sum of 
inputs of a unit subject to the condition that the same ratio of all other units are less 
than or equal to unity:

where ur and vi are the respective rth output and ith input weights. Charnes et al. 
(1978) further reduced the above nonlinear CCR model to a linear form in the 
following:

(1)

max
∑s

r=1
uryro∑m

i=1
vixio

s.t.∑s

r=1
uryrj∑m

i=1
vixij

≤ 1 j = 1,… , n

vi ≥ 0 i = 1,… ,m

ur ≥ 0 r = 1,… , s
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Model (2) involves n + 1 and m + s decision variables (weights) with an objec-
tive function that estimates the efficiency of DMUo at n solution instance. It must 
be noted here that the “≤” sign is used for the normalization constraint rather than 
the usual “=” sign used in  the case of the standard CCR model. The consideration 
of the inequality sign addresses the issue of equality constraint in RDEA. In other 
words, model (2) overcomes the situation where input uncertainty and robust analy-
sis in the standard normalization constraint 

∑m

i=1
vixio = 1 could lead to a restric-

tion on the constraint and probable model infeasibility (Ben-Tal et  al. 2009). For 
details on equality constraint in RDEA, see Toloo and Mensah (2019). It is worth 
mentioning also that the CCR model with either “≤” or “=” sign in constraint 1 
yields an equivalent efficiency for the DMUs (see Toloo 2014). Thus, suppose the 
optimal solution in model (2) is (u∗, v∗) =

(
u∗
1
, … u∗

s
;v∗

1
, … v∗

m

)
 . The efficiency of 

DMUs is given by the following definition.

Definition 1 DMUo is CCR efficient if �∗ = 1 , and there exists at least one strictly 
positive optimal solution (i.e., ∀i, v∗

i
> 0,∀r, u∗

r
> 0 ), otherwise it is CCR inefficient.

2.2  Robust counterpart DEA

Model (2) shows the case where the inputs and outputs are deterministic, i.e., nomi-
nal data are used. As aforementioned, the model is not useful when uncertain factors 
in the inputs and outputs prevail. In this section, we employ the RO technique and 
develop RDEA model to address this nondeterministic data problem.

The common technique of the RDEA is to consider the worst-case scenario for 
the uncertain input and output data and trade-off between performance and robust-
ness as different scenarios occur. Let the input and output variables with uncertainty 
be expressed as x̃ij = xij + 𝜉x

ij
x̂ij ; ỹrj = yrj + 𝜉

y

rj
ŷrj where x̂ij = 𝛿xxij, ŷrj = 𝛿yyrj are 

deviations from the nominal values, xij , yrj and �x and �y are a given uncertainty level 
or percentage of perturbation, respectively. By definition, DMUk with 

(
x̃k, ỹk

)
 is 

uncertain if there exist i ∈ Ik or r ∈ Rk where Ij and Rj represent the set of inputs and 
outputs of DMUj that are subject to uncertainty. That is Ij = � and Rj = � present the 
case where there is no uncertainty. All the uncertainties are subject to a known set U 
called the uncertainty set. Therefore, considering the uncertain inputs and outputs 
set, we could impose constraints on the uncertain DEA model such as x̃ij , ỹrj ∈ U . 
The robust counterpart to the uncertain DEA will be the following:

(2)

max� =
s∑

r=1

uryro

s.t.
m∑
i=1

vixio ≤ 1

s∑
r=1

uryrj −
m∑
i=1

vixij ≤ 0 j = 1,… , n

vi ≥ 0 i = 1,… ,m

ur ≥ 0 r = 1,… , s
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and

where U is ‘ellipsoidal’; P is a non-singular matrix of perturbations and � is the 
safety or robust parameter defined by the DM. In this formulation 𝜃 > 0 holds since 
the weight variables are assumed to be nonnegativity. Thus, the objective in model 
(2) is converted to a constraint in model (3) which is related to the uncertain data for 
the DMUo to be evaluated. This additional constraint is free in index since it is deter-
mined at the outset and is in contact with the objective in the model.

The ellipsoid uncertainty set is considered for two main reasons: first, to adjust 
the risk tolerance of the DM by controlling the size of the ellipsoid via the parameter 
� , i.e., as the size of the ellipsoid increases, the risk aversion of the DM increases 
and vice versa. Second, to overcome the aggressive conservatism of the robust solu-
tion (c.f Soyster (1973). It should be mentioned here that the robust counterpart for 
the ellipsoidal sets is nonlinear, however, its formulation is tractable. In other words, 
the robust counterpart leads to second-order quadratic programming which can be 
solved once in polynomial time with many solution algorithms including solvers 
such as GUROBI in GAMS.

3  RDEA models under ellipsoidal uncertainty sets

We distinguish between two kinds of uncertainty including randomness inherent in 
the inputs and outputs data: unbounded and bounded correlated uncertainties. We 
consider the following uncertainty sets:

1. the usual ellipsoidal uncertainty set
2. box (interval)-based ellipsoidal uncertainty set.

The first set models uncertainties that have unbounded distribution while the sec-
ond set models uncertainties with bounded random distribution. Below, we discuss 
in detail these uncertainty sets and their RDEA formulation.

(3)

max𝜃

s.t.

𝜃 −
s∑

r=1

urỹro ≤ 0

m∑
i=1

vix̃io ≤ 1

s∑
r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0 j = 1,… , n

vi ≥ 0 i = 1,… ,m

ur ≥ 0 r = 1,… , s

∀(x̃, ỹ) ∈ U

U =
{
�(�)| ∥ �� ∥2≤ �

}
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3.1  The usual ellipsoid case

Let’s begin with the simplest case where Ue is a usual ellipsoid or a constraint-wise 
uncertainty with every constraint uncertainty set Ue being an ellipsoid. We describe 
the following ellipsoid

where the vector ao ∈ ℝ
n is the center of the ellipsoid, Rank ( �) = m ≤ n is the 

shape matrix of the ellipsoid and the random variable u ∈ ℝ
n . The representation 

above can handle different cases of the ellipsoid including “ellipsoidal cylinders” 
and “flat” ellipsoids such as points and intervals (Calafiore and El Ghaoui 2004). An 
alternative description involves the squared shape matrix � = ��

T for which, when 
� ≻ 0 we obtain an equivalent representation of (4) as 
U
(
ao,�

)
=
{
x ∈ ℝ

n ∶
(
x − ao

)T
�

−1
(
x − ao

)
≤ 1

}
 . Figure 1 shows such an ellip-

soid in ℝ2 (shaded) with center ao and axis—length li ; �i =
(

1

li

)2

 in the direction �i 
where �i and �i are, respectively, the eigenvalues and eigenvectors corresponding to 
the symmetric positive definite matrix �2

Let Px =
[
�̄�x
ij

]
∈ ℝ

m×n, Py =
[
�̄�
y

rj

]
∈ ℝ

s×n, �
x =

[
𝜉x
ij

]
∈ ℝ

m×n, and 

�
x =

[
𝜉
y

rj

]
∈ ℝ

s×n where �̄�x
ij
=

{
𝜌x
ij
if i ∈ Ij

0 otherwise
 , �̄�

y

rj
=

{
𝜌
y

rj
if r ∈ Rj

0 otherwise
 , 

(4)Ue =
{
ao + �u| ∥ u ∥2≤ 1

}

Fig. 1  The geometry of an ellipsoid in ℝ2

2 Notice that, A is symmetric positive definite, and we can obtain the real eigenvalues of the matrix 
using the Cholesky decomposition. The eigenvector �

i
 with eigenvalue �

i
 represent the orientations of the 

principal axes of the ellipsoid. That is geometrically, �
i
 is the axis-vectors of the ellipsoid since it shows 

the direction of the ith axis of the ellipsoid.
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𝜉x
ij
=

{
𝜉x
ij
if i ∈ Ij

0 otherwise
 , 𝜉y

rj
=

{
𝜉
y

rj
if r ∈ Rj

0 otherwise
 . Then, for all DMUs, the simple ellip-

soid where ( x, y) ∈ ℝ
m+s is described as follows:

where �x
j

(
= x̂ij

)
 and �y

j

(
= ŷrj

)
 are deviation vectors defining the deviation of inputs 

(outputs) from their nominal values. Following Wu et al. (2017), the weight vectors 
u or v is, respectively, mapped by the following relationships:

To formulate the robust counterpart of the DEA under the uncertainty (4), the 
following lemma on the worst-case robust counterpart is important.

Lemma 1 Consider the linear inequality aT
o
x ≤ bi where the vector a is uncertain 

and belongs to the ellipsoid Ue =
{
ao + �u| ∥ u2 ∥2≤ 1

}
. Then its robust counter-

part is aT
o
x + ∥ �x ∥2≤ bi

Proof See for e.g., Bertsimas et al. (2011)

Theorem  1 The robust counterpart CCR described under the ellipsoidal set (5) 
lead to the following nonlinear model:

(5)

U
e
j
=

��
X̃, Ỹ

������
X̃ = (� + Px�x), ∥ �x

j
∥2≤ 1

Ỹ = (� + Py�y), ∥ �
y

j
∥2≤ 1

; j = 1,… , n

�
⊂ ℝ

n×(m+s)

=

⎧
⎪⎨⎪⎩
(x̃, ỹ)

�������

x̃ij = xij +
∑
i∈Ij

𝜌x
ij
𝜉x
ij
, ∥ �x

j
∥2≤ 1

ỹrj = yrj +
∑
r∈Rj

𝜌
y

rj
𝜉
y

rj
, ∥ �

y

j
∥2≤ 1

; j = 1,… , n

⎫
⎪⎬⎪⎭

�x
j
=

(�x
j
)Tv

∥ (�x
j
)Tv ∥2

, �
y

j
=

(�
y

j
)Tu

∥ (�
y

j
)Tu ∥2

(6)

maxw

s.t.

w −
s∑

r=1

uryro +
� ∑

r∈Ro

u2
r
ŷ2
ro
≤ 0

m∑
i=1

vixio +
�∑

i∈Io

v2
i
x̂2
io
≤ 1

s∑
r=1

uryro −
m∑
i=1

vixio −
� ∑

r∈Ro

u2
r
ŷ2
ro
−
�∑

i∈Io

v2
i
x̂2
io
≤ 0

s∑
r=1

uryrj −
m∑
i=1

vixij +
�∑

r∈Rj

u2
r
ŷ2
rj
+
�∑

i∈Ij

v2
i
x̂2
ij
≤ 0 ∀j ≠ o

vi ≥ 0 ∀i

ur ≥ 0 ∀r



499

1 3

Robust data envelopment analysis via ellipsoidal uncertainty…

Proof Using Lemma 1 and the CCR model 1, the robust counterpart DEA with the 
ellipsoid uncertainty set (5) is formulated first as the following model:

In this application, the n constraints in model (1) are transformed into one and 
n − 1 constraints. This is to ensure that the maximal efficiency of DM Uo does not 
exceed unity but attains it at optimum, given also that the set of data used in the 
first constraint of model (7) are reused in the second constraint. Model (7) is fur-
ther modified from the fractional program to linear form by employing Charnes 
and Cooper (1962) transformation: Denote t = 1∑m

i=1
vixio+ sup

∥�xo∥2≤1

�∑
i∈Io

vi𝜉
x
io
𝜌x
io

� > 0 and 

ur = tur, vi = tvi in the first constraint. Consequently, the following DEA model is 
achieved:

Next, we solve the inner problems in model (8). The last term of the first 
constraint in a re-casted objective function form arrives at the following robust 
counterpart:

(7)

maxw

s.t.

w −

∑s

r=1
uryro+ inf

∥�
y
o∥2≤1

�∑
r∈Ro

ur�
y
ro�

y
ro

�

∑m

i=1
vixio+ sup

∥�xo∥2≤1

�∑
i∈Io

vi�
x
io
�x
io

� ≤ 0

∑s

r=1
uryro+ inf

∥�
y
o∥2≤1

�∑
r∈Ro

ur�
y
ro�

y
ro

�

∑m

i=1
vixio+ sup

∥�xo∥2≤1

�∑
i∈Io

vi�
x
io
�x
io

� ≤ 1

∑s

r=1
uryrj+ sup

∥�
y

j
∥2≤1

�∑
r∈Rj

ur�
y

rj
�
y

rj

�

∑m

i=1
vixij+ inf

∥�x
j
∥2≤1

�∑
i∈Ij

vi�
x
ij
�x
ij

� ≤ 1 ∀j ≠ o

vi ≥ 0 ∀i

ur ≥ 0 ∀r

(8)

maxw

s.t.

w −
s∑

r=1

uryro + inf
∥�y

o
∥2≤1

�
∑
r∈Ro

ur�
y
ro�

y
ro

�
≤ 0

m∑
i=1

vixio + sup
∥�x

o
∥2≤1

�
∑
i∈Io

vi�
x
io
�x
io

�
≤ 1

�
s∑

r=1

uryro + inf
∥�y

o
∥2≤1

�
∑
r∈Ro

ur�
y
ro�

y
ro

��
−

�
m∑
i=1

vixio + sup
∥�x

o
∥2≤1

�
∑
i∈Io

vi�
x
io
�x
io

��
≤ 0

s∑
r=1

uryrj −
m∑
i=1

vixij + sup
∥�

y

j
∥2≤1

sup
∥�x

j
∥2≤1

�
∑
r∈Rj

ur�
y

rj
�
y

rj
+
∑
i∈Ij

vi�
x
ij
�x
ij

�
≤ 0 ∀j ≠ o

vi ≥ 0 ∀i

ur ≥ 0 ∀r
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The robust counterpart for the second term of the second constraint is:

The robust counterpart for the third term of the fourth constraint is:

Finally, we write ∥ �x
j
v ∥2=

�∑
i∈Ij

v2
i
x̂2
ij
 for i ∈ Ij and ∥ �

y

j
u ∥2=

�∑
r∈Rj

u2
r
ŷ2
rj

 for 
r ∈ Rj and substitute the results from (9) to (11) into model (8) and the proof is com-
plete.  □

3.2  The combined interval and ellipsoid case

We now look at the uncertainty set designed with an ellipsoid and interval uncer-
tainties. We assume that the uncertain input and outputs are obtained from the nomi-
nal values by the random perturbation: x̃ij =

(
1 + 𝛿x𝜁 x

ij

)
xij and ỹrj =

(
1 + 𝛿y𝜁

y

rj

)
yrj 

where 
{
� x
ij

}
i∈Ij

 and 
{
�
y

rj

}
r∈Rj

 ( � x
ij
= �

y

rj
= 0 for i ∉ Ij, r ∉ Rj) are the independent 

random variables symmetrically distributed in the interval bound [−1, 1] and �x and 

(9)

max
u∈ℝs

inf
ỹo∈Ue

{
s∑

r=1

uryro +
∑
r∈Ro

ur𝜉
y
ro
𝜌y
ro

}
= max

u∈ℝs

{
s∑

r=1

uryro + inf|�yo|2≤1
(�y

o
)T(�y

o
)Tu

}

= max
u∈ℝs

{
s∑

r=1

uryro −
uT�

y
o(�

y
o)

Tu

∥ (�
y
o)

Tu ∥2

}

= max
u∈ℝs

{
s∑

r=1

uryro −
∥ (�

y
o)
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�y are given uncertainty levels of the inputs and outputs (Ben-Tal and Nemirovski 
2000). In this situation, we speak of an RDEA which pass from deterministic to 
probabilistic in the sense that the underlying inputs and output variable are purely 
random and the probability of the constraint 

∑m

i=1
vix̃io ≤ 1 , for instance, is � where 

� ≥ 0 is a given reliability level. For the uncertainty set here, we proceed with the 
following useful definitions.

Definition 2 Consider a unitary interval denoted by � = [−1, 1] . An interval uncer-
tainty set for the random variables � is equipped with the infinity norm given as 
Uint =

{
� ∈ �

m×s ∶∥ � ∥∞≤ 1
}
.

Definition 3 Given the random variables � , the ellipsoid normalized to 
a ball of radius � centered at the origin is the set with l2-norm given as 
Uell =

{
� ∈ �

m×s ∶∥ � ∥2≤ �
}
.

The uncertainty set for the uncertain input and output dynamics using both l2-
norm and the infinity norm from the above definitions is stated as the following:

where �x
j
 and �y

j
 are the lengths of semi-axes of the ellipsoid for the uncertain input 

and output data, respectively. Let �j = �x
j
+�

y

j
 , where �j ≤

(|||Rj| + |Ij|||
)0.5

 depicts 
the allowable conservative preference of the DM and |||Ij

||| and |||Rj
||| are the cardinalities 

of the uncertain inputs and outputs, respectively. It is clear that U�

j
 is an intersection 

of unit boxes and balls centered at the origin with radii �x
j
 and �y

j
 . The largest vol-

ume ellipsoid contained in the box occurs when �j = 1 and the smallest volume 
ellipsoid containing the box occurs when �j =

(|||Rj| + |Ij|||
)0.5

 . Figure 2 illustrates 
the different scenarios of the feasible region for the ellipsoid intersection with the 

(12)

U
Ω
j
=

⎧⎪⎨⎪⎩
(x̃, ỹ)

�������

x̃ij =
�
1 + 𝛿x𝜁 x

ij

�
xij,

����
x
j

���∞ ≤ 1,
����

x
j

���2 ≤ Ωx
j

ỹrj =
�
1 + 𝛿y𝜁

y

rj

�
yrj

����
y

j

���∞ ≤ 1,
����

y

j

���2 ≤ Ω
y

j

; j = 1,… , n

⎫⎪⎬⎪⎭

Fig. 2  Illustration of feasible region for varying �j values
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box which is adapted similarly from Hanks et al. (2017). Here, while it is possible to 
set 𝛺j >

(|||Rj| + |Ij|||
)0.5

 for the uncertain input and output data, wlog, we consider 

only the case where 0 ≤ �j ≤

(|||Rj| + |Ij|||
)0.5

 . The following lemma is crucial for 
the robust counterpart DEA model:

Lemma 2 The constraint in the uncertain optimization problem 
min

{
cx ∶ aTx +max�∈� �

Tx ≤ bi
}
,� =

{
� ∶

‖‖‖�j
‖‖‖∞ ≤ 1,

‖‖‖�j
‖‖‖2 ≤ �,∀j ∈ Ji

}
 has a 

second-order cone constraint 
∑n

j=1
ajxj +

∑
j∈Ji

âij
���xj − zij

��� +𝛺

�∑
j∈Ji

â2
ij
z2
ij
≤ bi

Proof See for e.g., Ben-Tal and Nemirovski (2000).

Consequently, the RDEA under the uncertainty set (10) leads to the following 
second-order cone programming CCR model.

Theorem 2 The robust counterpart CCR model described under the ellipsoidal set 
(13) leads to the following second-order cone programming DEA model:

(13)

maxz

s.t.

z −
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uryro +
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y
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y
o
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𝜐2
ro
ŷ2
ro
−𝛺x

o

�∑
i∈Io

𝜈2
io
x̂2
io
≤ 0

s∑
r=1

uryrj −
m∑
i=1

vixij +
∑
r∈Rj

𝜇rŷrj +
∑
i∈Ij

𝜆ijx̂ij

+𝛺
y

j

�∑
r∈Rj

𝜐2
rj
ŷ2
rj
+𝛺x

j

�∑
i∈Ij

𝜈2
ij
x̂2
ij
≤ 0 j ≠ o

−𝜇rj ≤ ur − 𝜐rj ≤ 𝜇rj ∀r ∈ Rj

−𝜆ij ≤ vi − 𝜈ij ≤ 𝜆ij ∀i ∈ Ij
vi ≥ 0 ∀i

ur ≥ 0 ∀r

𝜆ij,𝜇rj ≥ 0 ∀i ∈ Ij,∀r ∈ Rj
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where �rj and �ij are auxiliary output and input variables; �rj and �ij are interval 
uncertainty parameters.3 The robust counterpart model is feasible with the same 
probability as the original problem if all the constraints are satisfied with probability 
guarantee � = exp−(�∕2).

Proof The proof follows similarly from Theorem 1.

3.3  The efficiency of the RDEA models

The design of uncertainty set for the two models developed in this paper is related to 
the distribution of the uncertainty. Thus, if the uncertainty of the inputs and outputs 
is subject to unbounded distribution, i.e., the size of the uncertainty is not restricted, 
the simple ellipsoid is considered appropriate and model (6) is constructed. On the 
other hand, to subject the uncertainty  to a bounded distribution, the interval set is 
required to limit the uncertainty in their bounds to avoid an unnecessarily large 
uncertainty set. The combined  interval and ellipsoid uncertainty set is used for 
model (13). The formulation of these RDEA models are tractable, feasible and their 
robust efficiency is obtained according to the following theorems:

Theorem 3 The optimal objective values of model (6) is less than or equal to 1.

Proof Let (w∗, v∗, u∗) be the optimal solution of model (6). We have 
w∗ ≤

∑s

r=1
u∗
r
yro −

�∑
r∈Ro

u∗
2

r
ŷ2
ro

 according to the first constraint of model (6). For 
every 

(
xij, yrj

)
, i ∈ Io, r ∈ Ro , we have ∑s

r=1
u∗
r
yro −

�∑
r∈Ro

u∗
2

r
ŷ2
ro
≤
∑s

r=1
u∗
r
yro +

�∑
r∈Ro

u∗
2

r
ŷ2
ro

 and since �∑
r∈Ro

v∗
2

r
ŷ2
ro

 is nonnegative, taking the second and third sets of constraints arrive 

at 
∑s

r=1
uryro +

�∑
r∈Ro

𝜐∗2
r
ŷ2
ro
≤
∑m

i=1
v∗
i
xio +

�∑
i∈Io

v∗2
i
x̂2
io
≤ 1 for each j = o . 

Consequently, w∗ ≤ 1 which completes the proof. □

Theorem 4 The optimal objective values of model (13) is less than or equal to 1.

Proof The proof is similar to Theorem 3.

Let w∗ and z* be the optimal objective value of models (6) and (13), respectively. 
The robust efficiency for DMUo is given by the following definition.

Definition 4 DMUo is R-efficient, if and only if it satisfies the following two 
conditions:

3 Note that, the RDEA to the ellipsoidal uncertainty set is practically tractable and convenient to handle 
with nonlinear solvers (such as Gurobi, MOSEK, BARON) and any efficient optimization software (see 
Sadjadi and Omrani 2008; Wu et al. 2017; Shakouri et al. 2019).
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 (i) it is CCR efficient and
 (ii) w∗ = 1 or z* = 1.

The efficiency here is also referred to strong efficiency or fully robust effi-
ciency in the sense of Pareto–Koopmans efficiency as opposed to Farrell’s meas-
ure of efficiency, which ignores the slacks as sources of inefficiency (see Cooper 
et al. 1999; Park 2007). We shall incorporate other existing concepts of the effi-
ciency classifications later in this section. From Theorems 3 and 4, it is clear that 
w∗, z∗ ∈ (0, 1] . Therefore, a CCR—non efficient DMU will be robust—inefficient 
irrespective of the uncertainty level.

Note that the solution 
(
z∗, v∗, u∗,�∗,�∗

)
 in model (13) can be ‘less conserva-

tive’ than the solution (w∗, v∗, u∗) in model (6): if �j increases in the former. In 
fact, in the case of large uncertainty set indicating high assurance for robustness, 
the efficiency of DMUs in model (13) can be less efficient than in model (6). 
Indeed, the second term in the constraint model (13): 
z −

∑s

r=1
uryro +

∑
r∈Ro

𝜇rŷro +𝛺
y
o

�∑
r∈Ro

𝜐2
r
ŷ2
ro
≤ 0 enforces protection of the 

random perturbation of the inputs and outputs in the interval which makes the 
model much restrictive for higher efficiency. In the special case of �j = 1 (see 
Fig. 2), the ellipsoid is exactly inscribed by the box/interval, and so we obtain an 
equivalency in the optimal objective values of model (6) and model (13). For 
higher values of �j , the performance of DMUs worsen indicating the price paid 
for robustness (Bertsimas and Sim 2004). As a result, DMUs characterized as 
inefficient by the latter are equally characterized as inefficient by the former. 
However, the reverse case is not entirely true.

As observed so far, the efficiency of DMUs under the robust model (13) 
depends on the risk preference of the DM determined by the uncertainty level. 
That  is, the DM is at will to vary �j according to the following:

• �j = 0 ⇒ the robust model shrinks to the nominal DEA problem.
• �j = 1 ⇒ the uncertainty denotes the largest volume of ellipsoid contained in 

the interval and
• �j =

(|||Rj| + |Ij|||
)0.5

⇒ the highest robust solution is sought for the uncertain 
inputs and outputs in the model since all the uncertain inputs and outputs are 
immunized.

The specific value of �j to the model is carefully chosen to avoid an overly 
conservative solution. Here, we provide a suggestion for the classification of 
DMUs using the conservativeness of the DM, i.e., �j ≤

(|||Rj| + |Ij|||
)0.5

.

Definition 5 The robust efficiency for DMUs under the robust model (13) can be 
classified into three mutually exclusive subsets:

 (i) (Full R-efficiency). DMUo is fully R-efficient if and only if z∗ = 1 when 
�j =

(|||Rj| + |Ij|||
)0.5

,∀j.
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 (ii) (Partial R-efficiency). DMUo is partially R-efficient if z∗ < 1 when 
�j =

(|||Rj| + |Ij|||
)0.5

 and there exist 𝛺j > 0 such that z∗ = 1

 (iii) (R-inefficiency). A DMUo is said to be R-inefficient if z∗ < 1 for all 

�j ∈

(
0,
(|||Rj| + |Ij|||

)0.5
]
.

The above classification can be denoted as RE++ ∼ full R-efficiency, RE+ ~ par-
tial robust efficiency or PR-efficiency and RE− ~ R-inefficiency. The set RE++ 
consist of DMUs that are robust R-efficient in any combination of uncertain 
inputs and outputs at all robust levels defined by the DM. This category of effi-
cient DMUs is obtained under the most conservative evaluation of the uncertain 
data. It is evident that any DMU in the fully robust efficient group is always effi-
cient uncertain data and can hence be regarded as the best performer. So, logi-
cally, a DMU is robust efficient if and only if it is fully robust efficiency. The set 
RE+ consists of DMUs that are R-efficient at maximal sense but cannot main-
tain R-efficiency at certain conservative levels for inputs and outputs. The PR-
efficiency is therefore obtained in a less stringent manner than the full robust effi-
ciency and as a result, it’s efficiency values are higher than the R-efficient units. 
Finally, the set RE− consists of R-inefficient DMUs which are always inefficient in 
the least consideration of uncertainty for any input and output combinations. It is 
therefore clear that DMUo cannot be efficient in the robust sense unless this DMU 
is partially robust efficient and that DMUo will be partially robust efficient if it is 
first DEA efficient.

To further demonstrate the classification scheme provided in Definition 5 and 
also compare the efficiency of DMUs under the robust models (6) and (13), we 
consider a numerical example with data from Hatami-Marbini and Toloo (2017). 
See Table 1. The input and output data are taken 5% perturbation from their nom-
inal values. The results for the CCR model and robust CCR models are shown in 
Table 2. Omega values, �j = 0, 0.5, 1, 2 and 2.8 in model (13) are arbitrary cho-
sen bearing in mind �j = 0 is equivalent to the CCR efficiency in column two of 

Table 1  Data for uncertainty 
analysis

DMU Input Output

x
1

x
2

x
3

x
4

y
1

y
2

y
3

y
4

1 32 50 82 46 47 93 54 65
2 61 56 68 37 88 56 92 80
3 42 58 45 34 94 65 80 80
4 73 39 88 81 50 53 93 97
5 45 38 68 41 47 42 70 52
6 86 62 44 32 86 45 100 47
7 38 74 71 74 83 91 62 74
8 61 54 70 62 79 60 72 98
9 84 52 38 47 85 68 51 41
10 87 47 31 52 78 95 70 92
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Table  2 and �j =
(|||Rj| + |Ij|||

)0.5

≅ 2.8 is the highest conservatism the DM can 
tolerate for the uncertain data. From column 2, all other DMUs are CCR efficient 
except DMU9 . However, the efficiency scores in the robust model (13) decrease 
when uncertainty is considered in the data and �j increases. Figure 3 shows the 
efficiency of DMUs as �j increases from �j = 0 to �j = 2.8 at an interval of 0.4. 
Here, the robust efficiency of DMU1 , DMU3 , DMU4 , DMU6 and DMU10 remain 
the same at 1 for all values of �j . These DMUs are called R-efficient.

Considering columns three and five of Table 2, it is evident the equivalency of the 
robust models (6) and (13) when the ellipsoid is inscribed by the box/interval. Also, 
the robust efficiency scores of model (13) include that of model (6) at �j = 1.0 . Here, 
the DMUs which are R-inefficient in the later model are also R-inefficient in the for-
mer model. However, as mentioned earlier, it is possible that the maximum realiza-
tion of the uncertain data may occur at the corners of the interval (see Fig. 2) which 
implies that model (13) can be more conservative and with higher complexity than 
model (6) at full protection of the uncertain data. The efficiency classification accord-
ing to the DM conservativeness is shown in the last column of Table 2. It is observed 
that the R-efficient DMUs are RE++ =

{
DMU1,DMU3,DMU4,DMU6,DMU10

}
 , 

the PR-efficient DMUs are RE+ =
{
DMU2,DMU7

}
 while finally, the R-inefficient 

DMUs are RE− =
{
DMU5,DMU8,DMU9

}
.

4  Extension to the additive DEA model and imprecise data

In this section, we extend the robust approach to the additive (ADD) model with 
imprecise data. Consider the additive (ADD) model proposed in Charnes et  al. 
(1985) to evaluate the efficiency of DMUs:

Table 2  Results of CCR and RCCR models

DMU �∗ w
∗ z* Classification

(�
j
= 0.5) (�

j
= 1) (�

j
= 2) (�

j
= 2.8)

1 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

2 1.000 0.944 1.000 0.944 0.899 0.899 RE
+

3 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

4 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

5 1.000 0.884 0.959 0.884 0.842 0.853 RE
−

6 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

7 1.000 0.956 1.000 0.956 0.931 0.931 RE
+

8 1.000 0.875 0.947 0.875 0.839 0.839 RE
−

9 0.994 0.833 0.905 0.833 0.812 0.798 RE
−

10 1.000 1.000 1.000 1.000 1.000 1.000 RE
++
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where s−
i
 and s+

r
 are the slacks for the input and output, respectively. To extend the 

RO to the additive model above, first, consider the dual formulation of model (14). 
Again, this is to avoid any possible infeasibility resulting from uncertainty analysis 
in the equality constraints. The dual of model (14) is the following:

(14)

s∗
o
= max

m∑
j=1

s−
i
+

s∑
j=1

s+
r

s.t
n∑
j=1

�jxij + s−
i
= xi0 i = 1,… ,m

n∑
j=1

�jyrj − s+
r
= yr0 r = 1,… , s

�j ≥ 0 j = 1,… , n

s−
i
≥ 0 i = 1,… ,m

s+
r
≥ 0 r = 1,… , s

(15)

min�

s.t.

� −
m∑
i=1

vixio +
s∑

r=1

uryro ≤ 0

m∑
i=1

vixij −
s∑

r=1

uryrj ≥ 0 j = 1,… , n

vi ≥ 0 i = 1,… ,m

ur ≥ 0 r = 1,… , s

Fig. 3  Efficiency scores of DMUs under different values of omega
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where � is the efficiency of DMUo . It is easily verifiable that �∗ ≥ 0 ; thus, an 
efficient point ( xij , yrj ) will lie on the facet-defining hyperplane with equation ∑m

i=1
v∗
i
xio −

∑s

r=1
u∗
r
yro = 0 . Then, a DMU j is efficient if �∗ = 0 and inefficient if 

𝜔∗ > 0 or alternatively, 𝜔∗ > 0 and (v∗, u∗) ≥ 1m+s measures the inefficiencies of the 
DMUs. In particular, to obtain an efficiency preserving unit to data perturbation, we 
consider the ellipsoidal-interval uncertainty defined in (12), and similarly to model 
(13), we propose the following robust additive model (RADD):

where � is the robust additive efficiency of DMUo

The RADD model (16) can be compared to the imprecise additive models devel-
oped in Lee et al. (2002) and Matin et al. (2007). Consider the numerical example 
given in Cooper et al. (1999) and presented in Table 3. The column headings indicate 
the data to be dealt with in ordinal and bounded forms as well as in the customary 
exact forms represented by the conditions yr ∈ D+

r
, xi ∈ D−

i
 where D+

r
 and D−

i
 . DEA 

models described by these data are nonlinear and usually converted to linear standard 
DEA with exact data by using the transformation approach suggested in Zhu (2003). 
It must be noted that the robust model is not able to deal with ordinal and bounded 
data. The approach adopted in this paper follows the transformation of bound and 
ordinal data in Table 3 to exact data in Lee et al. (2002). The result of the retrieved 
exact data is given in Table 4. From this data, we compare the result of the RADD 
model with the two-stage imprecise additive model of Lee et al. (2002) and the one-
stage imprecise additive model of Matin et  al. (2007). Table  5 presents the ineffi-
ciency of DMUs proposed by the different methods. The efficiency of DMUs pro-
vided by the proposed robust model ( �j = 0 ) indicated in Table 5 is the same as the 
former two methods where the RADD model yields larger scores for the inefficient 

(16)

min𝜛

s.t.

𝜛 −
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i=1
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uryro +
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𝜆iox̂io

+𝛺x
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𝜈2
io
x̂2
io
+

∑
r∈Ro

𝜇roŷro +𝛺
y
o

� ∑
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𝜐2
ro
ŷ2
ro
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𝜇roŷro +
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+𝛺x
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𝜈2
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io
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uryrj +
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𝜐2
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ŷ2
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+𝛺x
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i∈Ij

𝜈2
ij
x̂2
ij
≥ 0 j ≠ o

−𝜇rj ≤ ur − 𝜐rj ≤ 𝜇rj ∀r ∈ Rj

−𝜆ij ≤ vi − 𝜈ij ≤ 𝜆ij ∀i ∈ Ij
vi ≥ 1 ∀i

ur ≥ 1 ∀r

𝜆ij,𝜇rj ≥ 0 ∀i ∈ Ij,∀r ∈ Rj
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DMUs and with higher discriminating power. The performance of DMUs on the 
three models are indifferent and their efficiency score according to Table 5 is ranked 
as follows: 

where the symbol ‘‘~’’ denotes ‘‘indifferent to’’ and the symbol ‘‘≻ ’’ denotes 
‘‘superior to’’. It should be noted that the RADD model lightens the computational 
burden compared to the imprecise DEA models and provides the flexibility for 
controlling the conservativeness of solution to data perturbations. Thus, for some 
imprecise data, the proposed model in this paper is more computationally effective 
and flexible in robustly ranking the efficiency of DMUs.

5  Application to banking efficiency in Italy

We demonstrate the real-world application of the proposed robust CCR models by 
analyzing the performance of banks operating in Italy. The Italian banking industry 
is emerging from a prolonged period of distress following the global financial crises 
in 2008 and the slowdown of the Italian economy.4 Although the banking system has 
shown enough resilience and recovering over the years, competition in the global 
uncertain environment, particularly in Europe has required that the banks operate 
efficiently and robustly. Indeed, banking idiosyncratic uncertainties translate into 

DMU1 ∼ DMU3 ≻ DMU2 ≻ DMU4 ≻ DMU5

Table 3  Exact and imprecise 
data adapted from Cooper et al. 
(1999)

a Ordinal ranking such that 5 = highest rank, …, 1 = lowest rank (i.e., 
y
23

≥ ⋯ ≥ y
24

)
b Ratio bound based on the reference DMUs 3 or 5 (e.g., 
0.6 ≤ x

21
≤ 0.7 with x

23
= 1)

Inputs Outputs

Exact Bound Exact Ordinal

DMU Cost Judgment Revenue Satisfaction
j x

1j
x
2j

a
y
1j

y
2j

b

1 100 [0.6, 0.7] 2000 4
2 150 [0.8, 0.9] 1000 2
3 150 1 1200 5
4 200 [0.7, 0.8] 900 1
5 200 1 600 3

4 The banking crises that engulfed Italy and ongoing mildly can be attributed to two main sources. First 
is the financial market crises in 2008 that was caused by mortgage crises and largely the failure of the 
Lehman Brothers. The second one stems from the sovereign debt crises that affected Greece and some 
peripheral countries of the European monetary union: Italy, Spain, Portugal, Ireland. The Italian gov-
ernment through the bank of Italy in its supervisory capacity instituted measures such as the provision 
of liquidity, strengthening and supporting of banks, recapitalization of distress banks and including the 
so-called "Tremonti bond". The measures were to revitalize the banking industry, protect depositors and 
also finance the economy.
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uncertainties in banking data. Therefore, to obtain robust performance evaluation of 
the banks, we consider the RDEA models developed in this paper and assume banks 
as decision-making units that consume inputs, e.g., assets and equity to generate an 
amount of output level, e.g., loans and revenue in an uncertain environment.

5.1  Bank data and variable selection

Data comprising 29 main banks in Italy for the accounting year 2015 were collected 
from the Bureau van Dick—Bankscope database (Bank scope 2015). See also Alfi-
ero et al. (2019). The selected banks operate under a common set of rules and regu-
lations set up by the Bank of Italy and by extension the Central Bank of Europe 
which implies that they have a common current denominator for which compari-
son of performance can be smoothly made. Next is the selection of inputs and out-
puts which is crucial in the banking efficiency measurement. In the banking sector, 
similar to other sectors, a consensus is reached on the classification of some factors 
as inputs and outputs. However, the classification of others particularly deposit is 
unclear and controversial. The debate on bank deposit which in the DEA literature is 
termed as a flexible measure or dual-role factors (see Toloo 2012; Toloo et al. 2018) 
is that, depending on the operational activities of the bank, in one hand, deposit 

Table 4  Retrieved exact data 
adapted from Lee et al. (2002)

Exact data when DMU
j
(j = 2, 3, 4, 5) is under evaluation. DMU

o≡1 
for x

21
= 0.6

DMUs x
1j

x
2j

y
1j

y
2j

1 100 0.7 2000 50
2 150 0.8 1000 20
3 150 1 1200 100
4 200 0.8 900 10
5 200 1 600 20

Table 5  Computed inefficiency 
with different additive models

a The result here is taken from Lee et al. (2002) two-stage approach
b The result here is taken from Matin et al. (2007) one-stage approach

DMUs Lee et al. (2002)a Martin et al. 
(2007)b

RADD model

1 0 0 0
2 1321.429 1050.1 1358.57
3 0 0 0
4 1200 1200 1518.57
5 2314.286 1500.3 2365.71
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could be regarded as an input (intermediation approach) and on the other hand as 
an output (production approach) or as a major component involved in the creation 
of added value (value-added approach). Different researchers select different meas-
ures. Casu and Girardone (2002) examined the cost efficiency of the Italian bank 
conglomerates by assessing the cost characteristics of bank parent companies and 
their subsidiaries. Favoring the intermediation approach, they considered as inputs 
labor cost, deposits and physical capital whiles total loans and other earning assets 
were used as outputs. Aiello and Bonanno (2016) considered the role of banks in 
Italy as an intermediary and used deposits, capital and labor as input factors whiles 
they used loans, securities and commission income as output factors.

According to popular studies on banking efficiency, the intermediation approach 
is used since banks are essentially seen as financial intermediaries, whose main 
activities are to borrow funds from depositors and lend to others (Fethi and 
Pasiouras 2010). Kao and Liu (2014) among other studies consider demand deposits 
as outputs in the intermediation approach. Within this context and following the sur-
vey of Mostafa (2009) in which deposit is mostly used as outputs, we select as input 
factors; employees, assets and equity and as output factors; deposits from banks, 
loans and revenue. Table 6 shows the input and output factors and statistics for the 
Italian banks used for this study (see Table  9 in “Appendix A” for details of the 
banks). All the inputs and outputs are expressed in monetary values. It is assumed 
that the actual values of some of the input and output factors are uncertain. A bank 
has uncertainty characterization if any of its input or output data for the performance 
measurement is uncertain. Here, we perceive uncertainty in banking data to be the 
result of errors from measurement and statistical computations and other errors such 
as from forecast values of loans, non-performing loans, deposit, etc. Following this 
development, we then apply the proposed models (6) and (13) to assess the robust 
performance of the banks.

5.2  Efficiency results

In the proposed robust models, we seek to obtain an acceptable performance level of 
the banks by optimizing the worst-case values of the uncertain inputs and outputs 
values in the ellipsoids. For each bank, uncertainty is considered in some or all the 
inputs and outputs where the realization of their values are restricted to the uncer-
tainty sets. We suppose that the inputs and outputs deviate from their nominal values 
by a percentage of perturbation, � = 0.05 . The result of the model implementation is 
reported in Table  7. The third column shows the efficiency ranking by the DEA 
model (2), and the fifth and last column show the efficiency ranking by the robust 
models (6) and (13). A comparative view of the efficiency of these three models is 
given in Fig 4. Note that,   the result obtained in model (13) for 
�j =

(|||Rj| + |Ij|||
)0.5

≅ 2.5 indicates the highest conservativeness of decision mak-
ers which occurs at the full protection of the inputs and outputs against all uncertain-
ties. Column 2 of Table 7 shows 8 banks with an efficiency score equal to 1 which 
are efficient under the DEA model (2) and two banks (B13 and B22) which are 
R-efficient in the two robust models. The robust efficiency decreases relative to the 
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DEA efficiency which indicates the worst-case and reliable performance of the 
banks in uncertain conditions. The DEA result indicates an average overall technical 
efficiency (0.898) for the banks under study which further indicates that  although 
the banks are performing averagely well, the number of banks which are efficient 
with or without uncertainty analysis is quite small. The least performing bank 
includes UniCredit SpA (B01) with an efficiency score of 0.738.  

Table 6  Data for 29 major banks in Italy in 2015

Bank Inputs Outputs

Employees Assets Equity Deposits Loans Revenue

B01 125,510.00 860,433.40 53,485.50 163,050.90 445,293.90 12,764.70
B02 90,807.00 676,496.00 48,593.00 79,743.00 350,010.00 10,259.00
B03 25,731.00 169,012.00 9622.70 28,068.10 106,680.40 2905.50
B04 16,972.00 120,509.60 8546.80 24,078.00 71,902.80 1843.70
B05 17,718.00 117,200.80 10,517.80 16,626.80 83,815.70 1724.50
B06 13,371.00 77,494.50 5649.00 22,222.70 60,523.20 1750.30
B07 11,447.00 61,261.20 5651.80 7385.60 43,702.60 1362.30
B08 8197.00 51,373.20 5138.10 4290.60 36,462.50 1017.50
B09 7743.00 50,203.30 4647.40 9000.70 33,953.90 870.50
B10 2651.00 44,710.20 2070.10 8803.90 7430.60 322.20
B11 5273.00 39,783.40 2552.10 9973.50 25,068.30 584.70
B12 6019.00 37,455.30 2479.70 6190.70 22,649.40 509.30
B13 3195.00 35,537.60 2649.40 3029.20 23,290.40 547.10
B14 6263.00 33,349.30 2153.40 6913.00 22,012.20 556.70
B15 5034.00 30,298.90 2489.10 3352.70 20,395.20 383.80
B16 5868.00 27,916.70 1687.20 449.90 18,004.80 697.50
B17 4123.00 26,901.70 2187.70 4194.10 18,263.50 544.90
B18 3927.00 24,186.20 1663.40 5811.20 19,070.70 543.90
B19 3588.00 21,861.10 2323.70 2323.10 18,736.10 426.20
B20 3064.00 14,968.20 1297.20 1661.60 13,121.70 352.90
B21 3194.00 14,809.50 1084.70 2680.60 9414.80 266.30
B22 916.00 13,852.60 226.30 3731.30 4942.40 141.70
B23 2208.00 13,545.30 1387.60 1467.40 12,295.50 261.00
B24 2570.00 13,205.90 1258.50 2137.90 7945.80 277.20
B25 1863.00 12,276.90 1006.20 2375.20 6795.10 175.50
B26 2371.00 12,248.10 922.10 905.20 9386.30 285.70
B27 1207.00 11,769.20 750.10 1612.40 6394.80 175.40
B28 2443.00 11,615.50 724.70 471.10 9328.80 292.30
B29 2989.00 10,765.90 771.20 381.50 6734.00 184.50
Mean 13,319.38 90,863.50 6328.84 14,583.86 52,193.98 1449.20
SD 27,280.19 192,987.03 12,690.11 32,430.64 99,685.54 2879.44
Max 916.00 10,765.90 226.30 381.50 4942.40 141.70
Min 125,510.00 860,433.40 53,485.50 163,050.90 445,293.90 12,764.70



513

1 3

Robust data envelopment analysis via ellipsoidal uncertainty…

For the robust classification of banks, the robust parameter �j is set to a range 
from 0 when no uncertainty in data is anticipated to �j = 2.5 when full protec-
tion for uncertainty is anticipated. The choice of appropriate �j within this range 
is selected arbitrarily. Table  8 shows the result of the robust classification of 
the banks. In exchange for higher guaranteed robustness, higher values of �j 
is selected. The efficiency of banks decrease as �j increases and the DM can 
express preferences with different values of �j and robust efficiency which is 
similar to the approach proposed in Ben-Tal and Nemirovski (2000) and Sadjadi 
and Omrani (2008). Full protection of the inputs and outputs, only B13 and B22 
have R-efficiency. Banks B06, B16, B18, B20, B23 and B28 are PR-efficient at 

Table 7  Efficiency scores and 
ranking—CCR and RCCR 
models

a Note that this result is obtained for �
j
= 2.5

Banks CCR (2) Rank RCCR (6) Rank RCCR (13)a Rank

B01 0.738 29 0.649 27 0.602 29
B02 0.769 26 0.648 28 0.629 26
B03 0.897 16 0.767 16 0.733 13
B04 0.847 21 0.729 21 0.692 20
B05 0.876 18 0.748 17 0.717 16
B06 1.000 1 0.963 4 0.947 3
B07 0.932 13 0.792 13 0.728 15
B08 0.899 15 0.780 15 0.713 18
B09 0.860 20 0.737 20 0.702 19
B10 0.815 22 0.676 24 0.667 21
B11 0.975 9 0.840 10 0.791 9
B12 0.785 25 0.667 25 0.642 25
B13 1.000 1 1.000 1 1.000 1
B14 0.874 19 0.748 18 0.714 17
B15 0.803 23 0.683 22 0.656 22
B16 1.000 1 0.859 8 0.833 8
B17 0.938 12 0.793 12 0.745 12
B18 1.000 1 0.921 5 0.850 6
B19 0.972 10 0.842 9 0.791 9
B20 1.000 1 0.882 7 0.840 7
B21 0.792 24 0.680 23 0.648 23
B22 1.000 1 1.000 1 1.000 1
B23 1.000 1 0.912 6 0.868 5
B24 0.887 17 0.738 19 0.643 24
B25 0.759 27 0.653 26 0.617 27
B26 0.963 11 0.829 11 0.765 11
B27 0.922 14 0.784 14 0.731 14
B28 1.000 1 0.969 3 0.900 4
B29 0.753 28 0.629 29 0.614 28
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different conservativeness level. The rest of the DMUs are R-inefficient. The last 
column of Table 8 shows the classification of the banks as given in Definition 
5. Because many banks were inefficient in the traditional DEA evaluation, it is 
unsurprising the number of efficient banks which are partially or fully robust 
efficient. As observed, 2 banks and 6 banks are fully or partially robust efficient 
at different levels from the 8 DEA efficient banks.

6  Concluding remarks

In this paper, we proposed new robust DEA models based on the ellipsoidal 
uncertainty and interval-based ellipsoidal uncertainty sets designed in Ben-Tal 
and Nemirovski (1999, 2000). This has been done in a manner that immunizes 
arbitrary bounded or unbounded uncertainties partly or in all inputs and outputs 
data simultaneously. By constraining the uncertain data in an ellipsoidal uncer-
tainty sets, the models developed in this paper become less pessimistic and in 
contrast offer the advantage over the interval DEA models which mostly evalu-
ate the performance of DMUs based on their extreme lower and upper bounds 
of efficiency. The developed RDEA models provides the DM the flexibility of 
controlling the level of robustness. Another important contribution that is made 
in this paper  is the design of a   classification scheme which enables the DM to 
classify DMUs into fully robust efficient, partially robust efficient and robust inef-
ficient. We provide numerical examples to illustrate the proposed models parti-
clularly,  for   our proposed  robust additive model which is compared with some 
IDEA models to show its   efficacy, potential and applicability. Furthermore, the 
proposed robust models are applied for the evaluation and classification of banks 
in Italy. The proposed model enables  bank managers to classify banks into fully, 
partially and robust (in)efficient units. Employing the RDEA models with differ-
ent uncertainties to classify DMUs in applications can be considered  for future 
research.

Fig. 4  The result from ellipsoid and interval-based ellipsoid 
(
�j = 2.5

)
 sets
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Table 8  Classification of banks based on the robust model (13)

Banks � = 0.05 Classification

�
j
= 0 �

j
= 0.1 �

j
= 0.5 �

j
= 1.0 �

j
= 1.5 �

j
= 2.0 �

j
= 2.5

B01 0.738 0.728 0.690 0.649 0.611 0.603 0.602 RE
−

B02 0.769 0.755 0.704 0.648 0.629 0.629 0.629 RE
−

B03 0.897 0.882 0.827 0.767 0.741 0.733 0.733 RE
−

B04 0.847 0.835 0.786 0.729 0.693 0.693 0.692 RE
−

B05 0.876 0.863 0.810 0.748 0.717 0.717 0.717 RE
−

B06 1.000 1.000 1.000 0.963 0.951 0.947 0.947 RE
+

B07 0.932 0.916 0.856 0.792 0.749 0.735 0.728 RE
−

B08 0.899 0.886 0.837 0.780 0.732 0.713 0.713 RE
−

B09 0.860 0.847 0.796 0.737 0.703 0.703 0.702 RE
−

B10 0.815 0.799 0.739 0.676 0.667 0.667 0.667 RE
−

B11 0.975 0.960 0.905 0.840 0.798 0.794 0.791 RE
−

B12 0.785 0.772 0.723 0.667 0.649 0.642 0.642 RE
−

B13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

B14 0.874 0.859 0.807 0.748 0.715 0.715 0.714 RE
−

B15 0.803 0.790 0.740 0.683 0.664 0.657 0.656 RE
−

B16 1.000 1.000 0.931 0.859 0.836 0.834 0.833 RE
+

B17 0.938 0.922 0.859 0.793 0.766 0.759 0.745 RE
−

B18 1.000 1.000 0.985 0.921 0.873 0.858 0.850 RE
+

B19 0.972 0.957 0.904 0.842 0.791 0.791 0.791 RE
−

B20 1.000 1.000 0.960 0.882 0.854 0.848 0.840 RE
+

B21 0.792 0.780 0.733 0.680 0.651 0.648 0.648 RE
−

B22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 RE
++

B23 1.000 1.000 0.988 0.912 0.885 0.875 0.868 RE
+

B24 0.887 0.870 0.806 0.738 0.698 0.668 0.643 RE
−

B25 0.759 0.748 0.704 0.653 0.621 0.617 0.617 RE
−

B26 0.963 0.948 0.893 0.829 0.784 0.767 0.765 RE
−

B27 0.922 0.906 0.847 0.784 0.758 0.748 0.731 RE
−

B28 1.000 1.000 1.000 0.969 0.916 0.900 0.900 RE
+

B29 0.753 0.739 0.688 0.629 0.614 0.614 0.614 RE
−

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix A

See Table 9.

Table 9  Major banks in Italy used for the analysis

Banks Bank name

B01 UniCredit SpA
B02 Intesa Sanpaolo
B03 Banca Monte dei Paschi di Siena SpA-Gruppo Monte dei Paschi di Siena
B04 Banco Popolare - Società Cooperativa-Banco Popolare
B05 Unione di Banche Italiane Scpa-UBI Banca
B06 Banca Nazionale del Lavoro SpA
B07 Banca popolare dell’Emilia Romagna
B08 Cassa di Risparmio di Parma e Piacenza SpA
B09 Banca Popolare di Milano SCaRL
B10 Banca Mediolanum SpA
B11 Banca Popolare di Vicenza Societa cooperativa per azioni
B12 Credito Emiliano SpA-CREDEM
B13 Banca Popolare di Sondrio Societa Cooperativa per Azioni
B14 Veneto Banca scpa
B15 Banca Carige SpA
B16 Banco di Napoli SpA
B17 Banca Piccolo Credito Valtellinese-Credito Valtellinese Soc Coop
B18 Deutsche Bank SpA
B19 Banca Popolare di Bergamo SpA
B20 Cassa di Risparmio del Veneto SpA
B21 Banca Popolare di Bari Soc. Coop.P.A
B22 CheBanca SpA
B23 Banco di Brescia San Paolo Cab SpA
B24 Banco di Sardegna SpA
B25 Cassa di risparmio di Asti SpA
B26 Banco di Desio e della Brianza SpA-Banco Desio
B27 Banca di Credito Cooperativo di Roma
B28 Unipol Banca Spa
B29 Banca Sella SpA
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