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Abstract
The coronavirus disease (COVID-19) is a severe, ongoing, novel pandemic that emerged in Wuhan, China, in December 
2019. As of January 21, 2021, the virus had infected approximately 100 million people, causing over 2 million deaths. 
This article analyzed several time series forecasting methods to predict the spread of COVID-19 during the pandemic’s 
second wave in Italy (the period after October 13, 2020). The autoregressive moving average (ARIMA) model, innovations 
state space models for exponential smoothing (ETS), the neural network autoregression (NNAR) model, the trigonometric 
exponential smoothing state space model with Box–Cox transformation, ARMA errors, and trend and seasonal components 
(TBATS), and all of their feasible hybrid combinations were employed to forecast the number of patients hospitalized with 
mild symptoms and the number of patients hospitalized in the intensive care units (ICU). The data for the period February 
21, 2020–October 13, 2020 were extracted from the website of the Italian Ministry of Health (www. salute. gov. it). The results 
showed that (i) hybrid models were better at capturing the linear, nonlinear, and seasonal pandemic patterns, significantly 
outperforming the respective single models for both time series, and (ii) the numbers of COVID-19-related hospitalizations 
of patients with mild symptoms and in the ICU were projected to increase rapidly from October 2020 to mid-November 
2020. According to the estimations, the necessary ordinary and intensive care beds were expected to double in 10 days and 
to triple in approximately 20 days. These predictions were consistent with the observed trend, demonstrating that hybrid 
models may facilitate public health authorities’ decision-making, especially in the short-term.
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Introduction

The coronavirus disease (COVID-19) is a severe, ongoing, 
novel pandemic that officially emerged in Wuhan, China, 
in December 2019. As of January 21, 2021, it had affected 
219 countries and territories with almost 100 million cases 
and over 2 million deaths [77]. At the time of writing, the 
countries most significantly affected include both advanced 
and developing countries, such as Brazil, France, India, 
Italy, Russia, Spain, the UK, and the US. From October to 

December 2020, several European countries, including Italy, 
saw a worrisome surge of COVID-19 infections.

Italy was the first European country to be severely 
impacted by COVID-19, and it remained one of the main 
epicenters of the pandemic for approximately 2 months, i.e., 
from mid-February 2020 to mid-April 2020. After that first 
peak, the pandemic curve progressively decreased until mid-
August 2020. However, the spread of infection accelerated 
again in the late Summer and early Fall of 2020, and this 
second surge continues today. As of January 21, 2021, Italy 
has suffered 84,202 deaths and 2,428,221 cases.

The likelihood of new and consecutive COVID-19 waves 
is real, and efforts to study the pandemic’s trajectory are 
imperative to purchase medical devices and healthcare facil-
ities and to manage health centers, clinics, hospitals, and 
ordinary and intensive care beds.
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Thus, the first goal of this paper is to provide short-term 
and mid-term forecasts for the number of patients hospital-
ized with COVID-19 during the second wave of COVID-19 
infections, i.e., during the period after October 13, 2020. 
COVID-19-related hospitalization trends offer a clear pic-
ture of the overall pressure on the national healthcare sys-
tem. Moreover, models fitted to hospitalized patients are 
usually more reliable and accurate than models fitted to con-
firmed cases [30].1 The paper’s second goal is to compare 
and investigate the accuracy of several statistical methods.

In particular, I estimated four time series forecast tech-
niques and all of their feasible hybrid combinations: the 
autoregressive moving average (ARIMA) model, innova-
tions state space models for exponential smoothing (ETS), 
the neural network autoregression (NNAR) model, and the 
trigonometric exponential smoothing state space model with 
Box–Cox transformation, ARMA errors, and trend and sea-
sonal components (TBATS).

The rest of this paper is organized as follows. “Related 
literature” reviews the relevant literature while “Materials 
and methods” presents the data used in the analysis and dis-
cusses the empirical strategy. “Evaluation metrics” presents 
the evaluation metrics used to measure the performance of 
the models. “Results and discussion” discusses the main 
findings and policy implications. Finally, “Conclusions” 
provides some conclusive considerations.

Related literature

From the beginning of 2020, an increasing body of literature 
has employed various approaches to forecast the spread of 
the COVID-2019 outbreak [9, 22, 26, 58, 73, 78, 79, 83, 
85]. The most frequently used were ARIMA models [3, 
8, 14, 62], ETS models [13, 44], artificial neural network 
(ANN) models [55, 75], TBATS models [68, 71], mod-
els derived from the susceptible–infected–removed (SIR) 
basic approach [22, 26, 58, 78, 85], and hybrid models [15, 
29, 68, 69]. The implementation and comparison of these 
approaches—with the exception of mechanistic–statistical 
models (such as SIR)—represents the core of this paper.

Ala’raj et al. [2] utilized a dynamic hybrid model based on 
a modified susceptible–exposed–infected–recovered–dead 
(SEIRD) model with ARIMA corrections of the residuals. 
They provided long-term forecasts for infected, recovered, 
and deceased people using a US COVID-19 dataset, and 
their model had a remarkable ability to make accurate pre-
dictions. Using a nonseasonal ARIMA model, Ceylan [14] 

made short-term predictions of cumulative confirmed cases 
after April 15, 2020, for France, Italy, and Spain. The fore-
casts showed low mean absolute percentage errors (MAPE) 
and seemed to be sufficiently reliable and suitable for the 
short-term epidemiological analysis of COVID-19 trends.

Hasan [29] proposed a hybrid model that incorporates 
ensemble empirical mode decomposition (EEMD) and neu-
ral networks to forecast real-time global COVID-19 cases 
for the period after May 18, 2020. The analysis showed that 
the ANN-EEMD approach was quite promising and outper-
formed traditional statistical methods, such as regression 
analysis and moving average.

Ribeiro et  al. [65] provided short-term estimates of 
COVID-19 cumulative confirmed cases in Brazil by employ-
ing multiple approaches and selecting several models, such 
as ARIMA, cubist regression (CUBIST), random forest 
(RF), ridge regression (RIDGE), support vector regression 
(SVR), and stacking-ensemble learning (SEL). The mod-
els’ reliabilities were evaluated based on the improvement 
index, mean absolute error (MAE), and symmetric MAPE 
criteria. The analysis demonstrated that SVR and SEL 
performed best, but all models exhibited good forecasting 
performances.

Using ARIMA, TBATS, their statistical hybrid, and a 
mechanistic mathematical model combining the best of the 
previous models, Sardar et al. [68] attempted to forecast 
daily COVID-19 confirmed cases across India and in five 
different states (Delhi, Gujarat, Maharashtra, Punjab, and 
Tamil Nadu) from May 17, 2020, until May 31, 2020. The 
ensemble model showed the best prediction skills and sug-
gested that COVID-19 that daily COVID-19 cases would 
significantly increase in the considered forecast window and 
that lockdown measures would be more effective in states 
with the highest percentages of symptomatic infection.

Wieczorek et al. [75] implemented deep neural network 
architectures, which learned by using a Nesterov-accelerated 
adaptive moment (Nadam) training model, to forecast cumu-
lative confirmed COVID-19 cases in several countries and 
regions. The predictions, which referred to different time 
windows, revealed that the models had an extremely high 
level of accuracy (approximately 87.7% for most regions 
but, in some cases, reaching almost 100%).

Talkhi et al. [71] attempted to forecast the number of 
COVID-19 confirmed infections and deaths in Iran between 
August 15, 2020, and September 14, 2020, using several 
single and hybrid models. The extreme learning machine 
(ELM) and hybrid ARIMA–NNAR models were the 
most suitable for forecasting confirmed cases, while the 
Holt–Winters (HW) approach outperformed the others in 
predicting death cases.

1 In fact, the number of infected people presents a high degree of 
uncertainty, especially because the number of infected but asympto-
matic people is high [59].
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Finally, Table 1 reports 30 international studies that uti-
lized single or hybrid ARIMA, ETS, neural network, and 
TBATS models to forecast the transmission patterns of 
COVID-19 across the world.

Materials and methods

The data used in this article, which include 236 obser-
vations, referred to the real-time number of COVID-19 

Table 1  30 selected international studies that utilized single or hybrid ARIMA, ETS, neural network, and TBATS models.

ANN artificial neural network, ARIMA autoregressive integrated moving average, ARIMAX ARIMA with exogenous variables, BSTS Bayesian 
structural time-series, B/W LES Brown/Holt linear exponential smoothing method, CUBIST cubist regression, DeepAR probabilistic forecast-
ing with autoregressive recurrent networks, EEMD ensemble empirical model decomposition, EGM exponential growth model, ELM extreme 
learning machines, ETS innovations state space models for exponential smoothing, FB Facebook’s prophet, FFANN feed-forward artificial neu-
ral network, GRNN generalized regression neural network, HVAR hierarchical vector autoregression, HW Holt–Winters method, HWAAS Holt–
Winters additive model, INGARCH integer-valued generalized autoregressive conditional heteroskedastic, KF Kalman filter, LSTM long-short 
term memory, MARS multivariate adaptive regression splines, ME-ANN multiple ensemble artificial neural network, MLP multilayer perceptron, 
NARNN nonlinear autoregressive neural network, N-Beats neural basis expansion analysis, NNAR neural network autoregression, PNN probabil-
istic neural network, RBFNN radial basis function neural network, RF random forest, RIDGE ridge regression, SEIQDR susceptible–infected but 
undetected–infected quarantined–suspected–discharged, SEIRD susceptible–exposed–infected–recovered–dead, SEL stacking-ensemble learning, 
SIR susceptible–infected–recovered, SutteARIMA α-Sutte Indicator and ARIMA, SVR support vector regression, TBATS trigonometric exponen-
tial smoothing state space model with Box–Cox transformation, ARMA errors trend and seasonal components, VAR vector autoregression, WBF 
Wavelet-based forecasting

Authors Data Method Country/region

Abotaleb [1] Confirmed, deceased, and recovered ARIMA and EGM China, Italy, and the US
Ala’raj et al. [2] Confirmed, deceased, and recovered SEIRD-ARIMA US
Alzahrani et al. [3] Confirmed ARIMA Saudi Arabia
Aslam [4] Active, confirmed, deceased, and 

recovered
KF-ARIMA, HW, and SutteARIMA Pakistan

Awan and Aslam [5] Confirmed ARIMA France, Germany, Italy, and Spain
Cao et al. [13] Confirmed ARIMA, ARIMAX, ETS, and SEIQDR China
Ceylan [14] Confirmed ARIMA France, Italy, and Spain
Chakraborty and Ghosh [15] Confirmed ARIMA–WBF Canada, France, India, and South Korea
Dhamodharavadhani et al. [18] Deceased RBFNN, GRNN, NARNN, and PNN India
Fantazzini [23] Confirmed ARIMA, ARIMAX, ETS, HVAR, SIR, 

and VAR
158 countries

Hasan [29] Confirmed ANN-EEMD World (aggregate)
Ilie et al. [41] Confirmed ARIMA nine countries
Joseph et al. [44] Confirmed ARIMA, ETS, INGARCH, and hybrid nine countries
Katoch and Sindhu [45] Confirmed ARIMA India
Kırbaş et al. [48] Confirmed ARIMA, LSTM, and NARNN Eight European countries
Melin et al. [55] Confirmed ME-ANN Mexico
Moftakhar and Seif [56] Confirmed ARIMA Iran
Papastefanopoulos et al. [61] Confirmed ARIMA, DeepAR, FB, HWAAS, and 

N-Beats
10 countries

Perone [63] Confirmed and deceased ARIMA Italy, Russia, and the US
Ribeiro et al. [65] Confirmed ARIMA, CUBIST, RF, RIDGE, SVR, 

and SEL
Brazil

Sardar et al. [68] Confirmed ARIMA, TBATS, hybrid, and mecha-
nistic model

India

Sahai et al. [67] Confirmed ARIMA Brazil, India, Russia, Spain, and the US
Singh et al. [69] Deceased ARIMA–WBF France, Italy, Spain, the UK, and the US
Wang et al. [74] Confirmed and deceased ARIMA and ETS India, Russia, the UK, and the US
Wieczorek et al. [75] Confirmed ANN Many countries/regions
Yonar et al. [80] Confirmed ARIMA and B/W LES G8 countries
Ganiny and Nisar [25] Confirmed ARIMA India
Katris [46] Confirmed ARIMA, ETS, FFANN, MARS, their 

combinations, and SIR
Greece

Lee et al. [51] Confirmed ARIMA South Korea
Talkhi et al. [71] Confirmed and deceased ARIMA, BSTS, ELM, HW, MLP, 

NNAR, Prophet, TBATS, and hybrid
Iran
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hospitalizations of patients with mild symptoms and patients 
assigned to the ICU in Italy from February 21, 2020, to 
October 13, 2020. I extracted the data from the official Ital-
ian Ministry of Health’s website (www. salute. gov. it). The 
confirmed COVID-19-related hospitalization trends appear 
in Fig. 1.

The data showed that the number of COVID-19 patients 
hospitalized with mild symptoms and the number of 
COVID-19 patients assigned to the ICU reached an initial 
peak on April 4, 2020. They then followed a downward trend 
until mid-August before accelerating again from the end of 
September 2020 to mid-October 2020. Recognizing that the 
use of only one model is never wise and may lead to unre-
liable forecasts [68], I computed the forecasts by employ-
ing different statistical techniques and their combinations. 
Specifically, linear ARIMA models, ETS models, linear and 
nonlinear NNAR models, TBATS models, and their feasible 
hybrid combinations were examined.

ARIMA models, which were first proposed by Box and 
Jenkins [11], represent one of the most widely used frame-
works for epidemic/pandemic and disease time series predic-
tions [66, 84]. Considering only the linear trend of a time 
series, they are able to capture both nonseasonal and sea-
sonal patterns of that series. The following should be noted 
regarding the nonseasonal component of ARIMA models: 
(i) the autoregressive (AR) process aims to forecast a time 
series using a linear combination of its past values; (ii) the 
differencing (I) is required to make the time series stationary 
by removing (or mitigating) trend or seasonality (if any), 
and (iii) the moving average (MA) process aims to forecast 
future values using a linear combination of previous forecast 
errors. The seasonal component is similar to the nonseasonal 
component, but implies backshifts of the seasonal period, 
i.e., adding the seasonal parameters to the AR, I, and MA 
components, which allows the model to handle most of the 

seasonal patterns in the real-world data. Therefore, the final 
seasonal model can be denoted as ARIMA (p,q,d)(P,Q,D)m, 
where m is the seasonal period and the lowercase and upper-
case letters indicate the number of nonseasonal and seasonal 
parameters for each of its three components, respectively 
[34], Sect. 8).

The ETS class of models was introduced in the late 1950s 
[12, 31, 76] to consider different combinations of trend 
and seasonal components. The basic ETS model consists 
of two main equations: a forecast equation and a smooth-
ing equation. By integrating these two equations into an 
innovation state space model, which may correspond to the 
additive (A) or multiplicative (M) error assumption, it is 
possible to obtain an observation/measurement equation 
and a transition/state equation, respectively.2 The first equa-
tion describes the observed data while the second equation 
describes the behavior of the unobserved states. The states 
refer to the level, trend, and seasonality. The trend and sea-
sonal components may be none (N), additive (A), additive 
damped (Ad),3 or multiplicative (M), resulting in a wide 
range of model combinations. The final model assumes the 
form of a three-character string (Z,Z,Z), where the first letter 
identifies the error assumption of the state space model, the 
second letter identifies the trend type, and the third letter 
identifies the season type. These models are able to produce 
a time series forecast by using the weighted average of its 
past values and adding more weight to recent observations 
[34], Sect. 7, [40].

NNAR models can be viewed as a network of neurons 
or nodes that depict complex nonlinear relationships and 
functional forms. In a basic neural network framework, the 
neurons are organized in two layers: (i) the bottom layer 
identifies the original time series, and (ii) the top layer iden-
tifies the predictions. The resulting model is equivalent to a 
simple linear regression and becomes nonlinear only when 
an intermediate layer with “hidden neurons” is included. 
For seasonal data, NNAR models can be described with the 
notation NNAR (p,P,k)m, where m is the seasonal period, 
p denotes the number of nonseasonal lagged inputs for the 
linear AR process, P represents the seasonal lags for the AR 
process, and k indicates the number of nodes/neurons in the 
hidden layer [34], Sect. 11.3).

Finally, TBATS models are a class of models that com-
bine different approaches: trigonometric terms for mode-
ling seasonality, Box–Cox transformation [10] for address-
ing heterogeneity, ARMA errors for addressing short-term 
dynamics, damping (if any) trends, and seasonal compo-
nents. Therefore, TBATS models have several properties: 
(i) they deal well with very complex seasonal patterns, 

Fig. 1  Patients hospitalized with mild symptoms and in the ICU from 
February 21, 2020 to October 13, 2020. Source: Italian Ministry of 
Health [43]

2 For more details see Equations (2) and (3).
3 It is valid only for the trend component.

http://www.salute.gov.it
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which might, for example, exhibit daily, weekly, and annual 
patterns simultaneously; (ii) they are able to consider time 
series nonlinear patterns, and iii) they can handle any type of 
autocorrelation in the residuals [34], Sect. 11.1, [71].

The combination of different times series forecast meth-
ods maximizes the chance of capturing seasonal, linear, 
and nonlinear patterns [60, 82] and is especially useful for 
predicting real-world phenomena, such as the COVID-19 
pandemic, which are characterized by complex dynamics 
[7]. Well established from the seminal work of Bates and 
Granger [6], combining techniques with unique properties 
could allow models to achieve better performance and fore-
cast accuracy.4 The models were calculated by using the 
following analytical procedures:

• ARIMA models were detected by applying the “auto.
arima()” function included in the package “forecast” 
(in the R environment) and developed by Hyndman and 
Khandakar [35]. This function followed sequential steps 
to identify the best model, i.e., the number of p param-
eters of the autoregressive process (AR), the order i of 
differencing (I), the number of q parameters of the MA, 
and the number of the parameters of the seasonal com-
ponent. It combined unit root tests5 and the minimization 
of the following estimation methods: the bias-corrected 
Akaike’s information criterion (AICc)6 and the maxi-
mum likelihood estimation (MLE). The unit root tests 
identified the order of differencing while the AICc and 
the MLE methods identified the order and the values of 
the parameters (respectively) of the seasonal and nonsea-
sonal AR and MA processes;

• ETS models were identified by using the “ets()” function 
included in the package “forecast” (in the R environment) 
and developed by Hyndman et al. [39].7 In particular, 
I applied the Box–Cox [10] transformation to the data 
before estimating the model and then used the AICc met-
ric to determine if the trend type was damped or not. The 
final three-character string identifying method (Z,Z,Z) 
was selected automatically;

• NNAR models were identified via the “nnetar()” function 
included in the package “forecast” (in the R environment) 
written by Hyndman [33].8 I proceeded as follows: (i) 
first, the Box–Cox transformation [10] was applied to the 
data before estimating the model; (ii) second, the opti-
mal number of nonseasonal p lags for the AR(p) process 
was obtained by using the AICc metric; (iii) third, the 
seasonal P lags for the AR process were set to 19; and 
(iv) finally, the optimal number of neurons was identified 
using the formula k = (p+P+1)

2
 [34], Sect. 11.3);

• TBATS models were identified using the “tbats()” func-
tion included in the package “forecast” (in the R environ-
ment) as described in De Livera et al. [17]. The optimal 
Box–Cox transformation parameter, ARMA (p,q) order, 
damping parameter, and number of Fourier terms were 
selected using the Akaike’s information criterion (AIC) 
metric;10

• Hybrid models were identified via the “hybridModel()” 
function included in the “forecastHybrid” package (in 
the R environment) developed by Shaub and Ellis.11 The 
individual time series forecasting methods were com-
bined as follows: (i) first, the Box–Cox power transfor-
mation [10] was applied to the inputs to increase the 
plausibility of the normality assumption; and (ii) then, 
the individual models were combined using both equal 
weights and cross-validated errors (“cv.errors”), which 
gave greater weight to the models that performed rel-
atively better. In fact, since the best weighting proce-
dure has not been established, I adopted a parsimonious 
approach and chose the one that performed better. Spe-
cifically, I tested the overall goodness-of-fit of all models 
with four common forecast accuracy measures: MAE, 
MAPE, mean absolute scaled error (MASE), and root 
mean square error (RMSE).

The estimated basic equation for the ARIMA was the 
following [16]:

where Δd is the second difference operator, yt indicates the 
predicted values, p is the lag order of the AR process, � is 
the coefficient of each parameters p, q is the order of the 

(1)
Δdyt = �1Δ

dyt−1 +…�pΔ
dyt−p + �1�t−1 +… �q�t−q + �t,

4 See also, for example, Fallah et al. [21].
5 Both the augmented Dickey–Fuller test [19] and the Kwiatkowsky, 
Phillips, Schmidt, and Shin test [50] were used. In fact, as stated by 
Gujarati and Porter [28], there is no recognized uniformly powerful 
test for detecting unit roots.
6 The AICc is a bias-corrected version of the original Akaike infor-
mation criterion (AIC) proposed by Sugiura [70] and Hurvich and 
Tsai [32]. The former performed significantly better than the latter in 
both small and moderate sample sizes [32]. Thus, it is suitable for this 
study.
7 A description of the “ets()” function is provided by Hyndman and 
Athanasopoulos [34], Sect. 7.6).

8 A description of the “nnetar()” function is provided by Hyndman 
and Athanasopoulos [34], Sect. 11.3).
9 This was the default value for the seasonal time series in the “nne-
tar()” function.
10 In fact, AICc is not included in the “tbats()” function.
11 A detailed description of the “forecastHybrid” package was pro-
vided at https:// cran.r- proje ct. org/ web/ packa ges/ forec astHy brid/ forec 
astHy brid. pdf.

https://cran.r-project.org/web/packages/forecastHybrid/forecastHybrid.pdf
https://cran.r-project.org/web/packages/forecastHybrid/forecastHybrid.pdf
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MA process, � is the coefficient of each parameter q, and �t 
denotes the residuals of the errors at time t.

The estimated equations for the basic ETS (A,N,N) model 
with additive errors were the following [34], Sect. 7):

where lt is the new estimated level, ŷt+1|t denotes each one-
step-ahead prediction for time t+1 which results from the 
weighted average of all the observed data, 0 ≤ � ≤ 1 is the 
smoothing parameter, which controls the rate of decrease 
of the weights, and yt − lt−1 is the error at time t. Hence, 
each forecasted observation is the sum of the previous level 
and an error, and each type of error, additive or multiplica-
tive, corresponds to a specific probability distribution. For 
a model with additive errors, as is this case here, errors are 
assumed to follow a normal distribution. Thus, Equations (2) 
and (3), respectively, can be rewritten as follows:

Equations (4) and (5) represent the innovation state space 
models that underlie the exponential smoothing methods.

The basic form of the neural network autoregression 
equation was the following [34], Sect. 11.3):

w h e r e  yt  i n d i c a t e s  t h e  p r e d i c t e d  va l u e s , 
yt−1=

(
yt−1,yt−2 … , yt−n

)�

 is a vector containing the lagged 
values of the observed data, f is the neural network with n 
hidden neurons in a single layer, and �t is the error at time t. 
A simple graphical example of a nonlinear neural network 
is shown in Fig. 2.

Finally, the basic equation of the TBATS model took the 
following form [17]:

where y(�)
i

 indicates the Box–Cox transformation parameter 
(ω) applied to the observation yt at time t, lt is the local level, 
� is the damped trend, b is the long-run trend, T denotes 
the seasonal pattern, s(i)t  is the ith seasonal component,12 mi 

(2)Forecast equation ∶ ŷt+1|t = lt.

(3)Smoothing equation ∶ lt = lt−1 + �
(
yt − lt−1

)
,

(4)Observation equation ∶ yt = lt−1 + �t,

(5)Transition equation ∶ lt = lt−1 + ��t.

(6)yt = f
(
yt−1

)
+ �t,

(7)y
(�)
t = lt−1 + �bt−1 +

T∑

i=1

s
(i)
t−mi

+ dt,

denotes the seasonal periods, and dt indicates an ARMA 
(p,q) process for residuals.

Evaluation metrics

The main metrics used to compare the performances of the 
single and hybrid prediction models were MAE, MAPE, 
MASE, and RMSE. The formulae used to calculate each of 
these metrics appear below (Eqs. 8–11):

where n represents the number of observations, yi denotes 
the actual values, and ŷi indicates the predicted values. Spe-
cifically, MAE and RMSE are both scale-dependent meas-
ures, although based on different errors. MAE is easier to 
interpret because minimizing it leads to predictions of the 
median, while minimizing RMSE leads to predictions of 
the mean. In fact, if the first metric is based on absolute 
errors, the second is based on squared errors. MAPE is prob-
ably the most widely employed error measure [27, 47], and 
unlike MAE and RMSE, it is not scale-dependent because it 
is based on percentage errors. Thus, it has the advantage of 
being a unit-free metric. However, it also requires some criti-
cal considerations. For example, it can lead to biased fore-
casts because it gives infinite or undefined results when one 
or more time series data point equals 0, and it puts a heavier 
penalty on negative errors (i.e., when predicted values are 
higher than actual values) than on positive errors. Finally, 
MASE, which was proposed by Hyndman and Koehler [36], 
is a scale-free error metric and probably the most versatile 
and reliable measure of forecast accuracy. It is superior to 
MAPE in that it does not give infinite or undefined values 
and can be used to compare forecast accuracy both on single 
and multiple time series.13 Since each model thus entails 

(8)MAE =
1

n

n∑

i=1

||yi − ŷi
||,

(9)MAPE =
1

n

n∑

i=1

||yi − ŷi
||

yi
∗100%,

(10)MASE =
1

n

n�

i=1

� ��yi − ŷi
��

1

n−1

∑n

i=2
��yi − ŷi − 1��

�
,

(11)RMSE =

√√√√1

n

n∑

i=1

(
yi − ŷi

)2
,

12 To this regard, it is important to stress that Livera et al. [17] intro-
duced a specific trigonometric representation of seasonal components 
based on Fourier series.

13 Hyndman [37] and Hyndman and Athanasopoulos [34], Sect. 3.4) 
offer a more detailed explanation of these metrics.
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specific strengths and disadvantages, I opted for the prudent 
approach—evaluating the output of all of them.

Results and discussion

Table 2 reports the best selected parameters for the single 
models14 while Tables 3 and 4 include the forecast accuracy 
measures for the single and hybrid models.15 For patients 
hospitalized with mild symptoms (Table 2), the optimal sin-
gle models were the seasonal ARIMA (1,2,3) (0,0,1)7, ETS 
(A,Ad,N),16 NNAR (7,1,4)7, and TBATS (0.428, {2,2}, 1, 
{< 7,2 >}).17 For patients hospitalized in the ICU (Table 2), 
the optimal single models were the seasonal ARIMA (1,2,2)
(0,0,1)7, ETS (A,A,N),18 NNAR (6,1,4)7, and (T)BATS 
(0.427,{0,0},1,−).19 The hybrid models were derived by 

combining the optimal single models with equal weights, 
which proved to be more suitable than weights based on 
error values.20   

In particular, for patients hospitalized with mild symp-
toms, the most accurate single model was NNAR, fol-
lowed by seasonal ARIMA, while the best hybrid model 
was NNAR–TBATS, followed by ARIMA–NNAR, and 
ARIMA–NNAR–TBATS. For patients  hospitalized in 
the ICU, the best single model was NNAR, followed by 

Fig. 2  A neural network with 
four inputs and an intermediate 
layer with three hidden neurons

Table 2  Structure of the single models for patients hospitalized with 
mild symptoms and in the ICU

Notes: TBATS models were chosen using AIC metric

Models AICc Structure

Patients hospitalized with mild symptoms
 ARIMA 3170.61 Seasonal (1, 2, 3) (0, 0, 1)7

 ETS 3846.92 (A, Ad, N)
 NNAR – (7, 1, 4)7

 TBATS 3550.91 (0.428, {2,2}, 1, {< 7,2 >})
Patients hospitalized in the ICU
 ARIMA 2106.46 Seasonal (1, 2, 2) (0, 0, 1)7

 ETS 2775.88 (A, A, N)
 NNAR – (6, 1, 4)7

 (T)BATS 2506.27 (0.427, {0,0}, 1, –)

14 The parameter values of the ARIMA, ETS, and TBATS models 
were reported in Tables A1, A2, and A3 (Appendix A).
15 As suggested by Hyndman [38], since the time series covered 
less than year and had daily observations, the frequency was set to 7, 
which allowed for weekly seasonality.
16 The selected ETS model is also known as the damped trend 
method with additive errors.
17 The estimated TBATS model was derived by applying a Box–Cox 
transformation of 0.428, an ARMA{2,2} process for modeling errors, 
a damping parameter of 1 (doing nothing), and two Fourier pairs with 
seasonal periods of 7.
18 The selected ETS model is also known as Holt’s linear trend 
method. In this case, both error and trend were additive.
19 In this case, the “tbats()” algorithm gave a BATS model that dif-
fered from TBATS only in the way that it modeled seasonality. In 
particular, it did not implement the Fourier series to model seasonal-
ity. For simplicity, the notation TBATS was used for the discussion 
of hybrid models forecasting patients hospitalized in the ICU. This 
model employed a Box–Cox transformation of 0.427, no ARMA 
{0,0} errors, and a damping parameter of 1 (doing nothing).

20 The forecast performance measures of the hybrid models com-
bined with the cross-validation procedure were reported in the 
Appendix B (Tables B1 and B2). With regard to patients hospitalized 
with mild symptoms and patients hospitalized in the ICU, the models 
derived using equal weights outperformed those obtained with cross-
validated errors in 26 and 31 (out of 33) performance accuracy met-
rics, respectively Tables B3 and B4.
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ARIMA, while the best hybrid model was ARIMA–NNAR, 
followed by ARIMA–ETS–NNAR, and ETS–NNAR.21

Autocorrelation function (ACF) indicated that current 
values were not correlated with previous values at lag 1 
(Tables 2 and 3). In fact, the correlation coefficient between 
one point and the next in the time series ranged from − 0.07 
to 0.19 for patients hospitalized with mild symptoms and 
from − 0.16 to 0.31 for patients in the ICU. The highest val-
ues (0.19 and 0.31) were obtained for the TBATS model.22

According to Lewis’ [52] interpretation, since MAPE 
was always significantly lower than 10, all predictive models 
can be considered as highly accurate. Moreover, MASE was 
much lower than 1 for all models; therefore, all the proposed 
forecasting approaches performed significantly better than 
the forecasts from the (no-change) “naïve” methods, i.e., the 
forecasts with no adjustments for casual factors (Hyndman 
and Koehler 2006), which justifies the use of more complex 
and sophisticated models.

Tables  5 and 6 compare the hybrid models with the 
respective single models considering the minimization of 
MAE, MAPE, MASE, and RMSE metrics. For patients 
hospitalized with mild symptoms, the hybrid models out-
performed the respective single models in 98 out of 112 
metrics, i.e., on 87.5% of all the forecast accuracy measures. 
For patients hospitalized in the ICU, the hybrid models out-
performed the respective single models in 81 out of 112 
metrics, i.e., on 72.3% of all measures. In the latter case, 
however, almost all losses of efficiency (25 out 31) were 
attributable to NNAR.23 Thus, the hybrid models generally 
increased forecast accuracy, but this increase was more evi-
dent for patients hospitalized with mild symptoms. 

The best hybrid model for patients hospitalized with 
mild symptoms—NNAR–TBATS—outperformed the sin-
gle NNAR and TBATS models by 5.63–9.23% on MAE 
and 5.88–9.95% on RMSE. While, the best hybrid model 
for patients hospitalized in the ICU—ARIMA–NNAR—
outperformed the single ARIMA and NNAR models by 
1.2–8.67% on MAE, and 2.81–11.44% on RMSE. Figures 3 
and 4 graphically represent the models for both time series 
ranked by the MAE and RMSE metrics.

Table 3  Forecast accuracy measures for the single and hybrid models 
(patients hospitalized with mild symptoms)

Notes: A ARIMA, E ETS, N NNAR, T TBATS. Hybrid models were 
combined using equal weights

Models MAE MAPE MASE RMSE ACF1

ARIMA 116.2616 2.6125 0.0631 204.8225 − 0.0064
ETS 121.7029 4.3186 0.066 219.6733 0.0787
NNAR 111.0185 1.9759 0.0602 195.4126 − 0.051
TBATS 115.428 2.8267 0.0626 204.2566 0.1902
A–E 115.0882 3.4033 0.0624 207.1205 0.0234
A–N 105.4098 2.1634 0.0572 184.3577 − 0.0706
A–T 113.5426 2.6625 0.0616 200.8143 0.0803
E–N 107.3794 2.1219 0.0583 191.0452 − 0.037
E–T 114.7241 3.4622 0.0622 204.5928 0.0886
N–T 104.7705 2.0966 0.0568 183.9314 0.0228
A–E–N 108.655 2.1419 0.059 193.672 − 0.0355
A–E–T 113.0137 3.1372 0.0613 202.3212 0.0553
A–N–T 106.6527 2.1255 0.0579 189.0073 0.0579
E–N–T 108.3242 2.0805 0.0588 192.7942 0.0146
A–E–N–T 108.8197 2.1105 0.059 194.1662 0.006

Table 4  Forecast accuracy measures for the single and hybrid models 
(patients hospitalized in the ICU)

Notes: A ARIMA, E ETS, N NNAR, T TBATS. Hybrid models were 
combined using equal weights

Models MAE MAPE MASE RMSE ACF1

ARIMA 12.5828 3.5411 0.0495 21.1697 0.0375
ETS 13.3832 3.59 0.0527 22.8157 0.0181
NNAR 11.6316 2.8082 0.0458 19.2895 − 0.1636
TBATS 14.226 3.5832 0.056 24.2076 0.3122
A–E 12.5388 3.47 0.0493 21.5479 0.0072
A–N 11.4917 3.0443 0.0452 18.7476 − 0.0513
A–T 12.8579 3.4874 0.0506 21.953 0.159
E–N 11.9035 3.064 0.0468 19.5496 − 0.0947
E–T 13.3764 3.5436 0.0526 22.9583 0.1504
N–T 11.9856 2.9767 0.0472 19.695 0.0627
A–E–N 11.8861 3.0595 0.0468 19.8477 − 0.0521
A–E–T 12.4876 3.3605 0.0491 21.3983 0.1502
A–N–T 12.0046 3.009 0.0472 19.9841 0.0474
E–N–T 12.383 3.0362 0.0487 20.7628 0.0377
A–E–N–T 12.188 3.0256 0.048 20.538 0.0277

21 In particular, ARIMA–ETS–NNAR and ETS–NNAR models 
exhibited nearly identical accuracy.

22 Tables  C1 and C2 (Appendix C) also reported the results of 
Ljung–Box’s [54] test for residual autocorrelation using no more than 
10 lags, as suggested by Ljung [53] when the sample size is not large. 
The output showed that for patients hospitalized with mild symptoms, 
ARIMA, TBATS, and all hybrid models, except for ETS-TBATS, 
had no autocorrelation issue, while single ETS and NNAR exhib-
ited some autocorrelation, especially at lags 8 and 10. With regard to 
patients hospitalized in the ICU, ARIMA and most of hybrid mod-
els, except for ARIMA–TBATS, ETS–TBATS, and ARIMA–ETS–
TBATS, had no particular signs of autocorrelation. In contrast, single 
ETS, NNAR, and TBATS showed some problems at lags 8 and 10.
23 This did not change the meaning of the results because, as con-
firmed by Table C2 (Appendix C), the residuals of the hybrid model’s 
output were generally less affected by autocorrelation than were those 
for NNAR.
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Figures 5 and 6 show the best six models and the remain-
ing nine models for patients hospitalized with mild symp-
toms, respectively. Similarly, Figs. 7 and 8 show the best six 
models and the remaining nine models for patients hospi-
talized in the ICU, respectively. The light blue area in each 
graph shows the prediction intervals at 80%, while the dark 
blue area shows the prediction intervals at 95%.24 The fore-
casts of the best single and hybrid models anticipated an 
increase in the number of patients hospitalized with mild 
symptoms and in the number of patients admitted to the 

ICU over the next 30 days, i.e., from October 14, 2020, to 
November 12, 2020. This predicted trend was also confirmed 
by the remaining estimated models.   

Specifically, the NNAR–TBATS, ARIMA–NNAR, and 
ARIMA–NNAR–TBATS models predicted that: (i) after 
10 days (October 23), the number of patients hospitalized 
with mild symptoms should have been 9624, 9397, and 9259, 
respectively; (ii) after 20 days (by November 2), the number 
should have been 18,000, 16,986, and 16,062, respectively; 
and (iii) after 30 days (by November 12), the number should 
have been 25,039, 21,669, and 21,430, respectively (Fig. 5). 
Regarding the number of patients hospitalized in the ICU, 
the ARIMA–NNAR, NNAR, and ARIMA–ETS–NNAR 
models predicted that: (i) after 10 days, the required number 

Table 5  Comparison between hybrid models and respective single 
models considering the minimization of MAE, MAPE, MASE, and 
RMSE metrics (in percentage), for patients hospitalized with mild 
symptoms

Notes: A  ARIMA, E ETS, N NNAR, T TBATS. Negative (positive) 
values show the percentage efficiency gain (loss) from using hybrid 
models

Hybrid Single MAE MAPE MASE RMSE

A–E ARIMA − 1.01 30.26 − 1.11 1.12
ETS − 5.44 − 21.19 − 5.45 − 5.71

A–N ARIMA − 9.33 − 17.19 − 9.35 − 9.99
NNAR − 5.05 9.49 − 4.98 − 5.66

A–T ARIMA − 2.34 1.91 − 2.38 − 1.96
TBATS − 1.63 − 5.81 − 1.6 − 1.69

E–N ETS − 11.77 − 50.87 − 11.67 − 13.03
NNAR − 3.28 7.39 − 3.16 − 2.23

E–T ETS − 5.73 − 18.83 − 5.76 − 6.86
TBATS − 0.6 22.48 − 0.64 0.16

N–T NNAR − 5.63 6.11 − 5.65 − 5.88
TBATS − 9.23 − 25.83 − 9.27 − 9.95

A–E–N ARIMA − 6.54 − 18.01 − 6.5 − 5.44
ETS − 10.72 − 50.4 − 10.61 − 11.84
NNAR − 2.135 8.4 − 1.99 − 0.89

A–E–T ARIMA − 2.79 20.08 − 2.85 − 1.22
ETS − 7.14 − 27.36 − 7.12 − 7.9
TBATS − 2.09 10.98 − 2.08 − 0.95

A–N–T ARIMA − 8.26 − 18.64 − 8.24 − 7.72
NNAR − 3.93 7.57 − 3.82 − 3.28
TBATS − 7.6 − 24.81 − 7.51 − 7.47

E–N–T ETS − 10.99 − 51.82 − 10.91 − 12.24
NNAR − 2.43 5.29 − 2.33 − 1.34
TBATS − 6.15 − 26.4 − 6.07 − 5.61

A–E–N–T ARIMA − 6.4 − 19.22 − 6.5 − 5.2
ETS − 10.59 − 51.13 − 10.61 − 11.61
NNAR − 1.98 6.81 − 1.99 − 0.64
TBATS − 5.73 − 25.34 − 5.75 − 4.94

Table 6  Comparison between hybrid models and respective single 
models considering the minimization of MAE, MAPE, MASE, and 
RMSE metrics (in percentage), for patients hospitalized in the ICU

Notes: A  ARIMA, E ETS, N NNAR, T TBATS. Negative (positive) 
values show the percentage efficiency gain (loss) from using hybrid 
models

Hybrid Single MAE MAPE MASE RMSE

A–E ARIMA − 0.35 − 2.01 − 0.4 1.79
ETS − 6.31 − 3.34 − 6.45 − 5.56

A–N ARIMA − 8.67 − 14.03 − 8.69 − 11.44
NNAR − 1.2 8.41 − 1.31 − 2.81

A–T ARIMA 2.19 − 1.52 2.22 3.7
TBATS − 9.62 − 2.67 − 9.64 − 9.31

E–N ETS − 11.06 − 14.65 − 11.2 − 14.32
NNAR 2.34 9.11 2.18 1.35

E–T ETS − 0.05 − 1.29 − 0.19 0.63
TBATS − 5.97 − 1.11 − 6.07 − 5.16

N–T NNAR 3.04 6 3.06 2.1
TBATS − 15.75 − 16.93 − 15.71 − 18.64

A–E–N ARIMA − 5.54 − 13.6 − 5.45 − 6.24
ETS − 11.19 − 14.78 − 11.2 − 13.01
NNAR 2.19 8.95 2.18 2.89

A–E–T ARIMA − 0.76 − 5.1 − 0.81 1.08
ETS − 6.69 − 6.39 − 6.83 − 6.21
TBATS − 12.22 − 6.22 − 12.32 − 11.61

A–N–T ARIMA − 4.6 − 15.03 − 4.65 − 5.6
NNAR 3.21 7.15 3.06 3.6
TBATS − 15.62 − 16.02 − 15.71 − 17.45

E–N–T ETS − 7.47 − 15.43 − 7.59 − 9
NNAR 6.46 8.12 6.33 7.64
TBATS − 12.96 − 15.27 − 13.04 − 14.23

A–E–N–T ARIMA − 3.14 − 14.56 − 3.03 − 2.98
ETS − 8.93 − 15.72 − 8.92 − 9.98
NNAR 4.78 7.74 4.8 6.47
TBATS − 14.33 − 15.56 − 14.29 − 15.16

24 The choice of these percentages was consistent with Hyndman and 
Athanasopoulos (34, Sect. 3.5).



926 G. Perone 

1 3

of intensive care beds should have been 1175, 972, and 1114, 
respectively; (ii) after 20 days, the required number should 
have been 2164, 1493, and 1915, respectively; and (iii) after 
30 days, the number should have been 3270, 1985, and 2726, 
respectively (Fig. 7).25

Figures 9, 10, 11 and 12 compare all 15 of the estimated 
models and the observed data over the period October 14, 
2020, to November 12, 2020. For patients hospitalized 
with mild symptoms, the NNAR–TBATS models best fit 
the observed data (Fig. 9). Of the remaining models, pre-
dictions from ARIMA–NNAR, ARIMA–NNAR–TBATS, 
and NNAR most closely approximated the observed 
data (Figs. 9, 10). For patients hospitalized in the ICU, 
Fig.  11 reveals that ARIMA–NNAR, NNAR–TBATS, 

Fig. 3  Models ranked by the MAE and RMSE metrics for patients hospitalized with mild symptoms

Fig. 4  Models ranked by the the MAE and RMSE metrics for patients hospitalized in the ICU

25 Values are rounded to the nearest integer. The predicted values of 
the six best models for patients hospitalized with mild symptoms and 
in the ICU were reported in Table D1 and D2 (Appendix D), respec-
tively.
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Fig. 5  The six best forecast models for predicting patients with mild symptoms. Notes: the models were ranked (from first to sixth place) on the MAE metric
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and ARIMA–NNAR–TBATS hybrid models also fit the 
observed data quite well. All estimated models generally 
exhibited a strong match between predictions and observed 
data, except for ETS, NNAR, and ETS–TBATS, where the 
trends differed (Figs. 11 and 12). Notably, the models with 
lowest loss of efficiency adapted better to the observed data, 

which confirms the consistency and robustness of the sta-
tistical approach.   

Thus, a second wave of COVID-19 was predicted for the 
period following October 13, 2020, which could have several 
policy implications both for the national healthcare system 
and the economy. In particular, the predictions underscored 
the importance of implementing adequate containment 

Fig. 6  The remaining nine forecast models for predicting patients hospitalized with mild symptoms. Notes: The models were ranked (from sev-
enth to fifteenth place) on the MAE metric
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Fig. 7  The six best forecast models for predicting patients hospitalized in the ICU. Notes: the models were ranked (from first to sixth place) on the MAE metric
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measures and increasing the number of ordinary and inten-
sive care beds, hiring additional healthcare personnel, and 
buying care facilities, protective equipment, and ventilators 
to fight the infection and reduce deaths.26 Meanwhile, the 

opportunity to implement more or less restrictive non-phar-
maceutical interventions (NIPs) to tackle the pandemic—
such as social distancing, travel bans, the use of face masks, 
hand hygiene, and bar and restaurant restrictions [20]—
should be evaluated carefully in light of these measures’ 
potentially negative economic impacts. In fact, according to 
Fitch Rating’s [24] previsions, the first wave of COVID-19 
and the consequent massive lockdown measures may already 
have caused up to a 9.5% contraction in Italy’s 2020 GDP.

Fig. 8  The remaining nine forecast models for predicting patients hospitalized in the ICU. Notes: the models were ranked (from seventh to fif-
teenth place) on the MAE metric

26 This is consistent with my recent paper [64] in which I demon-
strated that the Italian healthcare system’s saturation played a key role 
in explaining the variability of COVID-19 mortality. In particular, the 
saturation of ordinary and intensive care beds explained almost 90% 
of the COVID-19 mortality across Italian regions at the first peak of 
the pandemic.
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While the models with the lowest loss of efficiency 
seemed to adapt substantially well to the observed data in 
the forecast window, the predictions should, in general, be 
treated with caution and employed mainly to inform short-
term decisions. In fact, pandemic forecasting has raised 
many doubts in the last year due to several issues that can 
affect its accuracy and reliability, including, for example, 

(i) high interval predictions and sensitivity of the estimates, 
especially with long-term forecasts; (ii) inaccurate modeling 
assumptions, and (iii) the lack of or difficulty in measuring 
and identifying biological features of COVID-19 transmis-
sion [30, 42]. These limitations—and the possibility for mis-
leading forecasts—may erode public trust in science and 
thus affect compliance with policies intended to mitigate the 

Fig. 9  Comparison between forecasts and real data during the period October 14, 2020, to November 12, 2020, for patients hospitalized with 
mild symptoms (six best models)
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spread of COVID-19 [49]. Indeed, the inevitable uncertainty 
associated with this novel disease and the general failure of 
long-term and even mid-term forecasts require a different 
scientific approach toward model predictions. More prudent 
and balanced communication with the public is crucial if the 
field of science desires to maintain its leading role in human 
development and policymaking.

Conclusions

This paper attempted to forecast the short-term dynamics 
of real-time patients hospitalized from COVID-19 in Italy. 
In particular, it employed both single time series forecast 
methods and their feasible hybrid combinations. The results 
demonstrated that (i) the best single models were NNAR 

and ARIMA for both patients hospitalized with mild symp-
tom and patients admitted to the ICU, (ii) the most accurate 
hybrid models were NNAR–TBATS, ARIMA–NNAR, and 
ARIMA–NNAR–TBATS for patients hospitalized with mild 
symptoms and ARIMA–NNAR, ARIMA–ETS–NNAR, and 
ETS–NNAR for patients hospitalized in the ICU, (iii) hybrid 
models generally outperformed the respective single models 
by offering more accurate predictions, and (iv) finally, pre-
dictions for the number of patients hospitalized in the ICU 
generally better fit the observed data than did predictions for 
patients hospitalized with mild symptoms. Notably, the best 
hybrid models always included a NNAR process, confirm-
ing the extensive and successful use of this algorithm in the 
COVID-19 related literature [56, 57, 71, 72, 81].

Compared to the single models, the hybrid statistical 
models captured a greater number of properties in the data 

Fig. 10  Comparison between forecasts and real data during the period October 14, 2020, to November 12, 2020, for patients hospitalized with 
mild symptoms (nine remaining models)
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structure, and the predictions seemed to offer useful policy 
implications. In fact, consistent with real-time data, the mod-
els predicted that the number of patients hospitalized with 
mild symptoms and admitted to the ICU would grow signifi-
cantly until mid-November 2020. According to the estima-
tions, the necessary ordinary and intensive care beds were 
expected to double in 10 days and to triple in approximately 
20 days. Thus, since new waves of COVID-19 infections 
cannot be excluded, it may be necessary to strengthen the 
national healthcare system by buying protective equipment 
and hospital beds, managing healthcare facilities, and train-
ing healthcare staff.

Although the hybrid models proved to be sufficiently 
accurate, it is nevertheless important to stress that 

statistical methods may lead to unavoidable uncertainty 
and bias, which tend to grow over time, due, for example, 
to public authorities’ progressive implementation of NIPs, 
such as the closure of public spaces and national or local 
lockdown measures, which the forecasts cannot adequately 
incorporate. Combining hybrid models with mechanistic 
mathematical models may partially overcome these issues 
by considering the effects of lockdowns on epidemiologi-
cal parameters [68]. Thus, future research could proceed 
along these lines. Ultimately, since other factors may have 
affected COVID-19 dynamics, especially as the pandemic 
progressed, these predictions should be treated with cau-
tion and utilized only to inform short-term decision-mak-
ing processes.

Fig. 11  Comparison between forecasts and real data during the period October 14, 2020, to November 12, 2020, for patients hospitalized in the 
ICU (six best models)
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Appendix A

See Tables A1, A2 and A3.

Fig. 12  Comparison between forecasts and real data during the period October 14, 2020, to November 12, 2020, for patients hospitalized in the 
ICU (nine remaining models)

Table A1  The parameter values of the ARIMA models for patients 
hospitalized with mild symptoms and in the ICU

Notes: standard errors in brackets. ***p value < 0.01

Parameters Coefficients
(mild symptoms)

Coefficients
(ICU)

AR (1) 0.5963***
[0.1675]

0.8857***
[0.0542]

MA (1) − 1.0742***
[0.1737]

− 1.4961***
[0.0829]

MA (2) − 0.0392
[0.1492]

0.6093***
[0.07]

MA (3) 0.3376***
[0.0685]

Seasonal MA (1) 0.2226***
[0.0742]

0.2707***
[0.0725]

Table A2  The parameters values of the ETS models for patients hos-
pitalized with mild symptoms and in the ICU

Parameters Coefficients (mild symptoms) Coefficients (ICU)

Smoothing parameters
 α 0.9999 0.9071
 Β 0.4553 0.5871
 ϕ 0.9709

Initial states
 l − 182.0547 20.9541
 b 117.7546 3.4623

Table A3  The parameters values of the TBATS models for patients 
hospitalized with mild symptoms and in the ICU

Parameters Coefficients (mild 
symptoms)

Coefficients (ICU)

λ 0.428 0.4267
α 0.2345 0.8384
Β 0.0794 0.371
Damping parameter 1 1
�
1

− 0.000198
�
2

− 0.000184
AR (1) 0.1077
AR (2) 0.6249
MA (1) 0.8727
MA (2) 0.0074
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Appendix B

See Tables B1, B2, B3 and B4.

Table B1  Forecast accuracy measures of the single and hybrid mod-
els for patients hospitalized with mild symptoms

Notes: Models were combined using cross-validation errors. MASE 
is omitted because “cv.errors” function currently does not support it.

Models MAE MAPE RMSE ACF1

ARIMA–ETS 115.344 3.4616 207.6742 0.0266
ARIMA–NNAR 109.0832 2.2002 191.1117 − 0.0571
ARIMA–TBATS 113.3802 2.6759 200.8599 0.0963
ETS–NNAR 113.8125 2.159 204.3447 0.0091
ETS–TBATS 114.5352 3.396 203.9591 0.0938
NNAR–TBATS 110.5257 2.0911 193.8955 0.1055
ARIMA–ETS–NNAR 111.9864 2.1656 200.0585 − 0.0109
ARIMA–ETS–TBATS 113.0631 3.1329 202.0993 0.0639
ARIMA–NNAR–TBATS 110.9721 2.1299 196.0419 0.0602
ETS–NNAR–TBATS 112.0909 2.0855 199.0529 0.0562
ARIMA–ETS–NNAR–

TBATS
111.9338 2.1212 199.1672 0.0369

Table B2  Forecast accuracy measures of the single and hybrid mod-
els for patients hospitalized in the ICU

Notes: Models were combined using cross-validation errors. MASE 
is omitted because “cv.errors” function currently does not support it

Models MAE MAPE RMSE ACF1

ARIMA–ETS 12.63 3.4796 21.7734 0.0064
ARIMA–NNAR 11.7107 3.0801 19.3024 − 0.0314
ARIMA–TBATS 13.0852 3.4932 22.3627 0.1946
ETS–NNAR 12.4014 3.112 20.7011 − 0.0554
ETS–TBATS 13.3746 3.5436 22.9559 0.1498
NNAR–TBATS 12.8183 2.9997 21.5416 0.1691
ARIMA–ETS–NNAR 12.2468 3.0877 20.7276 − 0.0316
ARIMA–ETS–TBATS 12.9046 3.4813 22.2089 0.1127
ARIMA–NNAR–TBATS 12.465 3.0191 21.0507 0.1209
ETS–NNAR–TBATS 12.7829 3.0591 21.7172 0.0892
ARIMA–ETS–NNAR–

TBATS
12.62 3.0555 21.4791 0.0732

Table B3  Comparison between hybrid models derived using equal 
weights and weighted errors considering minimization of MAE, 
MAPE and RMSE (patients hospitalized with mild symptoms)

Notes: roman values indicated that equal weights were better, while 
italic values indicate that weighted errors were better.

Models MAE (%) MAPE (%) RMSE (%)

ARIMA–ETS − 0.22 − 1.68 − 0.27
ARIMA–NNAR − 3.37 − 1.67 − 3.53
ARIMA–TBATS 0.14 − 0.5 − 0.02
ETS–NNAR − 5.65 − 1.72 − 6.51
ETS–TBATS 0.16 1.95 0.31
NNAR–TBATS − 5.21 0.26 − 5.14
ARIMA–ETS–NNAR − 2.97 − 1.09 − 3.19
ARIMA–ETS–TBATS − 0.04 0.14 0.11
ARIMA–NNAR–TBATS − 3.89 − 0.21 − 3.59
ETS–NNAR–TBATS − 3.36 − 0.24 − 3.14
ARIMA–ETS–NNAR–TBATS − 2.78 − 0.5 − 2.51

Table B4  Comparison between hybrid models derived using equal 
weights and weighted errors considering minimization of MAE, 
MAPE and RMSE (patients hospitalized in the ICU)

Notes: roman values indicated that equal weights were better, while 
italic colored values indicated that weighted errors were better.

Model MAE (%) MAPE (%) RMSE (%)

ARIMA–ETS − 0.72 − 0.28 − 1.04
ARIMA–NNAR − 1.87 − 1.16 − 2.87
ARIMA–TBATS − 1.74 − 0.17 − 1.83
ETS–NNAR − 4.01 − 1.54 − 5.56
ETS–TBATS − 0.01 − 0.01
NNAR–TBATS − 6.5 − 0.77 − 8.57
ARIMA–ETS–NNAR − 2.95 − 0.91 − 4.25
ARIMA–ETS–TBATS − 3.23 − 3.47 − 3.65
ARIMA–NNAR–TBATS − 3.69 − 0.33 − 5.07
ETS–NNAR–TBATS − 3.13 − 0.75 − 4.39
ARIMA–ETS–NNAR–TBATS − 3.42 − 0.98 − 4.38
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Appendix C

See Tables C1 and C2.

Table C1  The Ljung–Box’s test 
results for autocorrelation in the 
models (patients hospitalized 
with mild symptoms)

Notes: A ARIMA, E ETS, N NNAR, T TBATS

Models MILD Symptoms Lags 2 Lags 5 Lags 8 Lags 10

ARIMA 0.8093 0.437 0.6336 0.6986
ETS 0.1105 0.0157 0.001 0.0022
NNAR 0.0993 0.1274 0.0003 0.001
TBATS 0.6925 0.9045 0.5567 0.7197
A–E 0.1102 0.1444 0.2007 0.281
A–N 0.2038 0.2678 0.1012 0.1296
A–T 0.2129 0.3416 0.5749 0.6488
E–N 0.0519 0.0991 0.0139 0.044
E–T 0.0091 0.0398 0.0737 0.07
N–T 0.2428 0.2627 0.1088 0.1514
A–N–T 0.4573 0.4601 0.3396 0.4048
A–E–N 0.074 0.254 0.1631 0.229
A–E–T 0.0938 0.1763 0.2701 0.3763
E–N–T 0.0518 0.0986 0.0535 0.0925
A–E–N–T 0.1105 0.2543 0.2225 0.3068

Table C2  The Ljung–Box’s test 
results for autocorrelation in the 
models (patients hospitalized in 
the ICU)

Notes: A ARIMA, E ETS, N NNAR, T TBATS

Models ICU Lags 2 Lags 5 Lags 8 Lags 10

ARIMA 0.2477 0.3673 0.5745 0.7385
ETS 0.1565 0.063 0.0502 0.000
NNAR 0.0713 0.1089 0.0004 0.0014
TBATS 0.3775 0.5861 0.002 0.0052
A–E 0.1415 0.2366 0.0652 0.1353
A–N 0.0632 0.1105 0.11 0.2279
A–T 0.0985 0.0618 0.000 0.0000
E–N 0.0648 0.1036 0.1591 0.001
E–T 0.0199 0.0006 0.0000 0.0000
N–T 0.2137 0.7283 0.8108 0.0041
A–N–T 0.1884 0.6286 0.0682 0.1397
A–E–N 0.0959 0.2094 0.0787 0.174
A–E–T 0.1257 0.0755 0.0002 0.0004
E–N–T 0.1832 0.5328 0.6055 0.0505
A–E–N–T 0.1807 0.5352 0.0549 0.0673



937Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID‑19…

1 3

Appendix D

See Tables D1 and D2.

Table D1  The predicted values 
of patients hospitalized with 
mild symptoms in Italy, from 
October 14, 2020 to November 
12, 2020 (six best models)

Notes: A  ARIMA, E  ETS, N  NNAR, T   TBATS

Date Patients hospitalized with mild symptoms

N–T A–N A–N–T E–N E–N–T A–E–N

14-10-2020 5336.86 5347.71 5324.25 5338.38 5324.25 5336.2
15-10-2020 5651.95 5654.09 5602.82 5619.01 5602.82 5619.39
16-10-2020 6010.62 5990.28 5906 5916.08 5906 5921.66
17-10-2020 6393.93 6361.31 6218.18 6229.25 6218.18 6246.44
18-10-2020 6812.83 6766.48 6548.27 6573.92 6.548.27 6593.6
19-10-2020 7276.66 7209.03 6900.21 6934.69 6900.21 6965.03
20-10-2020 7779.26 7687.39 7268.47 7324.16 7268.47 7359.22
21-10-2020 8321.9 8209.49 7653.02 7746.5 7653.02 7781.47
22-10-2020 8932.9 8779.31 8071.92 8202.94 8071.92 8233.28
23-10-2020 9624.15 9397.23 8531.95 8698.68 8531.95 8713.3
24-10-2020 10,357.4 10,061.49 9012.85 9235.54 9012.85 9218.5
25-10-2020 11,117.49 10,764.26 9510.84 9805.32 9510.84 9740.9
26-10-2020 11,917.57 11,500.99 10,039.3 10,401.09 10,039.3 10,275.97
27-10-2020 12,733.97 12,264.65 10,585.59 11,013.84 10,585.59 10,819.94
28-10-2020 13,550.94 13,047.27 11,139.26 11,637.78 11,139.26 11,370.28
29-10-2020 14,406.58 13,842.35 11,723.14 12,272.34 11,723.14 11,925.53
30-10-2020 15,305.39 14,642.62 12,338.97 12,919.64 12,338.97 12,482.49
31-10-2020 16,202.31 15,439.95 12,955.84 13,581.66 12,955.84 13,037.2
1-11-2020 17,093.01 16,224.71 13,571 14,252.71 13,571 13,585.9
2-11-2020 17,999.69 16,985.92 14,200.33 14,919.48 14,200.33 14,124.03
3-11-2020 18,888.69 17,712.48 14,826.46 15,570.64 14,826.46 14,645.62
4-11-2020 19,736.72 18,393.74 15,435.74 16,198.52 15,435.74 15,143.07
5-11-2020 20,573.69 19,020.32 16,051.78 16,794.27 16,051.78 15,608.2
6-11-2020 21,397.74 19,585.29 16,674.35 17,346.33 16,674.35 16,033.46
7-11-2020 22,153.42 20,085.04 17,265.48 17,843.65 17,265.48 16,413.91
8-11-2020 22,837.29 20,519.42 17,820.17 18,279.44 17,820.17 16,749.2
9-11-2020 23,480.72 20,890.96 18,355.65 18,651.09 18,355.65 17,041.07
10-11-2020 24,059.64 21,203,59 18,852 18,958.25 18,852 17,291.64
11-11-2020 24,560.39 21,461.63 19,296.82 19,202.09 19,296.82 17,503.69
12-11-2020 25,038.65 21,669.2 19,724.79 19,385.22 19,724.79 17,680.5
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Table D2  The predicted values 
of patients hospitalized in the 
ICU in Italy, from October 14, 
2020 to November 12, 2020 (six 
best models)

Notes: A  ARIMA, E  ETS, N  NNAR, T TBATS

Date Patients hospitalized in ICU

A–N N A–E–N E–N N–T A–N–T

14-10-2020 561.38 552.34 560.63 560.17 556.32 558.3
15-10-2020 609.88 587.43 609.54 607.84 601.59 606.11
16-10-2020 666.55 632.77 663.35 659.77 651.81 660.22
17-10-2020 724.24 678.52 717.5 714.29 705.48 715.95
18-10-2020 788.99 724.27 776.18 770.55 761.81 777.22
19-10-2020 858.45 774.31 838.26 830.93 822.91 842.98
20-10-2020 935.13 822.37 905.24 892.93 885.85 915.27
21-10-2020 1011.28 870.49 971.93 956.76 950.42 988.64
22-10-2020 1091.55 921.35 1041.7 1023.48 1017.24 1066.22
23-10-2020 1174.99 972.36 1113.99 1092.27 1085.73 1147.44
24-10-2020 1261.29 1023.36 1188.17 1162.67 1157.32 1231.88
25-10-2020 1350.75 1075.3 1264.1 1234.94 1231.24 1319.65
26-10-2020 1442.95 1127.25 1341.38 1308.44 1306.6 1410.39
27-10-2020 1537.98 1179.26 1420 1382.99 1383.99 1503.89
28-10-2020 1636.04 1231.7 1500.11 1458.61 1463.84 1600.11
29-10-2020 1736.85 1284.11 1581.46 1534.79 1546.25 1698.67
30-10-2020 1840.25 1336.37 1663.8 1611.31 1631.76 1799.19
31-10-2020 1946.12 1388.63 1747.01 1688.29 1720.53 1901.4
1-11-2020 2054.19 1440.7 1830.84 1765.57 1812.69 2004.94
2-11-2020 2164.21 1492.51 1915.1 1843.02 1908.64 2109.52
3-11-2020 2275.92 1544.08 1999.58 1920.59 2008.61 2214.94
4-11-2020 2388.88 1595.3 2083.98 1998.12 2112.68 2320.88
5-11-2020 2502.67 1646.09 2168.03 2075.54 2220.81 2427.05
6-11-2020 2616.77 1696.44 2251.46 2152.8 2332.7 2533.12
7-11-2020 2730.57 1746.27 2334.01 2229.78 2447.86 2638.73
8-11-2020 2843.41 1795.51 2415.46 2306.34 2565.64 2743.53
9-11-2020 2954.55 1844.11 2495.56 2382.29 2685.18 2847.15
10-11-2020 3063.22 1891.99 2574.1 2457.4 2805.52 2949.16
11-11-2020 3168.58 1939.08 2650.86 2531.37 2925.64 3049.14
12-11-2020 3269.82 1985.3 2725.65 2603.83 3044.52 3146.65

http://www.salute.gov.it
http://creativecommons.org/licenses/by/4.0/
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