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Abstract
Outcomes in economic evaluations, such as health utilities and costs, are products of multiple variables, often requiring 
complete item responses to questionnaires. Therefore, missing data are very common in cost-effectiveness analyses. Multiple 
imputations (MI) are predominately recommended and could be made either for individual items or at the aggregate level. 
We, therefore, aimed to assess the precision of both MI approaches (the item imputation vs. aggregate imputation) on the 
cost-effectiveness results. The original data set came from a cluster-randomized, controlled trial and was used to describe the 
missing data pattern and compare the differences in the cost-effectiveness results between the two imputation approaches. A 
simulation study with different missing data scenarios generated based on a complete data set was used to assess the preci-
sion of both imputation approaches. For health utility and cost, patients more often had a partial (9% vs. 23%, respectively) 
rather than complete missing (4% vs. 0%). The imputation approaches differed in the cost-effectiveness results (the item 
imputation: − 61,079€/QALY vs. the aggregate imputation: 15,399€/QALY). Within the simulation study mean relative 
bias (< 5% vs. < 10%) and range of bias (< 38% vs. < 83%) to the true incremental cost and incremental QALYs were lower 
for the item imputation compared to the aggregate imputation. Even when 40% of data were missing, relative bias to true 
cost-effectiveness curves was less than 16% using the item imputation, but up to 39% for the aggregate imputation. Thus, 
the imputation strategies could have a significant impact on the cost-effectiveness conclusions when more than 20% of data 
are missing. The item imputation approach has better precision than the imputation at the aggregate level.
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Introduction

Cost–utility analyses (CUA) conducted alongside rand-
omized controlled trials are commonly used approaches 
to generate cost-effectiveness evidence [1]. Utility-based 
instruments and resource use questionnaires administered 
alongside these trials usually consist of multiple questions 
to which complete responses are needed to calculate health 
utility and the total cost. However, even carefully designed 
and well-executed trials contain missing responses from 
individual participants [2]. Therefore, missing data are 
common and, depending on the proportion and nature of 
the missing (completely at random, at random, and not at 
random), could affect the precision and accuracy of cost-
effectiveness results [2–4].

About 43% of the economic evaluations have restricted 
the analysis to those patients with complete data [5]. The 
exclusion of individuals with missing values could bias 
the cost-effectiveness conclusion, especially if the data 
are missing at random [6, 7]. Therefore, simple methods, 
such as mean or median imputation, or multiple imputa-
tions (MI) are used to handle missing data. Both methods 
worked well to handle cost data that are missing com-
pletely at random, but MI performed better when the data 
are missing at random [5, 7]. Thus, MI is usually recom-
mended [2–4, 8–10] and, therefore, has been used in one-
third of economic evaluations [5].

Whereas utility-based questionnaires usually consist of 
five or six questions [11, 12], resource utilization question-
naires could consist out of 20 and more questions about 
used healthcare services. Therefore, it is more likely to see 
missing responses in these questionnaires. These missing 
responses can be imputed individually and then used to 
calculate health utility or total cost (referred to as “item 
imputation”). Alternatively, only the health utility and the 
total cost can be imputed, whenever there is any missing 
value (referred to as “aggregate imputation”).

Simons et al. [13] revealed that in large samples (n > 500) 
and a missing data pattern that follows mainly a unit non-
response (referring to the complete absence of an inter-
view/ assessment), the item and aggregate imputation of 
missing data of the EQ-5D produced similar results. How-
ever, item imputation became more accurate with a pattern 
of missingness following an item non-response (referring 
to the absence of some answers to specific questions in the 
interview/assessment) and in smaller samples (n < 100). 
Eekhout et  al. [14] evaluated the performance of both 
imputation methods for handling missing data for a 12-item 
instrument and found that when a large percentage of sub-
jects had missing items (> 25%), the item imputation outper-
formed the aggregate imputation. Thus, for costs, there may 

be an advantage to impute on the individual resource use 
item level, especially when there are only a few cost drivers.

In economic evaluations, costs and QALYs were jointly 
used to estimate the incremental cost-effectiveness ratio 
(ICER). Therefore, our primary objective was to assess the 
impact of the item and aggregate imputation methods using 
MI on ICER and resulting cost-effectiveness acceptability 
curve (CEAC).

Materials and methods

Overview

The original data came from a cluster-randomized, con-
trolled intervention trial of 407 patients followed up over 
a 12-month time frame. We first demonstrated the missing 
data pattern at the item and the aggregate level and com-
pared the differences in cost-effectiveness results between 
the imputation approaches. Then we used a subset of 289 
patients who did not have any item missing (i.e., complete 
cases) to simulate different missing data scenarios reflecting 
different magnitudes (10%, 20%, and 40% of the aggregated 
outcomes, i.e., cost and QALYs) and patterns (completely 
at random, at random, and not at random) of missing. Each 
scenario was replicated 300 times to increase the robustness 
of results. Within each replication, we used MI by Chained 
Equations (MICE) to impute (a) missing responses to SF-6D 
and resource use questions individually and (b) health util-
ity and total cost at the aggregated level [6, 15, 16]. Sub-
sequently, for each replicated scenario incremental cost, 
incremental QALYs, ICER, and CEAC were calculated. 
Finally, the deviation (relative bias) from true incremental 
cost, incremental QALYs, and the probability of cost-effec-
tiveness at a wide range of willingness-to-pay (WTP) thresh-
olds (0€ to 250,000€) were calculated [17, 18]. Results were 
displayed using scatter plots with density rugs and CEACs.

Trial design, setting and sample

The original DelpHi trial (Dementia: life- and person-cen-
tered help) was a general practitioner (GP)-based, cluster-
randomized controlled intervention trial in a primary care 
setting in Germany. The study design [19, 20], sample 
[21], primary outcome [22], and the economic evaluation 
[23] have been published elsewhere. The DelpHi trial was 
approved by the Ethical Committee of the Chamber of Phy-
sicians of Mecklenburg-Western Pomerania, registry number 
BB 20/11.

Overall, 634 participants agreed to participate, 516 par-
ticipants started the baseline assessment, and 407 com-
pleted the first follow-up assessment. Totally, 118 (29%) 
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patients had at least one missing at baseline or follow-up. 
Therefore, the simulation study was based on a complete 
data set of 289 patients. A detailed description of the study 
characteristic is presented in Supplementary Table 1.

Healthcare resource utilization, costs and health 
utilities

A standardized computer-assisted interview was con-
ducted to collect data on patients’ healthcare resource uti-
lization retrospectively for 12 months using proxy ratings. 
The resource utilization questionnaire consists of 23 items, 
including medical treatments and care services. Mean 
costs per patient were calculated using published unit costs 
in 2018 Euros (€) [24, 25]. Assumptions for the calculation 
of costs are reported in Supplementary Table 2.

Health-related quality of life (HRQoL) was assessed 
using the 12-Item Short-Form Health Survey (SF-12), a 
generic, multidimensional instrument. SF-12 measures the 
physical and mental dimensions of HRQoL [26]. Eight 
responses of the SF-12 were converted to health utilities, 
a single index measure for HRQoL anchored at 0 for death 
and 1 for full health [26, 27]. By assuming a linear change 
of HRQoL, we used the health utilities at baseline and 
the 12-month follow-up to calculate the QALY for each 
patient using the area under the curve approach. A descrip-
tion of health utilities, QALYs as well as incremental cost, 
incremental QALYs, and ICER of the complete data set is 
demonstrated in Supplementary Table 3.

Multiple imputation methods

We used MICE to impute (a) each missing individual 
response or (b) the health utility and the total cost [6, 15, 
16]. Through MICE, Poisson regression was used for each 
missing resource utilization variable, an ordered logistic 
regression for each SF-6D response, and linear regression 
models for health utility and total cost, respectively. To 
account for the stochastic dependency of patients treated 
by the same GP, GPs were included as random effects. 
Each model was adjusted for age, sex, living situation 
(alone or not alone), comorbidity (number of ICD-10 diag-
noses) and functional impairment according to the Bayer 
Activities of Daily Living Scale (B-ADL) [28]. 50 values 
were estimated by MICE for each missing value. Estimates 
obtained from each imputed value were combined using 
Rubin’s rule [29] to generate a mean estimate and standard 
error [30]. Furthermore, MICE was implemented sepa-
rately by treatment group [6]. A description of the impu-
tation process and the used STATA code are presented in 
Supplementary Document 1.

Missing patterns in the original DelpHi trial data

We demonstrated the missing data patterns on item and 
aggregate level for the original dataset of 407 patients 
in Table 1. A missing was more likely in patients with 
higher functional impairment (Odds Ratio 1.26, p = 0.001) 
as shown in the missing data analysis (see Supplementary 
Table 4). We calculated the incremental cost, incremental 
QALYs, and ICER of the complete cases (n = 289), as well 
as results with the imputation at the item and aggregate 
levels.

Simulation study: constructing the missing data 
scenarios

Using the complete dataset of 289 patients without any 
item missing, we randomly constructed different missing 
data scenarios to reflect different magnitudes (10%, 20%, 
and 40%) and patterns of missing data. Specifically, 1.25%, 
2.5% and 5% of SF-6D responses and resource utilization 
item were randomly removed (according to a specific miss-
ing data pattern as described below), resulting in an average 
missing of 10% (range 7–17%), 20% (range 13–26%) and 
40% (range 32–47%) at the aggregate level (i.e., health util-
ity and total cost). Generated missing data scenarios resulted 
in missing data patterns with only a few items per patient 
missing, not in a complete missing. A detailed description of 
the randomly generated missing data patterns is represented 
in Supplementary Table 5.

For missing completely at random, values were randomly 
deleted. For the missing at random data pattern, missing 
data were more likely in patients having higher comorbidity 
(number of listed ICD-10 diagnoses) and higher deficits in 
daily living activities according to B-ADL [28]. For missing 
not at random, patients with a high resource utilization were 
more likely to have missing values. Thus, in this scenario, 
missing values were more common in high-cost patients. 
Overall, nine missing data scenarios were created (i.e., three 
missing patterns x three proportions of missing data). To 
avoid the results being influenced by one particular data set, 
for each of the nine imputation scenarios, we randomly gen-
erated 300 datasets.

Simulation study: cost‑effectiveness and statistical 
analysis

For each replication, the incremental cost, incremental 
QALY, and ICER were calculated [31–33]. To handle 
sampling uncertainty in the ICER, we used nonparamet-
ric bootstrapping [34]. The probability of the DCM being 
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cost-effective was calculated using a wide range of WTP 
thresholds (0€ to 250,000€) [17, 18].

The following outcomes were used to assess the accu-
racy and precision of the item imputation and the aggregated 

Table 1   Description of missing 
resource utilization and SF-6D 
data

a Utilization of institutionalization (nursing home care) was assessed by patients living situation (could be 
assessed without the patient or the caregiver) and was, therefore, not included in this ratio
p values less than 0.05 are highlighted in bold

  Overall Intervention Control  
n = 407 n = 291 n = 116 p value

SF-6D and resource utilization questionnaires, 
n (%)

Patients who completely respond 289 (71.0%) 199 (68.4%) 90 (77.6%) 0.070
Patients who had a complete missing for all items 0 (0.0%)a 0 (0.0%)a 0 (0.0%)a 1.000
Patients who had a missing at least in one item 118 (29.0%) 92 (31.6%) 26 (22.4%) 0.070
SF-6D questionnaire, n (%)
Patients who completely respond 352 (86.5%) 251 (86.2%) 101 (87.1%) 0.874
Patients who had a complete missing for all items 18 (4.4%) 14 (4.8%) 4 (3.5%) 0.790
Patients who had a missing at least in one item 37 (9.1%) 40 (13.8%) 15 (12.9%) 0.874
 Missing item physical functioning 23 (5.7%) 17 (5.8%) 6 (5.2%) 1.000
 Missing item role participation 29 (7.1%) 19 (6.5%) 10 (8.6%) 0.522
 Missing item social functioning 28 (6.9%) 19 (6.5%) 9 (7.7%) 0.667
 Missing item bodily pain 39 (8.0%) 28 (9.62%) 11 (9.5%) 1.000
 Missing item mental health 26 (6.4%) 19 (6.5%) 7 (6.0%) 1.000
 Missing item vitality 25 (6.1%) 21 (7.2%) 4 (3.4%) 0.177

Resource utilization questionnaire, n (%)
Patients who completely respond, n (%) 315 (77.4%) 221 (76.0%) 94 (81.0%) 0.295
Patients who had a complete missing for all items 0 (0.0%)a 0 (0.0%)a 0 (0.0%)a 1.000
Patients who had a missing at least in one item 92 (22.6%) 70 (24.0%) 22 (19.0%) 0.295
 Missing item ambulatory care 29 (7.1%) 3 (1.0%) 0 (0.0%) 0.561
 Missing item day and night care 31 (7.6%) 28 (9.6%) 3 (2.6%) 0.013
 Missing item hospital treatments 40 (9.8%) 32 (11.0%) 8 (6.9%) 0.268
 Missing item rehabilitation 28 (6.9%) 24 (8.2%) 4 (3.4%)) 0.126
 Missing item cure 30 (7.4%) 25 (8.6%) 5 (4.3%) 0.205
 Missing item medication/drugs 5 (1.2%) 2 (0.7%) 3 (2.6%) 0.142
 Missing item medical aids 13 (3.2%) 12 (4.1%) 1 (0.9%) 0.121
 Missing item therapies 46 (11.3%) 36 (12.4%) 10 (8.6%) 0.305
 Missing item nursing care 0 (0.0%) 0 (0.0%) 0 (0.0%) 1.000
 Missing item general practitioner 53 (13.0%) 44 (15.1%) 9 (7.8%) 0.050
 Missing item internist 57 (14.0%) 47 (16.2%) 10 (8.6%) 0.057
 Missing item neurologist 56 (13.7%) 46 (15.8%) 10 (8.6%) 0.078
 Missing item gynecologist 42 (10.3%) 34 (11.7%) 8 (6.9%) 0.479
 Missing item surgeon 57 (14.0%) 47 (16.2%) 10 (8.6%) 0.057
 Missing item orthopaedist 58 (14.3%) 48 (16.5%) 10 (8.6%) 0.041
 Missing item urologists 56 (13.8%) 46 (15.8%) 10 (8.6%) 0.078
 Missing item ear, nose and throat specialist 55 (13.5%) 45 (15.5%) 10 (8.6%) 0.077
 Missing item ophthalmologist 56 (13.8%) 45 (15.5%) 10 (8.6%) 0.077
 Missing item dermatologist 54 (13.3%) 45 (15.5%) 9 (7.8%) 0.059
 Missing item psychiatrist 55 (13.5%) 45 (15.5%) 10(8.6%) 0.077
 Missing item dentist 52 (12.8%) 43 (14.8%) 9 (7.8%) 0.069
 Missing item other specialists 1 58 (14.3%) 48 (16.5%) 10 (8.6%) 0.041
 Missing item other specialists 2 57 (14.0%) 47 (16.2%) 10 (8.6%) 0.057
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imputation by comparing those with the true values of the 
complete data set of 289 patients without any item missing.

	 i.	 Relative bias: The deviation from true incremental 
cost and incremental QALY in percent was calculated 
by averaging the 300 replications of each scenario. 
The relative bias (for example, for incremental cost) 
was calculated in percent as follows:

	 ii.	 Range of relative bias: The 5th and 95th percentile was 
used to demonstrate the range of the relative bias to 
the true incremental cost and true incremental QALYs 
as well as to true CEAC.

	 iii.	 Sampling coverage probability: The sampling cover-
age probability represents the proportion of the 1000 
non-parametric bootstrapping iterations for which the 
95% confidence interval (CI) includes the true mean 
total cost and true QALYs. A sampling coverage prob-
ability of 1.0 indicates that true costs and QALYs are 
included in each of the CI of the 1000 iterations. Thus, 
a lower sampling coverage probability demonstrates 
that the imputed values are poorer estimates of the 
true values.

	 iv.	 Relative bias and range of bias from the true probabil-
ity of cost-effectiveness: For each scenario, the mean 
probability at different WTP thresholds as well as the 
range of the probability using the 5th and 95th percen-
tile of the replications was used to assess the devia-
tion from the true probabilities of cost-effectiveness 
by averaging the 300 replications of each scenario.

Results were demonstrated descriptively and displayed 
using scatter plots with density rugs and CEAC. Analyses 
were carried out with STATA, R, and Excel.

Relative biasIC =

1

300

∑300

i=0
ΔC

i

ΔCtrue

− 1,

ΔC
i
is the incremental cost of the replication i and

ΔCtrue true incremental cost.

Results

The missing patterns in the DelpHi trial

Four percent (n = 18) of the patients had a complete miss-
ing for all and 9% (n = 37) at least for one SF-6D item. 23% 
(n = 92) of the patients had at least one, but none patient 
(0%) a complete missing in all 23 resource utilization items. 
A description of the missing data pattern of the original data 
set on both levels is presented in Table 1.

Overall, using both MI approaches resulted in higher 
cost (10,547€ and 10,402€ vs. 7,942€) and lower QALYs 
(0.709 and 0.725 vs. 0.771) as compared to the complete 
case analysis. This was due to the fact that patients with 
higher functional impairment more likely had missing data 
in this study. These patients usually have higher treatment 
and care needs and thus, higher healthcare costs and lower 
QALYs as compared to patients without any physical limi-
tations. Furthermore, whereas both MI approaches resulted 
in similar cost estimates for the intervention group (10,547€ 
vs. 10,402€), there were substantial differences in the cost 
estimates for the control group (11,348€ vs. 8,196€), lead-
ing to the differences in the ICER. The cost of the control 
group was much higher due to the fact that much of the 
available information about healthcare resources used was 
not used. Cost for ambulatory care services (n = 16, mean 
costs 7,993€), day and night care services (n = 7, mean costs 
5,546 €) or nursing home care (n = 7, mean costs 7,315€) in 
moderately to severely functionally impaired patients was 
not taken into account in the complete case analysis. How-
ever, these resources represent the effect of the intervention, 
which was intended to delay the progression of dementia dis-
eases and, thus, the utilization of healthcare services. How-
ever, it seems that this interventional effect could explain 
the higher costs in the controls, but QALYs did not differ 
significantly between both groups after imputing missing 
items or the aggregated outcomes. Therefore, ICER of the 
complete case, the aggregated and the item imputation val-
ued 129,002€/QALY, 15,399€/QALY and − 61,079€/QALY, 
respectively (see Table 2).

Table 2   Incremental cost, incremental QALY, and ICER of using the complete dataset and multiple imputations at the item and aggregate level

QALYs quality-adjusted life years, ∆Cost incremental costs, ∆QALY incremental QALYs, ICER incremental cost-effectiveness ratio

  Cost QALYs ∆Cost ∆QALY ICER

Intervention Control Intervention Control

Complete dataset (n = 289) 7,942€ 6,632€ 0.771 0.761 1,311€ 0.010 129,002€/QALY
Item imputation (n = 407) 10,547€ 11,348€ 0.709 0.722 − 801€ 0.013 − 61,079€/QALY
Aggregate imputation (n = 407) 10,402€ 8,196€ 0.725 0.711 2,205€ 0.014 15,399€/QALY
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Simulation study

Across all scenarios, imputing individual items was more 
precise and accurate than the aggregate imputation, dem-
onstrated by a lower relative bias and a smaller range of the 
bias. Taking the average of all 300 replications into account, 
mean relative bias to the true incremental cost and incremen-
tal QALYs was lower for the item imputation, not exceeding 
5% (vs. 10% for the aggregate imputation). The range of 
the relative bias was also wider for the aggregate imputa-
tion (up to 83%) compared to the item imputation using MI 
(up to 38%). Furthermore, the item imputation had a higher 
sampling coverage probability. When data were missing at 
random and 10%, 20% or 40% of data were set to be missing, 
the sampling coverage probabilities of the item vs. aggre-
gate imputation were as follows: 82.8% vs. 81.7%, 82.6% 
vs. 81.2%, and 82.4% vs. 77.5%. The mean relative bias, the 
range of the bias, and the sampling coverage probabilities 
are shown in Fig. 1 and Table 3. 

Both MI approaches were more precise when data were 
missing at random compared to missing completely at ran-
dom, especially due to a more precise estimation of incre-
mental QALY, demonstrated by a smaller range as compared 
to the incremental cost estimates. The lowest precision of 
the alternative imputation approaches was observed for the 
missing not at random scenarios, with a sampling coverage 
probability of up to 60.4%. However, for this pattern, the 
item imputation performed, again, better (81.2–71.2%) than 
the aggregate imputation (79.8–60.4%).

The mean CEAC of the imputation at the item level was 
closer to the true curve (relative bias of 0–2% across all sce-
narios) than the CEAC of the aggregate imputation (1–8%). 
The range of estimated curves at different WTP thresholds 
was wider, especially for the aggregate imputation used in 
scenarios with 40% missing data. The range of bias esti-
mated using the item imputation approach was less than 
16%, even when 40% of data were missing. In contrast, the 
CEAC estimated using the aggregate imputation could devi-
ate up to 39% away from the true CEAC. Relative bias and 
range of bias from true CEAC are demonstrated in Fig. 2 and 
Supplementary Table 4.

Discussion

Most of the patients in the original DelpHi trial had a partial 
missing in only some items (item non-response) rather than a 
complete missing in all items (unit non-response), especially 
for the resource utilization items. Some observed informa-
tion would be used if using the complete case analysis or 
analysis using an aggregate imputation, leading to substan-
tial differences in the ICER. The item imputation was more 
likely able to capture the intervention effect, leading to a 

more reliable cost-effectiveness conclusion. The simulation 
study confirmed the advantage of the item imputation across 
all scenarios when the magnitude of missing is small. Even 
though the mean biases of estimates were low, the range of 
estimates could be wider, especially if the aggregate impu-
tation was used, which might change the cost-effectiveness 
conclusion. The results also suggest that precision decreased 
with an increased amount of missing data. The lowest preci-
sion was observed for the missing not at random scenarios, 
where patients with a higher resource use were more likely 
to have missing data. The MI approaches were more precise 
when data were missing at random, especially when the item 
imputation was used.

There have been a few papers investigating how to han-
dle missing data in cost-of-illness or cost–utility analyses. 
Leurent et al. [5] summarized that within the last decade 
more attention has been devoted to assess the reasons for 
missing values and to adopt methods that can incorporate 
missing values. MI has been proposed for handling missing 
data [2–4, 6, 35]. Gomez et al. [35] used fully observed data 
of 2078 patients and implemented different imputation meth-
ods. In this study estimated point values of the MI approach 
differed up to 16% from true values when there were 30% 
of data missing. Furthermore, Belger et al. [7] evaluated 
the effect of naïve and multiple imputation methods on 
estimated costs. The mean relative bias of the MI approach 
was estimated at 3% with the sampling coverage probability 
of 70%. These results of previously published studies are 
similar to the mean relative bias obtained by our aggregate 
imputation. However, the results of these studies represented 
the mean relative bias of using an aggregate imputation. As 
demonstrated by the range of bias in this simulation study, 
the aggregate imputation could substantially deviate from 
the true estimates, which was furthermore translated into a 
large deviation in CEAC.

Belger et al. [7] reported that the lowest precision of MI 
was revealed for missing not at random scenarios. In these 
scenarios, patients with higher costs were set to have more 
likely missing values as well, which is in line with the sce-
narios created in our study. The lower precision could be 
caused by the shape and skewness of the distribution of the 
cost data. Cost data are usually skewed to the right. After 
removing the high-cost patients, it seems to be impossible 
to replicate the skewed distribution of costs, resulting in an 
underestimation of missing cost data and thus, to a large 
discrepancy in the cost-effectiveness conclusion. That might 
also be the reason for the observed lower precision of the 
aggregate imputation in the missing at random scenarios 
in our study, where more functionally impaired and more 
comorbid patients were set to have missing data. In general, 
these patients incurred a higher cost as well. Overall, the 
individualized item imputation was more precise when data 
were missing at random. The distribution of health utilities 
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Fig. 1   Deviation of estimated values using the item and aggregate imputations to true incremental cost and effects and density of both devia-
tions. MCAR​ missing completely at random, MAR missing at random
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is relatively easier to replicate compared to the cost. There-
fore, further research is needed to evaluate how missing not 
at random data patterns as well as the estimation of highly 
skewed cost data could be handled in a more accurate and 
precise way.

Overall, this analysis highlighted the benefit of using 
the item imputation. The cost-effectiveness conclusion 
drawn after using the aggregate imputation could be differ-
ent, especially when more than 20% of data were missing. 
Specifically to prevent a misleading decision, cost–utility 
studies should clearly report the proportion and the pattern 
of missing data at the item and aggregate levels. The item 
imputation may provide reasonable estimates, even when 
there are 40% of cases with some missing responses in the 
used questionnaires. In contrast, when the missingness is 
more likely following an item non-response rather than a 
complete missing (unit non-response), an aggregate impu-
tation should not be carried out when there are more than 
20% of cases missing, which could significantly mislead the 
cost-effectiveness conclusions. Therefore, sensitivity analy-
ses are crucial to handle the uncertainty that is intrinsically 
related to the imputation methods used within economic 
evaluations.

Limitations

The simulation process for creating different missing data 
scenarios was conducted by sampling from those individu-
als with complete data in the original study. There was a 
missing at random mechanism in the original dataset, in 
which patients with a higher functional impairment are more 
like have missing data. These missing data mechanism is 
explicitly considered within the simulation design, start-
ing to generate again missing data scenarios following the 
initial missing at random data pattern. This initial missing 
data mechanism could, therefore, bias each of the simulated 
missing data scenarios. This limits the generalizability of the 
presented results. However, it is nearly impossible to obtain 
a complete data set, especially not in older patients. Regard-
less of this bias and even though the underlying missing data 
pattern could affect the strength of the relative bias and range 
of bias within both MI approaches, across all subsequently 

created missing data scenarios imputing individual items 
were consistently more precise and accurate than the alter-
native aggregate imputation, answering the main research 
question of this analysis.

Furthermore, the number of participants in the complete 
dataset was moderate, but unequally distributed between the 
intervention and the control group, especially due to a higher 
drop out of moderately and severely functionally impaired 
patients in the control group. Therefore, the controls were 
less likely functionally impaired and had less likely missing 
values, especially for the resource utilization values. Even 
though the MI procedure was implemented separately by 
randomization treatment allocation, estimates of the control 
group due to the lower number of patients or the intervention 
group due to the higher number of initially missing values 
could more likely be biased, leading naturally to deviating 
incremental cost and QALY.

Also, missing data scenarios were generated randomly 
but still in accordance with the determined missing data 
mechanism. Therefore, missing data could occur for only 
one or for several HRQoL or cost items. The average number 
of items missing per case could affect the estimated incre-
mental cost-effectiveness ratios, and thus the conclusion 
about the performance of both MI approaches. The missing 
data scenarios of this simulation study resulted in missing 
data patterns that have only a few items per case were miss-
ing, not a complete missing of all items. In cases were all 
items of the questionnaires were missing, both approached 
would perform equally. Therefore, presented results are only 
generalizable for data with some items missing, rather than 
for data sets were mainly complete cases were missing. For 
cases where all items are missing, both MI approaches would 
perform comparably. Further research is needed to evaluate 
how many items have to be missing that the individualized 
imputation is beneficial compared to the aggregated imputa-
tion approach or to be more precisely, for how many items 
missing both MI approaches perform equally.

In addition, we used different multiple regression models 
and assumptions for each variable, which could furthermore 
influence the differences in incremental estimates in both 
MI approaches.
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