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Abstract
We consider stochastic partial differential equations appearing as Markovian lifts of
matrix-valued (affine)Volterra-type processes from the point of viewof the generalized
Feller property (see, e.g., Dörsek andTeichmann inA semigroup point of view on split-
ting schemes for stochastic (partial) differential equations, 2010. arXiv:1011.2651).
We introduce in particular Volterra Wishart processes with fractional kernels and val-
ues in the cone of positive semidefinite matrices. They are constructed from matrix
products of infinite dimensional Ornstein–Uhlenbeck processes whose state space is
the set of matrix-valued measures. Parallel to that we also consider positive definite
Volterra pure jump processes, giving rise to multivariate Hawkes-type processes. We
apply these affine covariance processes for multivariate (rough) volatility modeling
and introduce a (rough) multivariate Volterra Heston-type model.
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408 C. Cuchiero, J. Teichmann

1 Introduction

It is the goal of this article to investigate the results of Cuchiero and Teichmann (2018)
on infinite dimensional Markovian lifts of stochastic Volterra processes in a multivari-
ate setup: We are mainly interested in the case where the stochastic Volterra processes
take values in the cone of positive semidefinite matrices Sd+. We shall concentrate on
the affine case due to its relevance for tractable rough covariance modeling, extending
rough volatility (see, e.g., Alòs et al. 2007; Gatheral et al. 2018; Bayer et al. 2016) to
a setting of d “roughly correlated” assets.

Viewing stochastic Volterra processes from an infinite dimensional perspective
allows to dissolve a generic non-Markovianity of the at first sight naturally low-
dimensional volatility process. Indeed, this approach makes it actually possible to
go beyond the univariate case considered so far and treat the problem of multivariate
rough covariancemodels formore than one asset.Moreover, the consideredMarkovian
lifts allow to apply the full machinery of affine processes. We refer to the introduc-
tion of Cuchiero and Teichmann (2018) for an overview of theoretical and practical
advantages of Markovian lifts in the context of Volterra-type processes.

Let us start now by explaining why the matrix-valued positive definite case is
actually more involved than the scalar one in R+, where, for instance, the Volterra
Cox–Ingersoll–Ross process takes values. The latter appears as variance process in
a rough Heston model (see, e.g., El Euch 2019; Abi Jaber and El Euch 2019; Alòs
and Yang 2017). Consider now a standard Wishart process on S

d+, as defined in Bru
(1991), Cuchiero et al. (2011), of the form

dXt = (d − 1) Idd dt + √
XtdWt + dW�

t

√
Xt , X0 ∈ S

d+. (1.1)

Here √
. denotes the matrix square root, Idd the identity matrix and W a d × d

the matrix of Brownian motions. The (necessary) presence of the dimension d in the
drift is an obvious obstruction to infinite dimensional versions of this equation, which
could be projected to obtain Volterra-type equations by the variation of constants
formula; see Cuchiero and Teichmann (2018) for such a projection on R+. In order to
circumvent this difficulty, we present two approaches in this paper:

• We develop a theory of infinite dimensional affine Markovian lifts of pure jump
positive semidefinite Volterra processes.

• We develop a theory of squares of Gaussian processes in a general setting to con-
struct infinite dimensional analogs of Wishart processes. Their finite dimensional
projections, however, look different fromnaively conjecturedVolterraWishart pro-
cesses following the role model of Volterra Cox–Ingersoll–Ross processes. They
are also different in dimension one, as outlined below.

The jump part appears natural and comes without any further probabilistic problem
when constrained to finite variation jumps. Note that in the (non-Volterra) case of
affine processes on positive semidefinite matrices, quadratic variation jumps are not
possible either (see Mayerhofer 2012). With the generalized Feller approach from
Dörsek and Teichmann (2010), Cuchiero and Teichmann (2018), we obtain a new
class of stochastic Volterra processes taking values in S

d+ of the form
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Markovian lifts of positive semidefinite affine Volterra… 409

Vt = h(t)+
∫ t

0
(K (t − s)Vs+VsK (t − s))ds+

∫ t

0
K (t − s)dNs+

∫
dNsK (t − s),

(1.2)

where h : R+ → S
d+ is some deterministic function, K a (potentially fractional)

kernel in L2(R+,Sd+) and N a pure jump process of finite variation with jump sizes in
S
d+, whose compensator is a linear function in V . This allows, for instance, to define

a multivariate Hawkes process N̂ 1 with values in N
d
0 given by the diagonal entries of

N , i.e., diag(N ) = N̂ , and the compensator of N̂i is given by
∫ ·
0 Vs,i ids (see Example

4.16). By means of the affine transform formula for the infinite dimensional lift of
(1.2), we are able to derive an expression for the Laplace transform of Vt which can
be computed by means of matrix Riccati–Volterra equations.

The difficulty of the continuous part arises from geometric constraints, which can,
however, be circumvent by building squares of unconstrained processes. Let us illus-
trate the idea in a finite dimensional setting: Let W be an n × d matrix of Brownian
motions and let ν be a matrix in R

d×dk consisting of k submatrixes νi ∈ R
d×d ,

i = 1, . . . , k, i.e., ν = (ν1, . . . , νk).
Define now a Gaussian process with values in R

n×dk by γ := Wν. Then, by Itô’s
product formula, the Rdk×dk valued process γ �

t γt satisfies the following equation

dγ �
t γt = nν�νdt + ν�dW�

t γt + γ �
t dWtν. (1.3)

Following Bru (1991, Subsection 5.2) and setting λt := γ �
t γt , this can, however, also

be written via a kd × kd matrix of independent Brownian motions B satisfying

√
γ �
t γtdBt

√
ν�ν = γ �

t dWtν (1.4)

in the more familiar form

dλt = nν�νdt +
√

ν�νdB�
t

√
λt + √

λtdBt

√
ν�ν. (1.5)

Our article is devoted to analyze the situation where the index variable ν gets contin-
uous, which is the only possible form of an infinite dimensional Wishart process. We
believe that generalized Feller processes are the right arena to achieve this purpose.
In this article, we choose measure spaces, but an analogous analysis can be done in
the setting of function spaces as, for instance, the Hilbert space setting of Filipović
(2001); see Cuchiero and Teichmann (2018, Section 5.2). In the measure-valued set-
ting, we proceed as follows: Let γ be an infinite dimensional Ornstein–Uhlenbeck
process taking values in R

n×d -valued regular Borel measures on R+. Then, Volterra
Wishart processes arise as finite dimensional projections of γ �(dx1)γ (dx2) on S

d+
and can be written as

1 We refer to the original paper of (Hawkes 1971) for the one-dimensional case.
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410 C. Cuchiero, J. Teichmann

Vt = h(t) + n
∫ t

0
K (t − s)K (t − s)ds

+
∫ t

0
K (t − s)dW�

s Y (t, s)ds +
∫ t

0
Y (t, s)�dWsK (t − s), (1.6)

where h and K are as in (1.2),W an n× d matrix of Brownian motions and Y (t, s) =∫∞
0 e−x(t−s)γs(dx). As explained in Remark 5.4, Vt corresponds to the matrix square
of aVolterraOrnstein–Uhlenbeck process Xt , obtained as finite dimensional projection
of γ (dx). The Volterra Wishart process (1.6) can then also be written in terms of the
forward process of Xt , i.e., (E[Xt |Fs])s≤t , namely

Vt = h(t) + n
∫ t

0
K (t − s)K (t − s)ds

+
∫ t

0
K (t − s)dW�

s E[Xt |Fs]ds +
∫ t

0
E[X�

t |Fs]dWsK (t − s).

Note that this is not of standard Volterra form, as, e.g., in Abi Jaber et al. (2019),
since Y (t, s) or E[Xt |Fs], respectively, cannot be expressed as a function of Vt . By
moving to a Brownian field analogous to (1.4), it could, however, be expressed as a
path functional of (Vs)s≤t . For n = d = 1, it also gives rise to a different equation than
the Volterra CIR process. We explain the connection between (1.6) and (1.3)–(1.5) in
detail in Sect. 5.

Note that by choosing K to be a matrix of fractional kernels, the trajectories of
(1.6) become rough, whence V qualifies for rough covariance modeling with poten-
tially different roughness regimes for different assets and their covariances. This is
in accordance with econometric observations. In Sect. 6, we show how such models
can be defined: We introduce a (rough) multivariate Volterra Heston-type model with
jumps and show that it can again be cast in the affine framework. This is particularly
relevant for pricing basket or spread options using the Fourier pricing approach.

The remainder of the article is organized as follows: In Sect. 1.1, we introduce some
notation and review certain functional analytic concepts. In Sects. 2 and 3, we recall
and extend results on generalized Feller processes as outlined in Cuchiero and Teich-
mann (2018). In particular, Theorem 2.8 provides a result on invariant (sub)spaces
for generalized Feller processes that is crucial for the square construction as out-
lined above. In Sect. 4, we apply the presented theory to SPDEs which are lifts of
matrix-valued stochastic Volterra jump processes of type (1.2). Section 5 is devoted
to present a theory of infinite dimensional Wishart processes which in turn give rise
to (rough) Volterra Wishart processes. In Sect. 6, we apply these processes for multi-
variate (rough) volatility modeling.

1.1 Notation and some functional analytic notions

For the background in functional analysis, we refer to the excellent textbook of Schae-
fer andWolff (1999) as main reference and to the equally excellent books of Engel and
Nagel (2000) and Pazy (1983) for the background in strongly continuous semigroups.
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Markovian lifts of positive semidefinite affine Volterra… 411

We shall apply the following notations: Let Y be a Banach space and Y ∗ its dual
space, i.e., the space of linear continuous functionals with the strong dual norm

‖λ‖Y ∗ = sup
‖y‖≤1

|〈y, λ〉|,

where 〈y, λ〉 := λ(y) denotes the evaluation of the linear functional λ at the point
y ∈ Y . Since in the case of Eq. (1.2), cones E of Y ∗ will be our state spaces, we denote
the polar cones in pre-dual notation, i.e.,

E∗ = {
y ∈ Y | 〈y, λ〉 ≤ 0 for all λ ∈ E}.

We denote spaces of bounded linear operators from Banach spaces Y1 to Y2 by
L(Y1,Y2) with norm

‖A‖L(Y1,Y2) := sup
‖y1‖Y1≤1

‖Ay1‖Y2 .

If Y1 = Y2, we only write ‖·‖L(Y1). On Y
∗, we shall usually consider beside the strong

topology (induced by the strong dual norm) the weak-∗-topology, which is the weakest
locally convex topology making all linear functionals 〈y, ·〉 on Y ∗ continuous. Let us
recall the following facts:

• The weak-∗-topology is metrizable if and only if Y is finite dimensional: This is
due to Baire’s category theorem since Y ∗ can be written as a countable union of
closed sets, whence at least one has to contain an open set, which in turn means
that compact neighborhoods exist, i.e., a strictly finite dimensional phenomenon.

• Norm balls KR of any radius R in Y ∗ are compact with respect to the weak-∗-
topology, which is the Banach–Alaoglu theorem.

• These balls are metrizable if and only if Y is separable: This is true since Y can
be isometrically embedded into C(K1), where y �→ 〈y, ·〉, for y ∈ Y . Since Y is
separable, its embedded image is separable, too, which means—by looking at the
algebra generated by Y in C(K1)—that C(K1) is separable, which is the case if
and only if K1 is metrizable.

Even though some results are more general, in particular, often only compactness of
KR is used, we shall always assume separability in this article.

Finally, a family of linear operators (Pt )t≥0 on a Banach space Y with Pt Ps = Pt+s

for s, t ≥ 0 and with P0 = I where I denotes the identity is called strongly continuous
semigroup if limt→0 Pt y = y holds true for every y ∈ Y . We denote its generator
usually by A which is defined as limt→0

Pt y−y
t for all y ∈ dom(A), i.e., the set of

elements where the limit exists. Notice that dom(A) is left invariant by the semigroup
P and that its restriction on the domain equipped with the operator norm

‖y‖dom(A) :=
√

‖y‖2 + ‖Ay‖2

is again a strongly continuous semigroup.
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412 C. Cuchiero, J. Teichmann

Moreover, as already used in the introduction, Sd denotes the vector space of sym-
metric d × d matrices and Sd+ the cone of positive semidefinite ones. Furthermore, we
denote by diag(A) the vector consisting of the diagonal elements of a matrix A.

2 Generalized Feller semigroups and processes

In the context of Markovian lifts of stochastic Volterra processes (signed), measure-
valued processes appear in a natural way. The generalized Feller framework is
taylor-made for such processes, as it allows to consider non-locally compact state
spaces, going beyond the standard theory of Feller processes as provided e.g. in Ethier
and Kurtz (1986). This is explicitly needed in Sect. 5 for Ornstein-Uhlenbeck pro-
cesses which take values in the space of matrix-valued measures. Beyond that jump
processes with unbounded, but finite activity can be easily constructed in this setting,
see Proposition 3.4 and Sect. 4. We shall first collect some results from Cuchiero and
Teichmann (2018) and generalize accordingly for the purposes of this article.

2.1 Definitions and results

First, we introduce weighted spaces and state a central Riesz–Markov–Kakutani rep-
resentation result. The underlying space X here is a completely regular Hausdorff
topological space.

Definition 2.1 A function � : X → (0,∞) is called admissible weight function if the
sets KR := {x ∈ X : �(x) ≤ R} are compact and separable for all R > 0.

An admissible weight function � is necessarily lower semicontinuous and bounded
from below by a positive constant. We call the pair X together with an admissible
weight function � a weighted space. A weighted space is σ -compact. In the following
remark, we clarify the question of local compactness of convex subsets E ⊂ X when
X is a locally convex topological space and � convex.

Remark 2.2 Let X be a separable locally convex topological space and E a convex
subset. Moreover, let � be a convex admissible weight function. Then, � is continuous
on E if and only if E is locally compact. Indeed, if � is continuous on E , then of course,
the topology on E is locally compact since every point has a compact neighborhood
of type {� ≤ R} for some R > 0. On the other hand, if the topology on E is locally
compact, then for every point λ0 ∈ E , there is a convex, compact neighborhood V ⊂ E
such that �(λ) − �(λ0) is bounded on V by a number k > 0, whence by convexity
|�(s(λ − λ0) + λ0) − �(λ0)| ≤ sk for λ − λ0 ∈ s(V − λ0) and s ∈]0, 1]. This in turn
means that � is continuous at λ0.

From now on, � shall always denote an admissible weight function. For com-
pleteness, we start by putting definitions for general Banach space valued functions,
although in the sequel, we shall only deal withR-valued functions: Let Z be a Banach
space with norm ‖·‖Z . The vector space
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Markovian lifts of positive semidefinite affine Volterra… 413

B�(X; Z) :=
{
f : X → Z : sup

x∈X
�(x)−1‖ f (x)‖Z < ∞

}
(2.1)

of Z -valued functions f equipped with the norm

‖ f ‖� := sup
x∈X

�(x)−1‖ f (x)‖Z , (2.2)

is a Banach space itself. It is also clear that for Z -valued bounded continuous functions,
the continuous embedding Cb(X; Z) ⊂ B�(X; Z) holds true, where we consider the
supremum norm on bounded continuous functions, i.e., supx∈X ‖ f (x)‖.
Definition 2.3 We define B�(X; Z) as the closure of Cb(X; Z) in B�(X; Z). The
normed space B�(X; Z) is a Banach space.

If the range space Z = R, which from now on will be the case, we shall write
B�(X) for B�(X;R) and analogously B�(X).

We consider elements ofB�(X) as continuous functions whose growth is controlled
by �. More precisely, we have by Dörsek and Teichmann (2010, Theorem 2.7) that
f ∈ B�(X) if and only if f |KR ∈ C(KR) for all R > 0 and

lim
R→∞ sup

x∈X\KR

�(x)−1‖ f (x)‖ = 0 . (2.3)

Additionally, by Dörsek and Teichmann (2010, Theorem 2.8), it holds that for every
f ∈ B�(X) with supx∈X f (x) > 0, there exists z ∈ X such that

�(x)−1 f (x) ≤ �(z)−1 f (z) for allx ∈ X , (2.4)

which emphasizes the analogy with spaces of continuous functions vanishing at∞ on
locally compact spaces.

Let us now state the following crucial representation theorem of Riesz type:

Theorem 2.4 (Riesz representation forB�(X)) For every continuous linear functional
� : B�(X) → R there exists a finite signed Radon measure μ on X such that

�( f ) =
∫

X
f (x)μ(dx) for all f ∈ B�(X). (2.5)

Additionally, ∫

X
�(x)|μ|(dx) = ‖�‖L(B�(X),R), (2.6)

where |μ| denotes the total variation measure of μ.

We shall next consider strongly continuous semigroups on B�(X) spaces and
recover very similar structures as well known for Feller semigroups on the space
of continuous functions vanishing at ∞ on locally compact spaces.

Definition 2.5 A family of bounded linear operators Pt : B�(X) → B�(X) for t ≥ 0
is called generalized Feller semigroup if
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414 C. Cuchiero, J. Teichmann

(i) P0 = I , the identity on B�(X),
(ii) Pt+s = Pt Ps for all t , s ≥ 0,
(iii) for all f ∈ B�(X) and x ∈ X , limt→0 Pt f (x) = f (x),
(iv) there exist a constantC ∈ R and ε > 0 such that for all t ∈ [0, ε], ‖Pt‖L(B�(X)) ≤

C .
(v) Pt is positive for all t ≥ 0, that is, for f ∈ B�(X), f ≥ 0, we have Pt f ≥ 0.

We obtain due to the Riesz representation property the following key theorem:

Theorem 2.6 Let (Pt )t≥0 satisfy (i) to (iv) of Definition 2.5. Then, (Pt )t≥0 is strongly
continuous on B�(X), that is,

lim
t→0

‖Pt f − f ‖� = 0 f orall f ∈ B�(X). (2.7)

One can also establish a positive maximum principle in case that the semigroup
Pt grows around 0 like exp(ωt) for some ω ∈ R with respect to the operator norm
on B�(X). Indeed, the following theorem proved in Dörsek and Teichmann (2010,
Theorem 3.3) is a reformulation of the Lumer–Phillips theorem for pseudo-contraction
semigroups using a generalized positive maximum principle which is formulated in
the sequel.

Theorem 2.7 Let A be an operator on B�(X) with domain D, and ω ∈ R. A is
closable with its closure A generating a generalized Feller semigroup (Pt )t≥0 with
‖Pt‖L(B�(X)) ≤ exp(ωt) for all t ≥ 0 if and only if

(i) D is dense,
(ii) A − ω0 has dense image for some ω0 > ω, and
(iii) A satisfies the generalized positive maximum principle, that is, for f ∈ D with

(�−1 f ) ∨ 0 ≤ �(z)−1 f (z) for some z ∈ X, A f (z) ≤ ω f (z).

As a new contribution to the general theorems, we shall work out a statement on
invariant subspaces which will be crucial for constructing squares of infinite dimen-
sional OU processes.

Theorem 2.8 Let X be a weighted space with weight �1 and q : X → q(X) be a
(surjective) continuous map from (X , �1) to the weighted space (q(X), �2). Let P(1)

be a generalized Feller semigroup acting on B�1(X). Assume that �2 ◦ q ≤ �1 on X.
Let D be a dense subspace ofB�2(q(X)). Furthermore, for every f ∈ D ⊂ B�2(q(X))

and for every t ≥ 0, there is some g ∈ B�2(q(X)) such that

P(1)
t ( f ◦ q) = g ◦ q , (2.8)

and additionally, there is a constant C ≥ 1 such that

P(1)
t (�2 ◦ q) ≤ C�2 ◦ q . (2.9)

Then, there is a generalized Feller semigroup P(2) acting on B�2(q(X)) such that

P(1)
t ( f ◦ q) = (P(2)

t f ) ◦ q . (2.10)
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Markovian lifts of positive semidefinite affine Volterra… 415

Proof The continuous map q defines a linear operator M from B�2(q(X)) to B�1(X)

via f �→ f ◦ q. Notice that M is bounded, since

‖M f ‖�1
≤ ‖ f ‖�2

, f ∈ B�2(q(X))

due to the assumption �2 ◦ q ≤ �1. It is also injective, but its image is not necessarily
closed. Assumptions (2.8) and (2.9) now mean that

P(1)
t M f ∈ rg(M)

for every f ∈ B�2(q(X)) and not only for f ∈ D. Hence, we can define

P(2)
t f := M−1P(1)

t M f ,

which is by the very construction a semigroup of linear operators on B�2(q(X)).
Since M is continuous, its graph is closed, whence P(2)

t is a bounded linear operator
by the closed graph theorem. Moreover, property (iv) of Definition 2.5 holds true due
to Assumption (2.9). Positivity is also preserved, since for f ≥ 0, we have due to
Assumption (2.8) and the fact that P(1) is a generalized Feller semigroup,

P(2)
t f = M−1P(1)

t M f = M−1 P(1)
t ( f ◦ q)

︸ ︷︷ ︸
≥0

= M−1(g ◦ q) = g ≥ 0.

Here, g is nonnegative due the positivity of P(1)
t ( f ◦ q). By (2.8) and the definition

of P(2), (2.10) clearly holds true. Hence,

lim
t→0

P(2)
t f (q(x)) = lim

t→0
P(1)
t f (q(x)) = f (q(x))

for x ∈ X and thus property (iii) of Definition 2.5. Hence, all conditions of Definition
2.5 are satisfied and we can conclude that the operators (P(2)

t ) form a generalized
Feller semigroup.

��
Remark 2.9 In the setting of general semigroups, it is not clear that restrictions of
semigroups to (not even closed) subspaces preserve strong continuity.

Remark 2.10 There are several methods to show that (2.8) is satisfied. In general, it is
not sufficient to assume that the generator of P(1) has this property.

Corollary 2.11 Let the assumptions of Theorem 2.8 except Assumption (2.9) hold true
and suppose additionally that

�2 ◦ q = �1.

Then, the same conclusions hold true. In particular, the range of the operator M :
B�2(q(X)) → B�1(X), f �→ f ◦ q is closed.
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416 C. Cuchiero, J. Teichmann

We restate from Cuchiero and Teichmann (2018) assertions on existence of gener-
alized Feller processes and path properties. It is remarkable that in this very general
context, càg versions exist for countably many test functions.

Theorem 2.12 Let (Pt )t≥0 be a generalized Feller semigroup with Pt1 = 1 for t ≥ 0.
Then, there exists a filtered measurable space (
, (Ft )t≥0) with right continuous
filtration, and an adapted family of random variables (λt )t≥0 such that for any initial
value λ0 ∈ X there exists a probability measure Pλ0 with

Eλ0 [ f (λt )] := E
P

λ0 [ f (λt )] = Pt f (λ0)

for t ≥ 0 and every f ∈ B�(X). The Markov property holds true, i.e.,

E
P

λ0 [ f (λt ) | Fs] = Pt−s f (λs)

almost surely with respect to Pλ0 .

Theorem 2.13 Let (Pt )t≥0 be a generalized Feller semigroup, and let (λt )t≥0 be a gen-
eralized Feller process on a filtered probability space. Then, for every countable family

( fn)n≥0 of functions in B�(X), we can choose a version of the processes
(

fn(λt )
�(λt )

)

t≥0
,

such that the trajectories are càglàd for all n ≥ 0. If additionally Pt� ≤ exp(ωt)�
holds true, then (exp(−ωt)�(λt ))t≥0 is a super-martingale and can be chosen to have
càglàd trajectories. In this case, we obtain that the processes

(
fn(λt )

)
t≥0 can be

chosen to have càglàd trajectories.

Remark 2.14 In the general case, when Pt� ≤ M exp(ωt)� for M > 1, we obtain for(
fn(λt )

)
t≥0 only càg trajectories. To see this, consider the measurable set of sample

events {sup0≤t≤1 �(λt ) ≤ R}. Then, we can construct on the metrizable compact set

{� ≤ R} a càglàd version of the processes
(

fn(λt )
�(λt )

)

t≤1
and

(
1

�(λt )

)

t≤1
and in turn

also of
(
fn(λt )

)
t≥0. The limit R → ∞, however, only leads to a càg version since we

cannot control the right limits.

2.2 Dual spaces of Banach spaces

Themost important playground for our theorywill be closed subsets of duals ofBanach
spaces, where the weak-∗-topology appears to be σ -compact due to the Banach–
Alaoglu theorem. Assume that E ⊂ Y ∗ is a closed subset of the dual space Y ∗ of
some Banach space Y where Y ∗ is equipped with its weak-∗-topology. Consider a
lower semicontinuous function � : E → (0,∞) and denote by (E, �) the correspond-
ing weighted space. We have the following approximation result (see Döorsek and
Teichmann (2010, Theorem 4.2)) for functions in B�(E) by cylindrical functions. Set

CylN := {
g(〈·, y1〉, . . . , 〈·, yN 〉) : g ∈ C∞

b (RN )

andy j ∈ Y , j = 1, . . . , N
}
, (2.11)
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Markovian lifts of positive semidefinite affine Volterra… 417

where 〈·, ·〉 denotes the pairing between Y ∗ and Y . We denote by Cyl := ⋃
N∈N CylN

the set of bounded smooth continuous cylinder functions on E .
Theorem 2.15 The closure of Cyl in B�(E) coincides with B�(E), whose elements
appear to be precisely the functions f ∈ B�(E) which satisfy (2.3) and that f |KR is
weak-∗-continuous for any R > 0.

Proof See Cuchiero and Teichmann (2018).

��
Assumption 2.16 Let (λt )t≥0 denote a time homogeneous Markov process on some
stochastic basis (
,F , (Ft )t≥0,P

λ0) with values in E .
Then, we assume that

(i) there are constants C and ε > 0 such that

Eλ0 [�(λt )] ≤ C�(λ0) for all λ0 ∈ E and t ∈ [0, ε]; (2.12)

(ii)
lim
t→0

Eλ0 [ f (λt ))] = f (λ0) for any f ∈ B�(E) and λ0 ∈ E; (2.13)

(iii) for all f in a dense subset of B�(E), the map λ0 �→ Eλ0 [ f (λt )] lies in B�(E).

Remark 2.17 Of course inequality (2.12) implies that |Eλ0 [ f (λt )]| ≤ C�(λ0) for all
f ∈ B�(E), λ0 ∈ E and t ∈ [0, ε].
Theorem 2.18 Suppose Assumptions 2.16 hold true. Then, Pt f (λ0) := Eλ0 [ f (λt )]
satisfies the generalized Feller property and is therefore a strongly continuous semi-
group on B�(E).

Proof This follows from the arguments of Dörsek and Teichmann (2010, Section 5).

��

3 Approximation theorems

In order to establish existence of Markovian solutions for general generators A, we
could at least in the pseudo-contractive case either directly apply Theorem 2.7, where
we have to assume that the generator A satisfies on a dense domain D a generalized
positive maximum principle and that for at least one ω0 > ω the range of A − ω0
is dense, or we approximate a general generator A by (finite activity pure jump)
generators An and apply the following (well known) approximation theorems. They
also work in the general context when the constant M > 1.

Theorem 3.1 Let (Pn
t )n∈N,t≥0 be a sequence of strongly continuous semigroups on a

Banach space Z with generators (An)n∈N such that there are uniform (in n) growth
bounds M ≥ 1 and ω ∈ R with

‖Pn
t ‖L(Z) ≤ M exp(ωt) (3.1)
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for t ≥ 0. Let furthermore D ⊂ ∩n dom(An) be a dense subspace with the following
three properties:

(i) D is an invariant subspace for all Pn, i.e., for all f ∈ D, we have Pn
t f ∈ D,

for n ≥ 0 and t ≥ 0.
(ii) There is a norm ‖.‖D on D such that there are uniform growth bounds with

respect to ‖.‖D, i.e., there are MD ≥ 1 and ωD ∈ R with

‖Pn
t f ‖D ≤ MD exp(ωDt)‖ f ‖D

for t ≥ 0 and for n ≥ 0.
(iii) The sequence An f converges as n → ∞ for each f ∈ D, in the following sense:

There exists a sequence of numbers anm → 0 as n,m → ∞ such that

‖An f − Am f ‖ ≤ anm‖ f ‖D
holds true for every f ∈ D and for all n,m.

Then, there exists a strongly continuous semigroup (P∞
t )t≥0 with the same growth

bound on Z such that limn→∞ Pn
t f = P∞

t f for all f ∈ Z uniformly on compacts
in time and on bounded sets in D. Furthermore on D, the convergence is of order
O(anm). If in addition for each n ∈ N, (Pn

t )t≥0 is a generalized Feller semigroup,
then this property transfers also to the limiting semigroup.

Proof See Cuchiero and Teichmann (2018). ��
For the purposes of affine processes, a slightly more general version of the approx-

imation theorem is needed, which we state in the sequel:

Theorem 3.2 Let (Pn
t )n∈N,t≥0 be a sequence of strongly continuous semigroups on a

Banach space Z with generators (An)n∈N such that there are uniform (in n) growth
bounds M ≥ 1 and ω ∈ R with

‖Pn
t ‖L(Z) ≤ M exp(ωt)

for t ≥ 0. Let furthermore D ⊂ ∩n dom(An) be a subset with the following two
properties:

(i) The linear span span(D) is dense.
(ii) There is a norm ‖.‖D on span(D) such that for each f ∈ D and for t > 0, there

exists a sequence a f ,t
nm , possibly depending on f and t,

‖An Pm
u f − Am Pm

u f ‖ ≤ a f ,t
nm ‖ f ‖D

holds true for n,m and for 0 ≤ u ≤ t , with a f ,t
nm → 0 as n,m → ∞.

Then, there exists a strongly continuous semigroup (P∞
t )t≥0 with the same growth

bound on Z such that limn→∞ Pn
t f = P∞

t f for all f ∈ Z uniformly on compacts in
time. If in addition for each n ∈ N, (Pn

t )t≥0 is a generalized Feller semigroup, then
this property transfers also to the limiting semigroup.
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Proof See Cuchiero and Teichmann (2018). ��
Our first application of Theorem 3.1 is the next proposition that extendswell-known

results on bounded generators toward unbounded limits.
We repeat here a remark from Cuchiero and Teichmann (2018) since it helps to

understand the fourth condition on the measures:

Remark 3.3 Let (Pt )t≥0 be a generalized Feller semigroup with ‖Pt‖L(B�(X)) ≤
M exp(ωt) for some M ≥ 1 and some ω. Additionally, it is assumed to be of transport
type, i.e.,

Pt f (x) = f (ψt (x)) (3.2)

for some continuous map ψt : X → X . Define now a new function

�̃(x) := sup
t≥0

exp(−ωt)Pt�(x)

for x ∈ X . Notice that �̃ is an admissible weight function, since

{�̃ ≤ R} = ∩t≥0 {Pt� ≤ exp(ωt)R} ≤ {� ≤ R}

is compact by the definition of � and the continuity of x �→ ψt (x) which leads to an
intersection of closed subsets of compacts. Additionally, we have that

� ≤ �̃ ≤ M�

by the growth bound, and therefore, the norm on B�(X) is equivalent to

‖ f ‖�̃ = sup
x∈X

| f (x)|
�̃(x)

.

Furthermore,

‖Pt f ‖�̃ ≤ exp(ωt)‖ f ‖�̃

holds for all t ≥ 0 and f ∈ B�(X). Indeed, this is a consequence of the following
estimate

‖Pt f ‖�̃ = sup
x

∣∣∣∣
f (ψt (x))

sups exp(−ωs)�(ψs(x))

∣∣∣∣ ≤ sup
x

∣∣∣∣
f (ψt (x))

sups exp(−ω(t + s))�(ψt+s(x))

∣∣∣∣

≤ exp(ωt) sup
x

∣∣∣∣
f (ψt (x))

sups exp(−ωs)�(ψs(ψt (x)))

∣∣∣∣ ≤ exp(ωt)‖ f ‖�̃.

Hence,

|Pt f (x)| ≤ exp(ωt)�̃(x)‖ f ‖�̃,
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which implies

Pt �̃ ≤ exp(ωt)�̃, t ≥ 0.

Proposition 3.4 Let (X , �) be a weighted space with weight function � ≥ 1. Consider
an operator A on B�(X) with dense domain dom(A) generating on B�(X) a general-
ized Feller semigroup (Pt )t≥0 of transport type as in (3.2), such that for all t ≥ 0, we
have ‖Pt‖L(B�(X)) ≤ M1 exp(ωt) for some M1 andω and such thatB√

�(X) ⊂ B�(X)

is left invariant.
Consider furthermore a family of finite measures μ(x, .) for x ∈ X on X such that

the operator B acts on B�(X) by

B f (x) :=
∫

( f (y) − f (x))μ(x, dy)

for x ∈ X yielding continuous functions on {� ≤ R} for R ≥ 0, and such that the
following properties hold true:

• For all x ∈ X
∫

�(y)μ(x, dy) ≤ M�2(x), (3.3)

as well as
∫ √

�(y)μ(x, dy) ≤ M�(x), (3.4)

and
∫

μ(x, dy) ≤ M
√

�(x), (3.5)

hold true for some constant M.
• For some constant ω̃ ∈ R,

∫ ∣∣∣
supt≥0 exp(−ωt)Pt�(y) − supt≥0 exp(−ωt)Pt�(x)

supt≥0 exp(−ωt)Pt�(x)

∣∣∣μ(x, dy) ≤ ω̃, (3.6)

for all x ∈ X. In particular, y �→ supt≥0 exp(−ωt)Pt�(y) should be integrable
with respect to μ(x, .)

Then, A+ B generates a generalized Feller semigroup (P∞
t )t≥0 on B�(X) satisfying

‖P∞
t ‖L(B�(X)) ≤ M1 exp((ω + ω̃)t).

Proof See Cuchiero and Teichmann (2018). ��
Remark 3.5 In contrast to classical Feller theory, also processes with unbounded jump
intensities can be constructed easily if � is unbounded on X . The general character of
the proposition allows to build general processes from simple ones by perturbation.
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4 Lifting stochastic Volterra jump processes with values in S
d+

Building on the theory of generalized Feller processes from the above, we shall now
treat the following type of matrix measure-valued SPDEs

dλt (dx) = A∗λt (dx)dt + ν(dx)dXt + dXtν(dx),

λ0 ∈ E . (4.1)

As shown below, this equation corresponds to a Markovian lift of the Volterra jump
process in (1.2).

We consider here the setting of Sect. 2.2. The underlying Banach space Y ∗ is here
the space of finite S

d -valued regular Borel measures on the extended half real line
R+ := R+ ∪ {∞}, and E denotes a (positive definite) subset of Y ∗. Moreover, A∗ is
the generator of a strongly continuous semigroup S∗ on Y ∗, ν ∈ Y ∗ (or in a slightly
larger space denoted by Z∗ in the sequel). The pre-dual spaceY is given byCb(R+,Sd)

functions. Note that since R+ is compact, Y = Cb(R+,Sd) is separable. The driving
process X is an Sd -valued pure jump Itô-semimartingale, whose differential character-
istics depend linearly on λ, precisely specified below. Let us remark that other forms
of differential characteristics of X , in particular beyond the linear case, can be easily
incorporated in this setting.

The pairing between Y and Y ∗, denoted by 〈·, ·〉, is specified via:

〈·, ·〉 : Y × Y ∗ → R, (y, λ) �→ 〈y, λ〉 = Tr

(∫ ∞

0
y(x)λ(dx)

)
,

where Tr denotes the trace. We also define another bilinear map via

〈〈·, ·〉〉 : Y × Y ∗ → S
d , (y, λ) �→ 〈〈y, λ〉〉 =

∫ ∞

0
y(x)λ(dx) +

∫ ∞

0
λ(dx)y(x).

(4.2)

In the following, we summarize the main ingredients of our setting. For the norm
on Sd , we write ‖ · ‖, which is given by ‖u‖ = √

Tr(u2) for u ∈ S
d .

Assumption 4.1 Throughout this section, we shall work under the following condi-
tions:

(i) We are given an admissible weight function � on Y ∗ (in the sense of Sect. 2)
such that

�(λ) = 1 + ‖λ‖2Y ∗ , λ ∈ Y ∗,

where ‖ · ‖Y ∗ denotes the norm on Y ∗, which is the total variation norm of λ.
(ii) We are given a closed convex cone E ⊂ Y ∗ (in the sequel the cone of Sd+ valued

measures) such that (E, �) is a weighted space in the sense of Sect. 2. This will
serve as state space of (4.1).
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(iii) Let Z ⊂ Y be a continuously embedded subspace.
(iv) We assume that a semigroup S∗ with generatorA∗ acts in a strongly continuous

way on Y ∗ and Z∗, with respect to the respective norm topologies. Moreover, we
suppose that for any matrix A ∈ S

d , it holds that

S∗
t (λ(·)A + Aλ(·)) = (S∗

t λ(·))A + A(S∗
t λ(·)). (4.3)

(v) We assume that λ �→ S∗
t λ is weak-∗-continuous on Y ∗ and on Z∗ for every t ≥ 0

(considering the weak-∗-topology on both the domain and the image space).
(vi) We suppose that the (pre-) adjoint operator of A∗, denoted by A and domain

dom(A) ⊂ Z ⊂ Y , generates a strongly continuous semigroup on Z with respect
to the respective norm topology (but not necessarily on Y ).

To analyze solvability of (4.1), we first consider the following linear deterministic
equation

dλt (dx) = A∗λt (dx)dt + ν(dx)β(λt (·))dt + β(λt (·))ν(dx)dt (4.4)

for λ0 ∈ Y ∗, ν ∈ Z∗ and β a bounded linear operator from Y ∗ → S
d which satisfies

for A ∈ S
d and λ ∈ Y ∗

β(λ(·)A + Aλ(·)) = β(λ(·))A + Aβ(λ(·)). (4.5)

We denote by β∗ : Sd → Y the adjoint operator defined via

Tr(uβ(λ)) = Tr

(∫ ∞

0
β∗(u)(x)λ(dx)

)
= 〈β∗(u), λ〉, u ∈ S

d , λ ∈ Y ∗.

Remark 4.2 Notice that drift specifications could be more general here, but for the
sake or readability, we leave this direction for the interested reader.

For notational convenience,we shall often leave the dx argument awaywhenwriting
an (S)PDE of type (4.4) subsequently. Under the following assumptions on S∗ and
ν ∈ Z∗, we can guarantee that (4.4) can be solved on the space Y ∗ for all times in the
mild sense with respect to the dual norm ‖ · ‖Y ∗ by a standard Picard iteration method.

Assumption 4.3 We assume that

(i) S∗
t ν ∈ Y ∗ for all t > 0 even though ν does not necessarily lie in Y ∗ itself, but only

in Z∗;
(ii)

∫ t
0 ‖S∗

s ν‖2Y ∗ds < ∞ for all t > 0.

For the linear operator β as of (4.5), we define

K (t) := β(S∗
t ν), (4.6)
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which will correspond to a kernel in L2
loc(R+,Sd) of a Volterra equation. Define

furthermore RK ∈ L2
loc(R+,Sd) as a symmetrized version of the resolvent of the

second kind [(see, e.g., Gripenberg et al. (1990, Theorem 3.1)] that solves

K ∗ RK + RK ∗ K = K − RK , (4.7)

where K ∗ RK denotes the convolution, i.e., K ∗ RK = ∫ ·
0 K (· − s)RK (s)ds.

Example 4.4 The main examples that we have in mind for β and for S∗, and thus in
turn for the kernel K , are the following specifications:

β(λ) =
∫ ∞

0
λ(dx), S∗

t ν(dx) = e−xtν(dx).

In this case, K = ∫∞
0 e−xtν(dx) and the adjoint operator β∗ is given by the constant

function

(β∗(u))(x) = u, for all x ∈ R+.

Remark 4.5 To the semigroup S∗
t = e−xt of the above example, we associate our

(main) specification of the space Z : Let Z ⊂ Y such that for all y ∈ Y the map

hy : R+ → S
d , x �→ xy(x)

lies in Z equipped with the operator norm, i.e.,

‖hy‖Z =
√
sup
x≥0

‖y(x)‖ + sup
x≥0

‖xy(x)‖ for hy ∈ Z .

The corresponding dual space Z∗ ⊃ Y ∗ is the space of regular Sd -valued Borel
measures ν on R+ that satisfy

‖
∫ ∞

0

(
1

x
∧ 1

)
ν(dx)‖ < ∞ .

Note that we can specify the components of ν to be measures of the form

νi j (dx) = x− 1
2−Hi j , Hi j ∈

(
0,

1

2

)
,

which gives rise to fractional kernels Ki j (t) = ∫∞
0 e−xtνi j (dx) ≈ t Hi j− 1

2 . These are
in turn main ingredients of rough covariance modeling.

Remark 4.6 In this article, we choose to work with state spaces of matrix-valued mea-
sures using the representation of the kernel K as Laplace transform of a matrix-valued
measure ν as specified in Example 4.4. We could, however, perform the same analysis
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on a Hilbert space of forward covariance curves. This corresponds then to a multivari-
ate analogon of Cuchiero and Teichmann (2018, Section 5.2).

Proposition 4.7 Under Assumption 4.3, there exists a unique mild solution of (4.4)
with values in Y ∗. Additionally, the solution operator is a weak-∗-continuous map
λ0 �→ λt , for each t > 0, and the solution satisfies

�(λt ) ≤ C�(λ0), for all λ0 ∈ Y ∗ and t ∈ [0, ε]

for some positive constants C and ε.

Remark 4.8 The unique mild solution of Equation (4.4) satisfies by means of (4.3) the
variation of constants equation

λt = S∗
t λ0 +

∫ t

0
(S∗

t−sνβ(λs) + β(λs)S∗
t−sν)ds,

for all t ≥ 0. Applying the linear operator β and using property (4.5), we obtain a
deterministic linear Volterra equation of the form

β(λt ) = β(S∗
t λ0) +

∫ t

0
β
(S∗

t−sνβ(λs) + β(λs)S∗
t−sν

)
ds

= β(S∗
t λ0) +

∫ t

0
(K (t − s)β(λs) + β(λs)K (t − s)) ds (4.8)

where we have used (4.6).

Proof We follow the arguments of Cuchiero and Teichmann (2018) and translate the
proof to thematrix-valued stetting.We show first the completely standard convergence
of the Picard iteration scheme with respect to the dual norm on Y ∗. Define

λ0t = λ0,

λn+1
t = S∗

t λ0 +
∫ t

0
(S∗

t−sν)β(λns )ds +
∫ t

0
β(λns )(S∗

t−sν)ds, n ≥ 0.

Then, by Assumption 4.3, (i) each λnt lies Y
∗. Consider now

‖λn+1
t − λnt ‖Y ∗ = ‖

∫ t

0
(S∗

t−sν)(β(λns ) − β(λn−1
s ))ds

+
∫ t

0
(β(λns ) − β(λn−1

s ))(S∗
t−sν)ds‖Y ∗

≤ 2‖β‖op
∫ t

0
‖S∗

t−sν‖Y ∗‖λns − λn−1
s ‖Y ∗ds,

where ‖β‖op denotes the operator norm of β. Assumption 4.3 (ii) and an extended
version ofGronwall’s inequality seeDalang (1999, Lemma 15) then yield convergence
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of (λnt )n∈N to some λt with respect to the dual norm ‖ · ‖Y ∗ uniformly in t on compact
intervals. For details on strongly continuous semigroups and mild solutions, see Pazy
(1983).

Having established the existence of a mild solution of (4.4) in Y ∗, consider now
the Sd -valued process β(λt ):

β(λt ) = β(S∗
t λ0) +

∫ t

0
β
(S∗

t−sνβ(λs) + β(λs)S∗
t−sν

)
ds,

= β(S∗
t λ0) +

∫ t

0

(
β(S∗

t−sν)β(λs) + β(λs)β(S∗
t−sν)

)
ds

= β(S∗
t λ0) +

∫ t

0

(
RK (t − s)β(S∗

s λ0) + β(S∗
s λ0)RK (t − s)

)
ds (4.9)

where we applied property (4.5). Remember that RK denotes the resolvent of the
second kind of K (t) = β(S∗

t ν) as introduced in (4.7) by means of which we can solve
the above equation in terms of integrals of t �→ β(S∗

t λ0). Since by assumption, S∗
is a weak-∗-continuous solution operator, the map λ0 �→ (t �→ β(S∗

t λ0)) is weak-∗-
continuous as amap from Y ∗ toC(R+,Sd) (with the topology of uniform convergence
on compacts onC(R+,Sd)). From (4.9), we thus infer thatβ(λt ) is weak-∗-continuous
for every t ≥ 0, which clearly translates to the solution map of Equation (4.4).

Finally, we have to show that the stated inequality for �(λt ) holds true on small
time intervals [0, ε]. Observe first that for t ∈ [0, ε]

‖S∗
t λ‖2Y ∗ ≤ C‖λ‖2Y ∗

for all λ ∈ Y ∗ just by the assumption that S∗
t is strongly continuous, for some constant

C ≥ 1. Furthermore for t ∈ [0, ε],

‖λt‖2Y ∗ ≤ 3

(
C‖λ0‖2Y ∗ + t

∫ t

0
‖S∗

t−sνβ(λs)‖2Y ∗ + t
∫ t

0
‖β(λs)S∗

t−sν‖2Y ∗

)

≤ 3

(
C‖λ0‖2Y ∗ + 2ε‖β‖2op

∫ t

0
‖S∗

t−sν‖2Y ∗‖λs‖2Y ∗ds

)
.

Consider now the kernel K ′(t, s) = 6ε‖β‖2op‖S∗
t−sν‖2Y ∗1{s≤t} and denote by R′ the

resolvent of−K ′, which is non-positive. By exactly the same arguments as in Cuchiero
and Teichmann (2018), we then have for t ∈ [0, ε]

‖λt‖2Y ∗ ≤ C̃‖λ0‖2Y ∗

(
1 −

∫ ε

0
R′(s)ds

)
,

for some constant C̃ . This leads to the desired assertion due to the definition of �.
From this inequality, also uniqueness follows in a standard way. ��
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As our goal is to consider Sd+-measure-valued processes, we denote by E the fol-
lowing weak-∗-closed convex cone

E = {λ0 ∈ Y ∗ | λ0 is an S
d+ -valued measure on R+}.

The next proposition establishes that the solution of (4.4) leaves E invariant, if the
following assumption holds true:

Assumption 4.9 We assume that

(i) S∗
t (E) ⊆ E, ∀t ≥ 0;

(ii) ν is an S
d+-valued measure;

(iii) β(E) ⊆ S
d+.

Proposition 4.10 Let Assumptions 4.3 and 4.9 be in force. Then, the solution of
(4.4) leaves E invariant and it defines a generalized Feller semigroup on (E, �) by
Pt f (λ0) := f (λt ) for all f ∈ B�(E) and t ≥ 0.

Proof Consider first the slightly modified equation

dλt (dx) = A∗λt (dx)dt + S∗
ε ν(dx)β(λt (·))dt + β(λt (·))S∗

ε ν(dx)dt (4.10)

for some ε > 0. Then, the operator B = S∗
ε ν(dx)β(·) + β(·)S∗

ε ν(dx) is bounded
and the associated semigroup is given by Pε

t = eBt . Due to the assumptions on S∗,
ν and β, we have B(E) ⊆ E implying that Pε

t (E) ⊆ E for all t ≥ 0. The Trotter-
Kato theorem, see, e.g., Engel and Nagel (2000, Theorem III.5.8), then yields that the
semigroup associated with (4.10) maps E to itself. This then also holds true for the
limit when ε = 0 by Theorem 3.1.

Since by Proposition 4.7, the solution operator is weak-∗-continuous, we can con-
clude that λ0 �→ f (λt ) lies in B�(E) for a dense set of B�(E) by Theorem 2.15.
Moreover, it satisfies the necessary bound (2.12) for� and (2.13) is satisfied by (norm)-
continuity of t �→ λt . Hence, all the conditions of Assumption 2.16 are satisfied and
the solution operator therefore defines a generalized Feller semigroup (Pt ) on B�(E)

by Theorem 2.18. This generalized Feller semigroup of course coincides with the
previously constructed limit. ��

By the previous results, we can now construct a generalized Feller process on E
which jumps up by multiples of S∗

ε ν for some ε ≥ 0 and with an instantaneous
intensity of size β(λt ). Recall that E∗ ⊂ Y denotes the (pre-)polar cone of E , that is,

E∗ = {y ∈ Y | y ∈ Cb(R+,Sd−)}.

Recall the notation from (4.2) and define the following set

D = {y ∈ Y | y ∈ dom(A) s.t. 〈〈y, ν〉〉 is well defined}. (4.11)
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Proposition 4.11 Let Assumptions 4.3 and 4.9 be in force. Moreover, let μ be a finite
S
d+-valued measure on S

d+ such that
∫
‖ξ‖≥1 ‖ξ‖2‖μ(dξ)‖ < ∞. Consider the SPDE

dλt = A∗λtdt + νβ(λt )dt + β(λt )νdt + S∗
ε νdNt + dNtS∗

ε ν, (4.12)

where (Nt )t≥0 is a pure jump process with jump sizes in S
d+ and compensator

∫ ·

0

∫

S
d+

ξ Tr (β(λs)μ(dξ)) ds.

(i) Then, for every λ0 ∈ E and ε > 0 , the SPDE (4.12) has a solution in E given by
a generalized Feller process associated with the generator of (4.12).

(ii) This generalized Feller process is also a probabilistically weak and analytically
mild solution of (4.12), i.e.,

λt = S∗
t λ0ds +

∫ t

0
S∗
t−sνβ(λs)ds +

∫ t

0
β(λs)S∗

t−sνds+

+
∫ t

0
S∗
t−s+ενdNs +

∫ t

0
dNsS∗

t−s+εν ,

which justifies Eq. (4.12). In particular for every initial value the process N can
be constructed on an appropriate probabilistic basis. The stochastic integral is
defined in a pathwise way along finite variation paths. Moreover, for every family
( fn)n ∈ B�(E), t �→ fn(λt ) can be chosen to be càglàd for all n.

(iii) For every ε > 0, the corresponding Riccati equation ∂t yt = R(yt ) with R :
D ∩ E∗ → Y given by

R(y) = Ay + β∗
(∫ ∞

0
y(x)ν(dx) + ν(dx)y(x)

)

+β∗

(∫

S
d+

(
exp(〈y,S∗

ε νξ + ξS∗
ε ν〉) − 1

)
μ(dξ)

)

, (4.13)

admits a unique global solution in the mild sense for all initial values y0 ∈ E∗.
(iv) The affine transform formula holds true, i.e.,

Eλ0

[
exp(〈y0, λt 〉)

] = exp(〈yt , λ0〉),

where yt solves ∂t yt = R(yt ) for all y0 ∈ E∗ in the mild sense with R given by
(4.13). Moreover, yt ∈ E∗ for all t ≥ 0.

Proof We assume that ν �= 0, otherwise there is nothing to prove. To prove the first
assertion, we apply Proposition 3.4. By Propositions 4.7 and 4.10, the deterministic
equation (4.4) has a mild solution on E which—by Assumption 4.3—defines a gen-
eralized Feller semigroup (Pt )t≥0 on B�(E). The operator A in Proposition 3.4 then
corresponds to the generator of (Pt )t≥0, i.e., the semigroup associated with the purely
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deterministic part of (4.12). This is a transport semigroup, and in view of Remark 3.3,
we can have an equivalent norm with respect to a new weight function �̃ on B�(E),
such that ‖Pt‖L(B�̃(E)) ≤ exp(ωt). Therefore, we find ourselves in the conditions of
Proposition 3.4.

Note that by the same arguments as in Proposition 4.10 and by applying Theorem
2.18,we can prove that (Pt )t≥0 also defines a generalized Feller semigroup onB√

�(E).
For the detailed proof which translates literally to the present setting, we refer to
Cuchiero and Teichmann (2018).

Finally, we need to verify (3.3)–(3.5), which read as follows

∫
�(λ + S∗

ε νξ + ξS∗
ε ν)Tr(β(λ)μ(dξ)) ≤ M�(λ)2,

∫ √
�(λ + S∗

ε νξ + ξS∗
ε ν)Tr(β(λ)μ(dξ)) ≤ M�(λ),

∫
Tr(β(λ)μ(dξ)) ≤ M

√
�(λ) ,

which hold true by the second-moment condition on μ. Concerning (3.6), denote as
in Remark 3.3

�̃(λ) = sup
t≥0

exp(−ωt)Pt�(λ) .

In particular, we know that � ≤ �̃ and it holds that Pt f (x) = f (ψt (x)) where ψ is
the solution of (4.4) which is linear. Using this together with | supt c(t)− supt d(t)| ≤
supt |c(t) − d(t)|, we obtain for some ω̃

∫ ∣∣ �̃(λ + S∗
ε νξ + ξS∗

ε ν) − �̃(λ)

�̃(λ)

∣∣Tr(β(λ)μ(dξ))

≤
∫ ∣∣ supt≥0 exp(−ωt)|Pt�(λ + S∗

ε νξ + ξS∗
ε ν) − Pt�(λ)|

�̃(λ)

∣∣Tr(β(λ)μ(dξ))

≤
∫ ∣∣ supt≥0 exp(−ωt)|�(ψt (λ + S∗

ε νξ + ξS∗
ε ν)) − �(ψt (λ))|

�̃(λ)

∣∣Tr(β(λ)μ(dξ))

=
∫ ∣∣ supt≥0 exp(−ωt)(2‖ψt (λ)‖Y ∗ ‖ψt (S∗

ε νξ + ξS∗
ε ν)‖Y ∗ + ‖ψt (S∗

ε νξ + ξS∗
ε ν)‖2Y ∗)

�(λ)

∣∣

× Tr(β(λ)μ(dξ)) ≤ ω̃ .

The last inequality holds by the linearity of ψ and the second-moment condition on
μ. Proposition 3.4 now allows to conclude that A + B, where B is given by

B f (λ) =
∫

( f (λ + S∗
ε νξ + ξS∗

ε ν) − f (λ))Tr(β(λ)μ(dξ)),

generates a generalized Feller semigroup P̃ as asserted.

123



Markovian lifts of positive semidefinite affine Volterra… 429

For (ii), we now construct the probabilistically weak and analytically mild solution
directly from the properties of the generalized Feller process: take y ∈ D where D is
defined in (4.11) and consider the Sd -valued martingale

My
t := 〈〈y, λt 〉〉 − 〈〈y, λ0〉〉 −

∫ t

0
〈〈Ay, λs〉〉 + 〈〈y, νβ(λs) + β(λs)ν〉〉ds

−
∫ t

0

∫
〈〈y,S∗

ε νξ + ξS∗
ε ν〉〉Tr(β(λs)μ(dξ))ds (4.14)

for t ≥ 0 (after an appropriate and possible regularization according to Theorem 2.13).
Let now y be as above with the additional property that 〈〈y,S∗

ε νξ + ξS∗
ε ν〉〉 =

πξ + ξπ for all ξ ∈ S
d+ and some fixed π ∈ S

d+. For such y, define

Nπ
t = πNt + Ntπ := My

t +
∫ t

0

∫
〈〈y,S∗

ε νξ + ξS∗
ε ν〉〉Tr(β(λs)μ(dξ))ds (4.15)

for t ≥ 0, which is a càglàd semimartingale. Notice that the left-hand side only
defines Nπ and not the more suggestive πN + Nπ . Then, Nπ does not depend on
y by construction. Indeed, for all yi with 〈〈yi ,S∗

ε νξ + ξS∗
ε ν〉〉 = πξ + ξπ for all ξ ,

i = 1, 2, we clearly have

∫ t

0

∫
〈〈y1 − y2,S∗

ε νξ + ξS∗
ε ν〉〉Tr(β(λs)μ(dξ))ds = 0

and My1 − My2 = My1−y2 = 0 as well. The latter follows from the fact that the
martingale My is constant if 〈〈y,S∗

ε νξ + ξS∗
ε ν〉〉 = 0 for all ξ , since its quadratic

variation vanishes in this case.
Moreover, by the definition of Nπ in (4.15), its compensator is given by

∫ t
0

∫
(πξ +

ξπ)Tr(β(λs)μ(dξ))ds. Since it is sufficient to perform the previous construction for
finitely many π to obtain all necessary projections, a process N can be defined such
that Nπ = πN + Nπ , as suggested by the notation.

By (4.14) and the very definition of (4.15), we obtain that

〈〈y, λt 〉〉 = 〈〈y, λ0〉〉 +
∫ t

0
〈〈Ay, λs〉〉ds +

∫ t

0
〈〈y, νβ(λs) + β(λs)ν〉〉ds

+ 〈〈y,S∗
ε νNt 〉〉 + 〈〈y, NtS∗

ε ν〉〉

for y ∈ D. This analytically weak form can be translated into a mild form by standard
methods. Indeed, notice that the integral is just along a finite variation path, and
therefore, we can readily apply variation of constants. The last assertion about the
càglàd property is a consequence ofTheorem2.13bynoting that�(λ)does not explode.
This proves (ii).
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Concerning (iii), note first that we have a unique mild solution to

∂t yt = Ayt + β∗
(∫ ∞

0
y(x)ν(dx) +

∫ ∞

0
ν(dx)y(x)

)
, y0 ∈ Y , (4.16)

since this is the adjoint equation of (4.4). For the equation with jumps, we proceed as
in Proposition 4.7 via Picard iteration. Denote the semigroup associated with (4.16)
by Sβ∗ and define

y0t = y0,

ynt = Sβ∗
t y0 +

∫ t

0
Sβ∗
t−sβ∗

(∫

S
d+

(
exp(〈yn−1

s ,S∗
ε νξ + ξS∗

ε ν〉) − 1
)

μ(dξ)

)

ds.

Moreover, for t ∈ [0, δ] for some δ > 0, we have by local Lipschitz continuity of
x �→ exp(x)

‖yn+1
t − ynt ‖Y ≤ ‖

∫ t

0
Sβ∗
t−sβ∗

(∫

S
d+
(exp(〈yns ,S∗

ε νξ〉) − exp(〈yn−1
s ,S∗

ε νξ〉))μ(dξ)

)

ds‖Y

≤
∫ t

0
C‖Sβ∗

t−sβ∗‖op‖yns − yn−1
s ‖Y

(∫

S
d+

‖S∗
ε νξ‖Y ∗μ(dξ)

)

ds.

By an extension of Gronwall’s inequality, see Dalang (1999, Lemma 15), this yields
convergence of (ynt )n∈N with respect to ‖ · ‖Y and hence the existence of a unique
local mild solution to (4.13) up to some maximal life time t+(y0). That t+(y0) = ∞
for all y0 ∈ E∗ follows from the subsequent estimate

‖yt‖Y = ‖Sβ∗
t y0 +

∫ t

0
Sβ∗
t−sβ∗

(∫

S
d+

(
exp(〈ys,S∗

ε νξ + ξS∗
ε ν〉) − 1

)
μ(dξ)

)

ds‖Y

≤ ‖Sβ∗
t y0‖Y +

∫ t

0
‖Sβ∗

t−sβ∗‖op
(∫

S
d+

| exp(〈ys,S∗
ε νξ + ξS∗

ε ν〉) − 1|μ(dx)

)

ds

≤ ‖Sβ∗
t y0‖Y + t sup

s≤t
‖Sβ∗

s β∗‖opμ(Sd+),

where we used | exp(〈y,S∗
ε νξ + ξS∗

ε ν〉) − 1| ≤ 1 for all y ∈ E∗ in the last estimate.
To prove (iv), just note that by the existence of a generalized Feller semigroup, the

abstract Cauchy problem for the initial value exp(〈y0, .〉) can be solved uniquely for
y0 ∈ E∗. Indeed, Eλ[exp(〈y0, λt 〉)] uniquely solves

∂t u(t, λ) = Au(t, λ), u(0, λ) = exp(〈y0, λ〉),

where A denotes the generator associated with (4.12). Setting u(t, λ) = exp(〈yt , λ〉),
we have

∂t u(t, λ) = exp(〈yt , λ〉)R(yt ),
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where the right-hand side is nothing else than A exp(〈yt , λ〉); hence, the affine trans-
form formula holds true. This also implies that yt ∈ E∗ for all t ≥ 0, simply because
Eλ[exp(〈y0, λt 〉)] ≤ 1 for all λ ∈ E . ��

We are now ready to state the main theorem of this section, namely an existence
and uniqueness result for equations of the type

dλt = A∗λtdt + νdXt + dXtν, (4.17)

where (Xt )t≥0 is a Sd+-valued pure jump Itô semimartingale of the form

Xt =
∫ t

0
β(λs)ds +

∫ t

0

∫

S
d+

ξμX (dξ, ds), (4.18)

with β specified in (4.5) satisfying Assumption 4.9 and random measure of the jumps
μX . Its compensator satisfies the following condition:

Assumption 4.12 The compensator of μX is given by

Tr

(
β(λt )

μ(dξ)

‖ξ‖ ∧ 1

)

where μ is a Sd+-valued finite measure on S
d+ satisfying

∫
‖ξ‖≥1 ‖ξ‖2‖μ(dξ)‖ < ∞.

For the formulation of the subsequent theorem, we shall need the following set of
Fourier basis elements

D = { fy : E → [0, 1]; λ �→ exp(〈y, λ〉) | y ∈ E∗ ∩ dom(A) s.t. 〈〈y, ν〉〉 is well defined}.
(4.19)

Theorem 4.13 Let Assumptions 4.3, 4.9 and 4.12 be in force.

(i) Then, the stochastic partial differential equation (4.17) admits a unique Marko-
vian solution (λt )t≥0 in E given by a generalized Feller semigroup on B�(E)

whose generator takes on the set of Fourier elements

fy : E → [0, 1]; λ �→ exp(〈y, λ〉)

for y ∈ D ∩ E∗ where D is defined in (4.11) the form

A fy(λ) = fy(λ)(〈Ay, λ〉 + 〈R(〈〈y, ν〉〉), λ〉), (4.20)

withR : Sd− → Y given by

R(u) = β∗(u) + β∗

(∫

S
d+

(exp(Tr(uξ) − 1)
μ(dξ)

‖ξ‖ ∧ 1

)

. (4.21)
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(ii) This generalized Feller process is also a probabilistically weak and analytically
mild solution of (4.17), i.e.,

λt = S∗
t λ0ds +

∫ t

0
S∗
t−sνdXs +

∫ t

0
dXsS∗

t−sν,

This justifies Eq. (4.17); in particular, for every initial value, the process X can
be constructed on an appropriate probabilistic basis. The stochastic integral is
defined in a pathwise way along finite variation paths. Moreover, for every family
( fn)n ∈ B�(E), t �→ fn(λt ) can be chosen to be càg for all n.

(iii) The affine transform formula is satisfied, i.e.,

Eλ0

[
exp(〈y0, λt 〉)

] = exp(〈yt , λ0〉),

where yt solves ∂t yt = R(yt ) for all y0 ∈ E∗ and t > 0 in the mild sense with
R : D ∩ E∗ → Y given by

R(y) = Ay + R(〈〈y, ν〉〉) (4.22)

withR defined in (4.21). Furthermore, yt ∈ E∗ for all t ≥ 0.
(iv) For all λ0 ∈ E , the corresponding stochastic Volterra equation, Vt := β(λt ),

given by

Vt = β(λt ) = β(S∗
t λ0) +

∫ t

0
β(S∗

t−sν)dXs +
∫ t

0
dXsβ(S∗

t−sν)

= h(t) +
∫ t

0
K (t − s)dXs +

∫ t

0
dXsK (t − s) (4.23)

admits a probabilistically weak solution with càg trajectories. Here, h(t) :=
β(S∗

t λ0).
(v) The Laplace transform of the Volterra equation Vt is given by

Eλ0

[
exp (Tr(uVt ))

] = exp

(
Tr(uh(t)) +

∫ t

0
Tr(R(ψs)h(t − s))ds

)
, (4.24)

where h(t) = β(S∗
t λ0),R : Sd− → S

d−, u �→ R(u) = u+∫
S
d+(eTr(uξ) −1) μ(dξ)

‖ξ‖∧1
and ψt solves the matrix Riccati–Volterra equation

ψt = uK (t) +
∫

R(ψs)K (t − s)ds, t > 0.

Hence, the solution of the stochastic Volterra equation in (4.23) is unique in law.

Remark 4.14 One essential point here is that we loose the càglàd property as stated in
Proposition 4.11 (ii) when we let ε of Sε tend to zero. As long as the kernel K has
a singularity at t = 0, it is impossible to preserve finite growth bounds with M = 1,
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as ε → 0, but we get càg versions (compare with the second conclusion in Theorem
2.13 and Remark 2.14).

Remark 4.15 Note that for β as of Example 4.4, the above equations simplify consid-
erably. In particular, β∗ in (4.21) is simply the identity.

Proof We apply Theorem 3.2 and consider a sequence of generalized Feller semi-
groups (Pn)n∈N with generators An corresponding to the solution λn of (4.12) for
ε = 1

n , and compensator

Tr

(

β(λnt )
1{‖ξ‖> 1

n }μ(dξ)

‖ξ‖ ∧ 1

)

, n ∈ N.

Let us first establish a uniform growth bound for this sequence. To this end, denote

Fn(dξ) :=
1{‖ξ‖> 1

n }μ(dξ)

‖ξ‖ ∧ 1
.

Note that for the solution of (4.12), we have due to Proposition 4.11 (ii) the following
estimate for t ∈ [0, T ] for some fixed T > 0

E[‖λnt ‖2Y ∗ ] ≤ 5‖S∗
t λ0‖2Y ∗ + 10t

∫ t

0
‖S∗

t−sν‖2Y ∗‖β‖2opE[‖λns ‖2Y ∗ ]ds

+ 10E

[∥∥∥∥

∫ t

0
S∗
t−s+ 1

n
νdNs −

∫ t

0

∫
S∗
t−s+ 1

n
νξ Tr(β(λns )F

n(dξ))ds

∥∥∥∥

2

Y ∗

]

+ 10E

[∥∥∥∥

∫ t

0
dNsS∗

t−s+ 1
n
ν −

∫ t

0

∫
ξS∗

t−s+ 1
n
ν Tr(β(λns )F

n(dξ))ds)

∥∥∥∥

2

Y ∗

]

+ 10E

[∥∥∥∥

∫ t

0

∫
S∗
t−s+ 1

n
νξ Tr(β(λns )F

n(dξ))ds

∥∥∥∥

2

Y ∗

]

+ 10E

[∥∥∥∥

∫ t

0

∫
ξS∗

t−s+ 1
n
ν Tr(β(λns )F

n(dξ))ds

∥∥∥∥

2

Y ∗

]

.

As a consequence of Itô’s isometry, the martingale part can be estimated by

E

[∥∥∥∥

∫ t

0
S∗
t−s+ 1

n
νdNs −

∫ t

0

∫
S∗
t−s+ 1

n
νξ Tr(β(λns )F

n(dξ))ds

∥∥∥∥

2

Y ∗

]

≤ E

[
‖
∫ t

0

∫
‖S∗

t−s+ 1
n
ν‖2Y ∗‖ξ‖2 Tr(β(λns )F

n(dξ))ds

]

≤
∫

‖ξ‖2‖Fn(dξ)‖
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖opE[‖λns ‖Y ∗ ]ds

≤
(∫

‖ξ‖≤1
‖μ(dξ)‖ +

∫

‖ξ‖>1
‖ξ‖2‖μ(dξ)‖

)∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖opE[‖λns ‖Y ∗ ]ds
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≤ C̃
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖opE[‖λns ‖Y ∗ ]ds

≤ C̃K
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗(1 + ‖β‖2opE[‖λns ‖2Y ∗ ])ds

where C̃ =
(∫

‖ξ‖≤1 ‖μ(dξ)‖ + ∫
‖ξ‖>1 ‖ξ‖2‖μ(dξ)‖

)
and K some other constant.

Moreover, for the last terms, we have

E

[∥∥∥∥

∫ t

0

∫
S∗
t−s+ 1

n
νξ Tr(β(λns )F

n(dξ))ds

∥∥∥∥

2

Y ∗

]

≤ t
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗E

[∥∥∥∥

∫
ξ Tr(β(λns )F

n(dξ))

∥∥∥∥
2
]

ds

≤ 2t
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗E

[∥∥∥∥

∫

‖ξ‖≤1
ξ Tr(β(λns )F

n(dξ))

∥∥∥∥

2

+
∥∥∥∥

∫

‖ξ‖≥1
ξ Tr(β(λns )F

n(dξ))

∥∥∥∥

2
]

ds

≤ 2t
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖2opE[‖λns ‖2Y ∗ ]

∫
‖μ(dξ)‖

×
(∫

‖ξ‖≤1
‖μ(dξ)‖ +

∫

‖ξ‖>1
‖ξ‖2‖μ(dξ)‖

)

≤ 2tĈ
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖2opE[‖λns ‖2Y ∗ ]

where Ĉ = ∫ ‖μ(dξ)‖C̃ . Putting this together, we obtain

E[‖λnt ‖2Y ∗ ] ≤ C0‖λ0‖2Y ∗ + 10t
∫ t

0
‖S∗

t−sν‖2Y ∗‖β‖2opE[‖λns ‖2Y ∗ ]ds

+ 20C̃K
∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗ds

+ 20(C̃K + 2tĈ)

∫ t

0
‖S∗

t−s+ 1
n
ν‖2Y ∗‖β‖2opE[‖λns ‖2Y ∗ ]

≤ C0‖λ0‖2Y ∗ + C1

∫ t

0
‖S∗

t−sν‖2Y ∗ds + C2

∫ t

0
‖S∗

t−sν‖2Y ∗E[‖λns ‖2Y ∗ ]ds

where C0 and C2 depend on T . We use ‖S∗
t λ0‖2 ≤ C0‖λ0‖2 for t ∈ [0, T ], as well

as ‖S∗
t−s+ 1

n
ν‖Y ∗ ≤ C‖S∗

t−sν‖Y ∗ for some constant C and all n ∈ N due to strong

continuity. Exactly by the same arguments as in the proof of Proposition 4.7, we thus
obtain for t ∈ [0, T ] for some fixed T
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E[‖λt‖2Y ∗ ] ≤ C̃(‖λ0‖2Y ∗ + 1)

(
1 −

∫ t

0
R′(s), ds

)
,

where R′ denotes the resolvent of −C2‖S∗
t−sν‖Y ∗ . Hence, E[�(λt )] ≤ C�(λ0) for

t ∈ [0, T ]. From this, the desired uniform growth bound ‖Pt‖L(B�(E)) ≤ M exp(ωt)
for some M ≥ 1 and ω ∈ R follows.

For the set D as of Theorem 3.2, we here choose Fourier basis elements of the form

fy : E → [0, 1]; λ �→ exp(〈y, λ〉) (4.25)

such that y ∈ E∗ and λ �→ exp(〈y, λ〉) lies in ∩n≥1 dom(An), whose span is dense,
whence (i) of Theorem 3.2. Here, An denotes the generator corresponding to (4.12)
with ε = 1

n and μ replaced by Fn . We now equip span(D) with the uniform norm
‖ · ‖∞ and verify Condition (ii), i.e., we check

‖An Pm
u fy − Am Pm

u fy‖� ≤ ‖ fy‖∞anm (4.26)

for all 0 ≤ u ≤ t with anm → 0 as n,m → ∞, and possibly depending on y. Note
that

An fy(λ) = 〈Rn(y), λ〉 fy(λ),

where Rn corresponds to (4.13) for ε = 1
n and μ replaced by Fn . As Pn leaves D

invariant for all n ∈ N by Proposition 4.11 (iv), we have

|An Pm
u fy(λ) − Am Pm

u fy(λ)|
�(λ)

≤ fymu (λ)

�(λ)

(
β∗
( ∫

S
d+
exp(〈ymu ,S∗

1
m
νξ + ξS∗

1
m
ν〉)1{‖ξ‖≥ 1

n }
︸ ︷︷ ︸

:=bnm (ξ)

× | exp(〈ymu , (S∗
1
n
ν − S∗

1
m
ν)ξ + ξ(S∗

1
n
ν − S∗

1
m
ν)〉) − 1|

︸ ︷︷ ︸
ã1nm(ξ)

μ(dξ)

‖ξ‖ ∧ 1

)

+ β∗
( ∫

S
d+
exp(〈ymu ,S∗

1
m
νξ + ξS∗

1
m
ν〉) − 1)|1{‖ξ‖≥ 1

n } − 1{‖ξ‖≥ 1
m }|

μ(dξ)

‖ξ‖ ∧ 1

)

︸ ︷︷ ︸
ã2nm

)
.

Here, ymu denotes the solution of ∂t ymu = Rm(ymt ) at time u with y0 = y. Moreover,
ã1nm(ξ) and ã2nm can be chosen uniformly for all u ≤ t and tend to 0 as n,m → ∞. This
is possible since for the chosen initial values yweobtain that ymu is bounded on compact
intervals in time uniformly in m (see Cuchiero and Teichmann 2018 for details). This
together with dominated convergence for the first term (note that bnm(ξ )̃a1nm(ξ) can be
bounded by ‖ξ‖∧1) we thus infer (4.26). The conditions of Theorem 3.2 are therefore

123



436 C. Cuchiero, J. Teichmann

satisfied, and we obtain a generalized Feller semigroup whose generator is given by
(4.20).

For the second assertion, we proceed as in the proof of Proposition 4.11, the proof
of the existence of X can be transferred verbatim. However, one looses the existence
of càglàd paths of fn(λ) due to the possible lack of finite mass of ν. Here, we only
obtain càg trajectories (compare with Remarks 2.14 and 4.14).

Concerning the third assertion, the affine transform formula follows simply from
the convergence of the semigroups Pn as asserted in Theorem 3.2 by setting yt =
limn→∞ ynt , where ynt solves ∂t ynt = Rn(ynt ) in the mild sense with Rn given again
by (4.13) with ε = 1

n and μ replaced by Fn . Since exp(〈yt , λ〉) is then also the unique
solution of the abstract Cauchy problem for initial value exp(〈y0, λ〉), i.e., it solves

∂t u(t, λ) = Au(t, λ), u(0, λ) = exp(〈y0, λ〉),

where A denotes the generator (4.20), we infer that yt satisfies ∂t yt = R(yt ) with R
given by (4.22). This is because A exp(〈yt , λ〉) = exp(〈yt , λ〉)R(yt ).

The fourth claim follows from statement (ii), property (4.5) and the definition of K
in (4.6).

Finally to prove (v), note that due to (iv) and the definition of the adjoint operator
β∗, we have

Tr(uVt ) = Tr(uβ(λt )) = 〈β∗(u), λt 〉.

Statement (iii) therefore implies that

E[eTr(uVt )] = e〈yt ,λ0〉,

where the mild solution of yt can be expressed by

yt = Stβ∗(u) +
∫ t

0
St−sR(〈〈ys, ν〉〉)ds. (4.27)

Hence, by definition of R, R and h, we find

〈yt , λ0〉 = 〈Stβ∗(u) +
∫ t

0
St−sR(〈〈ys, ν〉〉)ds, λ0〉

= Tr(uβ(S∗
t λ0)) +

∫ t

0
Tr(R(〈〈ys, ν〉〉)β(S∗

t−sλ0))ds

= Tr(uh(t)) +
∫ t

0
Tr(R(〈〈ys, ν〉〉)h(t − s))ds (4.28)

From this and (4.27), it is easily seen that we can replace 〈〈ys, ν〉〉 in (4.28) by a
solution of the following Volterra–Riccati equation

ψt = uK (t) +
∫ t

0
R(ψs)K (t − s).
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Note that we do not need to symmetrize here since we apply the trace and h is sym-
metric. This proves the assertion. ��

The following example illustrates how a multivariate Hawkes process can easily be
defined by means of (4.18).

Example 4.16 Let β and S∗ be as of Example 4.4. Define μi i (dξ) = δeii (dξ) and
μi j = 0 for i �= j . Then, the Volterra equation as of (4.23) is given by

Vt =
∫ ∞

0
e−xtλ0(dx) +

∫ t

0
(K (t − s)Vs + VsK (t − s))ds

+
∫ t

0
K (t − s)dNs +

∫ t

0
dNsK (t − s).

Only the diagonal components of the matrix-valued process N jump, and we can
define N̂ := diag(N ) which is a process with values in N

d
0 . Its components jump by

one, and the compensator of Nii = N̂i is given by
∫ ·
0 Vs,i ids, which justifies the name

multivariate Hawkes process. Note that the components of V are not independent if ν

and in turn K are not diagonal.

5 Squares of matrix-valued Volterra OU processes

As in the finite dimensional setting, squares of Gaussian processes provide us with
important process classes for financial and statistical modeling. In this section, we
outline this program in utmost generality from a stochastic and analytic point of view.
In particular, we consider continuous affine Volterra-type processes on Sd+, which we
construct as squares of matrix-valued Volterra Ornstein–Uhlenbeck (OU) processes
(see Remark 5.4). Following the finite dimensional analogon (Bru 1991), we start by
considering matrix measure-valued OU processes of the form

dγt (dx) = A∗γt (dx)dt + dWtν(dx), γ0 ∈ Y ∗(Rn×d). (5.1)

The underlyingBanach space, denoted byY ∗(Rn×d), is the space of finiteRn×d -valued
regular Borel measures on the extended half real lineR+ := R+∪{∞}. Together with

�(γ ) = 1 + ‖γ ‖2Y ∗(Rn×d )
, γ ∈ Y ∗(Rn×d),

where ‖ · ‖Y ∗(Rn×d ) denotes the total variation norm, this becomes a weighted space.
Moreover, A∗ is the generator of a strongly continuous semigroup S∗ on Y ∗(Rn×d),
which satisfies a property analogous to (4.3), i.e., for elements A ∈ R

n×d , and it holds
that

S∗
t (γ (·)A�) = (S∗

t γ (·))A� and S∗
t (Aγ �(·)) = A(S∗

t γ (·))�. (5.2)

The process W is a n × d matrix of Brownian motions and ν ∈ Y ∗ =: Y ∗(Sd) or Z∗,
as defined in Sect. 4 such that Assumption 4.3 holds true. The pre-dual space denoted
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by Y (Rn×d) is given by Cb(R+,Rn×d) functions, where we fix the pairing 〈·, ·〉 as
follows

〈·, ·〉 : Y (Rn×d) × Y ∗(Rn×d) → R, (y, γ ) �→ 〈y, γ 〉 = Tr

(∫ ∞

0
y�(x)γ (dx)

)
.

Again Tr denotes the trace. We assume that all relevant properties from Assumption
4.1 are translated to the current setting.

Remark 5.1 Observe the analogy to the processγ defined in the introduction. IfA∗ = 0
and ν is supported on a finite space with k points, then (5.1) is exactly the process
from the introduction.

Proposition 5.2 For every γ0 ∈ Y ∗(Rn×d), the SPDE (5.1) has a solution given by
a generalized Feller semigroup on B�(Y ∗(Rn×d)) associated with the generator of
(5.1). The mild formulation directly yields a stochastically strong solution

γt (dx) = S∗
t γ0(dx) +

∫ t

0
dWsS

∗
t−sν(dx)

where ordermatters, i.e., thematrix Brownian increment is applied to S∗
t−sν(dx) on the

left. The integral is understood in the weak sense, i.e., after pairing with y ∈ Y (Rn×d).

Proof The construction of the generalized Feller process can be done by jump approx-
imation of the Brownian motion similarly as in Cuchiero and Teichmann (2018,
Theorem4.16).Notice here thatwe consider the process on thewhole spaceY ∗(Rn×d).
So no issues with state space constraints occur.

The right-hand side of the stochastically strong formulation defines —after pairing
with y ∈ Y (Rn×d)— almost surely a continuous linear functional with value

〈y, S∗
t γ0〉 +

∫ t

0
〈y, dWsS

∗
t−sν〉 ,

since the integrand of the stochastic integral is deterministic and in L2 for each t ≥ 0.
��

In order to define the actual process of interest, we need to introduce some further
notations: For elements in γ ∈ Y ∗(Rn×d), we define

(γ ⊗̂γ )(·, ·) := γ �(·)γ (·).

The corresponding contracted, i.e., one matrix multiplication is performed, algebraic
tensor product is denoted by Y ∗(Rn×d)⊗̂Y ∗(Rn×d), and we set

Ê := {
γ ⊗̂γ ∈ Y ∗(Rn×d)⊗̂Y ∗(Rn×d)

}
. (5.3)
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This corresponds to the space of finite Sd+-valued, rank n, product measures on R+ ×
R+. We shall introduce a particular dual topology on Ê , namely σ(Ê,Y ⊗ Y ), where
the corresponding pairing is given by

(y1 ⊗ y2, γ1⊗̂γ2) �→ 〈y1⊗̂y2, γ1⊗̂γ2〉
= Tr

(∫ ∞

0
y�
1 (x1)y2(x2)γ

�
1 (dx1)γ2(dx2)

)
.

We denote the pre-dual cone by

−Ê∗ = {
y⊗̂y ∈ Y (Rn×d)⊗̂Y (Rn×d)

}
, (5.4)

where we use again the contracted algebraic tensor product corresponding to the
following matrix multiplication of Rn×d valued functions

(y⊗̂y)(·, ·) = y�(·)y(·), y ∈ Y (Rn×d) .

The minus on the left-hand side of (5.4) is to obtain elements in the polar cone.
Let us now define the actual process of interest, namely

λt (dx1, dx2) := γ �
t (dx1)γt (dx2) = γt (dx1)⊗̂γt (dx2). (5.5)

Note again the analogy to the Wishart process λ defined in the introduction. The
process (5.5) clearly takes values in Ê as defined in (5.3). We will now show that we
can define a Volterra-type process by considering projections on S

d+. Applying Itô’s
formula, we see that λt (dx1, dx2) satisfies the following equation

dλt (dx1, dx2) = (A∗
1λt (dx1, dx2) + A∗

2λt (dx1, dx2) + nν(dx1)ν(dx2)
)
dt

+ν(dx1)dW
�
t γt (dx2) + γt (dx1)

�dWtν(dx2), (5.6)

where A∗
1λt (dx1, dx2) = A∗λt (·, dx2)(dx1) and analogously for A∗

2. Note that for
A∗ = 0, this is completely analogous to (1.3).

By a lot of abuse of notation, but parallel with Bru (1991) and Eqs. (1.4)–(1.5), we
can also write

dλt (dx1, dx2) = (A∗
1λt (dx1, dx2) + A∗

2λt (dx1, dx2) + nν(dx1)ν(dx2)
)
dt

+
∫ ∞

0

∫ ∞

0

√
ν⊗̂ν(dx1, dx)dB

�
t (dy, dx)

√
λt (dy, dx2)

+
∫ ∞

0

∫ ∞

0

√
λt (dx1, dx)dBt (dx, dy)

√
ν⊗̂ν(dy, dx2), (5.7)

where heuristically B(dx, dy) is d×d matrix of Brownian fields.We shall not develop
a framework where this notation makes sense, but continue with proving that λ is
actually a generalized Feller process, which should be considered the correct infinite
dimensional version of a Wishart process.
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By only a slight abuse of notation, we understand A∗, and in the sequel also S∗
and other linear operators, as operators acting on both Sd -valued measures as well as
R
d×n-valued orRn×d -valued ones as in (5.1). The mild formulation of (5.6), denoting

the semigroup generated by A∗
1 + A∗

2 by S∗,⊗̂
t , then reads as

λt (dx1, dx2) = S∗,⊗̂
t λ0(dx1, dx2) + n

∫ t

0
S∗,⊗̂
t−s ν(dx1)ν(dx2)ds

+
∫ t

0
S∗,⊗̂
t−s (ν(dx1)dW

�
s γs(dx2) + γs(dx1)

�dWtν(dx2))

= S∗,⊗̂
t λ0(dx1, dx2) + n

∫ t

0
(S∗

t−sν(dx1))(S∗
t−sν(dx2))ds

+
∫ t

0
(S∗

t−sν(dx1))dW
�
s (S∗

t−sγs(dx2))

+
∫ t

0
(S∗

t−sγs(dx1))
�dWs(S∗

t−sν(dx2)) ,

where the second equality follows from property (5.2).
Let now β be a linear operator from Y ∗(F) to F where F stands here for Rn×d , or

S
d with the property that for a constant matrix A with appropriate matrix dimensions,

we have

β(Aγ (·)) = Aβ(γ (·)), β(γ (·)A) = β(γ (·))A. (5.8)

By means of β, define now an operator β̂ acting on Rd×d valued product measures
as follows

β̂(γ �
1 (·)γ2(·)) = β(γ1(·))�β(γ2(·)), (5.9)

where γ1 and γ2 are either in Y ∗(Rn×d) or in Y ∗(Sd). In the latter case, the transpose
is not needed. Note that (5.9) implies that β̂(γ �(·)γ (·)) is Sd+-valued. Applying β̂ to
λ, we find

β̂(λt ) = β̂(S∗,⊗̂
t λ0) + n

∫ t

0
β(S∗

t−sν)β(S∗
t−sν)ds

+
∫ t

0
β(S∗

t−sν)dW�
s β(S∗

t−sγs) +
∫ t

0
β(S∗

t−sγs)
�dWsβ(S∗

t−sν).

Defining as in Eq. (4.6) an Sd -valued kernel via

K (t) = β(S∗
t ν),
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we obtain the following generalized S
d+-valued Volterra equation

Vt := β̂(λt ) = β̂(S∗,⊗̂
t λ0) + n

∫ t

0
K (t − s)K (t − s)ds

+
∫ t

0
K (t − s)dW�

s β(S∗
t−sγs) +

∫ t

0
β(S∗

t−sγs)
�dWsK (t − s), (5.10)

which we call Volterra Wishart process in the following definition.

Definition 5.3 For β, β̂ as given in (5.8)–(5.9) and an S
d -valued kernel K (t) defined

by K (t) = β(S∗
t ν), we call the process defined in (5.10), Volterra Wishart process.

Remark 5.4 (i) Note that β(γt ) defines an R
n×d -valued Volterra OU process, that

is,

Xt := β(γt ) = β(S∗
t γ0) +

∫ t

0
dWsK (t − s). (5.11)

By the definition of β̂, the Volterra Wishart process

Vt = β̂(λt ) = β(γt (·))�β(γt (·)) = X�
t Xt

is thus thematrix square of aVolterraOUprocess,which justifies the terminology.
(ii) Note that different lifts of the Volterra OU process given in (5.11) are possible,

e.g., the forward process lift ft (x) := E[Xt+x |Ft ]. Then, ft (0) = Xt , and
similarly as in Cuchiero and Teichmann (2018, Section 5.2), it can be shown that
f is an infinite dimensional OU process that solves the following SPDE (in the
mild sense)

d ft (x) = d

dx
ft (x)dt + dWt K (x), f0(x) = β(S∗

x γ0),

on a Hilbert space H of absolutely continuous functions (AC) with values
in R

n×d , precisely H = {
f ∈ AC(R+,Rn×d) | ∫∞

0 ‖ f ′(x)‖2α(x)dx < ∞}

where α > 0 denotes a weight function (compare Filipović 2001). We can then
set λt (x, y) = f �

t (x) ft (y) and define the same Volterra Wishart process as in
(5.10) by Vt := λt (0, 0) = X�

t Xt . By Itô’s formula and variation of constants,
its dynamics can then equivalently be expressed via

Vt := λt (0, 0) = f �
0 (t) f0(t) + n

∫ t

0
K (t − s)K (t − s)ds

+
∫ t

0
K (t − s)dW�

s fs(t − s) +
∫ t

0
f �
s (t − s)dWsK (t − s).

(5.12)
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Comparing (5.12) and (5.10) yields

β(S∗
x γt ) = ft (x) = E[Xt+x |Ft ], x, t ≥ 0. (5.13)

(iii) In the case when β and S∗ are as in Example 4.4, (5.10) reads as

∫

R2
λ(dx1, dx2) =

∫

R2
e−(x1+x2)tλ0(dx1, dx2) + n

∫ t

0
K (t − s)K (t − s)ds

+
∫ t

0

∫ ∞

0
K (t − s)dW�

s e−x(t−s)γs(dx)

+
∫ t

0

∫ ∞

0
e−x(t−s)γ �

s (dx)dWsK (t − s).

Hence by (5.13),
∫∞
0 e−x(t−s)γs(dx) = E[Xt |Fs]. This yields exactly Eq. (1.6)

considered in the introduction. Note that if ν and in turn K are chosen as in
Remark 4.5, this Volterra Wishart process has exactly the roughness properties
desired in rough covariance modeling.

In the following remark, we list several properties of Volterra Wishart processes.

Remark 5.5 (i) Note that the marginals of V are Wishart distributed as they arise
from squares of Gaussians.

(ii) In order to bring (5.6) in a “standard”Wishart form (with the matrix square root)
as in (1.1) by replacing γ (dx) by

√
λ(dx, dy), new notation has to be introduced,

compare with (5.7).
(iii) Nevertheless, both the drift and the diffusion characteristics of λ depend linearly

only on λ, e.g.,

d[λi j (dx1, dx2), λkl(dy1, dy2)]t
dt

= (K (x1)K (y1))ikλt, jl(dx2, dy2)

+ (K (x1)K (y2))ilλt, jk(dx2, dy1)

+ (K (x2)K (y1)) jkλt,il(dx1, dy2)

+ (K (x2)K (y2)) jlλt,ik(dx1, dy1) ,

which indicates that (λt )t≥0 is Markovian on its own. This is shown rigorously
below.

Using Theorem 2.8, we now show that λ is a generalized Feller process on (Ê, �̂)

with weight function �̂ satisfying

�̂(γ ⊗̂γ ) = �(γ ). (5.14)

We also prove that this generalized Feller process is affine, in the sense that its Laplace
transform is exponentially affine in the initial value. The process λ can therefore be
viewed as an infinite dimensional Wishart process on Ê analogously to Bru (1991),
Cuchiero et al. (2011).
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Theorem 5.6 The process λ defined in (5.5) is Markovian on Ê . The corresponding
semigroup is a generalized Feller semigroup onB�̂(Ê), where �̂ satisfies (5.14). More-
over, for y ∈ Y (Rn×d),

Eλ0

[
exp

(−〈y⊗̂y, λt 〉
)] = exp(−φt − 〈ψt , λ0〉), (5.15)

where ψ and φ satisfy the following Riccati differential equations, namely ψ0 = y⊗̂y
and ∂tψt = R(ψt ) in the mild sense with R : Ê∗ → Ê∗ given by

R(y⊗̂y)(x1, x2) = Ay(x1)⊗̂y(x2) + y(x1)⊗̂Ay(x2)

− 2
∫ ∞

0

∫ ∞

0
y(dx1)⊗̂y(dx)ν⊗̂ν(dx, dy)y(dy)⊗̂y(dx2)

and φ0 = 0 and ∂tφt = F(ψt ) with F : Ê∗ → R given by

F(y⊗̂y) = n〈y⊗̂y, ν⊗̂ν〉.

Proof We apply Theorem 2.8 and Corollary 2.11 with

q : Y∗(Rn×d) → Ê, γ �→ γ ⊗̂γ = γ (·)�γ (·).

Observe that this is a continuous map, since we use the dual topology σ(Ê,Y ⊗ Y )

on Ê and the respective polar Ê∗ defined by (5.4). Consider now the following set of
Fourier basis elements

D̂ = { fy : Ê → [0, 1]; λ �→ exp(−〈y⊗̂y, λ〉) | y ∈ Y (Rn×d)}

which is dense inB�̂(Ê) by the very definition of the dual topology.We check now that
the generalized Feller semigroup P (OU) corresponding to (5.1) satisfies Assumption
(2.8) for f ∈ D̂ , i.e., for every f ∈ D̂, there exists some g such that

P (OU)
t ( f ◦ q) = g ◦ q . (5.16)

Hence, we need to compute Eγ0

[
exp

(−〈y⊗̂y, γt⊗̂γt 〉
)]

. By Lemma 5.7, this expres-
sion is given by (5.17). Therefore, (5.16) is clearly satisfied. This proves the first
assertion. Concerning the affine property, we can deduce from Lemma 5.7 that ψ and
φ are given by

ψt = (2qt (y⊗̂y) + Idd)
−1(St y⊗̂St y),

φt = n

2
log det(2qt (y⊗̂y) + Idd),

with qt given in Lemma 5.7. Taking derivatives then leads to the form of the Riccati
differential equations. ��
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The following lemma provides an explicit expression for the Laplace transform of
γt⊗̂γt . This resembles not surprisingly the Laplace transform of a non-centralWishart
distribution with n degrees of freedom.

Lemma 5.7 Let γ be an Ornstein–Uhlenbeck process as defined in (5.1). Then for
y ∈ Y (Rn×d), the Laplace transform of γt⊗̂γt is given by

Eγ0

[
exp(−〈y⊗̂y, γt⊗̂γt 〉)

] = det(2qt (y⊗̂y) + Idd)
− n

2

× exp(−〈(2qt (y⊗̂y) + Idd)
−1(St y⊗̂St y), γ0⊗̂γ0〉),

(5.17)

where qt (y⊗̂y) = ∫ t
0

∫∞
0

∫∞
0 S∗

s ν(dx1)y�(x1)y(x2)S∗
s ν(dx2)ds.

Proof Assume for simplicity first that A∗ is equal to 0. Then, (5.1) becomes

γt (dx) = γ0(dx) + Wtν(dx).

Fix y ∈ Y (Rn×d) such that
∫∞
0 y(x)ν(dx) is well defined. We then have

〈y⊗̂y, γt ⊗̂γt 〉 = 〈y⊗̂y, (γ0 + Wtν)⊗̂(γ0 + Wtν)〉
= 〈y⊗̂y, γ0⊗̂γ0〉 + 〈y⊗̂y, γ0⊗̂Wtν〉 + 〈y⊗̂y,Wtν⊗̂γ0〉

+ 〈y⊗̂y,Wtν⊗̂Wtν〉.

Note now that

〈y⊗̂y, γ0⊗̂Wtν〉 = Tr

((
Wt

∫ ∞

0

∫ ∞

0
ν(dx2)y

�(x1)y(x2)γ
�
0 (dx1)

))

=: Tr(Wta),

〈y⊗̂y,Wtν⊗̂γ0〉 = Tr

((∫ ∞

0

∫ ∞

0
γ0(dx2)y

�(x1)y(x2)ν(dx1)

)
W�

t

)

=: Tr(a1W�
t ) = Tr(Wta

�
1 ) = Tr(Wta),

〈y⊗̂y,Wtν⊗̂Wtν〉 = Tr

((∫ ∞

0

∫ ∞

0
ν(dx2)y

�(x1)y(x2)ν(dx1)

)
W�

t Wt

)

=: Tr(bW�
t Wt ),

where a ∈ R
d×n , a1 ∈ R

n×d , b ∈ R
d×d and a = a�

1 .
For the following calculation, let n = 1. Then, using these expressions, we find

E
[
exp(−〈y⊗̂y, γt⊗̂γt 〉)

]

= exp(−〈y⊗̂y, γ0⊗̂γ0〉)E
[
exp(−2 Tr(Wta) − Tr(bW�

t Wt )
]

= exp(−〈y⊗̂y, γ0⊗̂γ0〉) 1

(2π)
d
2 t

d
2

∫

R1×d
e−2 Tr(xa)−Tr(bx�x)− 1

2t xx
�
dx

= exp(−〈y⊗̂y, γ0⊗̂γ0〉)
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× 1

det(2b + 1
t Idd)

1
2 t

d
2

1

(2π)
d
2

∫

R1×d
e−2xa− 1

2 x(2b+ 1
t Idd )x�

det(2b + 1

t
Idd)

1
2 dx

= 1

det(2b + 1
t Idd)

1
2 t

d
2

exp(−〈y⊗̂y, γ0⊗̂γ0〉) exp(2a�(2b + 1

t
Idd)

−1a),

where in the last line we used the formula for the moment generating function of a
Gaussian random variable with covariance (2b+ 1

t Idd)
−1. Simplifying further yields

E
[
exp(−〈y⊗̂y, γt⊗̂γt 〉)

]

= 1

det(2b + 1
t Idd)

1
2 t

d
2

exp(〈(2b(2b + 1

t
Idd)

−1 − Idd)(y⊗̂y), γ0⊗̂γ0〉)

= 1

det(2bt + Idd)
1
2

exp(〈−(Idd +2bt)−1(y⊗̂y), γ0⊗̂γ0〉). (5.18)

For general n, note that we can write

W�
t Wt =

n∑

j=1

W�
j,tW j,t ,

where the Wj are the rows of W and thus take values in R1×d . Similarly,

Tr(Wta) = Tr

⎛

⎝
n∑

j=1

Wj,t

(∫ ∞

0

∫ ∞

0
ν(dx2)y

�(x1)y(x2)γ
�
0, j (dx1)

)⎞

⎠=:
n∑

j=1

Wj,t a j ,

where γ0, j are the rows of γ0. Using the independence of all Wj and applying (5.18)
then lead to

E
[
exp(−〈y⊗̂y, γt ⊗̂γt 〉)

] = 1

det(2bt + Idd)
n
2
exp(−〈(Idd +2bt)−1(y⊗̂y), γ0⊗̂γ0〉).

The general case for A∗ �= 0 can now be traced back to this situation. Indeed, by the
variation of constants formula, γt is given by

γt = S∗
t γ0 +

∫ t

0
dWsS∗

t−sν(dx).

Therefore, we need to replace bt by

qt =
∫ t

0

∫ ∞

0

∫ ∞

0
S∗
t−sν(dx1)y

�(x1)y(x2)S∗
t−sν(dx2)ds

and γ0 by S∗
t γ0. This then yields (5.17). Note that this now holds for general y ∈

Y (Rn×d) even if
∫∞
0 y(x)ν(dx) is not necessarily well defined. ��
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6 (Rough) Volterra-type affine covariancemodels

The goal of this section is to apply the above constructed affine covariance models
for multivariate stochastic volatility models with d assets. We exemplify this with the
Volterra Wishart process of Sect. 5 and define a (rough) multivariate Volterra Heston-
type model with possible jumps in the price process. Roughness can be achieved by
specifying ν and in turn the kernel of the Volterra Wishart process as in Remark 4.5.
The log-price process denoted by P and taking values in Rd evolves according to

dPt = −1

2
diag(Vt )dt −

∫

Rd
(eξ − 1 − ξ)Tr(Vtm(dξ)) + X�

t dBt

+
∫

Rd
ξ(μP (dξ) − Tr(Vtm(dξ)), (6.1)

where Xt denotes the Volterra OU process defined in Remark 5.4, 1 the vector in R
d

with all entries being 1 and eξ has to be understood componentwise. Moreover, Bt is
an R

n-valued Brownian motion, which can be correlated with the matrix Brownian
motion W appearing in (5.1) as follows

Bt = Wt� +
√

(1 − ���)B̃t ,

where B̃t is anRn-valued Brownian motion independent ofW and � ∈ R
d . Moreover,

μP denotes the random measure of the jumps with compensator Tr(Vm(dξ)), where
V is the Volterra Wishart process of (5.10) and m a positive semidefinite measure
supported on R

d .
As a corollary of Section 5 and Cuchiero (2011, Section 5), we obtain the following

result, namely that the log-price process together with the infinite dimensionalWishart
process λ given in (5.5) is an affine Markov process.

Before formulating the precise statement, note that the continuous covariation2

〈Pi , λkl(dx1, dx2)〉t is given by

〈Pi , λkl(dx1, dx2)〉t
dt

= (β�(γt )γt (dx1))il(ν(dx2)�)k

+ (β�(γt )γt (dx1))ik(ν(dx2)�)l ,

where γ is the infinite dimensional OU process of (5.1). Note that β�(γt )γt (dx1) can
also be written as linear map from Ê → Y ∗(Sd) which we denote by β̃, i.e.,

β̃(λt )(dx1) = β�(γt )γt (dx1). (6.2)

In the standard example of 4.4, we have β̃(λ)(dx1) = ∫
x2

λ(dx1, dx2). The adjoint

operator of β̃ from Y (Sd) to Y (Rn×d)⊗̂Y (Rn×d) is denoted by β̃∗ and given by

〈β̃(λ), y〉 = 〈λ, β̃∗(y)〉, y ∈ Y (Sd),

2 Here, the brackets stand for the covariation and not for the pairing.
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where the brackets are the pairings in the respective spaces. With this notation, we are
now ready to state the result. Its proof is a combination of the results of Section 5 and
Cuchiero (2011, Section 5).

Corollary 6.1 The joint process (λ, P) with λ defined in (5.5) and P defined in (6.1)
is Markovian with state space (Ê,Rd). It is affine in the sense that for (y, v) ∈
Y (Rn×d) × R

d , we have

Eλ0,P0

[
exp

(
−〈y⊗̂y, λt 〉 + iv�Pt

)]
= exp(−φt − 〈ψt , λ0〉 + iv�P0). (6.3)

The functionψ satisfies the followingRiccati differential equations, namelyψ0 = y⊗̂y
and ∂tψt = R(ψt , iv), in the mild sense with R : Ê∗ × iRd → Ê∗ given by

R(y⊗̂y, iv)(x1, x2) = Ay(x1)⊗̂y(x2) + y(x1)⊗̂Ay(x2)

− 2
∫ ∞

0

∫ ∞

0
y(dx1)⊗̂y(dx)ν⊗̂ν(dx, dy)y(dy)⊗̂y(dx2)

+ 1

2

d∑

i=1

ivi β̂∗(ei e�
i )(x1, x2)

+ β̂∗(
∫

Rd
(iv�(eξ − 1 − ξ))m(dξ))(x1, x2)

+ 1

2
β̂∗(vv�)(x1, x2)

+ β̃∗(
∫ ∞

0
y(·)⊗̂y(x)ν(dx))(x1, x2)�iv

�

+ iv��β̃∗(
∫ ∞

0
ν(dx)y(·)⊗̂y(x))(x1, x2)

− β̂∗(
∫

Rd
(exp(iv�ξ) − 1 − iv�ξ)m(dξ))(x1, x2),

where β̂∗ and β̃∗ are the adjoint operators of β̂ given in (5.9) and β̃ given in (6.2),
respectively. The function φ satisfies φ0 = 0 and ∂tφt = F(ψt ) with F : Ê∗ → R

given by

F(y⊗̂y) = n〈y⊗̂y, ν⊗̂ν〉.

Remark 6.2 In a similar spirit, one can define multivariate affine covariance models
with the affine Volterra jump process V given in (4.23). The log-price process (under
some risk neutral measure) evolves then according to

dPt = −1

2
diag(Vt )dt −

∫

Rd
(eξ − 1 − ξ)Tr(Vtm(dξ)) + √

V tdBt

+
∫

Rd
ξ(μP (dξ) − Tr(Vtm(dξ)),
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where B is a d-dimensional Brownian motion and the jump measure m of P and μ of
the Markovian lift λ as given in (4.17) can be the marginals of some common measure
supported on S

d+ × R
d .
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