
Vol.:(0123456789)

AStA Advances in Statistical Analysis
https://doi.org/10.1007/s10182-024-00495-1

1 3

ORIGINAL PAPER

Using sequential statistical tests for efficient
hyperparameter tuning

Philip Buczak1 · Andreas Groll1 · Markus Pauly1,2 · Jakob Rehof3 ·
Daniel Horn1,2

Received: 29 November 2022 / Accepted: 9 February 2024
© The Author(s) 2024

Abstract
Hyperparameter tuning is one of the most time-consuming parts in machine learn-
ing. Despite the existence of modern optimization algorithms that minimize the
number of evaluations needed, evaluations of a single setting may still be expen-
sive. Usually a resampling technique is used, where the machine learning method
has to be fitted a fixed number of k times on different training datasets. The respec-
tive mean performance of the k fits is then used as performance estimator. Many
hyperparameter settings could be discarded after less than k resampling iterations if
they are clearly inferior to high-performing settings. However, resampling is often
performed until the very end, wasting a lot of computational effort. To this end, we
propose the sequential random search (SQRS) which extends the regular random
search algorithm by a sequential testing procedure aimed at detecting and eliminat-
ing inferior parameter configurations early. We compared our SQRS with regular
random search using multiple publicly available regression and classification data-
sets. Our simulation study showed that the SQRS is able to find similarly well-per-
forming parameter settings while requiring noticeably fewer evaluations. Our results
underscore the potential for integrating sequential tests into hyperparameter tuning.

 * Philip Buczak
 buczak@statistik.tu-dortmund.de

 Andreas Groll
 groll@statistik.tu-dortmund.de

 Markus Pauly
 pauly@statistik.tu-dortmund.de

 Jakob Rehof
 jakob.rehof@tu-dortmund.de

 Daniel Horn
 dhorn@statistik.tu-dortmund.de

1 Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany
2 Research Center Trustworthy Data Science and Security, UA Ruhr, 44227 Dortmund, Germany
3 Department of Computer Science, TU Dortmund University, 44227 Dortmund, Germany

http://orcid.org/0000-0001-6980-8110
http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-024-00495-1&domain=pdf

 P. Buczak et al.

1 3

Keywords Machine learning · Hyperparameter tuning · Sequential testing

1 Introduction

Whether for sales prediction, predictive maintenance, sports forecasting, treat-
ment recommendation, neuroimaging analysis or creativity research, machine
learning (ML) models are widely used (Adewumi and Akinyelu 2017; Bohanec
et al. 2017; Huang et al. 2020; Groll et al. 2019; Susto et al. 2014; Hahn et al.
2022; Buczak et al. 2022). Just as there is a plethora of application problems,
there is an ever growing variety of ML algorithms aiming to provide best possible
solutions. Thus, the main issue of applying ML often is identifying the algorithm
which performs best at the task at hand. The fact that most ML methods have
a set of meta parameters (also called hyperparameters) whose optimal choice is
problem-specific aggravates the problem of algorithm selection.

Usually, problem-optimal choices for hyperparameters are derived from a hyper-
parameter tuning process aimed at finding parameter settings that minimize the gen-
eralization error, i.e., the expected loss on unknown data from the same data gen-
erating process. However, the true generalization error is unknown and can only be
estimated, e.g., using resampling methods such as k-fold cross-validation or boot-
strapping. Thus, minimizing the generalization error is restricted to minimizing an
(unbiased) estimate of it. In theory, this poses a stochastic optimization problem,
which in practice is commonly approached through heuristically comparing a set
of candidate settings from a pre-specified parameter search space. These settings
can either be generated by grid or random search (Bergstra and Bengio 2012). The
candidate configuration which minimizes the resampling error then results as the
optimal setting. Within the context of stochastic optimization, the resampling error
is equivalent to the stochastic target function and the resampling strategy ultimately
describes a repeated evaluation in the same parameter.

A key advantage of the random search algorithm is the possibility of parallel-
izing model evaluations. However, single evaluations within the resampling can
still lead to high computational efforts depending on the learner and the dimen-
sionality of the dataset. As such, it would be desirable to stop the evaluation pro-
cess for parameter settings whose inferior quality is already apparent after a few
evaluation steps. An early stopping could prevent redundant computations and
potentially save a lot of run time.

The idea of early stopping is also at the core of statistical sequential test the-
ory. Contrary to regular statistical testing with a fixed sample size n, sequential
tests dictate a process in which the decision to reject or accept the null hypothe-
sis, or to continue sampling is determined at each sampling step anew. Therefore,
sequential tests are especially useful when sampling is costly and it desirable to
form a decision based on as few observations as possible. In addition, sequential
tests control both, type I and II error, thus allowing for equal treatment of H0 and
H1 , whereas regular statistical tests only allow for rejecting H0 (Siegmund 1985).

1 3

Using sequential statistical tests for efficient…

The aim of our work is to investigate the feasibility of employing sequential test-
ing during hyperparameter tuning to save evaluations and computational time. In
particular, we aim to answer the following two research questions:

1. Can a proper sequential test be constructed for use in the context of hyperparam-
eter tuning?

2. How does such an approach perform in comparison to a regular random search?

We see studying these two questions as a crucial first step that may open many fur-
ther avenues of making the hyperparameter tuning process more efficient.

In the next section, we will give a brief introduction to the general ML process
and how hyperparameter tuning is incorporated. We introduce the datasets and ML
algorithms used in our work in Sect. 3. In Sect. 4, we determine a suitable sequential
test and use it to extend the regular random search in Sect. 5. We compare our algo-
rithm and the regular random search in a simulation study on multiple datasets in
Sect. 6. Finally, we review and discuss our findings in Sect. 7.

2 Machine learning and hyperparameter tuning

A basic object of ML is modeling a functional mapping f ∶ X → Y between a vec-
tor of p features X = (X1,… ,Xp)

T and a target variable Y. Since the true f is usually
unknown, a ML method is used to determine an approximation f̂ that describes f as
well as possible. In the case of supervised learning this is done based on an anno-
tated dataset consisting of n pairs of observations of the form

(

xi, yi
)

i=1,…,n
 , where xi

are the feature values of the ith observation and yi is the corresponding value of the
(true) target variable. The goodness of f̂ is assessed using a loss function L(y, f̂ (x)) .
In the regression case, the squared (also called Gaussian) loss function is a common
choice while the 0–1 loss function is commonly used in the classification context
(Hastie et al. 2009).

The principal goal is to determine f̂ such that it minimizes the generalization
error (i.e., the expected loss over all possible data samples). However, since the dis-
tributions of X and Y are usually unknown and only finitely many data points are
available, f̂ is instead obtained by optimizing the estimated generalization error.
Because one is generally interested in predicting unknown data as best as possible,
the original dataset is usually split into a training and test set. The training set is then
used for fitting the model, while the test set is used for evaluating the performance
of the model, i.e. for estimating generalization error. Theoretically, it would be pos-
sible to use the same data to train and test the model. However, such an approach is
problematic because the model is determined to explain the training data as well as
possible. Thus, learning and validating on the same data leads to biased, too opti-
mistic error rates (overfitting; Hastie et al. 2009). There exists a variety of differ-
ent resampling techniques to generate training and test sets from an original dataset.
Commonly used techniques include k-fold cross-validation (Hastie et al. 2009) and
bootstrapping (Efron and Tibshirani 1993).

 P. Buczak et al.

1 3

When using the squared and 0–1 loss functions, the generalization error is esti-
mated on the test set consisting of ntest observation pairs

(

x
test
i

, ytest
i

)

i=1,…,ntest
 via the

mean squared error (MSE) and mean misclassification error (MMCE) performance
measures, respectively, where

An additional challenge in machine learning is that many learning methods have
additional hyperparameters � ∈ Λ besides the internally determined model param-
eters, which must be specified a priori and whose optimality is problem-specific.
Thus, for a fixed f̂

�
 the original optimization problem is expanded by an outer opti-

mization problem, which as before can only be approximated by

This optimization problem is also called hyperparameter tuning problem. Many
algorithms have been developed to solve this problem. All such tuning algorithms
work in a similar way: a set Λ̃ ⊂ Λ of multiple hyperparameter settings is proposed,
the respective values of the loss function are estimated using a resampling proce-
dure and finally, the value 𝜆 ∈ Λ̃ leading to the smallest loss is used. The strategy
of choosing the set Λ̃ , however, differs for most optimization algorithms. While ran-
dom and grid search operate on a single large batch, population-based methods such
as evolutionary algorithms (EA) keep a population of parameter configurations that
is continually optimized. This is achieved by recombining or mutating (i.e. locally
transforming) already existing configurations into new candidates or sampling from
them from distributions updated via the current population members. A popular
EA commonly used for general black-box optimization problems is the covariance
matrix adaptation evolution strategy (CMA-ES; Hansen and Ostermeier 1996)
which has also been adapted specifically for the hyperparameter tuning of SVMs
(Friedrichs and Igel 2005) and neural networks (Loshchilov and Hutter 2016). For
further uses of EAs in hyperparameter tuning, see, e.g., Bochinski et al. (2017) and
Young et al. (2015).

The class of sequential model-based optimization (SMBO, also known as Bayes-
ian optimization) uses two components for optimizing parameter configurations: a
probabilistic surrogate model and an acquisition function that is usually cheap to
evaluate. The surrogate model is updated iteratively based on previous evaluations,
while the acquisition function determines suitable new candidates for evaluation. A
popular choice are Gaussian processes for the surrogate model combined with the
expected improvement as acquisition function (Feurer et al. 2019). As alternative
to Gaussian processes, neural networks (Snoek et al. 2015), random forests (Hut-
ter et al. 2011) and tree parzen estimators (Bergstra et al. 2011) are used as well.
Similar to SMBO, Monte-Carlo tree search (MCTS; Kocsis and Szepesvári 2006)
has also been applied to hyperparameter tuning (Rakotoarison et al. 2019). MCTS

MSE =
1

ntest

ntest
∑

i=1

(

ytest
i

− f̂ (xtest
i

)
)2

and MMCE =
1

ntest

ntest
∑

i=1

1ytest
i

≠f̂ (xtest
i

).

�
⋆ = argmin

𝜆∈Λ

1

ntest

ntest
∑

i=1

L
(

ytest
i

, f̂𝜆(x
test
i

)
)

.

1 3

Using sequential statistical tests for efficient…

combines the classic tree search with ideas from Reinforcement Learning, exploring
its search space and iteratively focusing on the most promising regions.

Another commonly employed approach in hyperparameter tuning is the reduction
of evaluations, e.g., by eliminating suboptimal parameter configurations. An early
example of this are the Hoeffding Races (Maron and Moore 1993), in which bounds
(resembling a confidence interval) are placed around the error estimates and itera-
tively updated. If the lower error bound of one model is greater than the upper error
bound of at least another model, the former model is discarded. The concept of rac-
ing has been modified and extended, for example in Domingos and Hulten (2001)
or Mnih et al. (2008). Another popular variation is the F-Race algorithm (Birat-
tari et al. 2002), which eliminates bad parameter configurations via the Friedman
test. The Iterated F-Race algorithm (Birattari et al. 2010) and its extension, Iterated
Racing (López-Ibáñez et al. 2016), added a population component to the original
F-Race algorithm. Similar to us, Krueger et al. (2015) also employ a sequential test
for detecting and eliminating weak parameter configurations early. However, their
sequential test procedure does not operate directly on the error estimates but on indi-
cators derived from them. Further details on existing hyperparameter optimization
algorithms can be found in the review papers by Bergstra et al. (2011), and Yu and
Zhu (2020).

3 Datasets and machine learning algorithms

Throughout this work, we benchmarked the performance of multiple ML methods
on five regression and five binary classification datasets, see Table 1. The dataset
Insurance was taken from Stednick (2020), Diamond from Wickham (2016), and
Wage from James et al. (2017). The remaining datasets were obtained from the
OpenML platform (Vanschoren et al. 2013). The original Diamond dataset contains
54,000 observations. In our analysis, we used a random sample of 5% of the original
data.

As ML algorithms, we used decision trees from the R-package rpart (Therneau
and Atkinson 2019), random forest from the ranger package (Wright and Ziegler
2017), XGBoost from the xgboost package (Chen et al. 2020), as well as elastic
net linear regression from the glmnet package (Friedman et al. 2010). Table 2 lists
the considered hyperparameters and corresponding search spaces for each learning
method. Here, for decision trees (rpart), cp denotes the complexity parameter
which specifies by how much a split must contribute to the improvement of the fit so
that the corresponding sub-tree is not pruned. Moreover, the parameter maxdepth
denotes the maximum tree depth. For the random forest, mtry describes the num-
ber of variables randomly drawn as split candidates, and sample.fraction
and replace describe the fraction of observations used for each tree model and
whether or not they are drawn with replacement. For XGBoost, nrounds denotes
the maximum number of iterations, eta the learning rate, and max_depth the
maximum depth of the trees used. For the elastic net linear regression, alpha regu-
lates the mixture parameter of the elastic net regularization and lambda the degree

 P. Buczak et al.

1 3

Ta
bl

e
1

 D
at

as
et

s u
se

d
fo

r s
im

ul
at

io
n

stu
di

es

Ty
pe

D
at

as
et

O
bs

Fe
at

D
es

cr
ip

tio
n

Re
gr

es
si

on
B

os
to

n
50

6
13

M
ed

ia
n

ho
us

in
g

pr
ic

es
 in

 th
e

B
os

to
n

ar
ea

 b
as

ed
 o

n
ne

ig
hb

or
ho

od
 c

ha
ra

ct
er

ist
ic

s
In

su
ra

nc
e

13
38

6
M

ed
ic

al
 in

su
ra

nc
e

ch
ar

ge
s b

as
ed

 o
n

pa
tie

nt
s

D
ia

m
on

d
27

00
9

D
ia

m
on

d
pr

ic
es

 b
as

ed
 o

n
cu

t c
ha

ra
ct

er
ist

ic
s

W
ag

e
30

00
8

W
ag

es
 b

as
ed

 o
n

so
ci

o-
ec

on
om

ic
 in

fo
rm

at
io

n
C

on
cr

et
e

10
30

8
C

on
cr

et
e

co
m

pr
es

si
ve

 st
re

ng
th

 b
as

ed
 o

n
in

gr
ed

ie
nt

s
C

la
ss

ifi
ca

tio
n

G
er

m
an

 c
re

di
t

10
00

20
C

re
di

t r
is

k
ba

se
d

on
 c

us
to

m
er

 a
ttr

ib
ut

es
Ph

on
em

e
54

04
5

D
ist

in
ct

io
n

of
 n

as
al

 a
nd

 o
ra

l s
ou

nd
s b

as
ed

 o
n

fr
eq

ue
nc

y
ch

ar
ac

te
ris

tic
s

Pi
m

a
In

di
an

s
76

8
8

D
ia

be
te

s s
ta

tu
s i

n
in

di
ge

no
us

 p
op

ul
at

io
n

ba
se

d
on

 d
ia

gn
os

tic
 c

ha
ra

ct
er

ist
ic

s
C

an
ce

r
56

9
30

C
an

ce
r r

ec
og

ni
tio

n
ba

se
d

on
 c

ha
ra

ct
er

ist
ic

s o
f a

 fi
ne

 n
ee

dl
e

as
pi

ra
te

 o
f a

 b
re

as
t m

as
s

Io
no

sp
he

re
35

1
34

D
ist

in
ct

io
n

of
 ’b

ad
’ a

nd
 ’g

oo
d’

 ra
da

r r
et

ur
ns

 in
 th

e
io

no
sp

he
re

 w
.r.

t.
fr

ee
 e

le
ct

ro
ns

1 3

Using sequential statistical tests for efficient…

of penalization. For the remaining hyperparameters of the individual methods,
which are not subject of the optimization, the respective default settings were used.

4 Determining an appropriate sequential test

The main goal of our modified random search is to reduce the number of
required evaluation steps while obtaining high performing solutions. As comput-
ing resampling errors can be viewed as a sequential process, we regard sequen-
tial statistical tests as a natural fit for this kind of situation. For a general over-
view on sequential statistical tests see, e.g., Ghosh (1970) and Siegmund (1985).
An essential class of sequential tests are sequential probability ratio tests
(SPRT; Wald 1945). For real parameters 𝜃0 < 𝜃1 , the classic form of a SPRT for
H0 ∶ 𝜃 = 𝜃0 vs. H1 ∶ 𝜃 = 𝜃1 with 𝜃0 < 𝜃1 can be described as follows: having sam-
pled observation un in step n = 1, 2,… , calculate the test statistic

where fn
(

⋅ ;�i
)

 denotes the density function corresponding to �i, i = 0, 1 . Then,

 (i) if Zn < b , terminate and accept H0,
 (ii) if Zn > a , terminate and accept H1,
 (iii) if b < Zn < a , continue and sample a new observation un+1,

where b, a ∈ ℝ, b < a define the continuation region [b, a] of the test and are cho-
sen such that the type I and II errors are controlled for pre-specified � and � values.

Many sequential tests are based on parametric assumptions. However, in the con-
text of hyperparameter tuning it is not evident what kind of parametric properties
can be assumed for the error estimates. As such, this necessitated an analysis of
resampling error distributions beforehand to derive at least approximate parametric

Zn ∶= ln
fn
(

u1,… , un;�1
)

fn
(

u1,… , un;�0
) ,

Table 2 Hyperparameters and search spaces used for tuning experiments

Method R package Hyperparameter Support Search space

Decision Tree rpart cp [0, 1] [0, 0.5]
maxdepth {1,… , 30} {1,… , 30}

mtry {1,… , #Features} {1,… , #Features}

Random Forest ranger replace {TRUE, FALSE} {TRUE, FALSE}
sample.fraction [0, 1] [0.5, 1]
nrounds {1, 2,…} {2,… , 100}

XGBoost xgboost eta [0, 1] [0.01, 1]
max_depth {0, 1,…} {1,… , 15}

Elastic Net glmnet lambda [0,∞) 2x with x ∈ [−15, 15]

alpha [0, 1] [0, 1]

 P. Buczak et al.

1 3

properties. Thus, we first performed a small simulation study in which we fit sev-
eral common distribution families via standard maximum-likelihood estimation to
empirical resampling error distributions. We obtained the latter by benchmarking
the ML methods from Section 3 to 1 000 bootstrap samples of the five regression
and classification datasets, respectively. The goodness of the respective fits were
determined with the Cramér-von-Mises (CvM) criterion (see e.g., Stephens 1974)
using the fitdistrplus R-package (Delignette-Muller and Dutang 2015). The
purpose of this small simulation study was not to obtain definitive conclusions about
the distribution of error estimates, but rather to gain an indication which distribu-
tion families are suitable to be used for our heuristic method. The distribution fami-
lies we considered here are the normal, gamma and Weibull distributions, as well as
variations of these in the form of the log-normal, log-gamma, inverse gamma and
inverse Weibull distributions.

One problem that arises when using many of these distributions is that, as in the
case of the logarithmic and inverse distribution families, the respective support does
not contain the value 0 at all or, as in the case of the gamma distribution, has a cor-
responding density value of 0. This is particularly problematic in the classification
context, since errors of 0 are not uncommon for certain combinations of a (sub-)
dataset and a learner. An obvious solution is to shift the data by an additive constant
c > 0 . However, it must be noted that the distributions in question are generally not
invariant to such shifts, i.e., the distribution family is usually not preserved. There-
fore, the goodness of fit can sometimes depend strongly on the choice of c, especially
when the observed errors tend to be small, as is the case in classification, where the
errors range between 0 and 1. To account for this, the fit of the distribution families
was calculated for different shift sizes of c ∈ {0.001, 0.01, 0.1, 0.15, 0.25, 0.5, 1, 1.5} ,
and only the results for the best c are reported for each distribution family. For the
regression context, this problem is less relevant, since on one hand, MSE values of
0 only occur in pathological examples and on the other hand, MSE values usually
have a higher magnitude compared to MMCE values and are thus less affected by
small additive shifts.

Figure 1 shows the CvM values achieved by the different distribution families in
the regression case. Smaller CvM values indicate a better fit. Apart from the two
Weibull families and the normal distribution, a relatively homogeneous picture
emerged.

Similar results were achieved in the classification context as shown in Fig. 2.
These findings are supported when looking at other criteria such as the Kolmogo-
rov–Smirnov and Anderson–Darling criteria (results not shown). Thus, regarding
the distributional fit, the choice of the distribution family is not crucial as long as
one chooses from the set of generally well-performing distribution families.

However, out of these distribution families, the log-normal family offers two
notable advantages. First, it allows performing a location test based on only one
parameter since the median of a log-normally distributed variable only depends on
� . Second, it allows for applying a sequential test based on a normality assump-
tion after a logarithmic transformation of the original data. Therefore, we decided to
assume a log-normal distribution for designing our sequential random search. How-
ever, due to the presence of a nuisance parameter (�2), regular SPRTs could not be

1 3

Using sequential statistical tests for efficient…

Fig. 1 Cramér–von-Mises criterion values for different distribution classes in the regression case

Fig. 2 Cramér–von-Mises criterion values for different distribution classes with individual additive shifts
c in the classification case

 P. Buczak et al.

1 3

applied. Thus, we used a sequential likelihood ratio test (SLRT) proposed by Ghosh
(1970) for the sequential Behrens-Fisher-problem. Here, one considers two normally
distributed i.i.d. random variables U ∼ N(�U , �

2
U
) and W ∼ N(�W , �

2
W
) , where all

parameters are unknown and one wants to test

with respective type I error rate � and type II error rate � . The continuation region of
the test is given by

where ū(n) and w̄(n) denote the means and s2
u(n)

 and s2
w(n)

 the empirical variances of the
respective sample including all observations up to n. Since it holds that

for ln(Ũ) ∼ N(𝜇U , 𝜎
2
U
) and ln(W̃) ∼ N(𝜇W , 𝜎

2
W
) , the test above is practically a test

for the ratio of the medians of the two loss distributions (assuming log-normality) in
the context of regression where no additive shift of the resampling errors is needed.
In theory, one could also use a two-stage procedure instead of the SLRT, where the
variances are estimated in a first step followed by the sequential test in the second
step. However, this approach would require a pre-specified number of evaluations
for the variance estimation alone. To keep the number of evaluation steps as small as
possible, we thus opt for the SLRT.

5 Integrating the sequential test into random search

The general idea now is to combine the regular random search algorithm with the
benefits of early stopping from the SLRT. In each iteration, a single new random
hyperparameter setting is proposed and used to estimate the corresponding value
of the loss function using a resampling strategy. However, instead of using a fixed
number of resampling iterations, the resampling is continued until a statistically
sound decision can be made. The new setting is compared to the current best set-
ting until a significant difference between these two settings is found. The winner
is kept as the new best setting. To save computational effort, evaluation results for
a specific candidate are reused from previous comparisons if available. To pre-
vent infinite run times, a maximum number of evaluations is defined. If the test
cannot make a decision until this point, the setting with the smallest estimated
loss function value is used, or in case of a tie, a winner is chosen at random.
Pseudocode describing this sequential random search (SQRS) procedure in detail
can be found in Algorithm 1. Here, the function generateConfig() can be any
function that generates a new hyperparameter setting. In the most simple case,
uniform sampling in the search space can be used, resulting in a random search

H0 ∶ 𝛾 ∶= 𝜇U − 𝜇W = 𝛾0 vs. H1 ∶ 𝛾 = 𝛾1 with 𝛾0, 𝛾1 ∈ ℝ, 𝛾0 < 𝛾1,

−
s2
u(n)

+ s2
w(n)

𝛾1 − 𝛾0
ln

1 − 𝛼

𝛽
< n

(

ū(n) − w̄(n) −
𝛾0 + 𝛾1

2

)

<
s2
u(n)

+ s2
w(n)

𝛾1 − 𝛾0
ln

1 − 𝛼

𝛽
,

𝜇U − 𝜇W = 𝛾0 ⇔
exp(𝜇U)

exp(𝜇W)
= exp(𝛾0) ⇔

med(Ũ)

med(W̃)
= exp(𝛾0),

1 3

Using sequential statistical tests for efficient…

algorithm. However, it would also be possible to use more advanced optimiza-
tion algorithms instead. The function evaluateConfig() evaluates the perfor-
mance of a single hyperparameter setting using an arbitrary resampling proce-
dure, e.g., a single bootstrap iteration. Performance values already obtained for
opt.config() are reused to save additional evaluations. As termination crite-
rion, one can for example use a maximum number of settings to be generated or a
maximum computation time.

Apart from the maximum number of evaluations max.iter, the SQRS procedure
possesses two hyperparameters, � and � , that are inherited from the sequential
test and must be specified in advance. Both modulate how conservative SQRS
is w.r.t. discarding inferior configurations and thus, both parameters balance the
trade-off between preciseness and computational gain. Originally, the sequential
test contains two significance levels, � and � , as well as the mean differences �1
and �0 that are tested for. Though one could specify all four parameters separately
for SQRS, it appears most natural to test symmetrically, i.e., � = � and �1 = −�0 .

 P. Buczak et al.

1 3

As such, the SQRS requires the input of � and � , and internally sets � = � , �1 = � ,
and �0 = −� when using the sequential test.

6 Simulation study

We will now compare SQRS with a regular random search in a simulation study
designed to ensure maximum comparability between the two algorithms. Using the
same learners, parameter search spaces and datasets as in Tables 1–2, we generated
1000 random configurations of hyperparameters for each combination of learner
and dataset, and validated their performance using a bootstrap resampling with ten
iterations. To make the resampling results comparable, we used the same resam-
pling instance for both algorithms. We performed 100 replications. For the random
search, we simply selected the parameter setting leading to the lowest mean resam-
pling error (i.e., MMCE for classification or MSE for regression). For SQRS, we did
not generate new random hyperparameter settings, but instead operated on the same
set of parameter configurations as for the regular random search. As a consequence,
SQRS could not find a better setting than the regular random search. Thus, for this
simulation study, we were interested what the performance loss is when using SQRS
and what computational gain in terms of saved evaluations could be achieved. The
performance loss was measured by computing the relative percentage difference

where errsqrs is the resampling error obtained by the SQRS candidate and errrs
denotes the resampling error achieved by the random search solution. Using the
RPD as the performance loss measure helps comparing the performance loss over
different datasets as it takes the scale of the error values into account. As for its
interpretation, an RPD of, e.g., 1% would imply that the SQRS mean resampling
error is 1% larger than the random search mean resampling error.

In our simulation, we considered four SQRS settings A-D for the regression
case which varied in the choice of the SQRS parameters � ∈ {0.01, 0.05} and
� ∈ {0.1, 0.2} . In the classification case, we considered SQRS settings E-H where
� ∈ {0.01, 0.05} and � ∈ {0.01, 0.02} . The choices for � were derived heuristically
from a small simulation study that analyzed the power of the sequential test using
the datasets and learners described above (results omitted here). In the regression
context, the choices for � roughly correspond to testing whether the ratio of the
two resampling error distribution medians differ by 10% or 20%, respectively. Note
that this is not an exact relation due to the exponentiation (e.g., e−0.1 = 0.904 and
e0.1 = 1.105), but it can be thought of as an intuition for the meaning of � . Due to the
additive shift needed for classification errors, � is not as easily interpretable as in the
regression context. As specified by the resampling instance, the maximum number
of evaluations was max.iter = 10.

Table 3 displays the mean RPD and its standard deviation (sd) w.r.t. the different
parameter settings when aggregated over datasets and learners. It can be seen that

RPD =
errsqrs − errrs

errrs
⋅ 100%,

1 3

Using sequential statistical tests for efficient…

the performance loss suffered from using SQRS was generally low. In the regression
case, mean RPDs ranged between 0.10% (sd: 0.61%) and 0.26% (sd: 1.32%), i.e., the
MSE reached by SQRS was at worst 0.26% larger (on average) compared to regular
random search. As expected, the mean RPD decreased the smaller � and � were cho-
sen. This also held for the standard deviation of the RPD. In the classification case,
the RPDs were slightly larger ranging from 0.50% (sd: 1.86%) to 1.30% (sd: 3.47%),
and also displayed more variability when compared to the regression results. At the
median, the RPD was 0 in all scenarios. When looking at the percentage of saved
evaluations, SQRS on average saved between 54.74% (sd: 22.81%) and 64.01% (sd:
19.67%) of evaluations in the regression case and between 46.54% (sd: 23.09%) and
66.47% (sd: 14.30%) in the classification case. Thus, SQRS could on average cut the
evaluations needed in all but one scenario by at least a half. Stricter choices for � and
� led to a decrease in mean evaluations saved and to an increased variability. A pos-
sible explanation for the latter could be that for parameter configurations with simi-
lar performance, SQRS takes more evaluations before coming to a decision (due to
the lower tolerance for differences and/or errors) while for parameter configurations
with distinctly different performances, SQRS can still discard the inferior candidate
quickly. As such, this would lead to larger variability regarding the evaluation steps
required.

When stratifying the performance loss by dataset and learner, Table 4 shows that
the results were somewhat heterogeneous, especially in the classification case. For
space reasons, we only show the most liberal (i.e., A for regression and E for clas-
sification) and most conservative settings (i.e., D for regression and H for classi-
fication) here. We refer to the Supplement for result tables for all SQRS settings.
For regression, SQRS performed best on the Insurance and Wage datasets incur-
ring almost no performance loss in most scenarios. In the classification context, the
performance loss was slightly higher but still low overall. Here, SQRS performed
best on the German Credit, Phoneme and Pima Indians datasets. For the Ionosphere
and Cancer datasets, the mean RPDs and respective standard deviations were nota-
bly higher than for the other datasets. Regarding the learners, the lowest mean RPD
was generally achieved for decision trees followed by elastic net and random forest.
While for these three learners the mean RPD was seldomly larger than 1%, the mean

Table 3 Mean RPD and percentage of saved evaluations (standard deviations in parentheses) obtained by
SQRS for different specifications of � and � aggregated over datasets and learners

Type Setting � � RPD (sd) % Evaluations saved (sd)

Regression A 0.2 0.05 0.26 (1.32) 64.01 (19.67)
B 0.2 0.01 0.17 (0.76) 60.87 (20.89)
C 0.1 0.05 0.13 (0.68) 58.83 (21.61)
D 0.1 0.01 0.10 (0.61) 54.74 (22.81)

Classification E 0.02 0.05 1.30 (3.47) 66.47 (14.30)
F 0.02 0.01 0.86 (2.56) 59.73 (18.07)
G 0.01 0.05 0.69 (2.24) 55.27 (20.13)
H 0.01 0.01 0.50 (1.86) 46.54 (23.09)

 P. Buczak et al.

1 3

RPDs for XGBoost were around 1–2% more often and reached up to 4.16% on the
Cancer dataset in the liberal setting. Overall, when regarding the median RPD, val-
ues of 0 were achieved in 72 out of the 80 combinations of dataset, SQRS setting
and learner.

Table 5 shows the mean percentage of evaluations saved by SQRS stratified by
dataset and learner. Overall, the results here were quite heterogeneous. Regard-
ing the learners, SQRS could save evaluations the most when using decision trees
(between 66.31% and 79.11% in the strict regression setting, and between 39.21%
and 78.65% in the strict classification setting) and XGBoost (between 66.31% and
79.11% in the strict regression setting, and between 39.21% and 78.65% in the strict
classification setting). For the liberal settings, the mean percentages of saved evalu-
ations were higher, respectively. The least evaluations could be saved for elastic net
in the regression case where for the most strict setting between 17.87% and 46.48%
of the possible evaluations were saved. Interestingly, for classification, the results
for elastic net were more in line with the results for the other learners. In the strict
classification setting, elastic net could on average even save the most evaluations as
the other three learners reacted more sensitively to the change from the liberal to the
strict setting. Overall, we find the results from the simulation quite promising as the

Table 4 Mean RPD (standard deviations in parentheses) w.r.t. datasets, learners and SQRS settings for
regression (A, D) and classification (E, H)

Dataset Setting RPD (sd)

Decision tree Random forest XGBoost Elastic Net

Boston A 0.09 (0.30) 0.46 (1.41) 1.08 (2.39) 0.05 (0.21)
D 0.08 (0.27) 0.10 (0.34) 0.38 (0.86) 0.02 (0.15)

Insurance A 0.19 (0.56) 0.03 (0.14) 0.11 (0.45) 0.01 (0.04)
D 0.07 (0.42) 0.01 (0.10) 0.03 (0.15) 0.00 (0.01)

Diamond A 0.01 (0.07) 0.22 (0.54) 0.76 (1.33) 0.66 (4.22)
D 0.01 (0.07) 0.07 (0.18) 0.44 (1.35) 0.20 (1.29)

Wage A 0.18 (0.47) 0.01 (0.03) 0.04 (0.10) 0.00 (0.01)
D 0.11 (0.36) 0.00 (0.02) 0.02 (0.08) 0.00 (0.01)

Concrete A 0.05 (0.30) 0.19 (0.44) 0.99 (1.99) 0.04 (0.20)
D 0.00 (0.00) 0.12 (0.37) 0.36 (1.52) 0.01 (0.05)

German credit E 0.58 (1.34) 0.54 (0.85) 1.11 (1.51) 0.39 (0.78)
H 0.16 (0.68) 0.16 (0.47) 0.38 (0.80) 0.09 (0.24)

Phoneme E 0.29 (0.70) 0.66 (0.65) 1.24 (1.02) 0.03 (0.07)
H 0.09 (0.34) 0.32 (0.49) 0.51 (0.78) 0.01 (0.06)

Pima Indians E 0.77 (1.71) 0.49 (0.79) 0.86 (1.47) 0.40 (1.06)
H 0.26 (1.02) 0.14 (0.35) 0.28 (0.85) 0.17 (0.78)

Cancer E 0.71 (2.23) 3.36 (4.68) 4.16 (5.96) 4.71 (9.46)
H 0.11 (0.41) 1.25 (2.60) 1.47 (3.67) 2.34 (5.10)

Ionosphere E 0.58 (1.82) 1.53 (4.55) 2.53 (3.85) 1.06 (2.17)
H 0.02 (0.14) 0.62 (2.08) 0.98 (2.28) 0.53 (1.41)

1 3

Using sequential statistical tests for efficient…

performance loss seemed negligible in many scenarios, while at least 20% and up to
80% of evaluations could be saved by SQRS.

7 Discussion

In this work, we analyzed the feasibility of employing sequential statistical tests
during the hyperparameter tuning process to save computational effort. We aimed
at answering two main research questions. The first one pertained to the construc-
tion of a suitable sequential test for hyperparameter tuning. To study what kind of
approximate parametric assumption could be made for the resampling error dis-
tributions, we performed a small simulation study in which we fitted multiple dif-
ferent distribution families to empirical resampling error distributions. Overall,
typical flexible distribution families achieved comparably good fits: the gamma, the
inverse gamma, the log-gamma and the log-normal distribution. We recognize that
this approach was purely empirical, and no definitive conclusions should be derived
from it. We decided for this approach to limit the scope of this work which serves
more as a proof of concept for our heuristic method.

Table 5 Mean percentage of evaluations (standard deviations in parentheses) saved by SQRS w.r.t. data-
sets, learners and SQRS settings for regression (A, D) and classification (E, H)

Dataset Setting % Evaluations saved (sd)

Decision tree Random forest XGBoost Elastic Net

Boston A 76.06 (3.90) 47.38 (24.94) 64.70 (12.77) 46.21 (10.50)
D 66.31 (10.77) 23.69 (24.04) 42.13 (17.96) 39.22 (7.39)

Insurance A 78.32 (1.34) 68.28 (10.45) 77.92 (2.23) 24.39 (21.11)
D 75.52 (3.69) 50.25 (19.84) 73.30 (6.71) 17.87 (15.59)

Diamond A 79.43 (0.38) 61.19 (15.62) 76.06 (4.55) 37.41 (12.79)
D 78.56 (0.81) 42.90 (20.93) 66.13 (11.46) 29.79 (10.58)

Wage A 78.89 (0.88) 71.76 (5.19) 76.13 (3.12) 39.61 (10.69)
D 76.52 (3.74) 63.62 (10.40) 71.95 (5.23) 35.21 (7.61)

Concrete A 79.65 (0.25) 69.20 (11.84) 76.19 (3.62) 51.45 (11.42)
D 79.11 (0.75) 51.03 (20.88) 65.17 (9.85) 46.48 (10.80)

German Credit E 67.91 (12.17) 58.90 (17.07) 67.92 (10.07) 68.38 (10.31)
H 42.43 (25.60) 29.53 (19.38) 38.45 (18.21) 52.17 (14.04)

Phoneme E 79.49 (0.32) 77.50 (3.81) 78.65 (1.71) 66.97 (6.78)
H 78.65 (0.81) 67.14 (11.70) 72.61 (6.15) 61.87 (7.73)

Pima Indians E 65.96 (9.61) 55.27 (19.39) 69.47 (9.30) 62.55 (12.28)
H 39.63 (14.93) 23.18 (19.38) 44.64 (18.20) 51.25 (11.05)

Cancer E 71.34 (7.91) 64.55 (15.95) 67.55 (13.83) 75.92 (3.81)
H 54.10 (20.58) 33.95 (23.16) 38.31 (21.39) 67.03 (7.24)

Ionosphere E 57.16 (8.69) 54.02 (21.41) 53.38 (19.80) 66.49 (8.20)
H 39.21 (12.00) 24.82 (22.66) 19.61 (16.82) 52.13 (8.93)

 P. Buczak et al.

1 3

Although multiple distribution families appeared suitable, we decided for the log-
normal family for practical reasons. Using a sequential test by Ghosh (1970), we
implemented a sequential variant of the random search (abbreviated SQRS). The
main difference between SQRS and regular random search is the early stopping pos-
sibility of the former. After each evaluation step, the error values of the two con-
figurations up to this point are compared using the sequential test procedure. When
a terminating decision (i.e., discarding one of the configurations early) cannot be
made before reaching the maximum number of permitted evaluation steps, the pro-
cedure selects the parameter configuration leading to the smaller resampling error.
Due to the sequential test, SQRS requires the input of two problem-specific hyper-
parameters � and � . Even though we were able to derive settings for both classifica-
tion and regression that worked well for our sets of data, definite recommendations
would require more research on more datasets. Ultimately, however, it also up to
the users to decide how they aim to navigate the balance between preciseness and
computational gain, and what matters more in their specific use-case. While in prin-
ciple both parameters could be tuned, their nature as parameters originating from a
statistical test would lead us to advise proceeding with caution in this regard. As for
choosing the maximum number of evaluations, we propose that when using SQRS
as a counterpart to, e.g., k-fold cross-validation, a canonical choice is given by k.
This choice could be adjusted depending on the specific situation. Choosing the
value too low may harm the method’s ability to discern differences between hyper-
parameter settings. On the other hand, finer differences can be identified by allow-
ing for a high number of maximum evaluations. However, this negatively affects the
runtime. For future work, it would be interesting to study the effect of this parameter
in more detail.

Having implemented SQRS, our focus then turned to the second research ques-
tion of how a hyperparameter tuning approach using a sequential statistical test
would perform compared to a regular random search. We performed a simulation
experiment in which SQRS and regular random search tackled the same regression
and classification problems under identical conditions. We found that by using the
sequential testing procedure instead of a full resampling, the number of evaluations
could be greatly reduced without considerable performance loss. For the regression
problems we studied, we could save between 55% and 64% of evaluations while
incurring a MSE increase between 0.10% and 0.26% on average. For classification
problems, we could save between 47% and 67% of evaluations while suffering from
a MMCE increase between 0.50% and 1.30% on average. However, a closer look
at the findings also revealed severe heterogeneity between the different learners. A
possible explanation may be that some learners react more sensitive to changes in
parameters while other learners might be more robust and display only small perfor-
mance changes. The latter would then prolong the sequential testing process as more
observations would be needed to discern small performance differences. In any case,
the discovered heterogeneity indicates that the differences between learners should
be analyzed more closely in the future.

We recognize our experiments are just a first proof of concept. Our compari-
sons were aimed at maximal comparability since both algorithms were forced to
operate under the same laboratory conditions using an identical set of candidate

1 3

Using sequential statistical tests for efficient…

settings. We are fully aware that our SQRS algorithm loses the most important
advantage of random search: the ability to use (nearly) unlimited parallel compu-
tation power. However, we believe the SQRS procedure could also be enhanced
by parallelization. One possibility could be to implement a procedure resembling
a bracket from knockout tournaments in sports competitions as depicted in Fig. 3.
For 2k different parameter configurations P1,… ,P2k to be tested, the individual
duels could be executed in a parallel fashion. Of course, the level of paralleli-
zation is less than for a default random search. Nonetheless, we also think it is
important to consider the reduced computational effort from the perspective of
sustainability. Solving a hyperparameter tuning problem using a highly parallel-
ized random search may be a simple and efficient approach. However, it is also
an approach that consumes a lot of resources (i.e., electrical power). More eco-
nomical approaches are reasonable, and we hope that our approach can contribute
here.

Ultimately, we do not view SQRS as a finished solution to the hyperparameter
optimization problem, but rather as a proof of concept that shows the promising
potential of integrating sequential statistical testing in hyperparameter tuning. At
their core, most tuning algorithms can be distilled into two main components: a
search strategy for generating new parameter settings and means of comparing
their performance. We believe that SQRS represents a novel approach for improv-
ing the latter and that it could be used for enhancing already established tuning
algorithms that include more sophisticated search strategies, e.g., MBO or EAs.
To us, this points to the next logical step for future work. Such work could then
also include an encompassing comparison study between already existing tuning
algorithms and their enhanced counterparts. As such extensions are non-trivial,
they were out of scope for this work. Overall, we believe that there remains a lot
of untapped potential in integrating sequential test procedures into hyperparam-
eter tuning that warrants further investigation in future work.

Supplementary Information The online version contains supplementary material available at https:// doi.
org/ 10. 1007/ s10182- 024- 00495-1.

Fig. 3 Exemplary parallel variant of the SQRS for parameter configurations P
1
,… ,P

2k

https://doi.org/10.1007/s10182-024-00495-1
https://doi.org/10.1007/s10182-024-00495-1

 P. Buczak et al.

1 3

Acknowledgements The authors gratefully acknowledge the computing time provided on the Linux HPC
cluster at Technical University Dortmund (LiDO3), partially funded in the course of the Large-Scale
Equipment Initiative by the German Research Foundation (DFG) as project 271512359.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest None of the authors have any conflict of interest to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Adewumi, A.O., Akinyelu, A.A.: A survey of machine-learning and nature-inspired based credit card fraud
detection techniques. Int. J. Syst. Assur. Eng. Manag. 8(2), 937–953 (2017)

Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305
(2012)

Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Shawe-Tay-
lor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Proceedings of the 24th International
Conference on Neural Information Processing Systems. NIPS’11, pp. 2546–2554, Granada (2011)

Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In:
Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation. GECCO’02, pp.
11–18, New York (2002)

Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L.,
Preuss, M. (eds.) F-Race and Iterated F-Race: An Overview, pp. 311–336. Springer, Berlin (2010)

Bochinski, E., Senst, T., Sikora, T.: Hyper-parameter optimization for convolutional neural network commit-
tees based on evolutionary algorithms. In: 2017 IEEE International Conference on Image Processing
(ICIP), pp. 3924–3928 (2017)

Bohanec, M., Borštnar, M.K., Robnik-Šikonja, M.: Explaining machine learning models in sales predictions.
Expert Syst. Appl. 71, 416–428 (2017)

Buczak, P., Huang, H., Forthmann, B., Doebler, P.: The machines take over: a comparison of various super-
vised learning approaches for automated scoring of divergent thinking tasks. J. Creat. Behav. 57, 17–36
(2022)

Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T.,
Li, M., Xie, J., Lin, M., Geng, Y., Li, Y.: Xgboost: Extreme gradient boosting. (2020). R package ver-
sion 1.0.0.2. https:// CRAN.R- proje ct. org/ packa ge= xgboo st

Delignette-Muller, M.L., Dutang, C.: fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64(4),
1–34 (2015)

Domingos, P., Hulten, G.: A general method for scaling up machine learning algorithms and its application to
clustering. In: Proceedings of the 18th International Conference on Machine Learning. ICML ’01, pp.
106–113, Williamstown (2001)

Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton (1993)
Feurer, M., Hutter, F.: In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Hyperparameter Optimization, pp.

3–33. Springer, Cham (2019)
Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate

descent. J. Stat. Softw. 33(1), 1–22 (2010)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://CRAN.R-project.org/package=xgboost

1 3

Using sequential statistical tests for efficient…

Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing 64, 107–117
(2005). Trends in Neurocomputing: 12th European Symposium on Artificial Neural Networks 2004

Ghosh, B.K.: Sequential Tests of Statistical Hypotheses. Addison-Wesley Publishing Company, London
(1970)

Groll, A., Ley, C., Schauberger, G., Eetvelde, H.V.: A hybrid random forest to predict soccer matches in inter-
national tournaments. J. Quant. Anal. Sports 15(4), 271–287 (2019)

Hahn, T., Ernsting, J., Winter, N.R., Holstein, V., Leenings, R., Beisemann, M., Fisch, L., Sarink, K., Emden,
D., Opel, N., Redlich, R., Repple, J., Grotegerd, D., Meinert, S., Hirsch, J.G., Niendorf, T., Endemann,
B., Bamberg, F., Kröncke, T., Bülow, R., Völzke, H., von Stackelberg, O., Sowade, R.F., Umutlu,
L., Schmidt, B., Caspers, S., Kugel, H., Kircher, T., Risse, B., Gaser, C., Cole, J.H., Dannlowski, U.,
Berger, K.: An uncertainty-aware, shareable, and transparent neural network architecture for brain-age
modeling. Sci. Adv. 8(1), 9471 (2022)

Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: the
covariance matrix adaptation. In: Proceedings of IEEE International Conference on Evolutionary Com-
putation, pp. 312–317 (1996)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York
(2009)

Huang, H., Pouls, M., Meyer, A., Pauly, M.: Travel time prediction using tree-based ensembles. In: Interna-
tional Conference on Computational Logistics, pp. 412–427 (2020). Springer

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm con-
figuration. In: Coello, C.A.C. (ed.) Learning and Intelligent Optimization. Springer, Berlin (2011)

James, G., Witten, D., Hastie, T., Tibshirani, R.: ISLR: Data for an Introduction to Statistical Learning with
Applications in R. (2017). R package version 1.2. https:// CRAN.R- proje ct. org/ packa ge= ISLR

Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou,
M. (eds.) Machine Learning: ECML 2006, pp. 282–293. Springer, Berlin (2006)

Krueger, T., Panknin, D., Braun, M.: Fast cross-validation via sequential testing. J. Mach. Learn. Res. 16(33),
1103–1155 (2015)

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.: The irace package: iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks. arXiv (2016).
https:// arxiv. org/ abs/ 1604. 07269

Maron, O., Moore, A.W.: Hoeffding races: Accelerating model selection search for classification and func-
tion approximation. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information
Processing Systems, vol. 6, pp. 59–66 (1993). Morgan-Kaufmann

Mnih, V., Szepesvári, C., Audibert, J.-Y.: Empirical bernstein stopping. In: Proceedings of the 25th Interna-
tional Conference on Machine Learning. ICML ’08, pp. 672–679, Helsinki (2008)

Rakotoarison, H., Schoenauer, M., Sebag, M.: Automated Machine Learning with Monte-Carlo Tree Search.
arXiv (2019). https:// arxiv. org/ abs/ 1906. 00170

Siegmund, D.: Sequential Analysis: Tests and Confidence Intervals. Springer, New York (1985)
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M.M.A., Prabhat, P.,

Adams, R.P.: Scalable Bayesian optimization using deep neural networks. In: Proceedings of the 32nd
International Conference on International Conference on Machine Learning—Volume 37. ICML’15,
pp. 2171–2180, Lille (2015)

Stednick, Z.: Machine learning with R datasets. GitHub (2020). https:// github. com/ stedy/ Machi ne- Learn ing-
with-R- datas ets

Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69(347), 730–
737 (1974)

Susto, G.A., Wan, J., Pampuri, S., Zanon, M., Johnston, A.B., O’Hara, P.G., McLoone, S.: An adaptive
machine learning decision system for flexible predictive maintenance. In: 2014 IEEE International Con-
ference on Automation Science and Engineering (CASE), pp. 806–811 (2014). IEEE

Therneau, T., Atkinson, B.: Rpart: Recursive Partitioning and Regression Trees. (2019). R package version
4.1-15. https:// CRAN.R- proje ct. org/ packa ge= rpart

Vanschoren, J., N. van Rijn, J., Bischl, B., Torgo, L.: OpenML: Networked science in machine learning. SIG-
KDD Explorations 15, 49–60 (2013)

Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)
Wickham, H.: Ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016)
Wright, M.N., Ziegler, A.: ranger: A fast implementation of random forests for high dimensional data in C++

and R. J. Stat. Softw. 77, 1–17 (2017)

https://CRAN.R-project.org/package=ISLR
https://arxiv.org/abs/1604.07269
https://arxiv.org/abs/1906.00170
https://github.com/stedy/Machine-Learning-with-R-datasets
https://github.com/stedy/Machine-Learning-with-R-datasets
https://CRAN.R-project.org/package=rpart

 P. Buczak et al.

1 3

Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-param-
eters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, Austin (2015)

Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv (2020).
https:// arxiv. org/ abs/ 2003. 05689

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://arxiv.org/abs/2003.05689

	Using sequential statistical tests for efficient hyperparameter tuning
	Abstract
	1 Introduction
	2 Machine learning and hyperparameter tuning
	3 Datasets and machine learning algorithms
	4 Determining an appropriate sequential test
	5 Integrating the sequential test into random search
	6 Simulation study
	7 Discussion
	Acknowledgements
	References

