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Abstract
Despite the popularity of feature importance (FI) measures in interpretable machine 
learning, the statistical adequacy of these methods is rarely discussed. From a sta-
tistical perspective, a major distinction is between analysing a variable’s importance 
before and after adjusting for covariates—i.e., between marginal and conditional 
measures. Our work draws attention to this rarely acknowledged, yet crucial distinc-
tion and showcases its implications. We find that few methods are available for test-
ing conditional FI and practitioners have hitherto been severely restricted in method 
application due to mismatched data requirements. Most real-world data exhibits 
complex feature dependencies and incorporates both continuous and categorical 
features (i.e., mixed data). Both properties are oftentimes neglected by conditional 
FI measures. To fill this gap, we propose to combine the conditional predictive 
impact (CPI) framework with sequential knockoff sampling. The CPI enables condi-
tional FI measurement that controls for any feature dependencies by sampling valid 
knockoffs—hence, generating synthetic data with similar statistical properties—for 
the data to be analysed. Sequential knockoffs were deliberately designed to handle 
mixed data and thus allow us to extend the CPI approach to such datasets. We dem-
onstrate through numerous simulations and a real-world example that our proposed 
workflow controls type I error, achieves high power, and is in-line with results given 
by other conditional FI measures, whereas marginal FI metrics can result in mislead-
ing interpretations. Our findings highlight the necessity of developing statistically 
adequate, specialized methods for mixed data.
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1 Introduction

Interpretable machine learning is on the rise as practitioners become interested in 
not only achieving high prediction accuracy in supervised learning tasks, but also 
understanding why certain predictions were made. Evaluating the importance of 
input variables (features) to the target prediction plays a crucial role in facilitating 
such endeavours. Several feature importance (FI) measures have been proposed by 
the machine learning community, but differing conceptualizations are spread across 
the literature.

We identify at least five dichotomies that orient FI methods: (1) global vs. local; 
(2) model-agnostic vs. model-specific; (3) testing vs. scoring; (4) methods that do 
and do not accommodate mixed tabular data; and (5) conditional vs. marginal meas-
ures. This defines a grid with 25 = 32 cells that helps categorize FI measures. For 
example, the popular SHAP algorithm (Lundberg and Lee 2017) produces local, 
model-agnostic FI scores that can accommodate mixed data and measures marginal 
FI. We emphasize that there is no “ideal” configuration of these five options—each 
is the right answer to a different question that is irreducibly context-dependent. 
However, this grid helps identify a notable lacuna: There are few global, model-
agnostic FI methods that accommodate mixed data with error control for conditional 
FI measurement.

Explaining the dichotomies in more detail, local FI measures (Lundberg and Lee 
2017; Ribeiro et al. 2016) are optimized for a particular point or region of the feature 
space, e.g., a single observation, while global FI scores (Fisher et al. 2019; Friedman 
2001) measure a variable’s overall importance. Model-specific measures (Breiman 
2001; Kursa and Rudnicki 2010; Shrikumar et al. 2017) exploit the properties of a 
particular function class for more efficient or precise FI calculation, while model-
agnostic measures (Apley and Zhu 2020; Ribeiro et al. 2018) treat the underlying 
model as a black box. Testing methods include some inference procedure for error 
control (Lei et al. 2018), while scoring methods (Covert et al. 2020) do not. Some 
methods are proposed with limited applicability to certain data types, e.g. only con-
tinuous inputs (Watson and Wright 2021), while others are more flexible (Molnar 
et al. 2023). We discuss a selection of FI methods briefly in Sect. 2, but refer readers 
to review papers on FI interpretability methods, e.g. Linardatos et al. (2021), for a 
wider discussion on the topic.

Through the lens of statistics, the division (5), conditional vs. marginal meas-
ures, is particularly important, yet insufficiently acknowledged in both literature 
and practice (Apley and Zhu 2020; Hooker et al. 2021; Molnar et al. 2023; Watson 
and Wright 2021). The complementary concepts become evident when relating the 
statistical conception of independence testing to the machine learning view on FI 
measurement. We can think of the marginal null hypothesis as testing whether the 
input feature Xj is independent of other covariates X−j or the target variable Y:

On the other hand, testing against (2) accounts for the covariates X−j and hence cor-
responds to conditional FI:

(1)HM
0
∶ Xj ⟂⟂ {Y ,X−j}
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These tests clearly target different objectives. In this setup, we have HM
0

 entailing 
HC

0
 , but not the other way around. However, this strength comes with a certain loss 

of specificity, because rejecting HM
0

 leaves it unclear whether Xj is correlated with Y, 
X−j , or both.

The relationship between FI and independence testing sheds light on another 
aspect, which may even be considered another dichotomy: does the FI measure 
aim for investigating the model behaviour or  the underlying data structure (Chen 
et al. 2020)? For example, conditional independence tests that are part of some con-
ditional FI measures (Watson and Wright 2021) may be used for causal structure 
learning, which often is based on repeated conditional independence testing (Gly-
mour et al. 2019). Therefore, conditional FI measures can help explain the underly-
ing data structure, whereas marginal FI measures differentiate between variables the 
predictive model relies on, which can be used to evaluate the fairness of a model. 
This does not preclude practitioners from using marginal and conditional FI meas-
ures in conjunction, and since marginal measures are often faster to compute, they 
might be preferable for quick assessments in large pipelines with many iterations. 
However, practitioners must be careful to interpret these measures properly and not 
infer a conditional signal from a marginal test.

In Fig.  1, we illustrate the  difference between marginal (permutation feature 
importance (PFI), Fisher et  al. 2019, Breiman 2001) and conditional (conditional 
predictive impact with Gaussian knockoffs (CPIgauss), Watson and Wright 2021) FI 

(2)HC
0
∶ Xj ⟂⟂ Y ∣ X−j

Fig. 1  Boxplots contrasting marginal and conditional FI metrics for a prediction of Y with C  and  X 
( N = 200 ) through a random forest prediction model across 1000 replicates. The conditional FI measure 
attributes no importance to X, whereas the marginal measure attributes nonzero importance to X because 
(due to induced correlation between X and Y by C) it is predictive of Y 
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measures. In this example, the confounding variable C is a common cause of both X 
and Y. This causal structure induces spurious correlation between X and Y, leading 
the marginal FI measure to attribute nonzero importance values to both C and X in 
predicting Y. On the contrary, the conditional FI measure attributes nonzero FI only 
to C, since X has no additional predictive value for Y above C.

This paper explores global, model-agnostic FI methods that accommodate mixed 
data with error control for conditional FI measurement. This is not a niche problem: 
mixed tabular data is the norm in many important areas such as health care, econom-
ics, and industry, and inference procedures are essential for decision-making in high 
risk domains to minimize costly errors. With the proliferation of machine learning 
algorithms, model-agnostic approaches can help standardize FI tasks without recali-
brating to a particular function class for each new application. Conditional, global 
measures are valuable when practitioners seek mechanistic understanding that takes 
data covariance into account and go beyond individual model outputs.

Even though the empirical relevance of this kind of FI measurement is eminent, 
specialized methods are lacking. Some FI methods have yet to be evaluated in mixed 
data settings (Covert et  al. 2020; Molnar et  al. 2023; Lei et  al. 2018), while oth-
ers are currently inapplicable to mixed data (Watson and Wright 2021). The con-
sequences of neglecting the special nature of mixed data for conditional FI meas-
urement remain unexplored, and therefore practitioners currently have no guidance 
on how to proceed with conditional FI measurement in such cases, which proves a 
severe limitation in real-world applications.

We propose to combine the conditional predictive impact (CPI) testing frame-
work proposed by Watson and Wright (2021) with the use of sequential knockoffs 
(Kormaksson et al. 2021) in order to enable conditional, global, model-agnostic FI 
testing for mixed data. CPI is a flexible, model-agnostic tool that relies on the usage 
of so-called knockoffs (Candès et al. 2018). In short, knockoffs are synthetic vari-
ables that carry over the major statistical properties of the original variables, such as 
the correlation structure among covariates. While Watson and Wright (2021) claim 
that the CPI should in principle work with any valid set of knockoffs, it has thus 
far only been applied and evaluated with Gaussian knockoffs (Candès et al. 2018). 
This currently limits practitioners to using the CPI method only with continuous 
variables or to disregard the specialities of mixed data. We analyse consequences 
of such a disregard when using CPI with Gaussian knockoffs (Candès et al. 2018) 
(CPIgauss) and deep knockoffs (Romano et al. 2020) (CPIdeep) and propose a spe-
cialized solution strategy to tackle the mixed data case: using sequential knockoffs 
(Kormaksson et al. 2021)—a knockoff sampling algorithm explicitly developed for 
mixed data—within the CPI framework (CPIseq).

The paper will be structured as follows. We present relevant methodology and FI 
measures in Sect. 2. Section 2.2 reviews several knockoff sampling algorithms, dem-
onstrating the need for specialized procedures with mixed data and motivating our 
proposed solution CPIseq. Through simulation studies in Sects. 3.1 and 3.2, we will 
evaluate our newly proposed workflow in more depth and further compare it to other 
methods. Finally, we illustrate method application to a real-world dataset in Sect. 3.3 
before concluding and discussing our findings in Sect. 4.
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2  Methods

With a focus on the measurement of model-agnostic, global, conditional FI, 
this section presents related measures proposed by previous literature and dis-
cusses their applicability to mixed data. We acknowledge that methods from the 
statistical literature on conditional independence testing (Shah and Peters 2020; 
Williamson et  al. 2021) might also be utilized for conditional FI measurement; 
however, a full comparison of such methods is beyond the scope of this paper. 
Further, it is worth clarifying at this point that we understand FI here as a concept 
that is tied to the variable’s effect on the predictive performance in a supervised 
learning task.

2.1  Feature importance measures

2.1.1  Conditional subgroup approach (CS)

A global, model-agnostic FI measure that acknowledges the crucial distinction 
between conditional and marginal measures of importance is the conditional sub-
group (CS) approach proposed by Molnar et al. (2023). CS partitions the data into 
interpretable subgroups, i.e., groups whose feature distributions are homogeneous 
within but heterogeneous between groups. The method is promising, as it explic-
itly specifies the conditioning between subgroups and further allows for an uncon-
ditional interpretation within subgroups. This means the method provides both a 
global conditional and a within-group unconditional interpretation, which sheds 
light on feature dependence structures.

To determine FI, CS evaluates the change in loss when the variable of interest 
is permuted within subgroups, which lowers extrapolation to low-density regions of 
the feature space, thereby mitigating a common problem with permutation-based 
approaches (Hooker et al. 2021). To decide on a suitable partition, the authors sug-
gest determining subgroups via transformation trees. Using a pre-specified loss 
function, the average increase in loss is reported for multiple permutations versus 
the original ordering of variables.

CS is not affected by mixed data other than through the choice of an appropriate 
prediction algorithm, which is why this method is suspected to work equally well 
with mixed data. However, for this approach to work, researchers must assume that 
the data are separable into subgroups. Further, for testing FI, the method would need 
to rely on computationally expensive permutation tests as no inherent testing proce-
dure is provided.

2.1.2  Leave‑one‑covariate‑out (LOCO)

Leave-one-covariate-out (LOCO) is a fairly simple approach to measuring FI, 
which, as the name suggests, evaluates the change in predictive performance of a 
model when leaving out a covariate of interest (Lei et al. 2018). This means, FI is 
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determined by comparing the loss of the model fitted including or excluding the 
covariate of interest.

While this is a very intuitive approach, it does involve several drawbacks. First, 
the model has to be retrained with a different set of variables, which not only incurs 
high computational cost, but also yields an entirely different model, raising concerns 
about comparability in general. Further, if correlations or other complex dependen-
cies are present within the data, LOCO might give misleading results if only one 
covariate at a time is excluded, as this neglects potential interaction effects between 
groups of variables. In the presence of such group-wise structures, the exclusion of 
multiple covariates at a time is advisable (Au et al. 2022; Rinaldo et al. 2016).

For the speciality of mixed data, we can again see that all reliance is on the level 
of model choice, hence, as long as the prediction model is able to process mixed 
data, LOCO is not affected by different data types.

2.1.3  Shapley additive global importance (SAGE)

Shapley additive global importance (SAGE) (Covert et al. 2020) is a model-agnos-
tic FI measure that aims to take into account feature interactions on a global level. 
The method is based on Shapley values (Shapley 1953), which have received much 
attention in interpretable machine learning recently. While Shapley values are wide-
spread in their use for giving local explanations, i.e. explaining the role of features 
in individual predictions made by the model, Covert et al. (2020) propose a global 
extension such that the role of features can be understood on a model-wide level. 
SAGE values are Shapley values for the features with regard to the predictive power 
of the model. Therefore, SAGE values can also be calculated by directly calculating 
Shapley values for the model loss, e.g. as proposed in LossSHAP (Lundberg et al. 
2020), and then average across all instances to achieve a global measure. However, 
Covert et al. (2020) propose a fast approximation algorithm.

The SAGE methodology allows for taking feature interaction effects into account, 
however, in practice, implementations typically use marginal sampling as an approx-
imation to the conditional densities when sampling to replace the respective feature 
in various coalitions. This results in explanations that are comparable  to marginal 
measures of FI when applied to real-world data.

Mixed data affect SAGE at the variable sampling step to build the coalitions and 
through the choice of the predictive model. With the use of marginal imputation and 
a model that is able to process mixed data, SAGE should not be affected by mixed 
data types.

2.1.4  Conditional predictive impact (CPI)

A fairly general approach to tackle conditional FI measurement is the conditional 
predictive impact (CPI) proposed by Watson and Wright (2021). To capture condi-
tional FI, a flexible conditional independence test is introduced that works with any 
supervised learning algorithm, valid knockoff sampler and well-defined loss func-
tion. CPI ties FI to predictive performance, arguing that the inclusion of a relevant 



1 3

Conditional feature importance for mixed data  

variable in the model should improve its predictive performance. Building on this 
idea, first, a supervised learning algorithm is trained to predict the outcome from 
given input variables. Then, using a knockoff sampling algorithm, so-called knock-
off copies of the input features are generated. These knockoffs retain the covariance 
structure  of the input  features,1 but  are (conditional on the input  features)  inde-
pendent of the response variable. They therefore serve as a set of negative controls 
against which to compare the original data. In detail, to compute the CPI statistic, 
the trained model from the first step is used to predict the target twice: first using the 
original test data, and again after replacing one or several features of interest in the 
test data by their knockoff copies. The change in loss is then averaged across sam-
ples. Finally, the authors propose to apply inference procedures, such as a paired t 
test, to get valid p-values and confidence intervals for the FI scores.

Given that the prediction algorithm works with mixed data, sampling valid 
knockoffs for mixed data is the sticking point. As Watson and Wright (2021) 
claim, the CPI setup is knockoff-agnostic and hence works for any knockoff sam-
pler. However, their simulations are limited to settings of continuous data and 
Gaussian knockoff sampling, i.e., using CPIgauss, only. Resulting from this, prac-
titioners facing mixed data cannot use CPIgauss directly and are forced to use 
workarounds that may perform poorly in practice, e.g. dummy encoding variables 
and treating them as continuous, of which the effects on the method are thus far 
unknown. The present work sheds light on the consequences of such procedures, 
see further Sect.  3.1. To propose an efficient way of making CPI applicable to 
mixed data, we will now delve into the methodology of knockoffs in greater depth.

2.2  Model‑X knockoffs

The model-X knockoff framework (Candès et al. 2018) was proposed for variable 
selection while controlling the false discovery rate (FDR). The idea is to use knock-
offs as negative controls in the model, which prevents spuriously correlated vari-
ables from being detected as important. These knockoffs are a set of variables X̃ that 
mimic the correlational structure between the original input variables X , but cru-
cially are known to be irrelevant to the target variable Y, conditional on the input 
data. Intuitively, if Xj does not significantly outperform X̃j by some importance 
measure, then Xj can be removed from the model (Candès et al. 2018).

More formally, to construct a valid knockoff matrix X̃ for the p-dimensional fea-
ture matrix X , two conditions have to be met. The first is pairwise exchangeability, 
i.e. for any proper subset S ⊂ {1,… , p}:

where d

= represents equality in distribution and swap (S) indicates swapping the 
respective variables in S with their knockoff counterparts. The second condition is 
conditional independence, i.e.

(3)(X, X̃)swap(S)
d
= (X, X̃),

1 This holds true for knockoffs that are at least of second-order, i.e. exhibit the same first two moments 
as the original data.
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Knockoff methodology is an active field of research. Numerous approaches to 
knockoff sampling  have been proposed, for example, methods  based on distribu-
tional assumptions (Bates et al. 2021; Candès et al. 2018; Sesia et al. 2018), Bayes-
ian frameworks (Gu and Yin 2021) or deep learning (Jordon et  al. 2019; Liu and 
Zheng 2018; Romano et al. 2020; Sudarshan et al. 2020). While a comprehensive 
review of knockoff samplers is beyond the scope of this paper, we will present a 
selection of knockoff samplers that is particularly interesting for applications on 
mixed data. Namely, we will investigate Gaussian knockoffs (Candès et  al. 2018) 
because of their widespread use, deep knockoffs (Romano et al. 2020) as a repre-
sentative of deep learning based knockoff generation, and sequential knockoffs as a 
specialized approach to tackle mixed data.

2.2.1  Gaussian knockoffs

As the name suggests, the Gaussian knockoff sampler (Candès et al. 2018) is based 
on the assumption that the input data matrix X ∈ ℝ

N×p is multivariate Gaussian, 
i.e. X ∼ N(�,�) . For simplicity, we assume  μ = 0 and get for the joint distribution 
which satisfies Eq. (3) 

with diagonal matrix diag{s} to ensure positive semi-definiteness of the joint covar-
iance matrix G . Knockoffs can then be sampled from the conditional distribution 
X̃ ∣ X

d
= N(�,V) , where �,V can be calculated from regular regression formulas. 

For details see Candès et al. (2018).
Clearly, it is reasonable to suspect this knockoff sampler to work well with Gauss-

ian data. However, with mixed data types, discrete values can only be handled after 
encoding, e.g. introducing dummy variables, which are evidently non-Gaussian. The 
consequences of such transformations, i.e. neglecting the special nature of mixed 
data, have not yet been evaluated for the Gaussian knockoff sampler. In an attempt to 
quantify such implications to some extent, we will include this knockoff sampler in 
our analysis in Sect. 3.1 and compare it to more well-suited alternatives.

2.2.2  Deep knockoffs

Deep knockoffs as proposed by Romano et  al. (2020) rely on a random genera-
tor, consisting of a deep neural network, to sample valid knockoffs. For variables 
X sampled independently from an unknown distribution P

X
 , the random genera-

tor is trained such that the joint distribution of (X, X̃) is invariant under swapping, such 
that Eq. (3) is satisfied. In detail, the neural network takes variables X and i.i.d. sampled 
noise E as input to optimize a scoring function that quantifies the extent to which X̃ is a 
good knockoff copy for X by evaluating how well Eq. (3) is approximated. Considering 

(4)X̃ ⟂⟂ Y ∣ X.

(X, X̃) ∼ N(0,G), where G =

[

� � − diag{s}

� − diag{s} �

]
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the neural network architecture, the authors suggest using a width h that is ten times the 
dimensionality of the input feature space, i.e. h = 10p and six hidden layers which they 
claim should work well for a “wide range of scenarios”, but acknowledge that “more 
effective designs” might be found (Romano et al. 2020).

Making use of recent deep learning advances, deep knockoffs should—according to 
the authors—generalize well to the mixed data case. Romano et al. (2020) claim that 
this framework samples approximate knockoffs for arbitrary distributions. However, it is 
worth noting that there is little explicit methodology available to the user beyond mak-
ing general claims about the generalizability of the method. Therefore, an applied user is 
again left with a knockoff sampler that does not return valid mixed data knockoffs.2

2.2.3  Sequential knockoffs

Sequential knockoff (Kormaksson et  al. 2021) sampling is based on the condi-
tional independent pairs algorithm (Candès et  al. 2018) given in Supplementary 
Information A with a specialized strategy to model the conditional distribution 
P(Xj ∣ X−j, X̃i∶j−1 ) and sample knockoffs for mixed data.

Sequential knockoffs are synthesized by sampling continuous knockoffs from a 
Gaussian distribution and categorical knockoffs from a multinomial distribution with 
distribution parameters that have been sequentially estimated through penalized3 lin-
ear or multinomial logistic regression models. The procedure is given in more detail 
in Algorithm 1, where X−j ∶= (X1,… ,Xj−1,Xj+1,…Xp) and X̃1∶j−1 ∶= (X̃1,… , X̃j−1)

.

Algorithm 1 yields valid knockoff copies for data that may consist of both cat-
egorical and continuous covariates. Hence, the present paper puts a special focus on 

2 Deep generative models for mixed data is an active and promising area of research (Xu et al. 2019; 
Watson et al. 2022), although we are unaware of any implementation for knockoff sampling.
3 In our experiments, we follow the advice of Kormaksson et al. (2021) to use an elastic net (Zou and 
Hastie 2005). Note that the ordering of variables might be of relevance in finite samples and that the pro-
cedure requires the various levels of the categorical variable to occur sufficiently often.
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this method and evaluates its suitability for conditional FI measurement with mixed 
data.

2.3  CPI with sequential knockoffs: CPIseq

We propose to combine two frameworks that have, thus far, not been analysed in 
conjunction, the CPI (Watson and Wright 2021) and sequential knockoffs (Kor-
maksson et  al. 2021), as a viable solution for conditional FI measurement with 
mixed data. Section  2 reveals that amongst the limited number of conditional FI 
measurement methods available, CPI is one of the few conditional FI methods that 
allows for the direct application of statistical testing procedures. Further, we have 
seen that the major obstacle of CPI with mixed data is the knockoff generation step. 
When surveying the literature on knockoffs in Sect.  2.2, the sequential knockoff 
sampler stands out as a solution that tackles the special nature of mixed data. Algo-
rithm 2 presents details on the procedure we propose here. Note that for calculat-
ing CPIseq for several features (or groups) j, steps 1 and 2 of the algorithm do not 
have to be recalculated for each j. 

Fig. 2  Rejection rates of one-sided paired t tests at � = 0.05 to detect relevant variables, i.e. power and 
type I error rates, for CPI with various knockoff samplers across 500 simulation runs. X1,X3 are 10-level 
categoricals, X2,X4 are Gaussian. Effect size � = 0.5 and random forest prediction model
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The CPIseq we propose here combines the features of the CPI methodology 
with ease of applicability to real data, which often consists of mixed data types. 
Providing frequentist inference procedures without model refitting is the major 
advantage over other conditional FI methods, such as CS and LOCO. To ensure 
high power for these testing procedures, adequate handling of mixed data is a 
prerequisite and CPIseq assures this through the flexible sequential knockoff 
subroutine.

3  Experiments

In this section, we analyse the performance of various FI measures on both simu-
lated and empirical data. Through simulation studies, we evaluate the performance 
of our newly proposed workflow in comparison to other approaches. First, we inves-
tigate how CPIseq compares to CPI with other knockoff samplers, namely CPIgauss 
and CPIdeep (Sect. 3.1) in terms of power and effective FDR control. Further, we 
compare feature rankings given by our proposed approach and other conditional FI-
related measures that do not use knockoffs (Sect. 3.2). Finally, we use a real-world 
data example to illustrate method application (Sect. 3.3).

3.1  Comparing knockoffs

Major differences in the performance of CPIgauss, CPIdeep, and CPIseq on mixed 
data are illustrated using the following simulation setup. Consider a linear sys-
tem of input variables S = {X1,X2,X3,X4} and target variable Y, visualized by the 
directed acyclic graph (DAG) G in Fig.  2. Since the joint distribution is Markov 
with respect to G , it follows by d-separation (Pearl 2009) that X1 ⟂⟂ Y ∣ S⧵{X1} and 
X2 ⟂⟂ Y ∣ S⧵{X2} , whereas X3  ⟂⟂ Y ∣ S⧵{X3} and X4  ⟂⟂ Y ∣ S⧵{X4} . Therefore, a 
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conditional FI measure should only attribute nonzero importance to variables X3,X4 , 
but not to X1,X2 . We consider three scenarios to track consequences of mixed data 
closely. For the baseline scenario (I), S will be Gaussian; for scenario (II), X1 or X3 
will be binary; and in scenario (III), X1 and/or X3 will be categorical with c ∈ {4, 10} 
levels. Scenarios (II) and (III) further include an all categorical setting, i.e. S will be 
categorical, as a point of reference. We carefully select relevant combinations of cat-
egory levels (2, 4 or 10), type of the target variable (continuous or binary) and fitted 
model (generalized linear model or random forest). See Supplementary Information 
B.1 to B.4 for further details on the experimental setup, including details on the pre-
diction models and their validation.

3.1.1  Results

For scenario (I), we find CPI achieving high power and effective type I error con-
trol with every knockoff sampling algorithm. Naturally, as the data is Gaussian, we 
see CPIgauss achieving high power in this setting, see Supplementary Information 
Fig. 3. When transforming X1 and X3 into binary variables, (scenario (II)), we still 
observe high power and type I error control.

For input data consisting of mixed data types where the categorical variables 
are of high-cardinality (scenario (III)), we can see from Fig. 2 that the sequential 
knockoff sampler provides greater sensitivity than the deep or Gaussian alternatives 
across all tested sample sizes. Rejection rates for CPIseq grow quickly with sam-
ple size, reaching about 90% power around N = 2000 . By contrast, CPIgauss only 
reaches about 50% and the deep knockoff sampler about 70% power at the maximal 
N = 7000 . In terms of type I error control, all methods seem to be robust against the 
categorical nature of the irrelevant variable X1 , as the rejection rate in Fig. 2 is kept 
close to � = 0.05 for all knockoff samplers.

Fig. 3  Mean AUC value with ± one standard deviation across 500 simulation runs. Categorical variables 
with c = 5 levels, pairwise correlation � = 0.8 and a random forest prediction model for continuous target 
Y 
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A full presentation of results is given in Supplementary Information B.5, includ-
ing Figures for the all categorical cases, for which we find similar results as in mixed 
data settings.

This simulation study demonstrates that the power of CPIgauss and CPIdeep 
might be severely affected by high-cardinality features. We find CPIseq to provide a 
powerful solution to conditional FI measurement, i.e. to detect conditionally impor-
tant categorical features, whereas CPIgauss and CPIdeep are less sensitive with such 
data. It is worth noting that CPIgauss and CPIdeep perform surprisingly well when 
mixed data is limited to continuous and binary data types, even though Gaussian and 
deep knockoffs inevitably generate data outside the support of Boolean variables. 
Nevertheless, CPIseq appears to be the most powerful solution for conditional FI 
measurement with high-cardinality categorical data.

3.2  Comparing feature importance measures

Through a simulation study, our newly proposed workflow CPIseq will now be set 
in comparison with LOCO (Lei et al. 2018), CS (Molnar et al. 2023), SAGE (Covert 
et al. 2020), and permutation feature (PFI) importance (Breiman 2001; Fisher et al. 
2019). Even though CPIgauss and CPIdeep have been shown to be outperformed by 
CPIseq in Sect. 3.1, we add these two methods to the simulation in order to provide 
a complete picture on how they relate to other measures of FI. Further enriching 
the picture of FI measure comparison, we discuss a random forest model-specific 
FI procedure (Kursa and Rudnicki 2010) and its performance in comparison to the 
other FI measures in the Supplementary Information C.6.

We simulate multivariate normal data with a pre-specified correlation struc-
ture to ensure a simple setup while incorporating a larger number of variables 
than in our toy example in Sect. 3.1. Again, we transform several variables into 
categoricals, such that we end up with mixed data. We distinguish between vari-
ables having zero, weak, or strong effect on the outcome Y, and for the continu-
ous variables we further separate variables with a linear or nonlinear effect on 
Y. Further, we ensure that there is an equal number of relevant and irrelevant 
variables, such that each relevant variable is correlated with exactly one irrel-
evant variable of the same type, yielding a total of p = 12 variables. In sum, 
we analyse a total of 24 settings by varying the correlation strength ( � = 0.5 or 
0.8), type of target variable Y (continuous or binary), varying number of cat-
egory levels ( c = 2 or 5) and fitting various machine learning prediction models 
(generalized linear model, random forest or neural network), see Supplementary 
Information C.1 and C.2 for further details.

Some of the methods included in the comparison do not provide statistical 
testing procedures. Therefore, we will compare methods by their tendency to 
rank relevant features higher than irrelevant alternatives. By construction, p = 6 
variables are relevant to the outcome, whereas the other p = 6 variables are not. 
Hence, when we ask the methods to rank the variables according to their impor-
tance, ideally, the 6 relevant variables are ranked amongst the top 6. We will use 
the area under the receiver operating characteristic curve (AUC) as a measure of 
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performance and will further report sensitivity and 1-specificity for each of the 
methods. See further Supplementary Information C.3. 

3.2.1  Results

We find CS, CPIseq, CPIgauss, CPIdeep and LOCO outperforming PFI and SAGE 
in ranking the relevant variables amongst the top 6 variables in terms of AUC 
scores (Fig.  3). AUC scores rise with increasing sample size, however, while the 
conditional measures form a group that gets close to the optimal score of 1, the per-
formance of marginal measures4 flattens out. This behaviour stems from the phe-
nomenon of marginal methods to attribute nonzero importance to correlated, but 
irrelevant variables, affecting the methods ability to separate the top 6 from the bot-
tom 6 variables, as can be further investigated from Fig. 4.

Figure  4 depicts the proportion of the respective variable types being ranked 
amongst the top 6 variables. Ideally, this proportion should be high for relevant 
variables (solid lines) and low for irrelevant variables (dashed lines). Panel (B) 
shows that both PFI and SAGE mistakenly rank the irrelevant continuous variables 
with a linear effect, which are correlated to the relevant continuous linear vari-
ables, amongst the top 6 variables. This is unsurprising, because relevant continu-
ous variables with a linear effect on the target are the easiest to detect, and hence, 
irrelevant variables correlated to these variables are most likely to be mixed up by 
marginal measures in the full ranking. Note that because each of the methods has 
to assign ranks 1–12, an irrelevant variable being mistakenly ranked amongst the 

Fig. 4  Proportion of features ranked amongst the top 6 of 12 by variable type across 500 simulation runs. 
Solid lines (relevant variables) correspond to sensitivity, dashed lines (irrelevant variables) correspond 
to 1-specificity. Categorical variables with c = 5 levels, pairwise correlation � = 0.8 and a random forest 
prediction model for continuous target Y 

4 Note that SAGE here is closer to a marginal measure because of the marginal imputation subroutine.
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top 6 variables in return leads to a relevant variable being ranked within the bottom 
6 ranks. For example, due to the marginal measurement of FI, the PFI measure is 
ranking correlated yet irrelevant variables amongst the most important predictors 
(dashed line in Fig. 4, Panel B), which in turn forces PFI to mistakenly rank some 
relevant variables low (solid line in Fig. 4, Panel A).

Regarding the comparison of CPI-based methods, we find CPIseq outperforming 
CPIgauss and CPIdeep in detecting relevant categorical variables in the mixed data 
setting, see Fig. 4, Panel A, which underpins the findings of simulations in Sect. 3.1.

To check for robustness, we used several predictive models (generalized linear 
model, random forest, and neural network), varied the type of the target variable 
(regression or classification task) and the number of categories for the categorical 
variables (2, 5), and found similar results. Further, we analysed the fit of the pre-
diction models on test data to ensure reliable FI measurement. See Supplementary 
Information C.4 and C.5 for details on the robustness analyses.

In sum, this simulation demonstrates both that CPIseq is competitive with other 
conditional FI measures, and illustrates the importance of distinguishing between 
marginal and conditional measures. It is worth emphasizing again that the CPIseq 
workflow not only ranks features, but also enables powerful conditional FI testing. 
We will see the practical relevance of this in the following section.

3.3  Real‑world data

We conclude the section on experiments with a real-world data application to illus-
trate our proposed workflow on empirical mixed data. As an example, we use the 

Fig. 5  Feature importance scores for predicting the selling price of diamonds using a random forest 
model. For the CPIseq and LOCO, t-tests are at � = 5% , using the Holm procedure to adjust for multiple 
testing
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diamonds dataset which is publicly available on OpenML5 (Vanschoren et  al. 
2014). Consisting of 9 covariates (6 numerical, 3 categorical) which relate to char-
acteristics of diamonds such as length, depth and colour. We predict the selling price 
of the diamond in USD (price) using a random forest prediction model. Similar 
to the experiments in Sect. 3.2, the importance of the covariates for the prediction 
model will be determined by CPIseq, CS, LOCO, PFI and SAGE. For further details 
on the dataset and the procedure, as well as a comparison to results given by another 
prediction model (neural network), see Supplementary Information D.

Figure  5 illustrates the difference between conditional and marginal measures 
of feature importance. The marginal measures (Fig. 5, Panels D, E) attribute high 
importance scores to the covariates x_length, y_width, z_depth and 
carat, whereas the conditional measures (Fig.  5, Panels A, B, C) attribute high 
importance scores to the covariates colour, clarity and carat. Note that 
the scale of the FI measures in Fig. 5 differs, since marginal measures also incor-
porate the importances of correlated variables and hence, by construction, exhibit 
much larger values than conditional FI measures.

With some background knowledge on the physical characteristics of diamonds, 
we can understand the causal relationships that lead to this result. Carat is a meas-
ure of weight, and with round diamonds, this weight can be approximated by the 
formula carat = length × width × depth × 0.0061 (Miller 1988). Note that to ensure 
this formula holds, we only considered diamonds with a deviation < 0.02 mm from 
a perfect round shape, yielding a subset of N = 4463 observations. The covariates 
x_length, y_width and z_depth therefore determine the weight (carat), 
which all the importance measures suggest as an important predictor variable for 
price. Conditional FI measures then suggest that x_length, y_width and 
z_depth do not carry further information on the price, given the other covariates, 
including carat. Marginal measures, however, attribute importance irrespective of 
other covariates and hence do not condition on the information given by carat, 
which leads to high importance values for x_length, y_width, z_depth as 
well as carat, even though it is reasonable to assume that carat absorbs all rel-
evant information given by x_length, y_width and z_depth on the price 
of diamonds.

The conditional FI measures further detect the variables colour and clar-
ity to be relevant for the prediction of price. Note that we here again have to 
see this in a conditional sense. Given the other covariates, the variables colour 
and clarity do provide additional information on the price, whereas marginal 
measures estimate a rather low importance of these variables.

This real-world example emphasizes the difference between conditional and mar-
ginal FI measures and its implications. Again, it is worth repeating that out of the 
conditional measures, CPIseq facilitates the interpretation through inference proce-
dures providing a clear indication of the relevant variables, whereas this indication 
is less clear with the LOCO testing procedure and CS not providing the user with 
testing procedures at all.

5 https:// www. openml. org/ search? type= data & sort= runs & id= 42225.

https://www.openml.org/search?type=data%20&sort=runs%20&id=42225
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4  Conclusion and discussion

In this work, we highlight the importance of taking statistical considerations into 
account when measuring FI in interpretable machine learning. Specifically, we focus 
on conditional versus marginal perspectives on FI measurement, and analyse con-
ditional FI methods with special regard for mixed data. We introduce the combina-
tion of CPI and sequential knockoffs (CPIseq) as a strategy that enables testing of 
conditional, model-agnostic, global FI with mixed data. Through simulation studies, 
we show that CPIseq achieves high power, whereas CPIgauss and CPIdeep are less 
sensitive for categorical features. Further, we benchmark this method against other 
conditional FI measures, finding competitive performance, and use a real-world data 
example to illustrate empirical implications. In sum, we demonstrate that the CPIseq 
provides researchers with a powerful test for conditional FI while working on a 
global, model-agnostic level.

Our analyses are limited by the availability of specialized knockoff sampling algo-
rithms for the generation of mixed data knockoffs. Astonishingly, the case of mixed 
data has not received much attention in the knockoff literature so far and even if some 
methods were claimed to generalize to the mixed data case (Romano et al. 2020), there 
is a lack of concrete methodology and software implementation. Also, the scarce avail-
ability of conditional FI measures that allow for effective statistical testing impedes effi-
cient comparison between FI metrics, forcing the evaluation to rely on rankings. While 
rankings are oftentimes used in the literature on FI for illustrative purposes, a sys-
tematic gold standard for comparing rankings between methods has not emerged. We 
hypothesize that this might be due to the fact that in the machine learning community, 
simulation studies—a standard procedure in the statistics community—are relatively 
rare, and hence evaluations involving, e.g. ground truth variable rankings are not in the 
focus. In particular, with mixed data, a ground truth ranking of simulated variables is 
not straightforward since it is unclear how the categorical nature should be respected 
and challenging disagreements across methods are likely to occur (Krishna et al. 2022). 
Methodological development that bridges evaluation strategies commonly applied in 
statistics with the setting faced in interpretable machine learning, e.g. FI rankings, is 
highly desirable.

This work highlights the necessity for procedures that respect data-specific require-
ments, such as respecting the categorical nature of variables in mixed datasets. Our 
simulations show that a neglect of such requirements and the application of worka-
rounds might lead to undesirable consequences. We encourage researchers to develop 
methods that are specifically designed for realistic (mixed) data, instead of leaving 
practitioners with broad claims of the generalizability of their method. While some 
generalizations are indeed effortless, e.g. for conditional independence testing with all 
categorical data exact p-values can be computed through permutations (Tsamardinos 
and Borboudakis 2010), whereas conditional independence testing in general, includ-
ing mixed data cases, is severely more challenging (Shah and Peters 2020). Moreo-
ver, other data type specific adjustments such as the presence of ordinal data might be 
of interest for future research, for example, random forest regression models yield the 
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same results with ordinal as with numeric data (Hastie et al. 2009) and hence FI meth-
ods that exploit model-specific advantages for ordinal data might be proposed.

Further, the present work raises awareness of the fact that even though the con-
cept of FI might sound intuitive at first, statistical perspectives on the problem reveal 
that, for example, the question of marginal in contrast to conditional measurement 
is of fundamental relevance. We hope this paper elucidates the potential of advanc-
ing interpretable machine learning methodology through statistical considerations, 
which might in turn be mutually beneficial for the future development of the field of 
explainable artificial intelligence and statistics.
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