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Abstract
The generalized risk-adjusted cost-effectiveness (GRACE) model generalizes conventional cost-effectiveness analysis (CEA) 
by introducing diminishing returns to Health-Related Quality of Life (QoL). This changes CEA practice in three ways: (1) 
Willingness to pay (WTP) increases exponentially with untreated illness severity or pre-existing permanent disability, and 
WTP ends up lower for mild diseases but higher for severe diseases compared with conventional CEA; (2) Average treat-
ment effectiveness should be adjusted for uncertainty in outcomes; and (3) The marginal rate of substitution between life 
expectancy and QoL varies with health state. Implementing GRACE requires new parameters describing risk preferences 
over QoL, the marginal rate of substitution between life expectancy (LE) and QoL, and the variance and skewness of treat-
ment outcomes distributions. In this paper, we provide: (1) a generalized WTP threshold incorporating the possibility of 
permanent disability; (2) a simpler method to estimate the tradeoff rate between QoL and LE, eliminating the need to carry 
out treatment-by-treatment estimates; (3) a more-general method to adjust WTP for illness severity that permits non-constant 
relative risk-aversion in QoL; (4) a new approach to estimating risk-preferences over QoL, leveraging established empirical 
methods from “happiness” economics; and (5) a step-by-step guide for practitioners wishing to implement multi-period 
GRACE analyses.
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Introduction

Lakdawalla and Phelps (hereafter, LP) developed a general-
ized risk-adjusted cost-effectiveness (GRACE) framework 
[1, 2] that nests the traditional cost-effectiveness analysis 
(CEA) framework [3] as a special case. GRACE relaxes the 

restriction of constant returns to health-related quality of life 
(QoL) imposed by traditional CEA.1 This generalization pro-
duces three major implications for the proper conduct of CEA.

First, optimal willingness to pay (WTP) for health 
improvements increases exponentially as untreated disease 
severity rises. Cost-effectiveness thresholds become more 
generous for more severe illness, and lower for milder ill-
nesses, perhaps differing by up to a factor of ten from lowest 
to highest severity [1]. For similar reasons, GRACE also 
shows that a given QoL gain is worth more to disabled than 
to otherwise-similar non-disabled persons.

Second, GRACE incorporates effects of uncertain health out-
comes into health technology assessment (HTA). Reductions 
in outcome uncertainty provide value to risk-averse individuals 
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(and conversely). HTAs should include these effects, particularly 
in contexts with modest incremental average health gains.

Third, GRACE shows that people with lower QoL are 
more willing than those in better health to trade remain-
ing life expectancy (LE) for more QoL. Conventional CEA, 
exemplified by the phrase “a QALY is a QALY…” assumes 
this tradeoff is independent of baseline QoL, sharply con-
trasting with population-based surveys [6–8].

In this analysis, we make five new contributions to the 
GRACE model, all of which help to clarify and broaden 
its real-world application. First, we generalize previous 
methods to show why how and why WTP can systemati-
cally increase as permanent disability worsens. Next, we 
simplify methods to estimate the tradeoff between LE and 
QoL, eliminating the requirement for the treatment-by-treat-
ment estimation proposed by LP [1, 2]. Third, we present 
a novel method for estimating the risk-preference param-
eters required by GRACE. Fourth, we widen the range of 
risk preferences accommodated by the GRACE framework. 
Finally, we incorporate these findings into a step-by-step 
guide for practitioners seeking to conduct GRACE studies 
in both static and dynamic cost-effectiveness value assess-
ments, extending the original static framework [1].

To develop these new ideas, we first summarize the 
original GRACE model [1, 2], and then present our first 

four contributions in Sect. “Simplification and expansion 
of GRACE”. Section “Guide to using the GRACE method” 
provides a “handbook” for practitioners that clarifies spe-
cific implementation steps for using GRACE in a multi-
period setting.

Summary of the GRACE framework

LP consider an individual with expected period utility, 
E[U(C)W(H)] , where C is income available for consump-
tion after medical spending is removed, and H is QoL, a 
stochastic index of health itself (not utility of health). Where 
all terms are shown in Box 1, the total value of a medical 
intervention (TVMI) from LP ([1], Eq. 16) is:

The associated incremental generalized risk-adjusted 
cost-effectiveness ratio (IGRACER) decision rule is to adopt 
or reimburse the technology if ([1], Eq. 17):

(1)TVMI = K�HR
{
�p� + �p1�B�

}
.

(2)
ΔC{

�p� + �p1�B�
} ≤ K�HR.

 
BOX 1. Definitions

 � =
�

��

= traditional cost-effectiveness threshold

C = Income −Medical Spending = Consumption

�C = Incremental cost of medical technology

�C =
U�(C)C

U(C)
= elasticity of utility with respect to C

H1S = QoL with untreated acute illness and (optionally) disability

�
H
≡ E

(
H1S

)
, average QoL with untreated acute illness and disability

B = stochastic gain in QoL from treatment in the sick state

H0 = QoL in the baseline period, typically assumed to equal 1

�
H
=
��

(
�

�

)
�

�

�
(
�

�

) = elasticity of utility with respect to QoL (�) at �
�
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� = marginal rate of substitution (MRS) between life expectancy and QoL

†r∗
H
= Relative risk-aversion over QoL, evaluated at H1S

†�∗
H
=Relative prudence over QoL, evaluated at H1S

� =
��

(
�

��

)

��(�
�
)
, disease-severity ratio

H0d = QoL in the baseline period inclusive of any permanent disability

H1W = Health-related QoL in the well state, where H1W = H0d

d
∗ ≡

H0 − H1W

H0

= relative quality of life loss from permanent disability

�
∗ ≡

(
H0 − �

H

)

H0

, average % QoL lost from untreated disease and from disability

t
∗ ≡

(
H0 − E

(
H1S + B

))

H0

, average % QoL lost from treated disease and from disability

�
P
= Expected gain in probability of survival from treatment

� = probability of acute illness in period 1

p1 = probability of survival into period 1

�B = E(B), Expected gain in QoL from treatment

� = Certainty-equivalent QALYs per average QALY gained

Δ�2
HT

= (QoL Variance in Treatment Group) − (QoL Variance in Control Group)

Δ
[
�1�

∗3
H

]
=(QoL Skewness in Treatment Group) − (QoL Skewness in Control Group)

Within Box 1, the parameters appearing directly in 
Eqs. [(1, 2)] are bolded, and the others are used to cal-
culate the bolded terms.2 Most of the Box 1 parameters 
are common to traditional CEA [3]. Exceptions unique 
to GRACE include the elasticity of QoL utility ( �H) , the 
disease-severity ratio (R) , the certainty-equivalence ratio 
(�) , and the marginal rate of substitution between LE 

and QoL (�) . LP showed that all these new parameters—
except �—can be calculated using estimates of the varia-
bility of treatment outcomes (the Δ�H and Δ�1�H terms in 
Box 1) and of relative risk preferences over health (rela-
tive risk-aversion, r∗

H
 [9] and relative prudence, �∗

H
 [10]). 

Section “Simplification and expansion of GRACE”C pro-
vides empirical methods to estimate these risk-preference 
parameters.

GRACE nests traditional CEA as the special case of 
constant marginal utility from QoL. Constant marginal 
utility in QoL implies that �H = R = � = 1 and r∗

H
= 0 . 

2  Within Box 1, the two terms marked with †, namely �∗
H

 and r∗
H

 , are 
evaluated at H0 when used to estimate � and � , but evaluated at H1S 
otherwise.
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In contrast, GRACE allows for 0 < 𝜔H ≤ 1 , R ≥ 1 , � ≠ 1 , 
and r∗

H
≥ 0 . The disease-severity ratio, R , adjusts WTP to 

reflect the effects of diminishing returns to QoL—risk-
averse people in worse QoL states place more value on 
a given QoL gain. The certainty–equivalence ratio, � , 
adjusts the traditional quality-adjusted life-year (QALY) 
to account for QoL risk according to consumer risk 
preferences.

Simplification and expansion of GRACE

This section develops four improvements to the GRACE 
framework as originally presented in [1, 2], all of which 
either extend the range of situations where GRACE can be 
implemented or simplify its application.

A.	 Allowing disability in baseline health status
	   Begin with one of the most basic ideas in consumer 

theory—the marginal rate of substitution between two 
goods. From this notion, we develop a new way to deter-
mine WTP for medical technology.

	   Consider the cost-effectiveness threshold defined 
by traditional analysis. Define C0 as period zero con-
sumption and H1S as (initially non-stochastic) QoL in 
the period one sick state. The marginal rate of substi-
tution between C0 and H1S measures the period zero 
WTP for QoL improvement in the sick state. This can 
be thought of as the WTP for an insurance policy cov-
ering treatments that marginally improve QoL in the 
sick state. The traditional CEA framework presumes 
V(C,H) = U(C)W(H), which yields the marginal rate of 
substitution (the ratio of marginal utilities of C and H ): 

	   Traditional CEA imposes the restriction that W(H) = H 
and thus W �

(H) = 1 . It also presumes that H0 = 1 . With 
these restrictions, the traditional cost-effectiveness thresh-
old is K ≡

C0

�C

 , where �C =
U

�
(C0)

U(C0)
C0 is the elasticity of 

utility with respect to consumption [11]. As discussed in 
LP ([1], p.3), K is the WTP for QoL improvement, and 
the QALY provides a vehicle for expressing all health 
improvements—including those resulting from LE 
gains—in terms of an equivalently valued QoL gain.

	   LP relax the restriction that W(H) = H and allow for 
strictly concave W(H) . Also, they allow for stochastic 
health in the sick state: H1S is random. To make the cost-
effectiveness threshold non-stochastic, LP evaluate it at 
�H , the average QoL in the untreated period 1 sick state. 
This generalizes Eq. (3) as:

(3)
dC0

dH1S

=
W �

(
H1S

)
U
(
C0

)

U�
(
C0

)
W
(
H0

) .

	   LP define �H ≡
W

�
(H0)

W(H0)
H0 , the elasticity of utility with 

respect to QoL, and R ≡
W

�
(�H)

W
� (H0)

 , the “disease severity 
ratio.” With these definitions, the generalized WTP 
threshold is simply KGRACE = K�HR . LP prove that this 
is the WTP for a generalized risk-adjusted QALY (GRA-
QALY), given by �p� + �p1�B�.

	   Here, we further generalize the LP result, allowing for 
permanent disability. Instead of requiring “excellent” period 
zero health, we assume instead that period zero health is 
H0d = H0(1 − d∗) , where 0 ≤ d∗ < 1 is the percentage of 
QoL lost to permanent disability, as defined in Box 1.3 The 
earlier LP model and traditional CEA study the special case 
where d∗ = 0 . In the more general case, Eq. (4) becomes:

	   Appendix IA demonstrates that W(H0d)
W(H0)

= (1 − d∗� ), 
where the “disability ratio,” � , is a new parameter that 
depends on �H , relative risk-aversion ( r∗

H
 ), and relative 

prudence ( �∗
H

 ) over QoL, all of which are already 
required by GRACE analyses. Compactly, the general-
ized WTP is:

	   Appendix IA demonstrates that � = 1 when con-
sumers are risk-neutral over QoL and 𝜓 < 1 when they 
are strictly risk-averse. Therefore, weak risk-aversion 
implies � ≤ 1 , which ensures that KGRACE is strictly 
positive and well-defined.

	   Appendix IC proves that people with permanent dis-
abilities (d* > 0) always exhibit greater WTP for QoL 
improvements than similar non-disabled people, and 
can sometimes even exhibit weakly greater WTP for LE 
improvements.4 Intuitively, disability lowers the mar-
ginal utility of consumption, VC

(
C,H0d

)
= U

�

(C)W(H0d) 
and thus increases the willingness to pay for health 

(4)
dC0

d�H

=

[
C0

�CH0

]
�H

[
W

�

(�H)

W
� (H0)

]
.

(5)KGRACE =
K�HR

H0

[
W
(
Ho

)

W
(
H0d

)

]
.

(6)KGRACE =
K�HR

H0(1 − d∗�)
.

4  As discussed in Appendix IC, these claims rely on constant relative 
risk-aversion over QoL. If risk preferences instead vary with QoL, 
a variety of complex effects may arise, and the relationship must be 
studied empirically.

3  We assume throughout that H1W = H0d , so that permanent dis-
ability persists from period zero onwards. This generalization also 
requires that H1S include permanent disability; therefore, analysts 
must calculate H1s to reflect the effects of untreated acute illness and 
any pre-existing permanent disability.
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improvements. This leads to unambiguously higher 
WTP for QoL among those with disabilities. Some 
ambiguity arises for LE, because the lower marginal util-
ity of consumption competes with a decline in period 
utility, U(C)W(H1S) , also caused by disability.

	   With permanent disability, Eq. (1) for the total value 
of a medical intervention (TVMI) generalizes to:

	   The total marginal value of life-extension, �p , is (
K�HR

H0(1−d
∗�)

)
� , which is the WTP for QoL gains (

K�HR

H0(1−d
∗�)

)
 multiplied by the marginal rate of substitu-

tion between LE and QoL. Permanent disability unam-
biguously increases 1

1−d∗�
 and thus pushes up WTP for 

QoL gains. On the other hand, disability lowers the mar-
ginal rate of substitution between LE and QoL, � , 
because an additional period of life becomes less valu-
able when period utility falls.5

	   Appendix IC characterizes the net effect: defining B 
as the stochastic QoL benefit of medical technology, 
permanent disability weakly increases WTP for LE if 
and only if E(W(H1S+B))

W(H0d)
 rises with disability. In other 

words, if a given disability lowers utility proportionally 
more in healthy states than sick states, it will increase 
the WTP for LE; heuristically, this requires that acute 
illness “crowds out” some of disability’s QoL effects. 
For example, this will be true if utility exhibits CRRA 
and disability lowers QoL by a constant percentage in 
both healthy and sick states.

	   To characterize the condition more generally, define 
t∗ as the percentage QoL loss after treatment, inclusive 
of disability, so that E

(
H1S + B

)
= H0(1 − t∗) , as in 

Box 1. Appendix IC proves that—under CRRA utility—
disability weakly increases WTP for LE if and only if 
�t∗

�d∗
≤

1−t∗

1−d∗
 . This is always satisfied for curative thera-

pies where t∗ = d∗ , because disability reduces QoL by 
the same percentage in both states. Imperfect therapies 
make this restriction non-trivial.

	   This analysis explains why standard methods of CEA 
discriminate against disabled persons, since the standard 
approach assumes d∗ = 0 . Holding d∗ = 0 implies that a 
QALY is always worth less for disabled persons than for 
otherwise-similar non-disabled persons. This problem has 
led to several ad hoc attempts to resolve this inconsistency 
[12, 13]. Such ad hoc adjustments are unfounded and per-
haps even unnecessary. Under GRACE, disability always 
increases the WTP for QoL gains and can weakly increase 

(7)TVMI
�

=
K�HR

H0(1 − d∗�)

{
�p� + �p1�B�

}
.

the WTP for LE gains if �t
∗

�d∗
≤

1−t∗

1−d∗
 . Analysts can use this 

condition to determine the frequency with which disability 
leaves WTP for LE at least unchanged. The U.S. Afford-
able Care Act forbids use of CEA methods that discount 
the value of life for disabled people, both for assessing 
treatment value and determining Medicare coverage.6 
GRACE demonstrates how WTP for life-extension can 
rise with disability and may help provide a framework for 
conducting CEA compatible with current law.

B.	 Simplified estimation of the marginal rate of substitution 
(MRS)

	   We now turn to a second improvement upon LP, 
showing how to recover the marginal rate of substitu-
tion, � , from other GRACE parameters. This obviates 
the need for disease-specific estimation of � . LP formally 
defined this MRS as:

	   Recall H1S is the stochastic period 1 level of untreated 
health in the “sick” state, B is the stochastic QoL benefit 
arising from medical interventions, and H1W represents 
non-stochastic health when no acute illness occurs. The 
numerator, V  , is the gain in expected utility produced 
by the marginal increase in survival probability, and 
the denominator, W �(�H) , describes the marginal gain 
in utility arising from improved QoL in the untreated 
sick state. Since disability influences �H , H1S , and H1W , 
� varies with disability. For the same reason, � varies 
with the severity of untreated illness 

(
�H

)
 . This is why 

LP specified that � must be estimated on a disease-by-
disease basis.

	   Appendix IB proves that TVMI in Eq. (1) can also be 
written as7:

	   The new parameter, � ≡
�[E[W(H1S+B)]+(1−�)W(H1W )]

W(H0)
=

V

W(H0)
, 

is the ratio of period 1 expected QoL utility to baseline 
period QoL utility.

(8)� ≡
�
[
E
[
W
(
H1S + B

)]
+ (1 − �)W

(
H1W

)]

W �
(
�
H

) ≡
V

W �
(
�
H

) .

(9)TVMI = K
[
�p�H0 + �p1�HR�B�

]
.

5  See the discussion around Eq. (8) below.

6  Section  1182, 42 U.S.C. 1320e–1(c(1)) reads: “The Patient-Cen-
tered Outcomes Research Institute established under Sect.  1181(b)
(1) shall not develop or employ a dollars-per-quality adjusted life year 
(or similar measure that discounts the value of a life because of an 
individual’s disability) as a threshold to establish what type of health 
care is cost effective or recommended. The Secretary shall not utilize 
such an adjusted life year (or such a similar measure) as a threshold 
to determine coverage, reimbursement, or incentive programs under 
title XVIII”.
7  Here and elsewhere, the results for � hold under the permanent dis-
ability generalization, but we suppress the additional notation for sim-
plicity.
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	   In general, 0 < 𝜌 ≤ 1 , where equality holds only 
for perfect cures coupled with d∗ = 0 . Furthermore, 
H1W = H0(1 − d∗) and E(H1S) = H0(1 − �

∗) , where �∗ is 
the average percentage health loss from the acute illness 
and any pre-existing permanent disability (see Box 1).8 
Both H1W and H1S are measured on a [0, 1] scale for an 
appropriate index of health-related QoL.

	   We now show that � can be estimated simply from 
standard measures of treatment effectiveness, such as 
from randomized clinical trials (RCTs) or similar evalu-
ation methods, combined with measures of risk-pref-
erences that are not disease-specific. This implies that 
� can be estimated without disease-specific preference 
studies.

	   Appendix IB demonstrates that � =
�H0

�HR
 , using the 

definitions of � , � , and �H . Moreover, � can be expressed 
using Taylor series expansions around H0 , the baseline 
health level. Appendix IB describes � as the �-weighted 
sum of two parts, one for the “sick” (acute illness) state 
(S) and the other for the “well” state (W) , both of which 
should incorporate effects of any permanent disabilities:

	   Now define t∗ such that E
(
H1S + B

)
= H0(1 − t∗) , so 

t∗ is the average percentage reduction in QoL after treat-
ment. For example, if ex ante health is perfect (H0 = 1) , 
and average post-treatment QoL is 0.75, then t∗ = 0.25 . 
If the treatment is perfect, then t∗ = d∗ , and if d∗ = 0 , 
then t∗ = 0 also.

	   Appendix IB shows that:

	   In Eq. (11), health losses are “discounted” by �H , 
which reflects rates of diminishing returns to health. 
Similarly, the full Taylor Series expansion for the “well 
state” portion of � is:

(10)� = ��S + (1 − �)�W

(11)�S = 1 − �H

[
t∗ +

1

2
r∗
H
t∗2 +

1

6
r∗
H
�∗
H
t∗3 +…

]
.

	   Thus, �W = 1 when d∗ = 0 . Equation (12) completes 
the characterization of Eq. (10). Once the utility param-
eters �

H
, r∗

H
and �∗

H
 are estimated, t∗ and d∗ can be 

estimated from standard QoL outcomes studies. With 
these new results, analysts can estimate � without the 
need of disease- or treatment-specific studies that would 
otherwise be required when using the definition of � in 
Eq. (8).

C.	 Estimating willingness to pay for non-constant relative 
risk-aversion

	   LP demonstrate that WTP for generalized risk-
adjusted QALYs is KGRACE = K�HR . Prior research 
demonstrates that K =

C

�C

 [11]. The general economics 
literature suggests that 0.3 ≤ �C ≤ 0.5 [11, 14, 15]. This 
implies (approximately) that for consumption level C , 
2C ≤ K ≤ 3C.

	   In general, 0 < 𝜔H ≤ 1 and R ≥ 1, where R grows with 
illness severity. LP showed how to recover estimates of 
R under the assumption of constant relative risk-aver-
sion (CRRA) over QoL. We next explain why and how 
CRRA may incorrectly restrict possible values of R , and 
then present a more-general method for estimating R 
under non-CRRA utility.

1.	 WTP under constant relative risk-aversion
	   Table 1 gives a representative set of values for R 

under CRRA utility and different combinations of 
r∗
H

 and untreated illness severity ( �∗).
	   Table 1 illustrates how willingness-to-pay for QoL 

improvements rise under CRRA as both relative risk 
aversion ( r∗

H
) and severity of illness (�∗) increase.9

	   To pursue Table 1’s implications, note that tra-
ditional CEA presumes that �H = 1, and r∗

H
= 0 . 

For illustrative purposes, assume that �C = 0.33 , a 
value within the range of prior empirical literature 
[11, 14, 15]. In this case, K = 3C at all levels of dis-
ease severity. For example, at annual consumption of 
C = $50,000 , the WTP per QALY under traditional 
CEA would be K = $150,000 for all disease levels.

	   By comparison, KGRACE =
K�HR

H0(1−d
∗�)

. For simplicity, 
let d∗ = 0 and H0 = 1 . Now, suppose that �H = 0.5 
instead of 1.0, and �C remains as 0.33. Thus, 
K�H = 1.5C = $75,000 . To calibrate R , note that 
�H = 1 − r∗

H
 under CRRA, and thus �H = 0.5 implies 

(12)�W = 1 − �H

[
d∗ +

1

2
r∗
H
d∗

2 +
1

6
�∗
H
r∗
H
d∗

3 +…
]Table 1   Values of disease-

severity multiplier (R) by 
disease severity (�∗) and 
relative risk-aversion (r∗

H
)

rH
*

ℓ* 0 0.25 0.5 0.75 1

0 1 1 1 1 1
0.1 1 1.03 1.05 1.08 1.11
0.3 1 1.09 1.2 1.31 1.43
0.5 1 1.19 1.41 1.62 2
0.7 1 1.35 1.83 2.47 3.33
0.9 1 1.78 3.15 5.61 10

9  For comparison, Nielson et  al. [5] estimated that the elasticity of 
R with respect to illness severity was (at their midpoint) 0.2. This is 
approximately consistent with the values in Table 1 when r∗

H
= 0.25.

8  In [1, p. 9], due to a typographical error, this was defined as 
�
∗ ≡ H0 − �

H
 . Box  1 correctly defines ∗ ≡ H0−�H

H0

 , a distinction that 
matters only in exceptional cases where analysts wish to set H0 ≠ 1.
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r∗
H
= 0.5.10 From Table 1, r∗

H
= 0.5 implies values for 

R ranging from 1.0 (for �∗ ≈ 0 ) to 3.15 (for �∗ = 0.9) . 
This means that $75,000 ≤ K

GRACE
≤ $236,250. Sim-

ilarly, when �
H
= 0.75 (hence r∗ = 0.25 with CRRA) , 

$112,500≤ K
GRACE

≤ $200,270. When �H = 0.25 
(hence r∗

H
= 0.75 ), $37,500 ≤ KGRACE ≤ $210,377. If 

included, permanent disability (d∗ > 0) would increase 
WTP relative to these estimates.

	   As these examples demonstrate, the severity gra-
dient of R rises as r∗

H
 rises. At the same time, how-

ever, the tight linkage between �H and r∗
H

 imposed 
by CRRA restricts the space of possible values for 
r∗
H

 . The implications of non-CRRA utility range 
from minimal to consequential, depending on spe-
cific parameter estimates. We pursue this issue next.

2.	 Relaxing the CRRA assumption
	   The Hyperbolic Absolute Risk Aversion (HARA) 

family of utility permits all forms of risk-aversion, 
including not only CRRA, but also increasing 
and decreasing relative risk aversion (IRRA and 
DRRA).11 We use a slightly simplified HARA util-
ity function (see Appendix II):

	   where Z = H + � . The parameter � has the same 
units of measurement as H , and can be positive or 
negative. We restrict the domains of H and � such 
that Z ≥ 0 , and we specify that U(H) = 0 for Z = 0 . 
For this simplified HARA model, Appendix II 
proves that:

	   When � = 0 , HARA simplifies to CRRA util-
ity, because H = Z and thus r∗

H
= (1 − � ), which is 

constant. However, when 𝜂 > 0 , r∗
H
< (1 − 𝛾) , and 

when 𝜂 < 0, r∗
H
> (1 − 𝛾) , and can exceed 1.0 for 

sufficiently small values of � and sufficiently large 
absolute values of �.12 This expands the realm of 
possible values of r∗

H
 beyond those available with 

the CRRA restriction.
	   Similarly (see Appendix II), the elasticity of util-

ity with respect to H is:

(13)U(H) =

[
1 − �

�

]
Z� ,

(14)r∗
H
= (1 − �)

(
H

Z

)
= (1 − γ)

[
H

H + �

]
.

	   Taking the ratio of (14) to (15) yields an impor-
tant insight: Since 

(
H

Z

)
 cancels out:

	   Therefore,

	   Hence, 0 < 𝛾 < 1 since both r∗
H
and �H are posi-

tive for risk-averse individuals.
	   Identifying � also provides a basis for estimating 

all higher-order risk parameters in HARA utility 
once r∗

H
and �H (and hence �) have been estimated. 

Phelps and Cinatl [15] prove that for HARA utility:

	   and:

	   The general form, where �∗
j
 is the jth relative risk 

preference parameter, is:

	   These higher-order risk parameters enter the Taylor-
Series expansions for the severity-of-illness ratio R , 
the disability ratio � , and the estimation of � outlined 
above, so having a convenient way to estimate them is 
useful. This generalizes previous methods that relied 
upon CRRA to estimate R from �∗.13 With these deri-
vations for HARA utility, employing GRACE requires 
only two QoL parameters—�H and r∗

H
—the estima-

tion of which we turn to in the next section.
	   Appendix III illustrates that higher-order rela-

tive risk preference parameters may be underes-
timated by 50% or more for some HARA utility 
functions that fail to satisfy CRRA. Appendix III 
also shows that: (1) relative bias is exacerbated if 
the degree of relative risk-aversion is lower; and (2) 
bias becomes more consequential if QoL outcomes 
possess highly non-normal distributions, in which 

(15)�H = �

[
H

H + �

]
= �

(
H

Z

)
.

(16)
r∗
H

�H

=
1 − �

�
.

(17)� =
�H

r∗
H
+ �H

.

(18)�∗ =
2 − �

1 − �
r∗.

(19)�∗ =

[
3 − �

1 − �

]
r∗.

(20)�∗
j
=

j − �

1 − �
r∗.

11  For an expanded discussion of HARA utility, see [15].
12  When 𝜂 < 0 , this formulation closely resembles the widely-used 
Stone-Geary utility function, where the � parameter represents mini-
mum values of consumption before any utility is produced.

10  See Eqs. (14) and (15) and surrounding discussion for explanation 
of why �H = 1 − r∗

H
 under CRRA.

13  In CRRA utility, the higher order risk preferences are determined 
by �∗ = r∗ + 1, �∗ = r∗ + 2,… .etc.
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case relative prudence and other higher-order risk 
parameters become more important.14 These results 
further emphasize the importance of understanding 
whether utility is CRRA or not, and if not, properly 
estimating the relative risk preference parameters.

D.	 Parameter estimation using “happiness” models

LP [1] proposed estimating relative risk preference parame-
ters using discrete choice experiments (DCEs) of the sort that 
prior research [16] has employed for recovering relative risk 
preferences over consumption. This method remains viable. 
Once analysts have estimated r∗

H
 and �∗

H
 using standard DCE 

methods, they can exploit the properties of HARA utility to 
recover � [see Appendix Eq. (72)], and they can use Eq. (16) 
to recover �H . Best-practices for the design and conduct of dis-
crete choice experiments have been presented elsewhere [17].

However, discrete choice approaches tend to rely on 
relatively complex survey instruments. In some cases, ana-
lysts may wish to field shorter and simpler survey instru-
ments to reach larger samples of respondents and achieve 
higher completion rates. For such contexts, we offer an 
additional strategy that exploits the empirical “happi-
ness” literature pioneered by Easterlin [18]. Specifically, 
we show how to use the empirical happiness approach to 
estimate �H and r∗

H
 , under the assumption of HARA utility. 

Analysts can then exploit results of Sect. “Simplification 
and expansion of GRACE”C to recover the full set of risk 
preference parameters from �H and r∗

H
 , estimating � using 

Eq. (17) and higher-order terms using Eqs. (18, 19, 20).
Following Easterlin [18], we propose that analysts 

estimate “utility” by using respondents’ self-reported 
happiness on an ordinal scale (“Happy”), and the use of 
higher-order regression terms to capture the curvature of 
preferences more fully. Furthermore, we propose the col-
lection of data on respondents’ annual consumption (C ) 
and some suitable index of health-related QoL (H) . Now, 
exploiting the “translog utility” estimation approach of 
Christensen, Jorgenson and Lau [19], consider the follow-
ing regression model relating self-reported happiness to 
self-reported levels of health (Hi) and consumption (Ci) 
for individual i:

Suppressing individual-specific subscripts, i , Eq. (21) 
provides a second-order approximation of any sufficiently 
differentiable utility function [19]. The above formulation 

(21)
ln
(
Happy

i

)
= �1ln

(
H

i

)
+

1

2
�2
(
ln
(
H

i

))2

+ �3ln
(
C
i

)
+

1

2
�4
(
ln
(
C
i

))2
+ �

i
.

suppresses interaction terms between ln(C) and ln(H) , but 
these could be added if desired. In what follows, we develop 
our results in terms of H , but exactly analogous develop-
ments can be made to recover relative risk-aversion param-
eters over consumption, C.

Noting that �ln(Happy)
�ln(H)

= �H , from Eq. (21):

This implies the estimator, �̂H(H) = �̂1 + �̂2ln(H) , so �H 
varies with H . Equation (16) then implies that r∗

H
 will vary 

with H . And, Eqs. (18, 19, 20) then imply that �∗
H

 and the 
other higher-order risk-preference parameters will vary with 
H also. Therefore, this estimation framework allows risk 
preferences to vary with the level of health (H) , instead of 
requiring CRRA.

We now turn to estimation of r∗
H

 using the “happiness” 
equation approach, details of which appear in Appendix IV. 
To begin, we apply a general rule for any sufficiently dif-
ferentiable utility function. Define �� ≡

��H

�H

H

�H

 as the elastic-
ity of �H with respect to H . Suppressing the various depend-
encies on H , Appendix IV proves that:

So,

When utility is CRRA, �� = 0 . Thus, Eq. (24) implies 
that �H = 1 − r∗

H
 and 0 < r∗

H
< 1. When utility has declining 

relative risk aversion (DRRA), Eq. (16) implies that 𝜖𝜔 < 0 . 
Thus, Eq. (23) implies that r∗

H
+ 𝜔H > 1 . The converse is true 

if utility exhibits increasing relative risk aversion (IRRA).
With an estimate of �H in hand, we can use Eq. (24) to 

recover r∗
H

 , provided we can estimate ��. Note that since 
�H = �1 + �2ln(H) , then ��H

�H
=

�2
H

 . From this,

The empirical analog, �̂�(H) =
�̂2

�̂1+�̂2ln(H)
 , varies with 

H unless β̂2 = 0 . With estimates of �H and �� in hand, we 
can now recover r∗

H
 from Eq. (24) as:

If 𝛽2 < 0 (DRRA utility) then r∗
H

 can exceed 
(
1 − �̂H

)
 . For 

relatively small values of �̂1 and sufficiently large negative 
values of �̂2 , r̂∗H can exceed 1.0. This widens the potential 
range for values of r̂∗(H) compared with the stricter require-
ments of CRRA utility.

(22)�H(H) = �1 + �2ln(H).

(23)�� = 1 −
(
r∗
H
+ �H

)
.

(24)r∗
H
=
(
1 − �H

)
− ��.

(25)��(H) =
��H

�H

(
H

�H

)
=

�2
�H

=
�2

�1 + �2ln(H)
.

(26)r̂∗(H) = 1 − �̂
H
(H) − �̂�(H) = 1 −

(
�̂1 + �̂2ln(H)

)
−

�̂2

�̂1 + �̂2ln(H)
.

14  For normal distributions, the risk terms above variance all equal 
zero.
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Using estimates of �∗
H

 and r∗
H

 , we can return to the HARA 
utility structure (Section “Simplification and expansion of 
GRACE”C2) to estimate � [using Eq. (17)] and all higher-
order relative risk preference parameters [using Eqs. (18, 19, 
20)]. In turn, analysts can estimate R using these parameters 
and the formula for R from ([1], Eq. 19), reproduced here 
for convenience:

This method enables more robust estimates of R , com-
pared with Table 1, which relies on the restrictive CRRA 
assumption.

Guide to using the GRACE method

GRACE calls for practitioners to introduce new information 
into HTAs. This section presents a guidebook for carrying 
out these tasks. It includes two sections—things that must 
be done only once, and things that must be done for every 
new HTA.

A.	 Things done only once
	   In the language of biopharmaceutical companies, 

these are “above-brand” tasks. They estimate parameters 
describing people’s attitudes towards QoL risk. Prac-
titioners who analyze specific healthcare interventions 
need not perform these tasks for each new HTA.

1.	 One-time parameter estimates
	   These “one-time” parameters represent a full 

complement of measures characterizing consumer 
attitudes towards QoL risk. They include:

1.	 The elasticity of utility with respect to health ( �H) . 
Conceptually, 0 < 𝜔H < 1 if marginal utility from 
improved health is positive but declining.

2.	 Relative risk aversion (r∗
H

 ), related to variance of 
treatment outcomes. This parameter determines 
how the marginal utility of QoL changes as QoL 
itself changes.

3.	 Relative prudence (�∗
H
) , related to skewness of 

treatment outcomes. This parameter determines 
how r∗

H
 changes as H changes.

4.	 Optionally, relative temperance (�∗
H
) , related 

to excess kurtosis of treatment outcomes. This 
parameter determines how �∗ changes as H 
changes.

	   Technically, LP rely on relative risk-aversion 
parameters evaluated at �H , the average QoL in the 
untreated sick state, which will vary across disease 

(27)R =
{
1 + r

∗
H
�
∗ +

1

2
r
∗
H
�∗
H
�
∗2 +

1

6
r
∗
H
�∗
H
�∗
H
�
∗3 +… .

}
.

states.15 Under CRRA, this subtlety can be ignored. 
However, analysts wishing to relax the CRRA 
assumption would ideally estimate relative risk 
preferences for varying degrees of QoL to create 
a library of such estimates applicable to a range of 
diseases.

	   Section “Simplification and expansion of 
GRACE”D (along with Appendices II and IV) 
presents two methods for recovering relative risk 
preference parameters: (1) estimating r∗

H
 and �∗

H
 

via discrete choice experiments and recovering the 
remaining parameters; or (2) estimating �H and r∗

H
 

from “happiness economics” regression parameters 
and features of HARA utility functions.

2.	 Estimating severity-adjusted WTP
	   Estimating risk- and severity-adjusted WTP 

requires the preference parameters described above 
and estimates of disease severity. Recall from Sect. 
“Simplification and expansion of GRACE”A that in 
the conventional model, where C is annual consump-
tion and �C is the elasticity of utility with respect to 
C [11]:

	   In the GRACE framework:

	   In addition to the measure of health loss from dis-
ability, d*, this adds three new risk parameters—�H , R 
and the new parameter � , which can be estimated using 
risk parameters already required (see Appendix IA). As 
shown in Eq. (10), the parameter R depends on relative 
risk preferences, and the severity of untreated disease 
( �∗) . “Happiness economics” methods (Section “Simpli-
fication and expansion of GRACE”D) permit estimation 
of the key parameters �H and �C from the same data set, 
if desired.

	   Severity (untreated QoL) is already estimated for 
many diseases of interest [20]. We presume that, over 
time, tables reporting disease severity for various dis-
eases ( �∗) will be created by public payers or health 
technology assessment bodies, such as NICE in the UK 
or CMS in the US. For example, just as CMS has calcu-
lated hospital payment levels using Diagnosis-Related 
Groups, it may wish to measure disease-severity within 
a similar taxonomy. Those disease-severity values, com-

(28)K =
C

�C

.

(29)KGRACE =
K�HR

H0(1 − �d∗)
.

15  As noted in Appendix IA and B, the estimation of � and � require 
relative risk preference parameters evaluated at H0.
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bined with population estimates of risk-preferences, 
allow estimation of R , �H , and ultimately the “system-
wide” threshold of KGRACE =

K�HR

H0(1−�d∗)
 , for various levels 

of disease and disability severity. These are “done once” 
and need not be undertaken by practitioners evaluating 
specific medical interventions.

	   In standard CEA, medical technologies are consid-
ered “welfare-improving” if incremental costs ( ΔCost) 
relative to incremental benefits (ΔQALYs) are less than 
society’s WTP, normally expressed as:

	   GRACE modifies this so that:

	   where the generalized risk-adjusted QALY (GRA-
QALY) is 

{
�p� + �p1�B�

}
.

B.	 Parameters that must be estimated for each new treat-
ment

	   Both R and GRA-QALYs themselves contain param-
eters that vary by treatment intervention, listed next:

1.	 The average incremental gain in QALYs compared with 
the current “best practice treatment. GRACE calls this 
�B (“B” for “Benefit”). Current studies routinely esti-
mate �B, the difference between average QoL outcomes 
for the new treatment (T) and its comparison (C).

2.	 The variance of patient outcomes, both for “T” and 
“C.” GRACE uses the difference between these vari-
ances, described in the model as Δ�2 ≡ �2

HT
− �2

HC
 , 

where �2
H

T
 and �2

H
C
 are the QoL variance in the treatment 

and comparator groups. Reductions in variances of treat-
ment options provide additional value beyond mean 
health gains, and conversely.

3.	 The skewness of patient outcomes, both for “T” and 
“C”. This requires estimating Pearson’s skewness 
parameters, �1HT

 and �1HC
 , for both treatment and com-

parator populations.16 Where (generally) �3 =
[
�2
] 3

2 , 
GRACE uses ΔSkewness = Δ

[
��3

]
≡ �1HT

�3
HT

− �1HC
�3
HC

 , 
where the subscripts HT and HC represent (respectively) 
the treatment and comparator populations. Increases in 
positive skewness add value for any given change in 
variances of outcomes (and conversely).

4.	 Optionally, the kurtosis of outcomes in treatment and 
comparison groups. Kurtosis magnifies effects of vari-
ance, so reductions in excess kurtosis have independ-
ent value in addition to other components of value in 

(30)K ≡
C

�C

≥
ΔCost

ΔQALYs
.

(31)K
GRACE

≡
K�

H
R

H0(1 − �d∗)
≥

ΔCost

Δ(GRA-QALYs)
,

GRACE. GRACE uses the difference in kurtosis val-
ues, parallel to the measures of skewness. Estimating 
kurtosis requires large sample populations, potentially 
infeasible in some clinical studies.17

5.	 Estimates of the relative QoL loss from disease, both 
before and after treatment. GRACE measures these on 
a percentage basis, relative to ex ante health states that 
obtain before the illness occurred.

a.	 Loss in untreated states: This parameter �∗ (defined 
in Box  1) represents percentage losses in QoL 
suffered in the untreated states. This includes the 
QoL effects of acute illness and of any permanent 
disabilities. Diseases with no QoL consequences 
would imply �∗ = 0 ; one that lowers QoL by 50% 
from its baseline state would involve �∗ = 0.5 , and 
so on. Many estimates of �∗ are already available 
from CEA studies [21]. This parameter is disease-
specific, but not treatment-specific.

b.	 Loss in treated states: This parameter t∗ (defined in 
Box 1) reflects percentage losses in QoL remaining 
after diseases are treated. As with �∗ , this includes 
the QoL effects of treated acute illness and of any 
permanent disabilities. If treatment always com-
pletely cures patients, t∗ = 0.18 If post-treatment 
states feature QoL that lies 30% below the ex ante 
(pre-disease) QoL level (H0) , then t∗ = 0.3 , etc. 
These values must be estimated for each disease/
treatment pair. As explained in Sect. “Simplifica-
tion and expansion of GRACE”B, they are used to 
estimate the MRS between QoL and LE in GRACE.

c.	 Permanent disability loss: This parameter d∗ 
(defined in Box 1) reflects the percentage loss in 
QoL created by permanent disabilities that predated 
the arrival of the period one acute illness. This is 
an optional term that analysts may wish to con-
sider when studying health interventions among 
people with disabilities. Under GRACE, people 
with disabilities always exhibit higher WTP for 
QoL improvements and sometimes exhibit equal or 
higher WTP for LE gains (see Sect. “Simplification 
and expansion of GRACE”A).

d.	 Ex ante QoL level: H0 measures QoL prior to onset 
of relevant disease in populations of interest. Typi-
cally, analysts will presume H0 = 1.

6.	 The average increase in survival probability to period 1, 
compared with the control therapy, described in GRACE 

16  The variance of the estimated Pearson Skewness parameter in nor-
mal populations is approximately 6/n for sufficiently large samples.

17  The variance of estimated excess kurtosis in normal samples is 
approximately 24/n for sufficiently large samples.
18  This is true when d∗ = 0 . When d∗ > 0, t∗ = d∗.
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as �p. The approach to calculating long-term survival 
gains differs depending on the stationarity of QoL dis-
tributions; we provide guidance on this issue in Sect. 
“Guide to using the GRACE method”C below.

7.	 The probability of surviving to period 1, described in 
GRACE as p1 . This is the level of survival probability, 
rather than its change.

8.	 The population incidence of the disease of interest, � . 
This parameter is typically estimated in epidemiological 
burden of illness studies.

	   Traditional cost-effectiveness and comparative-effec-
tiveness studies estimate Parameter 1, the mean gain in 
QoL due to treatment. Nearly all such studies can be used 
to recover Parameters 2, 3, and 4, simply by recording 
variance, skewness, and kurtosis of QoL outcomes for 
patients in treatment and control groups. Such studies 
likely already produce estimates for parameters listed in 
5, which concern QoL levels in treated, untreated, and 
pre-onset states. The same is true for survival parameters 
6 and 7, also routinely estimated in current cost-effective-
ness studies. Finally, existing burden of illness studies 
likely already estimate disease incidence, parameter 8.

	   The risk-preference parameters from Sect. “Guide to 
using the GRACE method”A.1 and estimates of �∗ (item 
5a in the list above) together allow estimates of R using 
Eq. (10). Next, the list of intervention-specific param-
eters above, combined with risk-preference parameters 
in Sect. “Guide to using the GRACE method”A, imply 
intervention-specific values of � , which can be calcu-
lated using Eqs. (23, 24, 25) above.

	   Next, parameters in Sect. “Guide to using the GRACE 
method”A and the list above imply intervention-specific 
values of � , which can be calculated from ([1], Eq. 9), 
reproduced here:

	   When there are no differences in variance and skew-
ness of QoL in the treatment and comparator groups, 
then � = 1 , and no need exists to adjust mean treatment 
benefits. Improvements (worsening) of variance add to 
(subtract from) overall benefit, and increases (decreases) 
in skewness add to (subtract from) mean benefits.

C.	 Estimating net monetary benefit and cost-effectiveness
	   The original GRACE formulation employed a static 

two-period setting, in which patients are healthy in 
period zero and potentially sick in period one. Nonethe-
less, this static framework can handle dynamic treatment 
contexts and models (e.g., Markov models). We demon-
strate this for two different cases.

	   Begin with the more-general case in which the means, 
variances, and/or skewness in QoL outcomes vary over 

(32)

ϵ ≈ 1 +

[
1

�B

][
−
1

2
r
∗
H

(
1

μH

)
Δσ2

H
+

1

6
�∗
H
r
∗
H

(
1

μH

)2

Δ
[
�1�

3

H

]
+…

]
.

time. Consider an assessment of value over periods 
n = 1,2,… ,N  . The following parameters would then 
need to be estimated on a period-by-period basis: �Bn 
(mean QoL benefit in period n ), Δ�2

Hn
 (difference in the 

variance of QoL benefit in period n ), Δ
[
��3

H

]
n
 (difference 

in skewness of QoL benefit in period n ), �∗
n
 (percentage 

QoL loss from untreated disease in period n , and t∗
n
 (per-

centage QoL loss from treated disease in period n).19 
Moreover, since � , � , and � also depend on treatment out-
comes, they would be indexed as �n , �n , and �n . Since R 
depends on �∗ , which might vary over time, it too is 
indexed as Rn . Define ΔCn as incremental treatment cost 
incurred in period n , which is equivalent to the incremen-
tal reduction in non-health period n consumption, Cn . 
Finally, define �pn as the average increase in the probabil-
ity of surviving from period n − 1 to period n , define pn 
as the post-treatment probability of surviving from 
period n − 1 to period n , define Πn as the cumulative 
post-treatment probability of surviving from period zero 
to period n.20 Defining � as the one-period discount fac-
tor and recalling �n ≡

�nH0

�HR
 , the net monetary benefit in 

the dynamic setting is:

	   This expresses net monetary benefit discounted in 
terms of period zero consumption, NMB0.

	   A suitable incremental generalized risk-adjusted cost-
effectiveness ratio (IGRACER) decision rule can be cal-
culated as:

	   Note that analysts can freely choose any period 
j = 1,… ,N  to normalize the WTP threshold on the 
right-hand side, resulting in this more general expres-
sion:

(33)
NMB0 =

N∑

n=1

�nΠn−1

{
[

K�HRn

H0(1 − d∗�)
]
[
�pn�n + �pn�Bn�n

]
− pnΔCn

}

− ΔC0.

(34)

ΔC0 +
∑N

n=1
�nΠn−1

�
pnΔCn

�

∑N

n=1

�
�nΠn−1

�
Rn

R1

��
�pn�n + �pn�Bn�n

�� ≤
KR1�H

H0(1 − �d∗)
.

19  While we suppress the extra notation, note that variance and skew-
ness in both the treatment and comparator arms should also be esti-
mated in each period, in addition to the differences in variance and 
skewness across arms. In addition, we presume that permanent dis-
ability is fixed over time and that any variation in it could be repre-
sented using additional time-series variation in �∗

n
 and t∗

n
.

20  This formulation presumes that QoL improvements follow or coin-
cide with life expectancy gains. In cases where QoL improvements 
precede life expectancy gains, pn and Πn should instead measure pre-
treatment life expectancy.
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	   As daunting as this might appear, it is simply book-
keeping to summarize results when relevant parameters in 
the NMB formula vary across multiple periods. In words, 
where RASA-WTP represents the risk-adjusted and sever-
ity-adjusted WTP, Eqs. (34, 35) simply state that:

(35)

ΔC0 +
∑N

n=1
�nΠn−1

�
pnΔCn

�

∑N

n=1

�
�nΠn−1

�
Rn

Rj

��
�pn�n + �pn�Bn�n

�� ≤
KRj�H

H0(1 − �d∗)
.

(36)

Discounted incremental costs

Discounted generalized risk-adjusted QALY gains

≤ RASA-WTP.

	   Equations (34, 35) simplify when treatments have 
stationary distributions of QoL outcomes (the same in 
every period). In other words, assume that all param-
eters in Sect. “Guide to using the GRACE method”B 
remain constant after treatment is administered. Since 
the survival probabilities are also constant, �P = �pn, 
pn = p , and Πn = pn , ∀n ≥ 1 . All other parameters are 
estimated as explained in Sect. “Guide to using the 
GRACE method” A, B.

	   In this case, the ex ante net monetary benefit in terms 
of period zero dollars is:

Table 2   Summary of GRACE parameters to be estimated

† Indicates an optional parameter

Parameter Fixed (F), or vary-
ing over time (T)

Global (G) or 
treatment-specific 
(T)

Estimation method

IGRACER components
 Conventional WTP for QALYs K F G K =

C

�C

 Elasticity of utility with respect to health �H F G Happiness or DCE, as explained in III.D
 Severity ratio R V T Derive from Eq. (27)
 †% QoL loss from permanent disability d∗ F T Outcomes studies
 †Disability ratio � F T Derive from Appendix equation (45)
 One-period discount rate � F G Economic literature
 Post-treatment survival probability p V T Outcomes studies
 Average increase in survival probability �p V T Outcomes studies
 Incremental cost of intervention ΔC V T Outcomes studies
 Marginal rate of substitution between LE and 

QoL
� V T � =

�H0

�HR
 ; derive � from Eqs. (10–12)

 Population incidence of disease � F T Outcomes studies
 Average incremental gain in QoL �B V T Outcomes studies
 Certainty–equivalence ratio � V T Derive using Eq. (32)

Underlying preference parameters
 Annual consumption or income C F G Economic literature
 Elasticity of utility with respect to consump-

tion
�C F G Economic literature [11, 14, 15]

 Relative risk aversion over QoL r∗
H

F G DCE methods; or happiness methods and 
Eqs. (24, 25)

 Relative prudence over QoL �∗
H

F G DCE methods; or happiness methods and 
Appendix Eq. (69)

 †Relative temperance over QoL �∗
H

F G DCE methods; or happiness methods and 
Appendix Eq. (70)

Underlying outcomes parameters
 Change in variance of QoL outcomes Δ�2

H
V T Outcomes studies

 Change in skewness of QoL outcomes Δ
[
�1�

3

H

]
V T Outcomes studies

 †Change in kurtosis of QoL outcomes Δ�
H

V T Outcomes studies
 %QoL loss from untreated disease �

∗ V T Outcomes studies
 %QoL loss from treated disease t∗ V T Outcomes studies
 †Baseline QoL in excellent health H0 V T Assume H0 = 1
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	   The first term in curly braces is the discounted 
N-period time horizon. The second “curly braces” 
expression is the risk-, severity-, and disability-adjusted 
value of per-period improvement in life expectancy and 
QoL, over the relevant time horizon. The final terms 
measure the discounted cost of treatment over the 
N-period time horizon.

	   Turning from net monetary benefit to the correspond-
ing IGRACER, technologies with stationary QoL distri-
butions improve ex ante welfare if:

	   which, in words, is identical to Eq. (36).
D.	 Summary
	   Applying GRACE requires new estimates of attitudes 

towards risk in health outcomes ( r∗
H
and �∗

H
 ), estimation 

of the rate at which marginal utility in health declines 
as H increases ( �C) , and estimates of untreated health 
loss (�∗) associated with specific individual illnesses. 
These are “done once” parameters that HTA practition-
ers themselves will not need to develop; they will appear 
in the health economics and outcomes research litera-
ture, estimated by analysts accomplished at such tasks.

Practitioners assessing new medical technologies must 
accumulate new statistical evidence, including not only 
mean differences between new treatments and their com-
parator therapies, but also differences in variance and 
skewness between treatments and comparators. They must 
also estimate mean health losses t* for treated patients, 
treatment-specific parameters, and measures of uncertainty 
around those means. GRACE can be applied to static and 
dynamic contexts, making it suitable for use in Monte Carlo 
simulations of long-term treatment effects and other similar 
scenarios. Table 2 summarizes the parameters needed for 
calculated IGRACERs, along with our proposed estimation 
methods for each.

As with any value assessment model based on utility-
maximization of representative individuals, GRACE cannot 
fully illuminate concerns about inequities of various kinds, 
unmeasured externalities like scientific spillovers, or macro-
economic effects arising from major contagious pandemics. 

(37)

NMBexante =

{
β

(
1 − (�p)N

1 − �p

)}

{
[

K�HR

H0(1 − �d∗)
]
[
�p� + �p�B�

]}

−

{
ΔC0 +

N∑

n=1

(�p)nΔCn

}
.

(38)
ΔC0 +

∑N

n=1
(�p)n

�
ΔCn

�

�
�p� + �p�B�

�
�
�

1−(�p)N

1−�p

� ≤
K�HR

H0(1 − �d∗)
.

However, combined with a Rawlsian “veil of ignorance” 
philosophy [22], the GRACE approach might shed light on 
some of these issues. GRACE highlights the importance (to 
utility-maximizing individuals) of valuing health improve-
ments more when health losses are greater, either from acute 
disease or disability. GRACE also highlights how income 
or baseline health status might affect value assessments, 
because �C,�H , and relative risk preferences may vary with 
income. Combining these insights about “representative 
individuals” with a “veil of ignorance” philosophy might 
help guide public policy on these issues. We leave this for 
others to pursue.

Conclusion

GRACE better aligns value assessment with the preferences 
of real human consumers. Yet, several complexities in the 
original development of GRACE could impede its adoption 
and implementation. This paper provides new analyses that 
(a) generalize the original GRACE formulation to accommo-
date permanent disability in the baseline period, (b) general-
ize the original formulation of GRACE to encompass wider 
ranges of risk preferences, (c) simplify estimation of neces-
sary parameters, (d) outline tractable methods to estimate 
necessary parameters to implement GRACE models, and (e) 
extend GRACE to multi-period contexts. We hope that these 
refinements, combined with the “guidebook” in Sect. “Guide 
to using the GRACE method”, will help propel forward the 
implementation of GRACE as the standard HTA model.

The generalization that incorporates disability into the 
overall WTP value has key public policy importance. The 
Affordable Care Act prohibits Medicare from using any 
CEA methods that discriminate against disabled people in 
making coverage determinations, and similarly prohibits the 
Patient Centered Outcome Research Institute (PCORI) from 
using discriminatory CEA methods to measure the value of 
various medical interventions. The newly refined GRACE 
model demonstrates that life-extension can be equally or 
even more valuable to people with disabilities, potentially 
enabling the use of cost-effectiveness analysis even under 
current US law.

Finally, our analysis suggests the need for future research 
on inefficiencies and inequities created by traditional CEA 
for health insurance programs. Health insurance involves 
an exchange between consumption today—in the form of 
premiums paid to private insurers or taxes paid to public 
insurers—and access to medical technology when sick. In 
the real-world, health insurance premia and taxes are paid by 
people of varying health status, often pooled into the same 
health insurance group. If people with disabilities represent 
the minority, the presence of healthy consumers serve as 
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a negative externality, inefficiently reducing the generosity 
of insurance coverage. To see why, imagine two societies, 
one in which all insurance participants are perfectly healthy 
ex ante ( d∗ = 0 ) and one in which they are all disabled ex 
ante (d∗ > 0 ). Our analysis implies that optimal insurance 
coverage could be more generous in the society of the disa-
bled and conversely; this is always true for QoL-improving 
technologies and may always be true for LE-improving tech-
nologies. Since traditional CEA sets coverage decisions as 
if d∗ = 0 , the resulting coverage may be inefficiently low for 
disabled people forced to pool with many healthier peers. It 
thus comes as no surprise that people with disabilities often 
vigorously oppose the use of traditional CEA to set coverage 
decisions. Future research should investigate the efficiency 
rationale for alternative policy solutions, perhaps including 
the relatively common practice of providing subsidized sup-
plemental coverage for people with disabilities.

As a related matter, future research should estimate how 
disability affects QoL and QoL utility in healthy and sick 
states. If disability reduces utility proportionally more (or 
the same) in healthy states, GRACE implies that disabled 
people have similar or greater WTP for LE gains. If borne 
out in the data, this would reinforce GRACE’s existing 
implication of higher WTP for QoL gains among the disa-
bled. GRACE provides a potential path forward for satisfy-
ing the requirements of the Affordable Care Act regarding 
disability-related discrimination, thus allowing use of CEA 
both in PCORI evaluations and in setting coverage determi-
nations in Medicare.

Appendix I: extensions of GRACE

A.	 Derivation of disability-adjusted WTP
	   In the text, we claim that W(H0d)

W(H0)
= 1 − d∗� , where � 

depends on �H , relative risk-aversion over QoL ( r∗
H

 ), and 
relative prudence over QoL ( �∗

H
 ). We now define � more 

specifically and prove this claim. Begin by computing a 
Taylor Series expansion of W(H0d) around W(H0):

	   We divide (39) by W
(
H0

)
 to recover an expression for 

W(H0d)
W(H0)

 , and we then analyze the resulting expression 
term by term:

(39)

W(H0d) ≈ W
(
H0

)
+W

�
(
H0

)(
H0d − H0

)

+
1

2
W

��
(
H0

)(
H0d − H0

)2

+
1

6
W

���
(
H0

)(
H0d − H0

)3
+… .

(40)First Term ∶
W
(
H0

)

W
(
H0

) = 1.

	   The second term is W
�
(H0)(H0d−H0)

W(H0)
 . Multiply and divide 

this term by H0 , recognizing that the component parts 
are �H and d∗ ≡ (H0−H0d)

H0

, the expected relative loss in 
QoL due to permanent disability. With these definitions:

	   The third term is 1
2

W ��(H0)(H0d−H0)
2

W(H0)
 . Now multiply and 

divide by W ′(
H0

)
. Since absolute risk aversion is 

rH ≡ −
W ��(H0)
W �(H0)

, this becomes − 1

2

{
rH
}
{
E(H0d−H0)

2
}
W

�
(H0)

W(H0)
. 

Now multiply and divide by H2
0
 , allocating one H0 term 

in the numerator to convert absolute risk aversion, r, into 
relative risk aversion, r∗

H
 , and the other to complete �H:

	   Note that r∗
H

 is defined at H0 , whereas, in [1], it is 
defined at the average level of untreated health, �H . 
Therefore, analysts must either assume that r∗

H
 is con-

stant across all levels of health (CRRA) or they must 
estimate r∗

H
 at baseline health level H0 as well as at H1S.

	   The fourth term of (39) is 1
6
W ���

(
H0

)(
H0d − H0

)3 . 

Dividing by W
(
H0

)
 , gives 1

6
[W ���

(
H0

)(
H0d − H0

)3
]

1

W(H0)
 . 

Defining absolute prudence as �H ≡
−W ���(H0)
W ��(H0)

,  

multiplying and dividing by W ′′
(
H0

)
 gives 

−
1

6
�H[W

��
(
H0

)
]
(
H0d − H0

)3
]

1

W(H0)
 . Multiplying and 

dividing by W ′(
H0

)
 , gives 1

6
�HrH

(
H0d − H0

)3
]
W

�
(H0)

W(H0)
 . 

Next, multiply and divide by H3
0
 , allocating two of the 

H0 terms in the numerator to the risk-valuation terms 
and the other to complete the definition of �H , Then:

	   As with relative risk-aversion, analysts must either 
assume that �∗

H
 is constant across all levels of health 

(CRRA) or they must estimate �∗
H

 at baseline health 
level H0 as well as at H1S . Any fifth term involving kur-
tosis would follow the same general strategy.

	   In summation, the Taylor Series approximation to 
W(H0d)

W(Ho)
 is:

	   Finally, defining:

(41)Second Term ∶ −�Hd
∗.

(42)Third Term ∶ −
1

2
�Hr

∗
H
d∗

2
.

(43)Fourth Term ∶ −
1

6
�∗
H
r∗
H
�Hd

∗3.

(44)

W
(
H0d

)

W
(
H0

) =
[
1 − d

∗(�H +
1

2
�Hr

∗
H
d
∗ +

1

6
�Hr

∗
H
�∗
H

(
d
∗
)2

+…)
]
.

(45)� ≡ �H

(
1 +

1

2
r∗
H
d∗ +

1

6
r∗
H
�∗
H
(d∗)2 +…

)
,
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	   completes the proof that W(H0d)
W(H0)

= 1 − d∗�.
	   Inspection of (45) shows that 𝜓 > 0 , since 𝜔H > 0 and 

all other components are weakly positive. Next, we show 
that � ≤ 1 under weak risk-aversion. Exploiting the defini-
tion of d∗ , we can rearrange W(H0d)

W(H0)
= 1 − d∗� to show that:

	   Here, we implicitly assume that W(0) = 0 . This equa-
tion expresses � as the ratio of two slopes: (1) The aver-
age slope of W between H0d > 0 and H0 ; and (2) the aver-
age slope of W between 0 and H0 . For a strictly concave, 
increasing utility function, W , the slope between H0d and 
H0 will be strictly less than the slope between 0 and H0 . 
For a linear utility function, on the other hand, the slopes 
will be equal. This proves the necessary result.

B.	 Proof of the reformulation of �
	   Define V ≡ E

[
�W

(
H1S + B

)]
+ (1 − �)W

(
H1W

)
 , the 

expected utility in period 1, conditional on survival to 
that period. In LP [1], the marginal rate of substitution 
is defined as � =

V

W
� (�H)

 , the ratio of marginal utility of 
increased LE to marginal utility of QoL in period 1. In 
[1], it was necessary to estimate this for each illness/
treatment combination.

	   We begin by proving the equivalence of Eqs. (1) and 
(9) in the main text. By inspection, we can see that this 
equivalence rests on the proposition that �HR� = �H0 . 
To prove the latter, note that LP define � ≡ [

V

W
� (�H)

] , 

R ≡ [
W

�
(�H)

W
� (H0)

] ,  and �H ≡ [
W

�
(H0)H0

W(H0)
] .  Therefore , 

�HR� =

[
W

�
(H0)H0

W(H0)

][
W

�
(�H)

W
� (H0)

]
[

V

W
� (�H)

] =
V

W(H0)
H0 . Since 

� ≡
V

W(H0)
 , the result follows, and Eqs. (1) and (9) are 

equivalent.
	   Next, for compactness, define HT ≡

(
H1S + B

)
 , where 

T stands for “treated” health outcome. Next, define 
VS ≡ W

(
HT

)
, with a corresponding value of �S =

Vs

W(Ho)
 . 

In parallel, define VH = W
(
H1W

)
 and �W =

VW

W(H0)
. This 

allows us to think of V  as the probability-weighted aver-
age of period 1 utility in the sick state and period 1 util-
ity in the well state. It also allows us to rewrite � as 
� = ��S + (1 − �)�W .

	   To estimate �S , consider the Taylor series expansion 
of VS around H0 , which proceeds quite similarly to the 
expansion of W(H0d) around W(H0) above:

(46)� =

(W(H0)−W(H0d))
(H0−H0d)

W(H0)−W(0)

H0−0

.

(47)E
(
VS

)
≈ W

(
H0

)
+W �

(
H0

)
E
(
HT − H0

)
+

1

2
W ��

(
H0

)
E
(
HT − H0

)2
+

1

6
W ���

(
H0

)
E
(
HT − H0

)3
+… .

	   Divide (47) by W
(
H0

)
 , following the definition of �S , 

and analyze it term by term:

	   The second term is W
�
(H0)E(HT−H0)

W(H0)
 . Multiply and 

divide this term by H0 , recognizing that the component 
parts are �H (defined at H0 ) and t∗ ≡ H0−E(HT)

H0

, the 
expected relative loss in health status after treatment. 
With these definitions:

	   The third term is 1
2

W ��(H0)E(HT−H0)
2

W(H0)
 . Multiply and 

divide by W ′
(
H0

)
H2

0
, allocating one H0 term to the 

numerator to convert absolute risk aversion, r, into rela-
tive risk aversion, r∗

H
 , and the other to complete �H . 

With these algebraic changes:

	   As above in Appendix IA, r∗
H

 is measured at H0.
	   The fourth term of (47) is 1

6
W ���

(
H0

)
E
(
HT − H0

)3 . 
Dividing by W

(
H0

)
 , gives 1

6
[W ���

(
H0

)
E
(
HT − H0

)3
]

1

W(H0)
 . 

Multiply and divide by W �
(
H0

)
W ��(H0)H

3
0
 . Then:

	   As before, �∗
H

 is defined at H0 . Any fifth term involv-
ing kurtosis would follow the same general strategy.

	   In summation, the Taylor Series approximation to 
VS

W(Ho)
≡ �S is:

	   Turning to the remaining portion of V  , we presume 
that H1W = H0d in the sense that permanent disability 
(if present) persists across periods. As in the main text, 
define d∗ ≡ H0−H0d

H0

=
H0−H1W

H0

 , the relative QoL loss from 
permanent disability in either period zero or period 
one. This allows us to write the parallel Taylor expan-
sion:

(48)First Term ∶
W
(
H0

)

W
(
H0

) = 1.

(49)Second Term ∶ −�Ht
∗.

(50)Third Term ∶ −
1

2
�Hr

∗
H
t∗2.

(51)Fourth Term ∶ −
1

6
�∗
H
r∗
H
�Ht

∗3.

(52)�S ≈ 1 − �Ht
∗[1 +

1

2
r∗
H
t∗ +

1

6
�∗
H
r∗
H
t∗2 +…].

(53)�W = 1 − �Hd
∗
[
1 +

1

2
r∗
H
d∗ +

1

6
�∗
H
r∗
H
d∗

2

+…
]
.
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	   Then overall:

C.	 Proof of results relating to disability-adjusted WTP

First, we show that permanent disability increases the 
WTP for improvements in average QoL. Equation  (7) 
implies that the marginal value of an improvement in aver-
age QoL is given by K�HR

H0(1−�d∗)
�p1� . Disability increases 

1

1−�d∗
 . Moreover, if utility exhibits CRRA over QoL, all 

other terms are unaffected by disability. Technically, dis-
ability could have complex effects on �H , � , and � , if rela-
tive risk-aversion varies with QoL. In this case, the rela-
tionship between disability and QoL needs to be judged 
empirically.

Turning to life-extension, Eq. (1) implies that the value 
of life-extension, �p , is given by K�HR�p�. The total disa-
bility-adjusted value of life-extension is thus given by 
TDVLE ≡

K�HR�p�

H0(1−�d∗)
.

Appendix IB showed that � =
�H0

�HR
 . Using the definition 

of � , this becomes � =
VH0

W(H0)�HR
 . Moreover, by definition, 

W(H0d)
W(H0)

= 1 − �d∗ . Substituting these two terms into TDVLE 
yields:

Exploiting the definition of V ≡ E
[
�W

(
H1S + B

)]

+(1 − �)W
(
H1W

)
 from Appendix IB, this becomes:

If permanent disability weakly increases E(W(H1S+B))
W(H0d)

 , 
TDVLE weakly rises (holding �p fixed), and vice-versa.

Next, we show for illustrative purposes that people with 
disabilities have equal WTP for LE under CRRA utility 
and multiplicative disability. To focus on the disability 
effects, assume that illness and treatment effects are non-
stochastic. Assume further that utility belongs to the 
HARA family. We implement multiplicative disability by 
a s s u m i n g  t h a t  H0d = H0(1 − d∗)  a n d  H1S + B

= H0(1 − i
∗
t
)(1 − d

∗) , where 0 < i∗
t
< 1 represents the per-

centage loss in QoL from acute treated illness and d∗ con-
tinues to represent the percentage loss in QoL from disa-
bility. Define  the functions �H

(
H0d

)
≡

W
�
(H0d)H0d

W(H0d)
 and 

�H

(
H1S + B

)
≡

W
�
(H1S+B)(H1S+B)
W(H1S+B)

 , the elasticities of utility 
with respect to QoL evaluated as indicated. Differentiation 
implies that:

(54)� = ��S + (1 − �)�W .

(55)TDVLE ≡ K�p

V

W
(
H0d

)

(56)TDVLE ≡ K�p

[
�
E
[
W
(
H1S + B

)]

W
(
H0d

) + (1 − �)

]
.

This can be simplified as:

Observe that, by definition, H0

H0d

=
1

1−d∗
=

H0(1−t
∗)

H1S+B
 . And, 

when utility is CRRA, Eq. (16) implies that the elasticity of 
utility is constant, so that W

�
(H0d)H0d

W(H0d)
=

W
�
(H1S+B)(H1S+B)
W(H1S+B)

 . It 

thus follows that �

�d∗

[
W(H1S+B)
W(H0d)

]
= 0.

Finally, we derive sufficient conditions under which per-
manent disability increases E(W(H1S+B))

W(H0d)
 . Consider the Taylor 

Series expansion of E(W
(
H1S + B

)
) around H0d . Following 

the same approach used in Appendix IA and Appendix IB, 
one can show:

Note that in this case, the relative risk preference terms 
are evaluated at H0d . Under CRRA preferences, the relative 
risk preference terms do not vary with d∗ . In this case, it is 
clear that �

�d∗

E(W(H1S+B))
W(H0d)

≥ 0 if and only if �

�d∗

(
t∗−d∗

1−d∗

)
≤ 0.

This derivative will be weakly negative if and only if:

Expression (61) requires that disability lowers QoL in the 
sick state by less than in the healthy state. For curative thera-
pies, we require �t

∗

�d∗
≤ 1 , which is always true, but for less 

than perfect therapies, the requirement becomes non-trivial.
A useful alternate formulation of this expression 

arises from the change of variables, D ≡ 1 − d∗ and 
T ≡ 1 − t∗ . D and T  represent the QoL index in the 

(57)

�

�d∗

[
W
(
H1S + B

)

W
(
H0d

)

]

=

[
W

�(
H0d

)
H0W

(
H1S + B

)
−W

�(
H1S + B

)
H0

(
1 − i

∗
t

)
W
(
H0d

)]

W
(
H0d

)2 .

(58)

�

�d∗

[
W
(
H1S + B

)

W
(
H0d

)

]
= W

(
H0d

)
W
(
H1S + B

)

[
W

�
(H0d)H0d

W(H0d)
H0

H0d

−
W

�
(H1S+B)(H1S+B)
W(H1S+B)

H0(1−i∗t )
H1S+B

]

W
(
H0d

)2 .

(59)

E
(
W
(
H1S + B

))

W
(
H0d

) = 1 − �
H

(
t
∗ − d

∗

1 − d∗

)

− �
H
r
∗
H

(
t
∗ − d

∗

1 − d∗

)2

− �
H
r
∗
H
�∗
H

(
t
∗ − d

∗

1 − d∗

)3

−… .

(60)�

�d∗

(
t∗ − d∗

1 − d∗

)
=

(
�t∗

�d∗
− 1

)
(1 − d∗) + (t∗ − d∗)

(1 − d∗)2
.

(61)
�t∗

�d∗
≤

1 − t∗

1 − d∗
≤ 1.
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healthy and treated sick states, respectively, in the pres-
ence of disability. Notice that 

(
t∗−d∗

1−d∗

)
=
(

D−T

D

)
= 1 −

T

D
 . 

Moreover, �
�D

(
D−T

D

)
= −

(
�T
�D

D−T
)

D2
 . Observe that �

�D

(
D−T

D

)
≤ 0 

if and only if 
(

�T

�D

D

T

)
≥ 1 . In other words, reducing dis-

ability so that healthy state QoL rises by one percent 
must increase treated sick state QoL by more than one 
percent.

Appendix II: simplied hyperbolic absolute 
risk‑aversion (HARA) functions

Traditional HARA utility functions are defined as:

Since H is defined on the [0,1] domain, arbitrary rescal-
ing using the parameter a provides no additional generality. 
Therefore, a convenient simplification defines a ≡ (1 − �). 
Then, since Z = H + � , we can write:

from which we have r
H
=

1−�

Z
and therefore:

Similarly:

Importantly, since the 
(

H

Z

)
 values cancel out, dividing 

(65) by (66) yields:

 from which we have:

Since U���(H) = (� − 2)(� − 1)(1 − �)Z�−3, similar calcu-
lations demonstrate that:

Similarly:

(62)U(H) =
1 − �

�
Z� , where Z =

aH

1 − �
+ �.

(63)U�(H) = (1 − �)Z�−1,

(64)U��(H) = (� − 1)(1 − �)Z�−2,

(65)r∗
H
= (1 − �)

(
H

Z

)
.

(66)�H =
U�(H)H

U(H)
= �

(
H

Z

)

(67)
r∗
H

�H

=
1 − �

�
,

(68)γ =
ωH

ωH + r∗
H

.

(69)�∗
H
= (2 − �)

(
H

Z

)
=

(2 − γ)

(1 − �)
r∗
H
.

The general form for the jth relative QoL risk preference 
parameter, �∗

jH
 is:

Moreover, as proven in [15], Eq. (69) allows the recovery 
of � from r∗

H
 and �∗

H
 as in:

Appendix III: consequences of non‑CRRA 
utility for estimation of R

Recall eqs. (69) to (71) for definitions of higher-order risk 
parameters .  In  con t ras t ,  fo r  CRRA ut i l i ty, 
�∗
H
= 1 + r∗

H
, �∗

H
= 2 + r∗

H
, and �∗

j
= (j − 1) + r∗

H
 . (Observe 

that j = 1 for relative risk-aversion, j = 2 for relative pru-
dence, and so on.) Now suppose that the true utility function 
is within the HARA family but does not satisfy CRRA (i.e., 
� ≠ 0) . Where r∗

H
= 1 and using the above expressions, we 

can estimate the relative bias that would follow from incor-
rectly assuming CRRA utility. Now define �̂∗

j
 as the CRRA-

based estimate and �∗
j
 as the true value. Therefore:

With r∗ = 1 , relative bias becomes:

If “relative bias” is 10%, CRRA-based estimates will 
understate higher-order risk parameters by 10%, etc. Table 3 
reports these relative bias figures for various values of � 
(along the top row) and for relative risk parameters of differ-
ing degrees, j . As noted above, these estimates refer to the 
case where r∗ = 1 . The left-hand column covers the case of 
� = 0 , under which CRRA is the correctly specified utility 
function (Table 3).

The larger is � , the greater the potential for relative bias 
when relying on the CRRA assumption. Indeed, if � ≥ 0.5 , 
the relative bias approaches or exceeds 50%.

Table 3 assumes r∗
H
= 1 . Equation (73) implies that larger 

relative risk-aversion parameters somewhat mitigate the 

(70)�∗
H
= (3 − �)

(
H

Z

)
=

[
3 − �

(1 − �)

]
r∗
H
.

(71)�∗
j
=

[
j − �

1 − �

]
r∗
H
.

(72)� =
�∗
H
− 2r∗

H

�∗
H
− r∗

H

.

(73)Relative Bias =
�̂∗
j

�∗
j

− 1 = (1 − �)
1 +

[
j−1

r∗

]

[
j − �

] − 1.

(74)Relative Bias|r∗=1 =
j(1 − �)

j − �
− 1.
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relative bias reported in the table, and vice-versa. Further-
more, all the higher-order terms are moot if the relevant 
health outcomes have normal distributions, since all statisti-
cal moments above variance would then equal zero.

Appendix IV: relationships between utility 
parameters and their estimation 
using happiness regression coefficients

First, consider �H =
W

�
(H)H

W(H)
, the elasticity of utility with 

respect to H. Then, generally:

From this:

and thus:

Now consider a second-order happiness regression:

Suppressing the interaction term to preserve clarity (i.e., 
setting �5 = 0):

This implies the empirical analogs:

(75)

��
H

�H
=

1

W

[
W

� + [
W

��

W �
]W�H

]

−
1

W2

[
HW

�
W

�
]
=

W
�

W

[
1 − r

∗
H

]
−

[
�2

H

H

]
.

(76)�� = 1 − r∗
H
− �H ,

(77)r∗
H
=
(
1 − �H

)
− ��.

(78)
ln(Happy) = �1ln(H) +

1

2
�2ln(H)

2
+ �3ln(C)

+

1

2
�4ln(C)

2
+ �5ln(H)ln(C) + �.

(79)
�ln(Happy)

�ln(H)
≡ �H = �1 + �2ln(H).

(80)�̂H = �̂1 + �̂2ln(H),

From this:

Finally, using eq. (80) and (82), and referring to (77), we 
can estimate relative risk-aversion as:

Higher-order estimates follow by using (68) to estimate � 
using estimates of �H and r∗

H
 , and by using eq. (69) to (71) 

to compute the higher-order risk preference parameters using 
estimates of � and r∗

H
.
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=
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Table 3   Relative bias of relative 
risk preferences when CRRA is 
incorrectly specified

�

0.0 0.2 0.4 0.5 0.6 0.8

�∗ 0%  − 11%  − 25%  − 33%  − 43%  − 67%
�∗ 0%  − 14%  − 31%  − 40%  − 50%  − 73%
�∗
4

0%  − 16%  − 33%  − 43%  − 53%  − 75%
�∗
5

0%  − 17%  − 35%  − 44%  − 55%  − 76%
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0%  − 17%  − 36%  − 45%  − 56%  − 77%
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