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Abstract
The US Inflation Reduction Act (IRA) prohibits the Centers for Medicare and Medicaid Services (CMS) from using standard 
quality-adjusted life-years or other value assessment methods that discriminate against the aged, terminally ill, or disabled 
when setting maximum fair prices for prescription drugs. This policy has reignited interest in methods for assessing value 
without discrimination. Equal value of life-years gained (EVL), healthy years in total (HYT), and Generalized Risk-Adjusted 
Cost-Effectiveness (GRACE) have emerged as proposals. Neither EVL nor HYT rests on well-articulated microeconomic 
foundations. We show that they produce decisions that are inconsistent over time in a variety of ways, including: (1) failure 
to support additivity and indirect comparison in cases where the standard-of-care therapy changes over time; (2) strictly 
negative value of survival gains that accrue from a new, better standard-of-care, particularly for the disabled themselves; (3) 
unbounded average value of survival gains; and (4) non-convex survival preferences. We propose an alternative method that 
relies on GRACE and its microeconomic foundations.

Keywords  Cost-effectiveness · Equity · Equal value of life-years gained · Health years in total · Generalized risk-adjusted 
cost-effectiveness

JEL Classification  I11 · I13 · I14 · I18

Introduction

The US Inflation Reduction Act (IRA) directed the Cent-
ers for Medicare and Medicaid Services (CMS) to nego-
tiate “maximum fair prices” (MFPs) for certain prescrip-
tion medicines. CMS must consider a range of factors in 
this determination, including comparative effectiveness, 
unmet need, scientific novelty, and costs of comparators. 
However, echoing similar language from the Affordable 
Care Act (ACA) [1], the IRA statute explicitly forbids CMS 
from using any evidence or method “in a manner that treats 
extending the life of an individual who is elderly, disabled, 
or terminally ill as of lower value than extending the life of 
an individual who is younger, nondisabled, or not terminally 

ill” [2, p. 36]. This US legislative development has renewed 
interest in value assessment methods that avoid discrimina-
tion against individuals with illness or disability, including 
Equal Value of Life-years gained (EVL) [3], Health Years 
in Total (HYT) [4], and Generalized Risk-Adjusted Cost-
Effectiveness (GRACE) [1].

Conventional cost-effectiveness analysis (CEA) based on 
quality-adjusted life-years (QALYs) implies that life-exten-
sion is always less valuable in lower quality-of-life states. 
This implication conflicts with empirical evidence: con-
sumers appear to place more value on improvements for the 
severely ill [5, 6] as do third-party payers [7, 8]. In response, 
Nord et al. [3] proposed the concept of “cost-value analysis,” 
which weighted gains in health-related utility by the severity 
of the condition being treated and by the consumer’s capac-
ity to benefit. Cost-value analysis allows the analyst to place 
more weight on health improvements for consumers with 
more limited potential to benefit, e.g., the disabled.

Shortly after Nord et al.’s proposal, however, Østerdal 
[9] demonstrated that cost-value analysis leads to counter-
intuitive outcomes inconsistent with a social welfare func-
tion. Nonetheless, one aspect of the Nord et al.’s proposal 
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retained an enduring influence, namely, the principle that 
life-extension should be equally valuable to all, regardless 
of whom it accrues to. This equal value of life-years (EVL) 
principle continues to be employed by the Institute for Clini-
cal and Economic Review in the US [10, 11] and to be con-
sidered for use in US federal government decisions around 
drug pricing.

While EVL may appear intuitive, it also violates sev-
eral other widely held and intuitive principles. Hasman and 
Østerdal [12] show that any social welfare ordering sat-
isfying the EVL principle will violate both the weak and 
the strong forms of the Pareto principle. Thus, an ordering 
based on EVL can lead to a paternalistic outcome where 
every consumer in society prefers Policy A to Policy B, but 
the social welfare ordering prioritizes Policy B. Fleurbaey 
and Ponthière [13] demonstrate that the EVL principle is 
inconsistent with the strict social desirability of quality-of-
life improvements or with prioritizing life-extension for the 
disadvantaged. Moreno-Ternero and Østerdal [14] demon-
strate that the strong EVL principle (where life-extension 
is equally valuable in all settings), coupled with stand-
ard axioms of social preference, leads to a social welfare 
function that maximizes life expectancy without regard to 
quality-of-life. Quality-of-life preferences re-emerge only if 
one narrows the scope of EVL to assure equal value of life-
extension to consumers with the same quality-of-life level; 
this narrower version of EVL, however, is likely to violate 
the anti-discrimination provisions in the US Inflation Reduc-
tion Act (IRA) and Affordable Care Act (ACA).

Basu et al. proposed the HYT metric to address the incon-
sistency between EVL and preferences for quality-of-life 
[4]. HYT adds the correlation between survival gains and 
quality-of-life gains to the EVL metric [4]; therefore, HYT 
values quality-of-life improvements that coincide with the 
addition of life-years. However, just like cost-value analy-
sis, neither EVL nor HYT follow from principled and axi-
omatic economic theory. Thus, while both metrics address 
real discordance between theory and consumer preferences, 
they each introduce ad hoc adjustments that leave them vul-
nerable to logical inconsistencies and/or counter-intuitive 
implications [15, 16].

This paper aims to inform the US health policy discussion 
by studying the three specific metrics of incremental value 
under consideration by CMS: the EVL metric, as formulated 
by ICER [16], the HYT metric [4], and GRACE [1, 17–20]. 
We present a focused set of intuitive principles sufficient to 
reveal how ICER’s EVL metric and the HYT metric violate 
commonly held assumptions, including: additivity and indi-
rect comparison; monotonicity and convexity in preferences 
for survival; and boundedness in the average value of survival. 
We also demonstrate circumstances under which these two 
metrics can discriminate against sicker and disabled popula-
tions, the very outcome they were engineered to avoid. Finally, 

we offer an alternative approach to non-discriminatory cost-
effectiveness analysis using GRACE, which proceeds from 
a well-defined consumer utility framework and thus readily 
satisfies standard economic axioms. And, while GRACE does 
not universally avoid discrimination against the sick and disa-
bled, plausible conditions exist that ensure non-discrimination 
[1]. We identify and enumerate these conditions to offer a 
strategy for principled, non-discriminatory value assessment. 
Notably, we do not attempt to provide characterization results 
for any of these metrics. In the first place, it is unclear that the 
ICER EVL and HYT metrics can be derived from plausible 
axioms. Moreover, GRACE is simply a generalized form of 
traditional cost-effectiveness analysis, so that characterization 
results are less novel and useful. Instead, we aim to compare 
and contrast three approaches that remain under active con-
sideration for use in the US context.

Sect. "Theoretical preliminaries" begins by setting forth a 
set of focused principles for evaluating the validity and use-
fulness of non-discriminatory metrics of value. Sect. "Prin-
ciple violations within the EVL and HYT metrics" char-
acterizes the decision-making pathologies that arise in 
ICER’s EVL and HYT. Sect. "A consistent choice-theoretic 
approach to eliminating discrimination" explains how 
GRACE comports with the same principles of value assess-
ment and how it can be used to eliminate discrimination 
against the sick and disabled. Sect. "Conclusion" concludes.

Theoretical preliminaries

We begin by summarizing the EVL,1 HYT, and GRACE 
decision metrics, along with a focused set of plausibly 
uncontroversial principles for non-discriminatory value 
assessment.

Summary of decision metrics

Consider a standard-of-care therapy, X , and a novel tech-
nology Y  . These are characterized by sequences of survival 
probabilities and quality-of-life weights, 

{
SXt;QXt

}T

t=1
 and {

SYt;QYt

}T

t=1
 . For instance, SXt is the probability of surviving 

from time 1 to time t , and QXt is the quality-of-life weight at 
time t , when treated by intervention X . Incremental quality-
adjusted life-years (QALYs) for Y compared to X are given by

(1)
ΔQALY(Y ,X) ≡

∑

t

(

SYtQYt − SXtQXt
)

=
∑

t

(

SYt
(

QYt − QXt
)

+
(

SYt − SXt
)

QXt
)

.

1  Henceforth, when we denote ICER’s EVL metric simply as “EVL” 
or the “EVL metric.”.
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Notice that survival gains are worth less to patients with 
lower initial quality-of-life, a property of the QALY that has 
received criticism [3].

In response to this criticism, EVL calculates the total gain 
in life-years and then adds the expected gain in quality-of-
life using survival probabilities for the standard-of-care 
technology with the lowest total survival. Notice that the 
latter technology may not be part of the pairwise compari-
son, causing EVL to violate the independence of irrelevant 
alternatives [15].

Define � as the set of all standard-of-care technologies. 
Define S(X) ≡

∑
t SXt as the “total survival” of a given stand-

ard-of-care technology X ∈ � , and suppose X∗ ∈ � is the 
technology in � with the lowest total survival. Incremental 
EVL for the novel technology Y  can be formally defined as 
[4, 16, 21]

If the novel technology extends life over the standard-of-
care, ΔEVL =

∑
t

�
SYt − SX∗t

�
+
∑
t

SX∗t

�
QYt − QXt

�
 , total 

life-years gained, plus expected quality-of-life gains using 
the survival profile of the survival-minimizing standard of 
care. If the novel technology fails to extend life over X∗ , the 
incremental EVL is simply the incremental QALY.2

ΔEVL has been criticized, because it disregards the value 
of quality-of-life improvements [4, 13, 14]. To excise this 
property, Basu, Carlson, and Veenstra have proposed incre-
mental Health Years in Total (HYT). Unlike EVL, HYT uses 
the survival profile of the novel life-extending therapy—or, 
more generally, the therapy with the maximum total sur-
vival—when calculating the expected value of quality-of-life 
gains. As a result, HYT incorporates quality-of-life improve-
ments that accrue during the period of life-extension. Sup-
pose X ∈ � maximizes total survival over the set of stand-
ard-of-care technologies, � . Like ICER’s EVL metric, HYT 
reduces to QALYs if Y  fails to extend life over X.

One can represent incremental HYT as

(2)

ΔEVL(Y ,X∗) =

⎧

⎪

⎨

⎪

⎩

∑

t

(

SYt − SX∗ t
)

+
∑

t
SX∗ t

(

QYt − QXt
)

, if
∑

t
SX∗ t <

∑

t
SYt

∑

t

{

SYtQYt − SX∗ tQX∗ t
}

, if
∑

t
SX∗ t ≥

∑

t
SYt

.

(3)

ΔHYT
(

Y ,X
)

=

⎧

⎪

⎨

⎪

⎩

∑

t

(

SYt − SXt
)

+
∑

t

(

SYt
)(

QYt − QXt
)

, if
∑

t
SXt <

∑

t
SYt

∑

t

{

SYtQYt − SXtQXt
}

, if
∑

t
SXt ≥

∑

t
SYt

.

We will focus primarily on the case of one standard-of-
care comparator, where X = X∗ = X . In this case, incremen-
tal HYT adds a constant adjustment to incremental EVL, 
equal to the covariance between incremental survival and 
quality-of-life ( 

∑
t

�
SYt − SXt

��
QYt − QXt

�
).

An alternative approach to addressing discrimination 
is offered by generalized risk-adjusted cost-effectiveness 
(GRACE) [1, 17]. Bleichrodt and Quiggin recognized that 
the traditional CEA embeds a potentially nonlinear relation-
ship between health and health-related utility [22]. GRACE 
explicitly models this nonlinear utility function, revealing 
how risky health outcomes, disease severity, and pre-exist-
ing disability influence value. Define Q0 as QoL in the base-
line pre-illness period. Traditional CEA often assumes that 
Q0 = 1 , or that individuals find themselves in perfect health 
prior to illness [23]. In contrast, GRACE allows for the pos-
sibility that Q0 < 1 , if, for example, the population of inter-
est suffers from permanent disability or other pre-existing 
health limitations prior to the onset of the relevant illness. 
The GRACE metric can be expressed as [19, Eq. (22c)]

Here, W  represents the consumer’s utility over health-
related quality-of-life. To facilitate comparison, ΔGRACE 
is expressed here in units that have the same incremental 
monetary value as a QALY, even though GRACE does not 
require the use of QALYs as a metric of benefit. Under 
GRACE, pre-existing disability affects both the marginal 
utility of consumption, U�(c)W

(
Q0

)
 , and the value of life-

extension among disabled persons. When W  exhibits con-
stant relative risk-aversion (CRRA), GRACE ensures per-
manent disability has no effect on the value of life-extension 
in the next period [1]. Roughly speaking, under CRRA, deg-
radations in utility due to permanent disability exactly offset 
increase in the willingness to pay for this family of models, 
thereby treating all persons equitably.

Generic principles for consistent healthcare 
resource allocation

There are many different healthcare allocation methods, each 
with its own mathematical formula. Rather than a single best 
approach, we present several generic principles for health-
care resource allocation. The principles are normative in the 
sense that each provides a rationale to justify or to criticize 
approaches to value assessment. They are generic in that 
their properties are desirable in any objective function that 
aims to allocate healthcare resources. Although this set of 
generic principles is too narrow to justify any one formula, 

(4)

ΔGRACE
(

Y ,X;Q0
)

=
∑

t

[

(

SYt − SXt
)W

(

QYt
)

W
(

Q0
) + SXt

W
(

QYt
)

−W
(

QXt
)

W
(

Q0
)

]

.

2  As Campbell et  al. explain [16], “When an intervention does not 
extend life, incremental evLYs and incremental QALYs are identi-
cal. Note that if more than one comparator exists, then the one with 
the fewest life-years (frequently ‘standard of care’) must be selected 
as the anchor comparator for all comparisons in order to estimate an 
intervention’s life extension and corresponding evLYs.”.
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it is broad enough to rule out some formulae on grounds that 
they violate normative principles.

Define ΔMetric(Y ,X) as some metric computing the 
incremental benefit of Y  over X ; this could be ΔQALY , 
ΔEVL , ΔHYT , ΔGRACE , or another such metric. The prin-
ciples below set forth axiomatic requirements for metrics 
that support logically consistent, non-discriminatory value 
assessment. We offer these as arguably “necessary” condi-
tions, without claiming that they are both necessary and suf-
ficient to define a single measurement approach.

The principle of additive value

We begin with a choice axiom that dates at least to work con-
ducted in the 1950s by the philosopher, Donald Davidson, 
and the economist, Jacob Marschak. They demonstrated that 
well-defined utility functions over possibly stochastic choice 
alternatives required the “Quadruple Condition” [24, p. 420, 
25, p. 132]. Formally, define health interventions, A,B,C,D . 
A metric satisfies the “Quadruple Condition” when

An example illustrates its importance for well-defined 
utility functions. Suppose ΔMetric permits the well-
defined calculation of marginal utility and thus monetary 
value, for health interventions, A , B , C , and D . Therefore, 
define VA , VB , VC , and VD as the value of interventions A , 
B , C , and D , respectively. Suppose without loss of gen-
erality that VA − VB > VC − VD . It must then be true that 
VA − VC > VB − VD . This logical relationship follows from 

ΔMetric(A,B) ≥ ΔMetric(C,D) implies

ΔMetric(A,C) ≥ ΔMetric(B,D). (Principle 1)

the quadruple condition. Moreover, since this condition 
requires additivity of value, we henceforth refer to it as “The 
Principle of Additive Value.”

Since distances on a straight line always satisfy addi-
tive incremental value, Fig. 1 is a useful example of its 
meaning. Note the figure depicts two cases. The first 
is A > B > C > D and the second is A > C > B > D . 
In Case 1, additive incremental value ensures that the 
implied ΔMetric(B,C) remains the same when defined as 
ΔMetric(B,C) ≡ ΔMetric(A,C) − ΔMetric(A,B) ,  or  as 
ΔMetric(B,C) = ΔMetric(B,D) − ΔMetric(C,D) . Similarly, 
in Case 2, the implied ΔMetric(C,B) remains the same when 
defined as ΔMetric(C,B) = ΔMetric(A,B) − ΔMetric(A,C) 
or as ΔMetric(C,B) = ΔMetric(B,D) − ΔMetric(C,D) . This 
property allows the analyst to add up incremental value cal-
culations involving overlapping technologies, and it also per-
mits calculation of incremental value for two technologies 
that were compared to two different standards of care.

Practitioners of cost-effectiveness may be familiar with 
a special case of Principle (1), the approach of “Indirect 
Comparison.” For arbitrary interventions, X , Y  , and Z , this 
requires

Condition (1), of “Indirect Comparison,” is the special 
case of Principle (1) that occurs when health interventions B 
and D are identical. If the incremental value of Z exceeds the 
incremental value of Y  , with respect to a uniform compara-
tor, then Z must produce incremental value over Y  . If this 
condition fails, the decision maker cannot rely on indirect 

ΔMetric(Z,X) ≥ ΔMetric(Y ,X)

if and only if ΔMetric(Z,Y) ≥ 0. (Condition 1)

Fig. 1   Representing Principle 
(1), the principle of additive 
value

Case 1

Case 2

ΔMetric(A,B) ΔMetric(C,D)

A B C D

ΔMetric(A,C) ΔMetric(B,D)

ΔMetric(A,C) ΔMetric(B,D)

A C B D

ΔMetric(A,B) ΔMetric(C,D)
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comparisons to rank-order technologies and must instead 
conduct direct pairwise comparisons of all technology pairs. 
Since the rank-ordering of health interventions is an essen-
tial function of economic evaluation [26], indirect compari-
son is an essential feature of value metrics.

The principle that life‑extension does no harm

Next, we require that higher standard-of-care survival is 
at least as preferable as lower standard-of-care survival. 
(Here and elsewhere, we present our principles in terms of 
standard-of-care survival gains, rather than novel technol-
ogy survival gains, but they are meant to apply to both.). 
The economics literature implies weakly positive value of 
survival, for health states weakly better than death, under 
plausible conditions nearly always required by applied econ-
omists [27]3: (1) period utility strictly increases in consump-
tion, and (2) period utility is nonnegative. To formalize this 
principle, consider a prior and a current standard-of-care 
intervention, L and L′ , that produce identical quality of life, {
Qt

}T

t=1
 . In addition, assume that SL′t ≥ SLt for all t, and that 

there is at least one period, t′ , such that SL′t′ > SLt′ . For any 
novel intervention, Z , this principle then requires that

Strictly higher standard-of-care survival, holding quality-
of-life constant, weakly reduces the incremental value of any 
fixed novel technology.

The principle of bounded average value from life‑extension

Heuristically, “small” changes in total survival should not 
produce “large” changes in value, a premise proposed in 
earlier work by Moreno-Ternero and Østerdal [14]. We oper-
ationalize this principle by requiring that average value or 
slope, ΔValue

ΔSurvival
 , is bounded uniformly above, when quality-

of-life profiles are held constant. Failure of this principle 
permits the conclusion that unbounded amounts of con-
sumption should be given up in exchange for negligibly 
small amounts of survival. For any quality-of-life profiles {
QLt

}
 and 

{
QZt

}
 , we require the existence of some positive 

real number, V ∈ ℝ , such that for any pair of technologies 
L′ and L with quality-of-life profile 

{
QLt

}
 and survival pro-

files satisfying 
∑
t

SL′t >
∑
t

SLt , and any third (distinct) novel 

ΔMetric
(
Z, L�

)
≤ ΔMetric(Z, L). (Principle 2)

technology Z with quality-of-life profile 
{
QZt

}
 and an arbi-

trary survival profile

In words, holding quality-of-life profiles constant, the 
average value of standard-of-care survival gains must be 
uniformly bounded. This ensures that “small” standard-of-
care survival gains do not lead to “large” changes in value.4

The principle of convex survival preferences

Even though standard-of-care therapy evolves, value met-
rics ought to produce consistent implications over time. 
If a novel therapy, Z , is judged superior to both a previ-
ous standard-of-care, X , and a current standard-of-care, 
Y  , then it should also be judged superior to mixed strat-
egies that use these former and current standard-of-care 
therapies in conjunction. Suppose there are technologies, 
X , Y  , and Z , and some 0 < p < 1 , where X and Y  are cur-
rent and former standard-of-care therapies producing 
equal quality-of-life. Define C as the intervention that rep-
resents a “convex combination” of X and Y  , in the sense 
that C generates survival probabilities and quality-of-life 
weights, 

{
pSXt + (1 − p)SYt;pQXt + (1 − p)QYt

}T

t=1
 , for some 

0 < p < 1 . Convex survival preferences require

The principle will also hold in reverse: two superior 
standard-of-care technologies do not become inferior sim-
ply when combined in a convex fashion. Significantly, this 
principle must also be satisfied for the incremental metric to 
satisfy the conditions of neoclassical expected utility theory, 
which imply that any lottery over Y  and Z be preferable to 
receiving X for certain.

The principle of non‑discrimination against the sick 
and disabled

Considering the purpose of our analysis, we seek metrics 
that avoid “health- and disability-discrimination.” The US 
Inflation Reduction Act stipulates that CMS cannot evalu-
ate medicines “in a manner that treats extending the life 
of an elderly, disabled, or terminally ill individual as of 
lower value than extending the life of an individual who is 

|

|

|

|

|

[

ΔMetric(Z, L) − ΔMetric
(

Z, L′
)]

∑

t SL′ t −
∑

t SLt

|

|

|

|

|

< V . (Principle 3).

If ΔMetric(Z,X) > 0 and ΔMetric(Z, Y) > 0 then

ΔMetric(Z,C) > 0. (Principle 4)

3  Some studies in the literature have documented stated preferences 
for immediate death over continued survival in low quality-of-life 
states [28, 29]. One can sharpen the principle here to apply spe-
cifically to quality-of-life states that are preferred to death, a typical 
assumption when defining an ordinal quality-of-life scale.

4  One might alternatively operationalize this concept as a bounded 
marginal value of survival gains. This approach would lead to qualita-
tively similar conclusions, as it would rule out value metrics that are 
anywhere discontinuous in total survival.
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younger, non-disabled, or not terminally ill.”5 We require 
that an increase in survival ought to be at least as valuable 
for older, more disabled, or terminally ill groups as for their 
younger, less disabled, or not terminally ill counterparts. 
Recall the definition of Q0 , the pre-existing quality-of-life 
level, prior to the onset of illness.  Q0 will reflect age, dis-
ability, and any other pre-existing comorbidities prior to the 
onset of the relevant illness. Consider two groups of patients, 
group L (for “low” quality-of-life) and group H (for “high” 
quality-of-life), with initial quality-of-life levels QL

0
 and QH

0
 , 

where 0 < QL
0
< QH

0
≤ 1 . We wish to consider a health inter-

vention that increases survival in both groups by the same 
amount, while holding quality-of-life constant. Formally, 
suppose IL and IH are standard-of-care interventions used on 
groups L and H , respectively. They produce quality-of-life 
sequences 

{
QL

t

}T

t=1
 and 

{
QH

t

}T

t=1
 , where QL

t
< QH

t
 ∀t , and sur-

vival sequences 
{
SL
t

}T

t=1
 and 

{
SH
t

}T

t=1
 , where SL

t
≤ SH

t
 ∀t . Fur-

thermore, there are novel interventions, IL′ and IH′ also used 
on groups L and H . They produce the same quality-of-life 
sequences as the standard of care. Their survival sequences, {
SL

�

t

}T

t=1
 and 

{
SH

�

t

}T

t=1
 are different in the following sense: ∃t� , 

such that SL�
t�
− SL

t�
= SH

�

t�
− SH

t�
= Δ > 0 ; ∀t ≠ t� , SL�

t
= SL

t
 and 

SH
�

t
= SH

t
 . We can then state our non-discrimination principle 

as

Intuitively, a given increase in survival should be equally 
valuable to the group with higher baseline quality-of-life as 
the group with lower baseline quality-of-life.

Finally, we note a useful implication if Principles (1) and 
(5) both hold. Together, these imply that increases in stand-
ard-of-care survival must be valuable either for both H and 
L patients or for neither type of patient. Specifically, for any 
novel intervention Y  , it must be true that6

The proof of Condition (2) begins with an implication of 
Principle (1)7

ΔMetric
(
H

�,H
)
= ΔMetric

(
L
�, L

)
. (Principle 5)

ΔMetric(Y ,H) ≥ ΔMetric
(
Y ,H�

)
⇒ ΔMetric(Y , L) ≥ ΔMetric

(
Y , L�

)
. (Condition 2)

(5)

ΔMetric(Y ,H) ≥ ΔMetric
(

Y ,H′)

⇒ ΔMetric(Y , Y)
≥ ΔMetric

(

H,H′).

By Principle (5), ΔMetric
(
H,H�

)
= ΔMetric

(
L, L�

),8 so 

ΔMetric(Y , Y) ≥ ΔMetric
(
L, L�

)
 . Furthermore, applying 

Principle (1) again implies

The resulting chain of inequalities then proves Condition 
(2) as a consequence of Principles (1) and (5).

Principle violations within the EVL and HYT 
metrics

We now show the existence of health intervention deci-
sions, such that incremental EVL and HYT: (1) violate 
both the principle of additive value (Principle 1) and the 
condition enabling indirect comparison (Condition 1); (2) 
violate either (a) the principle that life-extension does no 
harm (Principle 2) and the condition of non-discrimination 
for standard-of-care survival gains (Condition 2), or (b) the 
principle of bounded value from life-extension (Principle 3); 
and (3) violate the principle of convex survival preferences 
(Principle 4).

Failures of additivity in EVL and HYT

Incremental EVL and HYT fail to obey additivity when the 
metrics are employed over time and across different eras in 
standard-of-care technology. This results in violation of addi-
tive value (Principle 1) and indirect comparison (Condition 1).

Numerical examples

Numerical examples illustrate the intuition. Consider the 
standard-of-care therapy, X , with the three-period sur-
vival and quality-of-life sequences 

{
SXt

}
= {0.1, 0.1, 0.1} 

and 
{
QXt

}
= {0.2, 0.2, 0.1} . X offers limited survival and 

quality-of-life prospects. A new therapy, Y  , launches, with 
much improved survival and quality-of-life sequences {
SYt

}
= {0.9, 0.9, 0.9} , and 

{
QYt

}
= {0.7, 0.9, 1.0} . EVL 

implies that the new therapy provides an advance over 
the current standard-of-care, with ΔEVL(Y ,X) = 2.61 . 
Next year, another technology emerges in the research 
pipeline, Z , with survival and quality-of-life sequences {
SZt

}
= {0.99, 0.99, 0.99} , and 

{
QZt

}
= {0.7, 0.5, 1.0} . If 

(6)
ΔMetric(Y , Y) ≥ ΔMetric

(
L, L�

)
⇒ ΔMetric(Y , L) ≥ ΔMetric

(
Y , L�

)
.

5  https://​www.​congr​ess.​gov/​bill/​117th-​congr​ess/​house-​bill/​5376/​text/​
rh.
6  If Principle (2) holds, it will always be true that ΔMetric(Y ,H) ≥

ΔMetric
(
Y ,H�

)
 , but we do not require the validity of Principle (2) for 

this argument.

7  Here, we implicitly assume that any metric must satisfy 
ΔMetric(Y ,Y) = 0 for any technology, Y .
8  Here, we implicitly assume that any metric must satisfy ΔMetric(
A,A�

)
= −ΔMetric

(
A
�,A

)
 , for any pair of technologies, A and A′.

https://www.congress.gov/bill/117th-congress/house-bill/5376/text/rh
https://www.congress.gov/bill/117th-congress/house-bill/5376/text/rh
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eventually approved, Z would offer longer total survival 
than Y  , and EVL indeed concludes that it will be an even 
bigger advance over the current standard-of-care, where 
ΔEVL(Z,X) = 2.84 . By the time Z launches, however, Y  
has become the sole standard-of-care, which reverses the 
earlier conclusion about the value of Z over Y  . Even though 
EVL implied that Z represented a bigger advance over X 
than Y  did, once the standard-of-care switches to Y  , EVL 
selects Y  over Z , because ΔEVL(Z, Y) = −0.09 , leading to 
an inconsistent conclusion.

This occurs, because the shift in the standard-of-care 
changes the “reference” survival profile that EVL uses to 
calculate the expected value of quality-of-life improvements. 
Technology Y  ’s quality-of-life advantage over technology Z 
becomes more prominent when the standard-of-care survival 
rises from the low level afforded by X to the higher level 
afforded by Y .

HYT suffers from an analogous problem. Continue 
with the same example technologies from above. Initially, 
X is the sole standard-of-care technology and Y  is a novel 
technology, so ΔHYT(Y ,X) = 4.29 . Later, Y  joins X as 
another standard-of-care option, and Z emerges as a novel 
technology. In this later time period, ΔHYT(Z,X) = 4.353 , 
but head-to-head comparison of Z  and Y  reveals that 
ΔHYT(Z, Y) = −0.126.  Using the original comparison of 
Y  to X implies that Y  is a smaller advance than Z , in the 
sense that ΔHYT(Z,X) > ΔHYT(Y ,X) . However, subse-
quent head-to-head comparison concludes that Y  dominates 
Z . With HYT, technology Y  ’s quality-of-life advantage over 
technology Y  becomes accentuated when the reference sur-
vival rises from the level provided by Y to the slightly higher 
level provided by Z.

In both these cases, the shift in the reference ther-
apy causes EVL and HYT to violate the critical prin-
ciple of additivity for comparisons made over time. 
Using EVL as an example, since ΔEVL(Y ,X) = 2.61 
and ΔEVL(Z,X) = 2.84 , additivity would imply that 
ΔEVL(Z, Y) = ΔEVL(Z,X) − ΔEVL(Y ,X) = 0.23  ,  b u t 
ΔEVL(Z, Y) arrives not only at a different number but even 
at the opposite conclusion for technology adoption.

Proving the failure of additivity

The numerical example motivates the following theorem.

Theorem 1  (Failure of additive incremental value) There  
exist health interventions A , B , C  , and D , such  
that  ΔEVL(A,B) > ΔEVL(C,D) ,  but  ΔEVL(A,C) <

ΔEVL(B,D) . There exist interventions A , B , C , and D ,  

such that ΔHYT(A,B) > ΔHYT(C,D) but ΔHYT(A,C) <
ΔHYT(B,D) . Therefore, ΔEVL and ΔHYT violate Principle 
(1).

The proof, which appears in the appendix, relies on 
changes over time in the standard-of-care therapy, similar 
to the intuition illustrated in the numerical example above. 
An immediate corollary is the failure of both EVL and HYT 
to satisfy the Condition enabling Indirect Comparison. The 
following statement, proven in the appendix, formalizes this 
point, which follows as a simple consequence of the case 
where technologies B and D are the same.

Corollary 1.1  (Failure of indirect comparison) There exist 
health interventions A , B , and C , such that ΔEVL(A,C) >
ΔEVL(B,C) , but ΔEVL(A,B) < 0 . There exist interven-
tions A , B , and C , such that ΔHYT(A,C) > ΔHYT(B,C) , 
but ΔHYT(A,B) < 0 . Therefore, ΔEVL and ΔHYT violate 
Condition (1).

Therefore, neither EVL nor HYT can be used reliably 
over time to conduct indirect comparisons or compute 
value-based prices. In practice, all prior EVL and HYT com-
parisons would need to be updated every time there is an 
evolution in the standard-of-care, and the metrics maintain 
additivity only within a fixed standard-of-care era.

Failures due to discontinuity in EVL and HYT

The piecewise structure of ΔEVL and ΔHYT causes them to 
switch calculation methods in the neighborhood where total 
survival is equal for the novel intervention and its standard 
of care. This switch creates the possibility of discontinuity 
in total survival in this neighborhood, a discontinuity that 
results in three additional violations.

Numerical examples of violations due to discontinuity

A simple two-period example illustrates the intuition. Sup-
pose novel intervention Y  exhibits the two-period sequence 
of survival probabilities, 

{
SY1 = 0.8, SY2 = 0.7

}
 . Meanwhile, 

the standard-of-care technology evolves. Denote the original 
standard-of-care as XA and the new one as XB . Technology 
XA produces survival 

{
SXA1 = 0.9, SXA2 = 0.595

}
 , while XB 

produces 
{
SXB1 = 0.9, SXB2 = 0.605

}
 . The novel intervention 

produces quality-of-life, 
{
QY1 = 0.05,QY2 = 0.16

}
 , while 

the two standard-of-care therapies produce the same quality-
of-life 

{
QX1 = 0.1,QX2 = 0.1

}
 . Notice that XB strictly domi-

nates XA , because it produces strictly more total survival, 
weakly more survival in each period, and identical quality-
of-life in each period. However, the EVL metric implies 
ΔEVL

(
Y ,XA

)
= −0.0043 and ΔEVL

(
Y ,XB

)
= 0.0015 , 
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calculated when XA is the standard-of-care and when XB is 
the standard of care, respectively. According to the EVL 
measurement strategy, Y  is worse than XA but better than 
its successor, XB , even though XB strictly dominates XA.9 
Because EVL switches between QALYs and its own ad hoc 
metric, the result is a flawed decision outcome violating the 
principle that life-extension does no harm (Principle 2).

Ordinarily, the incremental value of a novel technology will 
decrease continuously and monotonically in total standard-of-
care survival, all else equal. However, the piecewise structure 
of the incremental EVL metric creates a possible discontinuity 
at the point where the EVL formula switches its calculation 
methodology. The same pathology arises for HYT, because 
it too switches between QALY measurement and its own ad 
hoc metric. Keep the survival probabilities the same as in the 
example above, but now alter the quality-of-life profiles to be: {
QX1 = 0.06,QX2 = 0.17

}
 and 

{
QY1 = 0.105,QY2 = 0.105

}
 . 

The HYT metric implies ΔHYT
(
Y ,XA

)
= −0.0045 and 

ΔHYT
(
Y ,XB

)
= 0.00065 , calculated in the XA era and the 

XB era, respectively. Again, Y is worse than XA but better than 
XB , even though XB strictly dominates XA.

The numerical examples also illustrate how a type of 
disability-discrimination can arise from negative sur-
vival values. Suppose that the standard-of-care technolo-
gies above are given to patients with higher quality-of-
life sequences equal to 

{
QX1 = 0.7,QX2 = 0.7

}
 . Now, 

ΔEVL
(
Y ,XA

)
= −0.9013 > −0.9015 = ΔEVL

(
Y ,XB

)
  . 

Therefore, the increase in standard-of-care survival pro-
duces positive value to patients at quality-of-life level 0.7 , 
but not to patients at quality-of-life level 0.1 . Similarly, at 
this higher quality-of-life level for standard-of-care patients, 
ΔHYT

(
Y ,XA

)
= −0.8875 > −0.896 = ΔHYT

(
Y ,XB

)
.

Proving principle violations in EVL and HYT that result 
from discontinuity

Consider a novel intervention, Y  , along with a time-series of 
standard-of-care therapies, X(�) , where � is an index of tech-
nological progress in the standard-of-care. The novel inter-
vention, Y  , is characterized by 

{
SYt;QYt

}T

t=1
 . The standard-

of-care therapies, X(�) , differ only in survival, with health 
outcomes characterized by 

{
SXt�;QYt

}T

t=1
 , where 0 ≤ � ≤ 1 

represents the increase in survival due to technological 
change over time. Moreover, suppose X has strictly higher 
total survival than Y .

Define the point 𝛿∗ ≡
∑

t SYt∑
t SXt

< 1. Notice that 
∑
t

SXt >
∑
t

SYt , 

but 
∑
t

SYt ≥
∑
t

�
SXtδ

�
∀� ≤ �∗ . Since 

∑
t SXt�

∗ =
∑

t SYt , �∗ is 

the technology level at which the incremental EVL metric 
switches its formula. Since the calculation method discretely 
switches at �∗ , ΔEVL can often be discontinuous in total stand-
ard-of-care survival at �∗ . To begin our proof of this point, note 
the following:

Mechanically, discontinuity exists at �∗ if the right-hand 
and left-hand limits, R∗

EVL
 and L∗

EVL
 , are strictly unequal at 

�∗ . If QYt is constant over time, it is obvious from Eq. (9) that 
there is no such discontinuity, because 

∑
t

�
SYt − SXt�

∗
�
= 0 , 

and thus, R∗
EVL

= L∗
EVL

 . However, this is a special case. In 
genera l ,  t he  d i f fe rence ,  R∗

EVL
− L∗

EVL
 ,  equa l s ∑

t

�
SYt − SXt�

∗
�
QYt , the covariance between QYt and 

SYt − SXt�
∗ . This covariance that can be positive, negative, 

or zero. ΔEVL is continuous at �∗ only if incremental sur-
vival and quality of life under the intervention are exactly 
orthogonal over time, i.e., if 

∑
t

�
SYt − SXt�

∗
�
QYt = 0 . If 

orthogonality fails, so will the continuity of ΔEVL in total 
standard-of-care survival.

Since HYT also switches measurement methods at the 
point where 

∑
t SYt =

∑
t SXt�

∗ , it inherits the same discon-
tinuity, albeit with a few minor technical differences. The 
jump in the incremental HYT function at the discontinuity 
can be characterized as

Comparing Eqs. (9) and (12) reveals a small modifica-
tion. The existence and direction of the discontinuity at �∗ 
depends on the covariance between QXt (rather than QYt ) and 
SYt − SXt�

∗ , a covariance that can again be positive, negative, 
or zero.

Negative value of survival under EVL and HYT When the 
right-hand limit exceeds the left-hand limit ( R∗

EVL
> L∗

EVL
 ), 

(7)L∗
EVL

≡ lim
�→�∗−

ΔEVL(Y ,X(�)) =
∑
t

SXt�
∗
(
QYt − QXt

)

(8)R∗
EVL

≡ lim
�→�∗+

ΔEVL(Y ,X(�)) =
∑
t

SYtQYt − SXt�
∗QXt

(9)R∗
EVL

− L∗
EVL

=
∑
t

(
SYt − SXt�

∗
)
QYt.

(10)L∗
HYT

≡ lim
�→�∗−

ΔHYT(Y ,X(�)) =
∑
t

SYt
(
QYt − QXt

)

(11)

R∗
HYT

≡ lim
�→�∗+

ΔHYT(Y ,X(�)) =
∑
t

SYtQYt − SXt�
∗QXt

(12)R∗
HYT

− L∗
HYT

=
∑
t

(
SYt − SXt�

∗
)
QXt.

9  While the numbers would change, this anomaly would persist even 
if one were to use the “modified” formula when the standard-of-care 
produces more total survival than the novel technology. In this case, 
the survival profile used to compute expected quality-of-life gains 
would still change, allowing for the construction of anomalous exam-
ples like this.
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there can be negative value of survival under EVL. Fig-
ure 2 illustrates this case graphically, where the x-axis 
measures � and the y-axis measures incremental EVL.10 An 
analogous graphical relationship obtains for ΔHYT when 
R∗
HYT

> L∗
HYT

 . Discontinuity in total survival means that the 
incremental value function will “jump” up or down. If it 
jumps up, as in this figure, an increase in standard-of-care 
survival will counter-intuitively increase the incremental 
value of the novel intervention.

Under ΔEVL , negative values of survival gains are pos-
sible for values of � within the interval, 

[
B
EVL

,BEVL

]
 . The 

endpoints of this interval can be defined implicitly as

Since ΔEVL is monotonic decreasing on [0, �∗) and 
(�∗, 1] , so long as L∗

EVL
< R∗

EVL
 , it follows that B

EVL
< BEVL.

Analogously, incremental HYT produces negative values 
of survival over the interval, 

(
B
HYT

,BHYT

)
 , where the end-

points are defined as follows:

(13)BEVL:
∑

t

(

SYt − SXtBEVL
)

+
∑

t
SXtBEVL

(

QYt − QXt
)

= R∗
EVL

(14)BEVL ∶
∑
t

(
SYtQYt − SXtBEVLQXt

)
= L∗

EVL
.

(15)

B
HYT

∶
∑
t

(
SYt − SXtBHYT

)
+
∑
t

SYt
(
QYt − QXt

)
= R∗

HYT

This leads to the following theorem, proving that EVL 
and HYT violate Principle (2), the weakly positive value of 
survival gains.

Theorem 2  (Negative value of survival gains) Suppose that 
T ≥ 2 , Y  is a novel intervention with survival and quality-
of-life profiles 

{
SYt;QYt

}T

t=1
 , and X(�) is the family of stand-

ard-of-care interventions with profile 
{
SXt�;QXt

}T

t=1
 where ∑

t SYt <
∑

t SXt

A)	 Under these conditions, there exist standard-of-care 
interventions X(�) and X

(
�′
)
 , such that X

(
�′
)
 features 

strictly higher survival and weakly higher quality of life 
than X(�) , but that ΔEVL

(
Y ,X

(
𝜙�
))

> ΔEVL(Y ,X(𝜙)).
B)	 There also exist standard-of-care interventions X(�) and 

X
(
�′
)
 , such that X

(
�′
)
 features strictly higher survival 

and weakly higher quality of life than X(�) , but that 
ΔHYT

(
Y ,X

(
𝜌�
))

> ΔHYT(Y ,X(𝜌)).

Therefore, both ΔEVL and ΔHYT violate Principle (2).
The proof appears in the appendix, but Fig. 2 illustrates 

the intuition. When R∗ > L∗ , there exists a region over 
which ΔEVL and ΔHYT can rise even though standard-of-
care survival does too. Later, we consider the anomalies 
that arise if R∗ < L∗.

Disability-discrimination under EVL and HYT Both 
EVL and HYT are engineered to satisfy Principle (5), 
equity for the disabled. However, their violation of 

(16)BHYT ∶
∑
t

(
SYtQYt − SXtBHYTQXt

)
= L∗

HYT
.

Fig. 2   The case of negatively 
valued survival gains under 
EVL and HYT. Notes: The 
figure illustrates the relationship 
between � and ΔEVL(Y ,X(�)) 
under the case where R∗ > L

∗ . 
Incremental quality-of-life is 
held constant throughout the 
figure. An analogous figure 
obtains for ΔHYT(Y ,X(�)) , but 
where R∗

HYT
< L

∗
HYT

10  The figure reflects the result that, on either side of the discontinu-
ity, �∗ , ΔEVL is continuously differentiable and linearly decreasing in 
the technology level, �.
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monotonicity in survival leads them to violate Condition 
(2), which requires that standard-of-care survival gains 
should be valuable to the sick, whenever they are valu-
able to the healthy. This results in a type of disability-
discrimination, which follows as a corollary of Theorem 2.

Corollary 2.1  (Disability discrimination) Assume that Y and 
X(�) are defined as described in the conditions of Theo-
rem  2, and suppose ∃t�, such that SXt′∑

t SXt
>

SYt′∑
t SYt

 and 
QXt� ∈ (0, 1) . Condition (2) is violated by both EVL and HYT, 
in the following way. 

A)	 Suppose novel intervention Y  produces strictly 
higher total survival than standard-of-care X  , 
but strictly lower survival than X  in at least one 
time period. Under these conditions, there exists 
another standard-of-care intervention, Z  , produc-
ing the same survival profile as X but strictly higher 
quality-of-life than X  , and 0 < 𝜙′′ < 𝜙′′′ < 1 , where 
ΔEVL

(
Y , Z

(
𝜙��

))
− ΔEVL

(
Y , Z

(
𝜙���

))
> 0  b u t 

ΔEVL
(
Y ,X

(
𝜙��

))
− ΔEVL

(
Y ,X

(
𝜙���

))
< 0.

B)	 Alternatively, suppose novel intervention Y  pro-
duces strictly higher total survival than standard-
of-care X  , but strictly lower survival than X  in at 
least one time period. Under these conditions, there 
exists another standard-of-care intervention, Z  , pro-
ducing the same survival as X  but strictly higher 
quality-of-life than X  , and 0 < 𝜙′′ < 𝜙′′′ < 1 , where 
ΔHYT

(
Y , Z

(
𝜙��

))
− ΔHYT

(
Y , Z

(
𝜙���

))
> 0  b u t 

ΔHYT
(
Y ,X

(
𝜙��

))
− ΔHYT

(
Y ,X

(
𝜙���

))
< 0.

Under the relatively weak conditions of the corollary, 
Condition (2) is violated, and EVL results in a type of disa-
bility-discrimination. The same is true for HYT.

The proof appears in the appendix, but Fig. 3 illustrates 
the intuition. The incremental value of Y relative to Z [i.e., 
ΔEVL(Y , Z) or ΔHYT(Y , Z) ] lies below the incremental 
value of Y  relative to X , because Z produces more quality-
of-life than X along with identical survival. The upward 
shifts narrow the width of the region, 

(
B, �∗

)
 over which 

negative survival valuation originates. (The geometry is 
the same for both ΔEVL and ΔHYT , although the points 
and curves on the graph may shift across the two.) As a 
result, there will be some standard-of-care technology lev-
els for which survival gains harm patients with disability, 
but do not harm healthier patients. This creates circum-
stances in which life-extension is worth less (in fact, it is 
costly!) to those with lower quality of life.

Non-convexity of survival preferences under EVL and 
HYT The non-monotonicity of EVL in total survival also 
permits non-convex preferences over survival. Consider 

prior and current standard-of-care technologies A and B , 
and a novel technology, C , such that ΔEVL(C,A) < 0 and 
ΔEVL(C,B) < 0 . Under EVL and HYT, it is possible that 
ΔEVL(C, pA + (1 − p)B) > 0 , even though both A and B 
dominate C individually. Figure 4 illustrates the intuition. 
Pick 𝛿 < 𝛿∗ and 𝛿� > 𝛿∗, such that the novel technology, 
Y  , is dominated by the prior and current standard-of-care 
interventions X(�) and X

(
�′
)
 . As long as R∗

EVL
 lies above 

zero, there will be some standard-of-care intervention that 
lies between X(�) and X

(
�′
)
 but is dominated by the novel 

technology. This reveals the convex combination of � and 
�′ , such that ΔEVL

(
Y , pX(𝛿) + (1 − p)X

(
𝛿�
))

> 0 , and an 
analogous result will obtain for HYT. The following cor-
ollary, proven in the appendix, formalizes the intuition 
depicted by the figure.

Corollary 2.2  (Non-convex survival preferences). Suppose 
the conditions of Theorem 2 continue to hold. It then follows 
that the Principle of Convexity Over Survival Preferences 
(Principle 4) fails to hold, in the following sense. 

A)	 Suppose that R∗
EVL

> 0 > L∗
EVL

 . Under these condi-
tions, there is a novel technology, Y  , and standard-
of-care technologies, X

(
�′
)
 and X

(
�′′

)
 , where 𝛿� < 𝛿∗ 

and 𝛿�� > 𝛿∗ , such that ΔEVL
(
Y ,X

(
𝛿�
))

< 0 and 
ΔEVL

(
Y ,X

(
𝛿��

))
< 0 , but ∃p ∈ (0, 1) , such that 

ΔEVL
(
Y , pX

(
𝛿�
)
+ (1 − p)X

(
𝛿��

))
> 0.

B)	 Suppose further that R∗
HYT

> 0 > L∗
HYT

 . Under these 
conditions, there is a novel technology, Y ′ , and stand-
ard-of-care technologies, X′

(
�′
)
 and X′

(
�′′

)
 , where 

𝜈� < 𝛿∗ and 𝜈�� > 𝛿∗ , such that ΔHYT
(
Y �,X�

(
𝜈�
))

< 0 
and ΔHYT

(
Y �,X�

(
𝜈��

))
< 0 , but ∃p� ∈ (0, 1) , such that 

ΔHYT
(
Y �, p�X�

(
𝜈�
)
+
(
1 − p�

)
X�
(
𝜈��

))
> 0.

Unbounded average value of survival under EVL and 
HYT The two prior anomalies arise when EVL and HYT 
discontinuously increase at �∗ . Figure 5 illustrates what 
happens under the alternative case where they discontinu-
ously decrease at �∗ . At the discontinuity point, a zero 
or near-zero increase in standard-of-care survival triggers 
a discrete drop in both the incremental EVL and HYT 
metrics. Therefore, the average value of survival gains, 
which is the ratio between the change in incremental value 
and the increase in total survival, can diverge to infin-
ity. Intuitively, there remains a discrete change in value, 
even though the difference in survival approaches zero; 
this causes the ratio between the change in value and the 
change in survival to diverge. This violates Principle (3), 
of bounded average value from survival gains.

The average value per life-year of a change in survival 
from �a to 𝛿b > 𝛿a is (ΔValue(Y ,X(�

a))−ΔValue(Y ,X(�b)))
S(�b)−S(�a)

 , i.e., the 
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absolute value of the slope of the incremental value function 
(either ΔEVL or ΔHYT ) between �a and �b . (Since the value 
function may not be differentiable everywhere, we rely on 
the average slope between two points instead of a deriva-
tive.) This average value of a life-year can become 
unbounded near the discontinuity, as formalized in the fol-
lowing theorem.

Theorem 3  (Unbounded value of a life-year) Suppose that Y  
is a novel intervention with survival and quality-of-life pro-
files 

{
SYt;QYt

}T

t=1
 , and X(�) is a family of standard-of-care 

interventions with profiles 
{
SXt�;QXt

}T

t=1
 . The terms, �∗ , 

B
EVL

 , BEVL , B
HYT

 , and BHYT are as defined in the text. ΔEVL 
and ΔHYT violate Principle (3), in the following sense.

A)	 Suppose 
∑

t

�
SYt − SXt𝛿

∗
�
QYt < 0 , so that R∗

EVL
< L∗

EVL
 . 

For any V > 0 , ∃�� ∈ (0, �∗) and ��� ∈ (�∗, 1) , such that 
(ΔEVL(Y ,X(𝛿�))−ΔEVL(Y ,X(𝛿��)))∑

t SX(𝛿��)t−
∑

t SX(𝛿�)t
> V .

Fig. 3   The case of disability-
discrimination under EVL and 
HYT. Notes: The figure illus-
trates the relationship between � 
and ΔEVL(Y ,X(�)) for different 
values of � , under the case 
where R∗ > L

∗ . The figure plots 
the incremental value of tech-
nology Y  compared to standard-
of-care X(�) for different values 
of � (solid lines), and the incre-
mental value of Y  compared to 
standard-of-care Z(�) for dif-
ferent values of � (dark dashed 
lines).  Z produces higher 
quality-of-life than X at a single 
time, t′ , but is otherwise identi-
cal to X . An analogous figure 
obtains for ΔHYT(Y ,X(�)) 
and ΔHYT(Y ,Z(�)) , but where 
R
∗
HYT

< L
∗
HYT

Fig. 4   The case of non-
convex preferences under 
EVL and HYT. Notes: The 
figure plots incremental 
values ( ΔEVL(Y ,X(�)) and 
ΔHYT(Y ,X(�)) for different val-
ues of � . Incremental quality-of-
life is held constant throughout 
the figure
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B)	 In contrast, suppose 
∑

t

�
SYt − SXt𝛿

∗
�
QXt < 0 , so that 

R∗
HYT

< L∗
HYT

 . For any V > 0 , ∃�� ∈ (0, �∗) and 
��� ∈ (�∗, 1) , such that (ΔHYT(Y ,X(𝛿

�))−ΔHYT(Y ,X(𝛿��)))∑
t SX(𝛿��)t−

∑
t SX(𝛿�)t

> V.

Theorem (3) demonstrates that incremental EVL 
and HYT violate Principle (3). The proof appears in the 
Appendix.

The need for discontinuity in EVL and HYT

At this point, one might ask whether the choice-inconsisten-
cies above could be addressed by resorting to a continuous 
version of incremental EVL or HYT. Unfortunately, this is 
not viable, because continuity within the existing approaches 
to EVL and HYT creates other inconsistencies.

Consider the following two alternative and non-piecewise 
modifications to EVL, both of which would preserve conti-
nuity in survival:

In other words, suppose we use either the standard-of-
care survival profile or the novel treatment survival profile, 
regardless of which has more total survival. Even though 
they remove the discontinuity in survival, these metrics 
would create instability in choice, depending on which 
therapy is chosen as the standard of care.

(17)ΔMetric�(A,B) =
∑
t

(
SAt − SBt

)
+
∑
t

SBt
(
QAt − QBt

)

(18)

ΔMetric��(A,B) =
∑
t

(
SAt − SBt

)
+
∑
t

SAt
(
QAt − QBt

)
.

Theorem  4  (The need for discontinuity in EVL and 
HYT) Suppose there are two interventions, A and B, with 
sequences of quality-of-life and survival, 

{
SAt;QAt

}t=T

t=0
 and {

SBt;QBt

}t=T

t=0
 . And suppose ΔMetric� and ΔMetric�� are as 

defined in Eqs. (17) and (18), respectively. Suppose that the 
following two conditions hold:

Under these circumstances, if ΔMetric�(B,A) > 0 , 
then ΔMetric�(A,B) > 0 , and if ΔMetric��(B,A) > 0 , then 
ΔMetric��(A,B) > 0.

The theorem demonstrates that “solving” the discontinu-
ity within incremental EVL or HYT leads to other funda-
mental choice-inconsistencies.

One might also wonder whether the choice-inconsisten-
cies arise solely from the reliance on QALYs in some cases. 
This is not the case either. Consider an alternate formulation 
of incremental EVL that uses the same formula, regardless 
of whether the novel therapy is life-extending over standard 
of care

(19)
∑
t

SBt ≤
∑
t

SAt

(20)
∑
t

(
SBt

)(
QAt − QBt

)
>
∑
t

(
SAt

)(
QAt − QBt

)
> 0.

(21)

ΔEVL�(Y ,X) = Q0

�
t

�
S
Yt
− S

Xt

�

+

⎧⎪⎨⎪⎩

∑
t

S
Xt

�
Q

Yt
− Q

Xt

�
, if

∑
t

S
Xt
<
∑
t

S
Yt∑

t

S
Yt

�
Q

Yt
− Q

Xt

�
, if

∑
t

S
Yt
≤
∑
t

S
Xt

.

Fig. 5   The case of unbounded 
positive value of survival from 
EVL and HYT. Notes: The fig-
ure plots incremental value for 
ΔEVL(Y ,X(�)) for different val-
ues of � . Incremental quality-of-
life is held constant throughout 
the figure. An analogous figure 
obtains for ΔHYT(Y ,X(�)) , but 
where R∗

HYT
> L

∗
HYT
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One can imagine a similar reconstruction of incremental 
HYT as in

Unfortunately, these modifications remain subject to the 
same violations, because there continues to be a discontinu-
ity in total survival at the point where the formula switches 
from using standard-of-care survival profiles to novel ther-
apy survival profiles. In particular, Theorem 1, Corollary 
1.1, Theorem 2, Corollary 2.2, and Theorem 3 would all 
continue to hold.11

A consistent choice‑theoretic approach 
to eliminating discrimination

The principle‑consistency of GRACE

EVL and HYT result in violations of key principles for 
decision-making. Nonetheless, both EVL and HYT emerged 
to address a well-documented empirical phenomenon: the 
apparent willingness of consumers and third-party pay-
ers to pay more to treat severe illness. A choice-consistent 
alternative is still needed that satisfies the Principle of Non-
Discrimination Against the Sick and Disabled (Principle 5) 
and, correspondingly, the requirements of US law.

Neither EVL nor HYT have been shown to result from 
a well-defined utility function. As a result, they do not 
inherit the stable choice-theoretic properties of neoclassi-
cal microeconomics. In contrast, Generalized Risk-Adjusted 
Cost-Effectiveness (GRACE)—along with any other met-
ric based on a neoclassical expected utility-maximization 
framework—readily satisfies Principles (1), (2), (3), and 
(4), and Condition (1). The following theorem sets forth the 
weak conditions required for this to be true.

Theorem 5:  (Principle-consistency of GRACE and QALY 
metrics) Define the metrics, ΔQALY and ΔGRACE as speci-
fied in Eqs. (1) and (4), respectively. Let W  be any continu-
ously differentiable and weakly monotonic HRQoL utility 
function defined over the domain, Q ∈ [0, 1] , where 
W(Q) ≥ 0 and W(0) = 0 . For a given pre-existing quality-
of-life level bounded away from zero in the sense that 
∃Q0 ∈ (0, 1) , such that Q0 ≤ Q0 < 0 , both ΔQALY and 

(22)

ΔHYT(Y ,X) = ΔEVL(Y ,X)

+

⎧⎪⎨⎪⎩

∑
t

�
S
Yt
− S

Xt

��
Q

Yt
− Q

Xt

�
, if

∑
t

S
Xt
<
∑
t

S
Yt∑

t

�
S
Xt
− S

Yt

��
Q

Yt
− Q

Xt

�
, if

∑
t

S
Yt
≤
∑
t

S
Xt

.

ΔGRACE satisfy Principles (1), (2), (3), and (4), along with 
Condition (1).

The proof is straightforward and appears in the appendix. 
Note that Theorem 5 does not yet address the principle of 
non-discrimination (Principle 5). It is well understood that 
QALYs violate Principle (5). GRACE’s consistency with 
this principle remains in question, since prior research sug-
gests GRACE can be consistent with equity under certain 
conditions [1, 19]. We turn to this issue next.

Under GRACE, the marginal value of life-extension is 
U(c)W(QT)
U�(c)W(Q0)

 . U and W  measure utility over consumption and 
health-related quality of life, respectively. Non-medical con-
sumption is c . QT is the quality-of-life level in the post-treat-
ment state, and Q0 is the quality-of-life level in the pre-treat-
ment state. The numerator in this expression is the marginal 
utility of an additional period of life under the new treat-
ment, and the denominator is the marginal utility of con-
sumption in the ex ante pre-illness state. As noted earlier, 
pre-existing disability and/or illness have countervailing 
effects on the value of life-extension under GRACE; how-
ever, constant relative risk-aversion utility ensures that the 
value of life-extension does not change with pre-existing 
disability under GRACE. Under GRACE, the value of life-
extension equals utility in the post-treatment state divided 
by utility in the pre-illness state. Thus, when that ratio 
remains constant, so does the value of life-extension. With 
the CRRA assumption, utility is proportional to quality-of-
life. Let us assume further that disability reduces quality-of-
life proportionally, in both the pre-illness and post-treatment 
states. With these two assumptions, disability will lower 
pre-illness utility by the same percentage as it lowers post-
treatment utility. This leaves the ratio between the two 
unchanged and, with it, the value of life-extension.

To characterize these conditions more formally, consider 
patients in “high” pre-existing health (Type H ) and patients 
in “low” pre-existing health (Type L ). It facilitates the analy-
sis to measure health loss as proportional decline from per-
fect health. Therefore, define QP as the quality-of-life for a 
consumer in perfect health. Define d∗ as the proportional 
HRQoL burden of permanent disability and pre-existing ill-
ness suffered by a given patient, such that pre-illness quality-
of-life is given by Q0 = (1 − d∗)QP . Define d∗

H
≥ 0 as the 

disability burden for Type H patients and define d∗
L
> 0 as 

the disability burden for Type L patients. We assume Type 
L patients face higher pre-existing disability burdens, so that 
d∗
L
> d∗

H
.

Without loss of generality, consider a single post-treat-
ment period, t = 1 . Define QT⋅H and QT⋅L as post-treatment 
quality-of-life for Type H and Type L patients. Define t∗

H
 and 

t∗
L
 as the post-treatment quality-of-life burden of the acute 

illness among Type H and Type L patients, respectively, so 
11  Suitably modified proofs of these theorems are available on 
request from the authors.
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that QT⋅H =
(
1 − t∗

H

)
QP and QT⋅L =

(
1 − t∗

L

)
QP . Finally, for 

comparison purposes, define QT as post-treatment quality-
of-life for patients in perfect pre-existing health, and t∗ as 
the corresponding post-treatment quality-of-life burden, 
where QT = (1 − t∗)QP. With these definitions in hand, the 
following theorem characterizes the conditions under which 
GRACE complies with the principle of equity for the sick 
and disabled.

Theorem 6  (Non-discriminatory value assessment with 
GRACE) If utility over HRQoL, W(Q), exhibits constant 
relative risk-aversion, and if 

(
1 − t∗

j

)
=

(
1 − d∗

j

)
(1 − t∗) for 

all Type j patients, then GRACE complies with Principle (5), 
non-discrimination against the disabled and sick.

The proof appears in the appendix. Mechanically, the value 

of life-extension for Type j patients is given by 
W
((

1−t∗
j

)
QP

)

W
((

1−d∗
j

)
QP

) . 

Under CRRA utility, W varies proportionately with quality-of-
life. Moreover, if 

(
1 − t∗

j

)
=

(
1 − d∗

j

)
(1 − t∗) , pre-existing 

disability lowers both pre-existing and post-treatment health by 
the same proportion. Therefore, pre-existing disability does not 

affect the ratio, 
W
((

1−t∗
j

)
QP

)

W
((

1−d∗
j

)
QP

) , and it thus fails to affect the value 

of life-extension.

A worked example comparing EVL, HYT, and GRACE

To illustrate the implementation of non-discriminatory 
GRACE, we offer a simple example. Consider a two-period 
setting, where the first period is the baseline pre-illness 
period and the second period takes place after the illness 
occurs. A standard-of-care technology produces survival 
probabilities of 1.0 and 0.1 in the first and second periods, 
respectively, while a novel intervention produces survival 
probabilities of 1.0 and 1.0. Now, suppose these technolo-
gies are used on a population without prior disability, with 
quality-of-life equal to 1.0 and 0.8 in the first and second 
periods, and also on a population with prior disability, with 
quality-of-life equal to 0.5 and 0.4 in the first and second 
periods. Notice how the quality-of-life assumptions com-
ply with the conditions of Theorem 6: the onset of illness 
proportionally lowers quality-of-life by 20%, for both the 
disabled and non-disabled patients. Table 1 summarizes the 
assumptions. Since these interventions only increase sur-
vival, non-discrimination requires that their value be the 
same across disability status.

The incremental QALYs produced by the intervention are 
given by (1.0 − 0.1) ∗ 0.8 = 0.72 for the non-disabled, but 
(1.0 − 0.1) ∗ 0.4 = 0.36 for the disabled; this reflects the  

discriminatory nature of QALYs. In contrast, the  
incremental equal value of life-years gained does not vary 
with disabil i ty status.  For the non-disabled, 
ΔEVL = (1 − 0.1) + 0.1 ∗ (0.8 − 0.8) = 0.9 , and for the disa-
bled, ΔEVL = (1 − 0.1) + 0.1 ∗ (0.4 − 0.4) = 0.9 . Since 
there are no quality-of-life improvements, ΔHYT is identical 
to ΔEVL , where ΔHYT = (1 − 0.1) + 1 ∗ (0.8 − 0.8) = 0.9 
for the non-disabled and ΔHYT = (1 − 0.1) + 1 ∗ (0.4

−0.4) = 0.9 for the disabled. In this example, GRACE is 
implemented using a utility function over health-related qual-
ity of life that exhibits constant relative risk-aversion with a 
risk-aversion parameter of 0.2822 [30]. Specifically, this 
implies the utility function, W(H) =

H1−�

1−�
 , where� = 0.2822 , 

the coefficient of relative risk-aversion. In this simple setting, 
ΔGRACE

(
Y ,X;Q0

)
= SY1

W(QY1)
W(Q0)

− SX1
W(QX1)
W(Q0)

 . Under CRRA 

utility, this becomes, ΔGRACE
(
Y ,X;Q0

)
= S

Y1

(
Q

Y1

Q0

)(1−�)

−S
X1

(
Q

X1

Q0

)(1−�)

 . Recall that GRACE will avoid discrimination 

so long as disability leaves 
(

QY1

Q0

)
 and 

(
QX1

Q0

)
 unchanged. For 

the non-disabled,  Q0 = 1 ,  QY1 = QX1 = 0.8 ,  and 
QY1

Q0

=
QX1

Q0

= 0.8 . For the disabled, Q0 = 0.5 , QY1 = QX1 = 0.4 , 

and QY1

Q0

=
QX1

Q0

=
0.4

0.5
= 0.8 . Therefore, the ratio of post-illness 

to pre-illness quality-of-life is always 0.8, regardless of disa-
bility status. For both groups, SY1 = 1.0 and SX1 = 0.1 . Com-
putation reveals that:

ΔGRACE
(
Y ,X;Q0 = 1

)
= 1.0(0.8)0.7178 − 0.1(0.8)0.7178 = 0.77

Table 1   Comparing QALYs to non-discriminatory metrics of value

Notes: GRA-QALYs are calculated assuming a health-related QoL 
utility function that exhibits constant relative risk-aversion with risk-
aversion parameter 0.2822

Without prior 
disability

With prior 
disability

T = 0 T = 1 T = 0 T = 1

Standard of care
 Survival 1 0.1 1 0.1
 QoL 1 0.8 0.5 0.4

Intervention
 Survival 1 1 1 1
 QoL 1 0.8 0.5 0.4

Value of intervention
 ΔQALYs 0.72 0.36
 ΔEVL 0.90 0.90
 ΔHYT 0.90 0.90
 ΔGRACE 0.77 0.77
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Therefore, GRACE values life-extension equally under 
the conditions of Theorem 6.

The mechanics of this example reveals some important 
implications for practice. If disability had additive, rather 
than multiplicative, effects on quality-of-life, the conditions 
of Theorem 6 would have been violated. For instance, sup-
pose that disability reduced quality-of-life by 0.2 units, both 
before and after the onset of illness. In such a case, the disa-
bled population would exhibit quality-of-life equal to 0.8 
before illness and 0.6 post-illness. Hence, QY1

Q0

= 0.8 for the 

non-disabled, but QY1

Q0

=
0.6

0.8
= 0.75 for the disabled. Since the 

ratio of post-illness to pre-illness quality-of-life varies with 
disability, GRACE does not avoid disability-discrimination 
in this case, even though CRRA utility holds. The assump-
tion of proportional quality-of-life reductions from disability 
is needed.

Alternatively, consider the importance of the CRRA 
assumption. Imagine constant absolute risk-aversion 
(CARA) utility, as embodied in W(H) =

1−e−H

1−
1

e

 . In this case, 

the coefficient of relative risk-aversion is proportional to H . 
Computation reveals that W(QY1)

W(Q0)
=

1−e−QY1

1−e−Q0
 and that dividing 

both QY1 and Q0 by half would reduce W(QY1)
W(Q0)

 rather than 
leaving it unaffected. Below, we discuss perspectives on the 
empirical validity or invalidity of the CRRA utility 
assumption.

Conclusion

Traditional cost-effectiveness fails to align with the appar-
ent disease severity premium exhibited by consumers and 
payers. It also fails to conform with recent changes to US 
federal law prohibiting metrics that discriminate against 
the disabled, aged, and terminally ill. Ad hoc approaches 
to addressing these limitations of traditional CEA introduce 
choice pathologies that render them inappropriate for policy-
making. GRACE offers a choice-consistent alternative that 
admits a premium for disease severity and avoids prohibited 
discrimination under well-defined conditions on utility and 
the effects of disability.

The beguiling pursuit of a health utility measure that 
affords a maximum health state to all persons receiving 
life-extension has led us to models that can fail to satisfy 
a set of nearly self-evident principles for choice. Its lack of 
microeconomic or choice-theoretic foundations ultimately 
compromises the EVL approach. By building upon EVL, 

ΔGRACE
(
Y ,X;Q0 = 0.5

)
= 1.0(0.8)0.7178 − 0.1(0.8)0.7178 = 0.77. HYT inherits these underlying inconsistencies. Rather than 

making ad hoc adjustments to the QALY, GRACE avoids 
discrimination by restricting risk posture in a neoclassical 
economic model of consumer behavior.

In contrast to EVL or HYT, GRACE states its conditions 
in terms of empirically observable preferences and measured 
health, within a choice-consistent microeconomic frame-
work. Its vulnerability to discriminatory outcomes lies in 
the possibility that empirical preferences, or health, may not 
conform with legislated restrictions or collective preferences 
for non-discrimination. In other words, the required restric-
tions on utility, or on the quality-of-life effects of disability, 
may be rejected by the data. This raises the possibility that 
non-discriminatory value assessment under GRACE may 
not always be externally consistent with data in some patient 
populations. Ideally, CRRA would prove to be an empirical 
reasonable assumption in populations of interest, and in any 
event, the assumption ought to be tested before relying on 
this form of the utility function. However, even if CRRA fails 
to be the best-fitting utility function empirically, GRACE 
remains internally consistent, because it is built upon stand-
ard microeconomic tools. Practitioners of cost-effectiveness 
tolerate external inconsistency in several forms. For instance, 
economic assessments almost never incorporate real-world 
variation in per capita consumption that would otherwise 
imply that fewer medical resources ought to be allocated to 
the poor than to the rich. Even more on point, EVL and HYT 
themselves embrace external inconsistency in the measure-
ment of quality-of-life. Complete external consistency is 
impossible to achieve, or nearly so, when relying on analyti-
cal models, all of which abstract away from key features of 
the real-world. It is up to the analyst to weigh the impor-
tance of empirical accuracy against societal considerations 
like equity. However, consistency with widely held principles 
of non-discriminatory choice—additivity, monotonicity and 
boundedness in the value of survival, convexity in survival, 
and non-discrimination itself—ought to remain an inviolable 
requirement of healthcare decision analysis.

Mathematical appendix

T h e o r e m   1   ( A d d i t i ve  i n c r e m e n t a l  v a l u e ) . 
There exist health interventions A ,  B ,  C  ,  and 
D  ,  s u ch  t h a t  ΔEVL(A,B) > ΔEVL(C,D)  ,  b u t 
ΔEVL(A,C) < ΔEVL(B,D) . There exist interventions A , 
B , C , and D , such that ΔHYT(A,B) > ΔHYT(C,D) but 
ΔHYT(A,C) < ΔHYT(B,D) . Therefore, ΔEVL and ΔHYT 
violate Principle (1).
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Proof of Theorem 1

Proof for 1EVL

Suppose there are three time periods. In period 1, D is the 
standard-of-care technology, while B and C are novel tech-
nologies. In period 2, C is the only standard-of-care technol-
ogy, while A and B are novel technologies. In period 3, B is 
the only standard-of-care technology, while A is a novel 
technology. Denote ΔEVLi(X, Y) as incremental EVL esti-
mated in period i over technologies X and Y  . Suppose also ∑
t

SAt >
∑
t

SBt >
∑
t

SCt >
∑
t

SDt.

Now, suppose further that

This inequality implies

Assuming (23), implicitly define 𝜖 > 0 such that

Whenever the following condition is met, Principle (1) 
will fail for EVL:

To see why, observe that the left-hand inequality in 
expression (26), combined with Eq. (25), implies

This is equivalent to ΔEVL3(A,B) > ΔEVL1(C,D) . How-
ever, the right-hand inequality in expression (26), combined 
with Eq. (25), implies

This is equivalent to ΔEVL2(A,C) < ΔEVL1(B,D).

(23)
∑
t

SAt −
∑
t

SBt <
∑
t

SCt −
∑
t

SDt.

(24)
∑
t

SAt −
∑
t

SCt <
∑
t

SBt −
∑
t

SDt.

(25)
∑
t

SAt −
∑
t

SBt + � =
∑
t

SCt −
∑
t

SDt.

(26)

[

∑

t
SBtQAt −

∑

t
SBtQBt

]

−

[

∑

t
SDtQCt −

∑

t
SDtQDt

]

>

� >

[

∑

t
SCtQAt −

∑

t
SCtQCt

]

−

[

∑

t
SDtQBt −

∑

t
SDtQDt

]

.

(27)

[

∑

t
SAt −

∑

t
SBt

]

+

[

∑

t
SBtQAt −

∑

t
SBtQBt

]

−

[

∑

t
SDtQCt −

∑

t
SDtQDt

]

>
∑

t
SCt −

∑

t
SDt .

(28)

∑

t
SAt −

∑

t
SBt +

[

∑

t
SCtQAt −

∑

t
SCtQCt

]

−

[

∑

t
SDtQBt −

∑

t
SDtQDt

]

<
∑

t
SCt −

∑

t
SDt .

Proof for 1HYT

Suppose there are three time periods. In period 1, D is the 
standard-of-care technology, while C is a novel technology. 
In period 2, C and D are standard-of-care technologies, 
while B is a novel technology. In period 3, B and C are the 
only standard-of-care technologies, while A is a novel tech-
nology. In period 4, B is the only standard-of-care technol-
ogy, and A is a novel technology. Denote ΔHYTi(X, Y) as 
incremental HYT estimated in period i over technologies X 
and Y  . Suppose also 

∑
t

SAt >
∑
t

SBt >
∑
t

SCt >
∑
t

SDt.

Analogously, the condition below will imply that Princi-
ple (1) will fail for HYT

The left-hand inequality in expression (29), combined 
with Eq. (25), implies

This is equivalent to ΔHYT4(A,B) > ΔHYT1(C,D) . 
However, the right-hand inequality in expression (29), com-
bined with Eq. (25), implies

This is equivalent to ΔHYT3(A,C) < ΔHYT2(B,D).
Finally, we confirm that the intersection between the set of 

interventions satisfying 
∑

t SAt >
∑

t SBt >
∑

t SCt >
∑

t SDt , 
expression (26), and expression (29) is nonempty. The 
following set of interventions satisfies all these con-
straints: SA = {0.99, 0.99, 0.99} ,  QA = {0.9, 1.0, 0.01} , 
S
B
= {0.9, 0.9, 0.9} , QB

= {0.02, 0.01, 1.0} , SC = {0.4, 0.4, 0.4} , 
QC = {1.0, 0.8, 0.01}  ,  SD = {0.2, 0.2, 0.2}  ,  a n d 
QD = {0.01, 0.01, 1.0} . Computation reveals the following:

(29)

[

∑

t
SAtQAt −

∑

t
SAtQBt

]

−

[

∑

t
SCtQCt −

∑

t
SCtQDt

]

> � >

[

∑

t
SAtQAt −

∑

t
SAtQCt

]

−

[

∑

t
SBtQBt −

∑

t
SBtQDt

]

.

(30)

∑

t
SAt −

∑

t
SBt +

[

∑

t
SAtQAt −

∑

t
SAtQBt

]

−

[

∑

t
SCtQCt −

∑

t
SCtQDt

]

>
∑

t
SCt −

∑

t
SDt .

(31)

∑

t
SAt −

∑

t
SBt +

[

∑

t
SAtQAt −

∑

t
SAtQCt

]

−

[

∑

t
SBtQBt −

∑

t
SBtQDt

]

<
∑

t
SCt −

∑

t
SDt .

� = 0.33

[∑
t

SBtQAt −
∑
t

SBtQBt

]
−

[∑
t

SDtQCt −
∑
t

SDtQDt

]
= 0.634
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QED

Corollary 1.1  (Failure of indirect comparison). There 
exist health interventions A , B , and C  , such that 
ΔEVL(A,C) > ΔEVL(B,C)  b u t  ΔEVL(A,B) < 0  . 
There exist interventions A,B , and C  , such that 
ΔHYT(A,C) > ΔHYT(B,C) but ΔHYT(A,B) < 0 . There-
fore, ΔEVL and ΔHYT violate Condition (1).

Proof of Corollary 1.1

Proof for 1EVL

The proof of the corollary follows the same outline as that 
of Theorem 1. Suppose there are two time periods. In period 
1, C is the standard-of-care technology, while A and B are 
novel technologies. In period 2, B is accepted as the sole 
standard-of-care technology, while A remains a novel tech-
nology. Suppose 

∑
t SAt >

∑
t SBt >

∑
t SCt . This implies that

Assuming expression (32), implicitly define � , such that

Whenever the following condition is met, Principle (1) 
will fail for EVL:

The right-hand inequality in expression (34), combined 
with Eq. (33), implies

[∑
t

SCtQAt −
∑
t

SCtQCt

]
−

[∑
t

SDtQBt −
∑
t

SDtQDt

]
= 0.038

[∑
t

SAtQAt −
∑
t

SAtQBt

]
−

[∑
t

SCtQCt −
∑
t

SCtQDt

]
= 0.5552

[∑
t

SAtQAt −
∑
t

SAtQCt

]
−

[∑
t

SBtQBt −
∑
t

SBtQDt

]
= 0.09.

(32)
∑
t

SAt −
∑
t

SCt >
∑
t

SBt −
∑
t

SCt.

(33)
∑
t

SAt =
∑
t

SBt + �.

(34)
∑
t

SBt
(
QBt − QAt

)
> 𝜖 >

∑
t

SCt
(
QBt − QAt

)
.

(35)

∑

t

(

SAt − SCt
)

+
∑

t
SCt

(

QAt − QCt
)

>

∑

t

(

SBt − SCt
)

+
∑

t
SCt

(

QBt − QCt
)

.

This demonstrates that ΔEVL1(A,C) > ΔEVL1(B,C) . 
However, the left-hand inequality in expression (34), com-
bined with Eq. (33), implies

This demonstrates that ΔEVL2(A,B) < 0 , which proves 
the result.

Proof for 1HYT

Continue with the same technologies as above but adjust the 
timing. Suppose there are two time periods. In period 1, C is 
the standard-of-care technology, while B is a novel technol-
ogy. In period 2, B joins C as a standard-of-care technology, 
and a new technology, A , emerges as a novel alternative. 
Suppose 

∑
t SAt >

∑
t SBt >

∑
t SCt.

Now, whenever the following condition is met, Principle 
(1) will fail for HYT:

The left-hand inequality in expression (37), combined 
with Eq. (33), implies

This demonstrates that ΔHYT2(A,B) < 0 . However, the 
right-hand inequality in expression (37), combined with 
Eq. (33), implies

This demonstrates that ΔHYT2(A,C) > ΔHYT1(B,C) , 
proving the violation.

Finally, the intersection between the set of inter-
ventions satisfying 

∑
t SAt >

∑
t SBt >

∑
t SCt  , expres-

sion (34), and expression (37) is nonempty. The 
following set of interventions satisfies all these con-
s t ra in t s :  SA = {0.99, 0.99, 0.99} ,  QA = {0.7, 0.5, 1.0} , 
SB = {0.9, 0.9, 0.9} , QB = {0.7, 0.9, 1} , SC = {0.1, 0.1, 0.1} , 
and QC = {0.2, 0.2, 0.01} .  Computation reveals the 
following:

(36)
∑
t

SAt −
∑
t

SBt +
∑
t

SBt
(
QAt − QBt

)
< 0.

(37)

∑

t
SAt

(

QBt − QAt
)

> � >
∑

t

(

SBtQBt − SAtQAt
)

+
∑

t

(

SAtQCt − SBtQCt
)

.

(38)
∑
t

SAt −
∑
t

SBt +
∑
t

SAt
(
QAt − QBt

)
< 0.

(39)

∑

t

(

SAt − SCt
)

+
∑

t
SAt

(

QAt − QCt
)

>

∑

t

(

SBt − SCt
)

+
∑

t
SBt

(

QBt − QCt
)

.

� = 0.27
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QED

Theorem 2  (Negative value of survival gains) Suppose that 
T ≥ 2 , Y  is a novel intervention with survival and quality-
of-life profiles 

{
SYt;QYt

}T

t=1
 , and X(�) is the family of stand-

ard-of-care interventions with profile 
{
SXt�;QXt

}T

t=1
 where ∑

t SYt <
∑

t SXt , and 0 ≤ � ≤ 1 is an index of technological 
progress.

A)	 Under these conditions, there exist standard-of-care 
interventions X(�) and X

(
�′
)
 , such that X

(
�′
)
 features 

strictly higher survival and weakly higher quality of life 
than X(�) , but that ΔEVL

(
Y ,X

(
𝜙�
))

> ΔEVL(Y ,X(𝜙)).
B)	 There also exist standard-of-care interventions X(�) and 

X
(
�′
)
 , such that X

(
�′
)
 features strictly higher survival 

and weakly higher quality of life than X(�) , but that 
ΔHYT

(
Y ,X

(
𝜌�
))

> ΔHYT(Y ,X(𝜌)).

Proof of Theorem 2

The theorem can be restated as follows. Suppose that 
T ≥ 2 , Y  is a novel intervention with strictly positive sur-
vival and quality-of-life profile 

{
SYt;QYt

}T

t=1
 , and X(�) is the 

family of standard-of-care interventions with strictly posi-
tive survival and quality-of-life profiles

{
SXt�;QXt

}T

t=1
 , 

where 0 ≤ � ≤ 1 , and where 
∑

t SXt >
∑

t SYt . The terms, �∗ , 
B
EVL

 , BEVL , B
HYT

 , and BHYT are as defined in the text. 
Under these conditions: A) if 

∑
t

�
SYt − SXt𝛿

∗
�
QYt > 0 , then, 

∀� ∈
(
B
EVL

, �∗
)

  ,  ∃�� ∈

(
�∗,BEVL

)
  ,  s u c h 

t ha tΔEVL
(
Y ,X

(
𝜙�
))

> ΔEVL(Y ,X(𝜙)) ;  and  B)  i f ∑
t

�
S
Yt
− S

Xt
𝛿∗
�
Q

Xt
> 0 , then, ∀� ∈

(
B
HYT

, �∗
)
 , ∃�� ∈

(
�∗,BHYT

)
 , 

such that ΔHYT
(
Y ,X

(
𝜌�
))

> ΔHYT(Y ,X(𝜌)).
We will begin by proving the result for ΔEVL and will 

then turn to ΔHYT.

∑
t

SBt
(
QBt − QAt

)
= 0.36

∑
t

SCt
(
QBt − QAt

)
= 0.04

∑
t

SAt
(
QBt − QAt

)
= 0.396

∑
t

(
SBt − SCt

)
+
∑
t

SBt
(
QBt − QCt

)
= 0.1989.

Proof for 1EVL

For any � ∈ (0, �∗) , ΔEVL(Y ,X(�)) =
∑

t

�
S
Yt
− S

Xt
�
�
+∑

t
S
Xt
�
�
Q

Yt
− Q

Xt

�
 ,  a n d  f o r  a n y  � ∈ (�∗, 1)  , 

ΔEVL(Y ,X(�)) =
∑

t

�
SYtQYt − SXt�QXt

�
 . Both these func-

tions are clearly continuous over the regions specified, and 
differentiation readily confirms they are also both mono-
tonically decreasing in � over the regions specified. Under 
the conditions specified by Part A of the theorem, ∑

t

�
SYt − SXt𝛿

∗
�
QYt > 0 . This implies L∗

EVL
< R∗

EVL
 . Pick 

some � ∈
(
B
EVL

, �∗
)
 . Since ΔEVL

(
Y ,X

(
B
EVL

))
= R∗

EVL
 , 

lim�→�∗− ΔEVL(Y ,X(�)) = L∗
EVL

 , ΔEVL is continuous and 
monotonic  decreas ing  for  a l l  0 < 𝛿 < 𝛿∗ ,  and 
� ∈

(
B
EVL

, �∗
)
 , it follows that L∗

EVL
< ΔEVL(Y ,X(𝜙)) < R

∗
EVL

 . 
Since ΔEVL

(
Y ,X

(
BEVL

))
= L

∗
EVL

 , lim�→�∗+ ΔEVL(Y ,X(�)) = R
∗
EVL

 , 

and ΔEVL is continuous over the interval 
(
�∗,BEVL

)
 , the 

intermediate-value theorem implies that ∀W ∈
(
R
∗
EVL

, L∗
EVL

)
 , 

there exists some �� ∈

(
�∗,BEVL

)
 , such that ΔEVL(Y ,X(

��
))

= W  . Since L∗
EVL

< EVL(Y ,X(𝜙)) < R∗
EVL

 , it follows 
that R∗

EVL
−

R∗
EVL

−ΔEVL(Y ,X(�))

2
∈
(
R∗
EVL

, L∗
EVL

)
 . Therefore, the 

intermediate-value theorem implies that ∃�� ∈

(
�∗,BEVL

)
 , 

such that ΔEVL(Y ,X(�′)) = R∗
EVL − R∗

EVL−ΔEVL(Y ,X(�))
2

> ΔEVL(Y ,X(�)) . 
QED.

Proof for 1HYT

For any � ∈ (0, �∗) ,  ΔHYT(Y ,X(�)) =
∑

t

�
S
Yt
− S

Xt
�
�

+
∑

t
S
Yt

�
Q

Yt
− Q

Xt

�
 , and for any � ∈ (�∗, 1) , ΔHYT(Y ,X(�))

=
∑

t

�
S
Yt
Q

Yt
− S

Xt
�Q

Xt

�
 . Both these functions are clearly 

continuous over the regions specified, and differentiation 
readily confirms they are also both monotonic decreasing 
in � . Under the conditions specified by Part B of the theo-
rem,  

∑
t

�
SYt − SXt𝛿

∗
�
QXt > 0  .  Th i s  impl ies  t ha t 

L∗
HYT

< R∗
HYT

 .  P i ck  some  � ∈
(
B
HYT

, �∗
)
 .  S ince 

ΔHYT
(
Y ,X

(
B
HYT

))
= R

∗
HYT

 , lim�→�∗− ΔHYT(Y ,X(�)) = L∗
HYT

 , 
ΔHYT is continuous and monotonic decreasing for all 
0 < 𝛿 < 𝛿∗ , and � ∈

(
B
HYT

, �∗
)
 , it follows that L∗

HYT
<

ΔHYT(Y ,X(𝜌)) < R
∗
HYT

 . Since ΔHYT
(
Y ,X

(
BHYT

))
= L

∗
HYT

 , 

lim�→�∗+ ΔHYT(Y ,X(�)) = R
∗
HYT

 , and ΔHYT is continuous 
over the interval 

(
�∗,BHYT

)
 , the intermediate-value theo-

rem implies that ∀W ∈
(
R∗
HYT

, L∗
HYT

)
 , there exists some 

�� ∈

(
�∗,BHYT

)
 , such that ΔHYT

(
Y ,X

(
��
))

= W  . Since 
L∗
HYT

< ΔHYT(Y ,X(𝜌)) < R∗
HYT

 ,  i t  f o l l o w s  t h a t 
R∗
HYT

−
R∗
HYT

−ΔHYT(Y ,X(�))

2
∈
(
R∗
HYT

, L∗
HYT

)
 . Therefore, the 

intermediate-value theorem implies ∃�� ∈ (�∗,BHYT) , such 
that ΔHYT(Y ,X(�′)) = R∗

HYT −
R∗HYT−ΔHYT(Y ,X(�))

2 > ΔHYT(Y ,X(�)) . QED.
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Corollary 2.1:  (Disability-discrimination). Assume that Y 
and X(�) are defined as described in the conditions of Theo-
rem  2, and suppose ∃t� , such that SXt′∑

t SXt
>

SYt′∑
t SYt

 and 
QXt� ∈ (0, 1) . In this context, Condition (2) is violated by 
both EVL and HYT, in the following way.

A)	 When computing incremental EVL for technolo-
gies X and Y  , suppose Y  produces higher survival 
than X in at least one time period. Under these con-
ditions, there exists an intervention, Z  , produc-
ing the same survival as X but strictly higher qual-
ity-of-life than X  , and 0 < 𝜙′′ < 𝜙′′′ < 1 , where 
ΔEVL

(
Y , Z

(
𝜙��

))
− ΔEVL

(
Y , Z

(
𝜙���

))
> 0,  b u t 

ΔEVL
(
Y ,X

(
𝜙��

))
− ΔEVL

(
Y ,X

(
𝜙���

))
< 0.

B)	 Alternatively, when computing incremental HYT 
for technologies X and Y  , suppose Y  produces lower 
survival than X in at least one time period. Under 
these conditions, there exists an intervention, Z , pro-
ducing the same survival as X  but strictly higher 
quality-of-life than X , and 0 < 𝜙′′ < 𝜙′′′ < 1 , where 
ΔHYT

(
Y , Z

(
𝜙��

))
− ΔHYT

(
Y , Z

(
𝜙���

))
> 0  b u t 

ΔHYT
(
Y ,X

(
𝜙��

))
− ΔHYT

(
Y ,X

(
𝜙���

))
< 0.

Proof of Corollary 2.1

The corollary can be restated as follows. Suppose the condi-
tions of Theorem 2 continue to hold and suppose further 
that: (a) when computing incremental EVL for standard-of 
care X and novel intervention Y, ∃t�, such that 1 ≤ t′ ≤ T  , 
SXt′ > SYt′ , and QXt� ∈ (0, 1) ; and (b) when computing incre-
mental HYT for standard-of-care X and novel intervention 
Y, ∃t�, such that SXt′∑

t SXt
>

SYt′∑
t SYt

 and QXt� ∈ (0, 1).

A)	 Under these conditions, there exists for incremental EVL 
an intervention, Z , with 1 ≥ QZt′ > QXt′ but otherwise 
identical to X , ��� ∈

(
B
EVL

, �∗
)
 , and ���� ∈

(
�∗,BEVL

)
 , 

such that ΔEVL
(
Y , Z

(
𝜙��

))
− ΔEVL

(
Y , Z

(
𝜙���

))
> 0 

but ΔEVL
(
Y ,X

(
𝜙��

))
− ΔEVL

(
Y ,X

(
𝜙���

))
< 0.

B)	 Separately, under these conditions, there exists for incre-
mental HYT an intervention, Z , with 1 ≥ QZt′ > QXt′ but 
otherwise identical to X  , ��� ∈

(
B
HYT

, �∗
)
 , and 

���� ∈

(
�∗,BHYT

)
 , such that ΔHYT

(
Y , Z

(
���

))
− ΔHYT

(
Y , Z

(
𝜌′′′

))
> 0  but  ΔHYT

(
Y ,X

(
���

))
− ΔHYT(Y ,

X
(
𝜌′′′

))
< 0.

Proof for 1EVL

Differentiate expression (13) with respect to QXt′ , recogniz-
ing that R∗

EVL
 also depends on QXt′ , to obtain

Since QXt > 0 for at least one value of t  , since 
SXt′ > SYt′ ≥ 0 , and since 𝛿∗ > B

EVL
 , it follows that dBEVL

dQXt′
> 0 . 

Define the intervention, Z , to have identical survival and 
quality-of-life profiles as X , but with 1 ≥ QZt′ > QXt′ . The 
technology, Z , when compared to X , may feature different 
values of R∗

EVL
 , B

EVL
 , and BEVL . Accordingly, therefore, 

define the right-hand limit, R∗
EVL

(Z) and lower bound, 
B
EVL

(Z) associated with Z , implicitly as

Notice that �∗ is identical between Eqs. (38) and (39), 
because the technology Z and the technology X have the 
same survival profile. Thus, �∗ =

∑
t SYt∑
t SXt

=
∑

t SYt∑
t SZt

.
Since Z involves higher quality-of-life at time t′ than Y  , it 

follows from Eq. (40) that B
EVL

(Z) > B
EVL

 . Moreover, since 
the conditions of Theorem  2 also apply to Z  , 
R∗
EVL

(Z) > L∗
EVL

(Z) . Therefore, it must be the case that 
𝛿∗ > B

EVL
(Z). Pick some ��� ∈

(
B
EVL

,B
EVL

(Z)
)
 . According 

to Theorem  2, there exists ���� ∈

(
�∗,BEVL

)
 , such that 

ΔEVL
(
Y ,X

(
𝜙��

))
− ΔEVL

(
Y ,X

(
𝜙���

))
< 0. However, since 

𝜙�� < B
EVL

(Z) and 𝜙��� > 𝛿∗ , ΔEVL
(
Y , Z

(
𝜙��

))
> R

∗
EVL

(Z)

> ΔEVL
(
Y , Z

(
𝜙���

))
> 0. Thus, ΔEVL

(
Y , Z

(
���

))
− ΔEVL(

Y , Z
(
𝜙′′′

))
> 0 . QED.

Proof for 1HYT

Differentiate expression (15) with respect to QYt′ , recogniz-
ing that R∗

HYT
 also depends on QYt′ , to obtain

Since the corollary assumes SXt′∑
t SXt

>
SYt′∑
t SYt

 , it implies that 

SXt�𝛿
∗ − SYt� > 0 . It thus follows that dBHYT

dQYt′
> 0 . Define the 

intervention, Z , to have identical survival and quality-of-life 
profiles as X , but with 1 ≥ QZt′ > QXt′ ; the latter must be 
possible, because the corollary assumes QXt′ < 1 . Further-
more, define Z  such that 

∑
t

�
SYt − SZt𝛿

∗
�
QZt > 0 ; since 

(40)
dB

EVL

dQXt�
=

SXt�
�
𝛿∗ − B

EVL

�
∑

t SXt
�
1 − QYt + QXt

� > 0.

(41)

R∗
EVL

(Z) ≡ lim
�→�∗+

ΔEVL(Y , Z(�)) =
∑
t

SYtQYt − SZt�
∗QZt

(42)

∑
t

(
SYt − SZtBEVL

(Z)
)
+
∑
t

SZtBEVL
(Z)

(
QYt − QZt

)
= R∗

EVL
(Z).

(43)
dB

HYT

dQXt�
=

SXt�𝛿
∗ − SYt�∑
t SXt

> 0.
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∑
t

�
SYt − SXt𝛿

∗
�
QXt > 0 with strict equality, it must be pos-

sible to choose QZt′ > QXt′ while still ensuring that this con-
dition holds. In other words, as long as QZt′ is chosen, such 
that QZt� − QXt� is sufficiently small, all these conditions can 
be satisfied.

The technology, Z, when compared to X, may feature dif-
ferent values of R∗

HYT
 , B

HYT
 and BHYT . Accordingly, there-

fore, define the right-hand limit, R∗
HYT

(Z) and lower bound, 
B
HYT

(Z) associated with Z, implicitly as

Notice that �∗ is identical for technology Z and technology 
X , because they have the same survival profiles. Thus, 
�∗ =

∑
t SYt∑
t SXt

=
∑

t SYt∑
t SZt

.
Since Z involves higher quality-of-life at time t′ than X , it 

follows from Eq. (43) that B
HYT

(Z) > B
HYT

 . Moreover, since ∑
t

�
SYt − SZt𝛿

∗
�
QZt > 0 , it follows that R∗

HYT
(Z) > L∗

HYT
(Z) . 

Therefore, it must be the case that 𝛿∗ > B
HYT

(Z) . Pick some 
��� ∈

(
B
HYT

,B
HYT

(Z)
)
 . According to Theorem 2, there exists 

���� ∈

(
�∗,BHYT

)
 , such that ΔHYT

(
Y ,X

(
���

))
− ΔHYT(

Y ,X
(
𝜌′′′

))
< 0 . However, since 𝜌�� < B

HYT
(Z) and 𝜌��� > 𝛿∗ , 

ΔHYT
(
Y , Z

(
𝜌��

))
> R∗

HYT
(Z) > ΔHYT

(
Y , Z

(
𝜌���

))
> 0   . 

Thus, ΔHYT
(
Y , Z

(
𝜌��

))
− ΔHYT

(
Y , Z

(
𝜌���

))
> 0 . QED.

Corollary 2.2:  (Non-convex survival preferences) Suppose 
the conditions of Theorem 2 continue to hold. It then follows 
that the Principle of Convexity Over Survival Preferences 
(Principle 4) fails to hold, in the following sense.

A)	 Suppose that R∗
EVL

> 0 > L∗
EVL

 . Under these condi-
tions, there is a novel technology, Y  , and standard-
of-care technologies, X

(
�′
)
 and X

(
�′′

)
 , where 𝛿� < 𝛿∗ 

and 𝛿�� > 𝛿∗ , such that ΔEVL
(
Y ,X

(
𝛿�
))

< 0 and 
ΔEVL

(
Y ,X

(
𝛿��

))
< 0 , but ∃p ∈ (0, 1) , such that 

ΔEVL
(
Y , pX

(
𝛿�
)
+ (1 − p)X

(
𝛿��

))
> 0.

B)	 Suppose further that R∗
HYT

> 0 > L∗
HYT

 . Under these 
conditions, there is a novel technology, Y ′ , and stand-
ard-of-care technologies, X′

(
�′
)
 and X′

(
�′′

)
 , where 

𝜈� < 𝛿∗ and 𝜈�� > 𝛿∗ , such that ΔHYT
(
Y �,X�

(
𝜈�
))

< 0 
and ΔHYT

(
Y �,X�

(
𝜈��

))
< 0 , but ∃p� ∈ (0, 1) , such that 

ΔHYT
(
Y �, p�X�

(
𝜈�
)
+
(
1 − p�

)
X�
(
𝜈��

))
> 0.

(44)

R∗
HYT

(Z) ≡ lim
�→�∗+

ΔHYT(Y , Z(�)) =
∑
t

SYtQYt − SZt�
∗QZt

(45)

∑
t

(
SYt − SZt

(
B
HYT

))
+
∑
t

SYt
(
QYt − QZt

)
= R∗

HYT
(Z).

Proof of Corollary 2.2

Proof for 1EVL

Since L∗
EVL

< 0 , ∃𝛿� < 𝛿∗ , such that ΔEVL
(
Y ,X

(
𝛿�
))

< 0 . 
Moreover, since ΔEVL(Y ,X(�)) is linearly decreasing in 
� for 𝛿 > 𝛿∗ , ∃𝛿�� > 𝛿∗, such that ΔEVL

(
Y ,X

(
𝛿��

))
< 0 . 

Moreover, since R∗
EVL

> 0 , ΔEVL is continuous for 
� ∈ (�∗, 1) , and ΔEVL

(
Y ,X

(
𝛿��

))
< 0 , the interme-

diate-value theorem implies that ∃� ∈
(
�∗, ���

)
 such 

that ΔEVL(Y ,X(𝛾)) > 0 . Since 𝛿� < 𝛿∗ , it follows that 
� ∈

(
��, ���

)
 . This implies that ∃p ∈ (0, 1) , such that 

� = p�� + (1 − p)��� . As such, simple algebra confirms 
t h a t  SX(1 − �) = pSX

(
1 − ��

)
+ (1 − p)SX

(
1 − ���

)
. 1 2 

Therefore, since X(�) , X
(
�′
)
 , and X

(
�′′

)
 all share the 

same quality-of-life profiles, it follows further that X(�) 
produces the same survival and quality-of-life profile as 
pX

(
��
)
+ (1 − p)X

(
���

)
 . Therefore, since ΔEVL(Y ,X(𝛾)) > 0 , 

ΔEVL
(
Y , pX

(
𝛿�
)
+ (1 − p)X

(
𝛿��

))
> 0 . QED.

Proof for 1HYT

Since L∗
HYT

< 0 , ∃𝜈� < 𝛿∗ , such that ΔHYT
(
Y �,X�

(
𝜈�
))

< 0 . 
Moreover, since ΔHYT

(
Y �,X�(�)

)
 is linearly decreasing in 

� for 𝛿 > 𝛿∗ , ∃𝜈�� > 𝛿∗, such that ΔHYT
(
Y �,X�

(
𝜈��

))
< 0 . 

Moreover, since R∗
HYT

> 0 , ΔHYT is continuous for 
� ∈ (�∗, 1) , and ΔHYT

(
Y �,X�

(
𝜈��

))
< 0 , the intermedi-

ate-value theorem implies that ∃� � ∈
(
�∗, ���

)
 such that 

ΔHYT
(
Y �,X�

(
𝛾 �
))

> 0 . Since 𝜈� < 𝛿∗ , it follows that 
� � ∈

(
��, ���

)
 . This implies that ∃p� ∈ (0, 1) , such that 

� � = p��� +
(
1 − p�

)
��� . As such, simple algebra confirms 

t h a t  SX�

(
1 − � �

)
= p�SX�

(
1 − ��

)
+
(
1 − p�

)
SX�

(
1 − ���

)
.13 Therefore, since X′

(
� ′
)
 , X′

(
�′
)
 , and X′

(
�′′

)
 all 

share the same quality-of-life profiles, it follows fur-
ther that X′

(
� ′
)
 produces the same survival and qual-

ity-of-life profile as p�X�
(
��
)
+
(
1 − X�

)
Y �
(
���

)
 . There-

fore, since ΔHYT
(
Y �,X�

(
𝛾 �
))

> 0 ,  it follows that 
ΔHYT

(
Y , p�X�

(
𝜈�
)
+
(
1 − p�

)
X�
(
𝜈��

))
> 0 . QED.

Theorem 3  (Unbounded value of a life-year) Suppose that 
Y  is a novel intervention with survival and quality-of-life 
profiles 

{
SYt;QYt

}T

t=1
 , and X(�) is a family of standard-of-

care interventions with profiles 
{
SXt�;QXt

}T

t=1
 . The terms, �∗ , 

B
EVL

 , BEVL , B
HYT

 , and BHYT are as defined in the text. ΔEVL 
and ΔHYT violate Principle (3), in the following sense. 

12  Multiplying both sides by −1 yields: −� = −p�� − (1 − p)��� . 
Adding 1 to both sides yields: 1 − � = 1 − p�� − ��� + p��� . 
Adding and subtracting p on the right-hand side yields: 
1 − � = 1 − p�� − ��� + p��� + p − p . Multiplying both sides by SX 
yields: SX(1 − �) = pSX

(
1 − ��

)
+ (1 − p)SX(1 − ���).

13  The algebra is similar to that shown in footnote 12.
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Suppose 
∑

t

�
SYt − SXt𝛿

∗
�
QYt < 0 , so that R∗

EVL
< L∗

EVL
 . For 

any V > 0 , ∃�� ∈ (0, �∗) and ��� ∈ (�∗, 1) , such that 
(ΔEVL(Y ,X(𝛿�))−ΔEVL(Y ,X(𝛿��)))∑

t SX(𝛿��)t−
∑

t SX(𝛿�)t
> V  . In contrast, suppose 

∑
t

�
SYt − SXt𝛿

∗
�
QXt < 0 , so that R∗

HYT
< L∗

HYT
 . For any 

V > 0  ,  ∃�� ∈ (0, �∗) and  ��� ∈ (�∗, 1) ,  such  tha t 
(ΔHYT(Y ,X(𝛿�))−ΔHYT(Y ,X(𝛿��)))∑

t SX(𝛿��)t−
∑

t SX(𝛿�)t
> V .

Proof of Theorem 3

Proof for 1EVL

Pick some positive number, V > 0 . We need to show that 
∃�� ∈ (0, �∗)  a n d  ��� ∈ (�∗, 1)  ,  s u c h  t h a t 
(ΔEVL(Y ,X(𝛿�))−ΔEVL(Y ,X(𝛿��)))∑

t SX(𝛿��)t−
∑

t SX(𝛿�)t
> V .

Since ΔEVL is continuous and monotonic decreasing on 
either side of �∗ , there must exist Δ� < 𝛿∗ and Δ�� > 𝛿∗, such 
t h a t  (

ΔEVL
(

Y ,X
(

Δ′)) − ΔEVL
(

Y ,X
(

Δ′′))) > L∗EVL − R∗
EVL > 0  .  I f 

L∗
EVL

−R∗
EVL∑

t SX(Δ��)t−
∑

t SX(Δ�)t
> V , then ΔEVL(Y ,X(Δ

�))−ΔEVL(Y ,X(Δ��))∑
t SX(Δ��)t−

∑
t SX(Δ�)t

> V , 

and the proof is complete.
Therefore, it suffices to restrict our attention to the alter-

nate case, in which L∗
EVL

−R∗
EVL∑

t SX(Δ��)t−
∑

t SX(Δ�)t
≤ V  . In light of this 

supposition, and since 
∑

t
S
X(Δ��)t −

∑
t
S
X(Δ�)t =

�
Δ�� − Δ�

�
∑

t
S
Xt

 , ∃n > 1 , such that 
�
1 −

1

n

�
=

L∗
EVL

−R∗
EVL

2V(Δ��−Δ�)
∑

t SXt
.

Now, since Δ�� > 𝛿∗ , we can select ��� = Δ�� −
(
Δ�� − �∗

)
(

1

n

)
> 𝛿∗ .  S ince  Δ� < 𝛿∗ ,  we  can  a lso  se lec t 

𝛿� = Δ� +
(
𝛿∗ − Δ�

)(
1

n

)
< 𝛿∗ . Simple algebra reveals that 

�′′ − �′ = Δ′′ −
(

Δ′′ − δ∗
)

(1
n

)

− Δ′ −
(

�∗ − Δ′)
(1
n

)

= Δ′′ − Δ′ +
( 1
n

)

(

−
(

Δ′′ − δ∗
)

−
(

�∗ − Δ′)) =
(

Δ′′ − Δ′)
(

1 − 1
n

)

  . 
Therefore, it follows that:

Since Δ� < 𝛿� < 𝛿∗ and Δ�� > 𝛿�� > 𝛿∗ , it follows that 
ΔEVL

(
Y ,X

(
𝛿�
))

− ΔEVL
(
Y ,X

(
𝛿��

))
> L∗

EVL
− R∗

EVL
 , so 

that L∗
EVL

−R∗
EVL

(𝛿��−𝛿�)
∑

t SXt
<

ΔEVL(Y ,X(𝛿�))−ΔEVL(Y ,X(𝛿��))
(𝛿��−𝛿�)

∑
t SXt

 . It then follows 

that ΔEVL(Y ,X(𝛿
�))−ΔEVL(Y ,X(𝛿��))

(𝛿��−𝛿�)
∑

t SXt
> 2V .

Since 
�
��� − ��

�∑
t SXt =

∑
t SX(���)t −

∑
t SX(��)t , the theo-

rem is proven. QED.

(46)
L∗
EVL

− R∗
EVL

(��� − ��)
∑

t SXt
=

L∗
EVL

− R∗
EVL

(Δ�� − Δ�)
∑

t SXt

�
1 −

1

n

� = 2V .

Proof for 1HYT

Pick some positive number, V > 0 . We need to show that 
∃�� ∈ (0, �∗)  a n d  ��� ∈ (�∗, 1)  ,  s u c h  t h a t 
(ΔHYT(Y ,X(𝛿�))−ΔHYT(Y ,X(𝛿��)))∑

t SX(𝛿��)t−
∑

t SX(𝛿�)t
> V .

Since ΔHYT is continuous and monotonic decreasing on 
either side of �∗ , there must exist Δ� < 𝛿∗ and Δ�� > 𝛿∗, such 
t h a t  (

ΔHYT
(

Y ,X
(

Δ′)) − ΔHYT
(

Y ,X
(

Δ′′))) > L∗HYT − R∗
HYT > 0  .  I f 

L∗
HYT

−R∗
HYT∑

t SX(Δ��)t−
∑

t SX(Δ�)t
> V , then ΔHYT(Y ,X(Δ

�))−ΔHYT(Y ,X(Δ��))∑
t SX(Δ��)t−

∑
t SX(Δ�)t

> V , 

and the proof is complete.
Therefore, it suffices to restrict our attention to the alter-

nate case, in which L∗
HYT

−R∗
HYT∑

t SX(Δ��)t−
∑

t SX(Δ�)t
≤ V  . In light of this 

supposition, and since 
∑

t
S
X(Δ��)t −

∑
t
S
X(Δ�)t =

�
Δ�� − Δ�

�
∑

t
S
Xt

 , ∃n > 1 , such that 
�
1 −

1

n

�
=

L∗
HYT

−R∗
HYT

2V(Δ��−Δ�)
∑

t SXt
.

Now, since Δ�� > 𝛿∗ , we can select ��� = Δ�� −
(
Δ�� − �∗

)
(

1

n

)
> 𝛿∗ . Since Δ� < 𝛿∗ , we can also select 

�� = Δ�+(
𝛿∗ − Δ�

)(
1

n

)
< 𝛿∗ .  Simple algebra reveals  that 

��� − �� = Δ�� −
(
Δ�� − δ∗

)(
1

n

)
− Δ� −

(
�∗ − Δ�

)(
1

n

)
= Δ��

−Δ� +

(
1

n

)(
−
(
Δ�� − δ∗

)
−
(
�∗ − Δ�

))
=
(
Δ�� − Δ�

)(
1 −

1

n

)
 . 

Therefore, it follows that:

Since Δ� < 𝛿� < 𝛿∗ and Δ�� > 𝛿�� > 𝛿∗ , it follows that 
ΔHYT

(
Y ,X

(
𝛿�
))

− ΔHYT
(
Y ,X

(
𝛿��

))
> L∗

HYT
− R∗

HYT
 , so 

that L∗
HYT

−R∗
HYT

(𝛿��−𝛿�)
∑

t SXt
<

ΔHYT(Y ,X(𝛿�))−ΔHYT(Y ,X(𝛿��))
(𝛿��−𝛿�)

∑
t SXt

 . It then follows 

that ΔHYT(Y ,X(𝛿
�))−ΔHYT(Y ,X(𝛿��))

(𝛿��−𝛿�)
∑

t SXt
> 2V .

Since 
�
��� − ��

�∑
t SXt =

∑
t SX(���)t −

∑
t SX(��)t , the theo-

rem is proven. QED.

Theorem  4:  (The need for discontinuity in EVL and 
HYT) Suppose there are two interventions, A and B, with 
sequences of quality-of-life and survival, 

{
SAt;QAt

}t=T

t=0
 and {

SBt;QBt

}t=T

t=0
 . And suppose ΔMetric� and ΔMetric�� are as 

defined in Eqs. (17) and (18), respectively. Suppose that the 
following two conditions hold:

(47)
L∗
HYT

− R∗
HYT

(��� − ��)
∑

t SXt
=

L∗
HYT

− R∗
HYT

(Δ�� − Δ�)
∑

t SXt

�
1 −

1

n

� = 2V .

(48)
∑
t

SBt ≤
∑
t

SAt

(49)
∑
t

(
SBt

)(
QAt − QBt

)
>
∑
t

(
SAt

)(
QAt − QBt

)
> 0.
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Under these circumstances, if ΔMetric�(B,A) > 0, then 
ΔMetric�(A,B) > 0 ,  and if ΔMetric��(B,A) > 0 ,  then 
ΔMetric��(A,B) > 0.

Proof of Theorem 4

Suppose ΔMetric�(B,A) > 0 . Inequality (48) implies

The left-hand inequality in (49) implies

The first inequality in this expression follows from the 
left-hand inequality in (49) and the second inequality fol-
lows from the right-hand inequality in (49). Adding these 
two conditions together implies

This then proves the desired result

Now suppose ΔMetric��(B,A) > 0 . Since ΔMetric
�(A,B) >

ΔMetric
�(B,A) , it follows that:

Simple algebra reveals that the left-hand side of the ine-
quality is equal to ΔMetric��(A,B) and the right-hand side is 
equal to ΔMetric��(B,A).14 The desired result then follows.

It remains to check that the theorem’s conditions can be 
met. Consider a two-period setting, where 

{
SAt

}
= {0.6, 0.6} , {

SBt
}
= {0.7, 0.5} , and 

{
QBt − QAt

}
= {0.9, 0.5} . It is sim-

ple to verify that inequalities (48) and (49) are met in this 
example. QED.

Theorem 5  (Principle-consistency of GRACE and QALY 
metrics) Define the metrics, ΔQALY and ΔGRACE as 
specified in Eqs. (1) and (4), respectively. Let W  be any 
continuously differentiable and weakly monotonic HRQoL 
utility function defined over the domain, Q ∈ [0, 1] , where 
W(Q) ≥ 0 and W(0) = 0 . For a given pre-existing disability 

(50)
∑
t

(
SAt − SBt

)
≥ 0 ≥

∑
t

(
SBt − SAt

)
.

(51)

∑
t

SBt
(
QAt − QBt

)
>
∑
t

SAt
(
QAt − QBt

)
> 0 >

∑
t

SAt
(
QBt − QAt

)
.

(52)

∑

t

(

SAt − SBt
)

+
∑

t
SBt

(

QAt − QBt
)

>
∑

t

(

SBt − SAt
)

+
∑

t
SAt

(

QBt − QAt
)

.

(53)ΔMetric�(A,B) > ΔMetric�(B,A) > 0.

ΔMetric′(A,B) +
∑

t

(

SAt − SBt
)(

QAt − QBt
)

> ΔMetric′

(B,A) +
∑

t

(

SBt − SAt
)(

QBt − QAt
)

.

level bounded away from zero in the sense that ∃d ∈ (0, 1) , 
such that d∗ ≥ d > 0 , both ΔQALY and ΔGRACE satisfy 
Principles (1), (1), (2), (3), and (4).

Proof of Theorem 5

Since ΔQALY is the special case of ΔGRACE that arises 
when W(Q) = Q , it suffices to prove that ΔGRACE is con-
sistent with the listed Principles.

An equivalent way of rewriting the definition of ΔGRACE 
in Eq. (4) is

This formulation makes it clear that ΔGRACE
(
X
�,X;Q0

)
= ΔGRACE

(
Y ,X;Q0

)
− ΔGRACE

(
Y ,X�;Q0

)
 . This eases the 

proof of Principle (1). Suppose there exist technologies X′ and 
X , such that ΔGRACE

(
X�,X;Q0

)
> 0 for a given Q0 . Since 

ΔGRACE
(
X
�,X;Q0

)
= ΔGRACE

(
Y ,X;Q0

)
− ΔGRACE(

Y ,X′;Q0

)
 , it follows that ΔGRACE

(
Y ,X;Q0

)
− ΔGRACE(

Y ,X′;Q0

)
> 0 . Moving in the other direction, suppose 

ΔGRACE
(
Y ,X;Q0

)
− ΔGRACE

(
Y ,X�;Q0

)
> 0 . It then 

follows that ΔGRACE
(
X
�,X;Q0

)
= ΔGRACE

(
Y ,X;Q0

)
−ΔGRACE

(
Y ,X�;Q0

)
> 0.

Turning to Condition (1), suppose there exist interven-
tions A , B , C , and D such that

which upon algebraic manipulation gives the desired result

Turning to Principle (2), suppose that interventions X 
and Y  produce identical quality-of-life, 

{
Qt

}T

t=1
 , SYt ≥ SXt 

∀t , and SYt > SXt for some t  . Since W(Q) ≥ 0,∀Q , it fol-
lows that ΔGRACE

(
Y ,X;Q0

)
> 0.

Turning to Principle (3), ΔGRACE is continuously dif-
ferentiable for all nonnegative survival sequences. There-
fore, dΔGRACE(Y ,X;d

∗)

dSXt
= −

W(QXt)
W(Q0)

 . Since W  is weakly mono-

tonic, 0 >
dΔGRACE(Y ,X;Q0)

dSXt
≥ −

W(1)

W
(
1−Q0

) . Therefore, for any 

(54)

ΔGRACE
(
Y ,X;Q0

)
=
∑
t

[
SYt

W
(
QYt

)

W
(
Q0

) − SXt
W
(
QXt

)

W
(
Q0

)
]
.

(55)

∑

t
SAt

(

W(QAt)
W
(

Q0
)

)

−
∑

t
SBt

(

W(QBt)
W
(

Q0
)

)

>
∑

t
SCt

(

W(QCt)
W
(

Q0
)

)

−
∑

t
SDt

(

W(QDt)
W
(

Q0
)

)

,

(56)

∑
t

S
At

(
W(Q

At
)

W
(
Q0

)
)

−
∑
t

S
Ct

(
W(Q

Ct
)

W
(
Q0

)
)

>

∑
t

S
Bt

(
W(Q

Bt
)

W
(
Q0

)
)

−
∑
t

S
Dt

(
W(Q

Dt
)

W
(
Q0

)
)
.

14  On the LHS, we have ΔMetric�(A,B) +
∑

t

�
S
At
− S

Bt

��
Q

At
− Q

Bt

�
=
∑

t

�
S
At
− S

Bt

�
+
∑

t
S
Bt

�
Q

At
− Q

Bt

�
+
∑

t

�
S
At
− S

Bt

��
Q

At
− Q

Bt

�
=
∑

t

�
S
At
− S

Bt

�
+
∑

t
S
At

�
Q

At
− Q

Bt

�
= ΔMetric��(A,B).
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pair of technologies 
(
L, L′

)
 with bounded difference in 

survival, 

(

ΔGRACE(Y , L) − ΔGRACE
(

Y , L′
))

∑

t SL′ t −
∑

t SLt

= −
dΔGRACE

(

Y ,X;Q0
)

dSXt

(

∑

t
SL′ t −

∑

t
SLt

)

< �
W(1)

W
(

1 − Q0

) .

To prove consistency with Principle (4), consider tech-
nologies, X , Y  , and Z , such that ΔGRACE

(
Z,X;Q0

)
> 0 , 

ΔGRACE
(
Z, Y;Q0

)
> 0 , and X and Y  produce equal qual-

ity-of-life. Pick some 0 < p < 1 , and define pX + (1 − p)Y  
as the intervention that uses X on the fraction, p , of the 
population, and Y  on the fraction, 1 − p , of the population. 
Also pick some baseline pre-illness health level Q0 . Since 
ΔGRACE

(
Z,X;Q0

)
> 0 and ΔGRACE

(
Z, Y;Q0

)
> 0 , it fol-

lows that:

The result follows, and this completes the proof of the 
theorem. QED.

Theorem 6  (Non-discrimination conditions for GRACE) If 
utility over HRQoL, W(Q) , exhibits constant relative risk-
aversion, and if 

(
1 − t∗

j

)
=

(
1 − d∗

j

)
(1 − t∗) for all Type j 

patients, then GRACE complies with Principle (5), equity 
for the disabled and sick.

Proof of Theorem 6

We begin with a standard functional equation that is implied 
by the constant relative risk aversion condition: there exists 
some monotonic function, g , such that W(�Q) = g(�) ⋅W(Q) 
for all 0 < 𝛼 ≤ 1 [31, Theorem 3.1.1.4]. This implies the fol-
lowing chain of reasoning:

(57)
∑
t

[
SZt

W
(
QZt

)

W
(
Q0

)
]
>
∑
t

[
SXt

W
(
QXt

)

W
(
Q0

)
]

(58)
∑
t

[
SZt

W
(
QZt

)

W
(
Q0

)
]
>
∑
t

[
SYt

W
(
QYt

)

W
(
Q0

)
]

(59)

p
∑
t

[
SXt

W
(
QXt

)

W
(
Q0

)
]
+ (1 − p)

∑
t

[
SYt

W
(
QYt

)

W
(
Q0

)
]

>

∑
t

[
SZt

W
(
QZt

)

W
(
Q0

)
]
.

Within expression (60), the first and last equalities follow 
from Theorem 6’s condition that 

(
1 − t∗

j

)
= (1 − d∗

j
)(1 − t∗) ; 

the second and fourth equalities follow from the functional 
equation result described above.
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