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Abstract
The extreme value theory (EVT) encompasses a set of methods that allow inferring 
about the risk inherent to various phenomena in the scope of economic, financial, 
actuarial, environmental, hydrological, climatic sciences, as well as various areas 
of engineering. In many situations the clustering effect of high values may have 
an impact on the risk of occurrence of extreme phenomena. For example, extreme 
temperatures that last over time and result in drought situations, the permanence 
of intense rains leading to floods, stock markets in successive falls and consequent 
catastrophic losses. The extremal index is a measure of EVT associated with the 
degree of clustering of extreme values. In many situations, and under certain condi-
tions, it corresponds to the arithmetic inverse of the average size of high-value clus-
ters. The estimation of the extremal index generally entails two sources of uncer-
tainty: the level at which high observations are considered and the identification of 
clusters. There are several contributions in the literature on the estimation of the 
extremal index, including methodologies to overcome the aforementioned sources 
of uncertainty. In this work we will revisit several existing estimators, apply auto-
matic choice methods, both for the threshold and for the clustering parameter, and 
compare the performance of the methods. We will end with an application to mete-
orological data.

1 Introduction

Climate change is at the order of the day, leading to a growing concern about the 
occurrence of phenomena such as extreme drought, floods, and large-scale for-
est fires. The pandemic situation caused by COVID-19 and the outbreak of armed 
conflicts as happened recently also have a strong impact on the global society and 
economy in which we live. Perhaps we have never seen an occurrence of extreme 
phenomena like today and a consequent demand for the use of appropriate tools to 
assess their impact, such as those provided by the extreme values theory (EVT). 
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The clustering effect of high values has a strong impact on the assessment of the 
risk associated with extreme phenomena and its main actor is the extremal index, 
denoted by � . Indeed, � describes and quantifies the clustering amount of the extreme 
values in many stationary time series. In Fig. 1 we can see the daily maximum tem-
peratures collected at the climatologic station Abrantes in center of Portugal (in 
Celsius degrees). Clustering of extreme values is visible and thus the presence of 
extremal local dependence. Recently, other areas such as Dynamical Systems have 
also been applying the concept of extremal index (Moloney et al. 2019; Freitas et al. 
2021, among others).

Let XXX = {Xn}n≥1 be a stationary sequence of random variables (r.v.) with common 
marginal distribution function (d.f.) F. We say that XXX has extremal index � ∈ [0, 1] if 
for each 𝜏 > 0 there exists a sequence of normalized levels un , i.e., n(1 − F(un)) → � , 
as n → ∞ , such that P(Mn ≤ un) → exp(−��) , where Mn = max(X1, ...,Xn) . If � = 1 
then the tail behavior of XXX resembles an iid sequence, whenever 𝜃 < 1 leads to the 
occurrence of clusters of extreme values.

One extremal local dependence condition that is usually considered is the D(un) , 
which is basically a standard mixing condition that limits the long-range depend-
ence at large values. It implies that any two exceedances of large un , Xi > un and 
Xj > un , for sufficiently separated time points i and j are asymptotically independent 
(see, Leadbetter 1974).

If XXX satisfies D(un) , we have P(Mn ≤ un) ≈ Fn�(un) , for large n and un . Moreover, 
if there exist normalizing real constants an > 0 and bn such that Fn(anx + bn) → G(x) , 
then G is the d.f.  of a generalized extreme value distribution (GEV) and 
P(Mn ≤ anx + bn) → H(x) ≡ G�(x) . If we consider {X∗

n
}n≥1 an iid sequence with the 

same marginal d.f. F of XXX , the limiting GEV distribution of the corresponding result for 

Fig. 1  Daily maximum temperature in the months of July and August 2001 at the station Abrantes in the 
center of Portugal
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M∗
n
= max(X∗

1
, ...,X∗

n
) is G(x) = H1∕�(x) . In this context, � plays a key role on the sam-

ple maxima distribution. The location and scale parameters of the GEV d.f. H and G 
are respectively related as follows: �H = �G + �G(�

� − 1)∕� and �H = �G�
� , where the 

shape parameter � is the same in both G and H. Thus ignoring � may lead to misspeci-
fied tail inferences: underestimation of quantiles of F if inference is based on H from 
sample block maxima or overestimation of H quantiles if inferences are based on mar-
ginal F from sample observations (see Beirlant et al. 2004). The extremal index also 
corresponds to the reciprocal of the mean cluster size in the point process of exceedance 
times of a large threshold un , under a suitable mixing condition slightly stronger than 
D(un) (Hsing et al. 1988). Another interpretation of � due to O’Brien (1987) is based on 
a conditional probability that quantifies to what extent extremes cluster together.

Many contributions on the extremal index estimation are addressed in the litera-
ture, based on different interpretations of � . The major discussion focuses on strategies 
for the best choice of one or more auxiliary parameters involved in each method and 
respective stability of the estimates. Typically, the estimation of � involves two sources 
of uncertainty: a threshold and some clustering parameter. Classical methods proposed 
in, e.g., Hsing (1991), Hsing (1993), Smith and Weissman (1994) and Weissman and 
Novak (1998) require both the choice of a threshold and a parameter associated with 
the clusters identification (runs parameter). More recently, threshold-dependent estima-
tors have been proposed which are defined from the interexceedance times of a high 
threshold. This approach is based on the compound Poisson character of the point pro-
cess of exceedances, namely, with an appropriate normalization and under a suitable 
and not restrictive mixing condition, the interexceedance times follow approximately 
an exponential mixture distribution with a point mass at zero and involving a parameter 
corresponding to � . These include the intervals estimator of Ferro and Segers (2003), 
the K-gaps estimator of Süveges  (2010), the censored and the truncated estimators of 
(respectively, Holěsovský and Fusek 2020; Holesovsky and Fusek 2022). The cycles 
estimator of Ferreira and Ferreira (2018) also requires the choice of a threshold and 
the validity of a local dependence condition describing the cluster behavior. The max-
ima estimators of Gomes (Gomes 1993; Ancona-Navarrete and Tawn 2000; Northrop 
2015) are based on the comparison between the block maxima distribution obtained 
from the stationary sequence and the corresponding sequence of independent variables. 
We also include in this group the more recent estimator of Ferreira and Ferreira (2022) 
which is obtained from the bivariate block maxima distribution generated from the sta-
tionary sequence and an iid sequence of independent standard Fréchet variables. These 
estimators require the choice of a block size. In this paper we introduce a new version 
of the block maxima estimator in Ferreira and Ferreira (2022) and propose a bootstrap 
method to compute confidence intervals. In Sect. 2 we present a survey on the inferen-
tial methods that will be used. We are going to analyze their performance trough simu-
lation in Sect. 3. Besides the pointwise estimation we also address interval estimation 
mainly based on bootstrap. In Sect. 4 we will illustrate the methods on a climatological 
dataset. We end with a discussion in Sect. 5.



104 M. Ferreira 

1 3

2  Some characterization and estimation of �

In this section we describe some probabilistic characteristics of the extremal index 
that inspired the methodology and the mathematical expression of the estimators to 
be presented. These will be analyzed on the next section through simulation and 
their performances will also be compared.

We start with classical runs estimator that is related to the O’Brien (1987) 
characterization,

where rn = o(n) and Mi,j = max(Xi+1, ..,Xj) , i ≤ j − 1 , with Mi,j = −∞ if i > j − 1 
and M0,j ≡ Mj . The empirical counterpart of (1) leads to the runs estimator

where Nu denotes the number of exceedances of threshold u in stationary sequence 
XXX and 1{⋅} denotes an indicator function (Hsing 1993). In practice, clusters are iden-
tified by considering two different groups of exceedances of a threshold u as inde-
pendent clusters if there are at least r − 1 consecutive observations below the thresh-
old between them. We shall denote r the runs parameter.

Hsing and McCormick (1991) establishes a similar result to that of O’Brien, 
under a local mixing condition denoted D(s)(un) which states that within a cluster, an 
exceedance of a high threshold un is most likely to be followed by another exceed-
ance within s − 1 consecutive observations. Condition D(s)(un) requires the validity 
of mixing condition D(un) that limits the long-range dependence at extreme levels 
by implying that any two exceedances of un that are sufficiently separated in time are 
asymptotically independent. More precisely, XXX satisfies condition D(un) if for any 
integers 1 ≤ i1 < ... < iq < j1 < ... < jq′ ≤ n for which j1 − iq ≥ l , we have

with �n,ln → 0 , as n → ∞ , for some sequence ln = o(n) and ln → ∞.
Condition D(s)(un) will hold for XXX if D(un) also holds and there exists s > 0 inte-

ger, sequences rn and ln of integers such that rn → ∞ , n�n,ln∕rn → 0 , ln∕rn → 0 and

It is easily seen that once condition D(s)(un) holds, then D(s∗)(un) also holds for all 
s∗ ≥s.

Consider un(�) such that, for 𝜏 > 0,

(1)𝜃 = lim
n→∞

P(M1,rn
≤ un|X1 > un),

(2)𝜃(R) =

∑n−r+1

i=1
1{Xi>u,Xi+1≤u,...,Xi+r−1≤u}

Nu

||||
P
(
Mi1,iq

≤ un,Mj1,jq�
≤ un

)
− P

(
Mi1,iq

≤ un

)
P
(
Mj1,jq�

≤ un

)||||
≤ �n,l,

lim
n→∞

nP
(
X1 > un ≥ M1,s,Ms,rn

> un
)
= 0.

lim
n→∞

nP
(
X1 > un(𝜏)

)
= 𝜏.
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If D(s)(un) holds for the stationary sequence XXX , for some s > 0 and un = un(�) for all 
𝜏 > 0 , the extremal index � of XXX exists if and only if

for all 𝜏 > 0 (Hsing and T., McCormick, W.P. 1991, Corollary 1.3).
Observe that the runs estimator (2) also corresponds to the empirical counterpart 

of (3) by considering the runs parameter r = s . When r = 2 we derive the Nanda-
gopalan (1990) estimator which requires condition D(2)(un) to hold. Its formula is 
very easy to compute since it is simply the ratio between the number of upcrossings 
(or downcrossings) and the number of exceedances of un . The approach in Ferreira 
and Ferreira (2018) is based on the Nadagopalan’s estimator through an estima-
tion procedure of the extremal index of an auxiliary stationary sequence satisfying 
D(2)(un) . More precisely, if XXX satisfies D(s)(un) , we take the so called cycles pro-
cess {Zn = M(n−1)(s−1),n(s−1)}n≥1 for which D(2)(un) holds and estimate � as the ratio 
between the number of upcrossings of threshold u within {Z1, ..., Z[n∕(s−1)]} , denoted 
UZ

u
 and the number of exceedances Nu of XXX (Ferreira and Ferreira 2018, Proposition 

2.3), i.e.,

here denoted cycles estimator.
Consider the interexceedance times r.v. T(un) = min{j ≥ 1 ∶ Xj+1 > un|X1 > un} . 

Under a suitable mixing condition, we have that P(X1 > un)T(un) converges in dis-
tribution to a mixture distribution which is degenerated at zero with weight 1 − � 
and has exponential law with mean value 1∕� with weight � . Therefore, the extre-
mal index � expresses both the proportion of intra-cluster (within a cluster) times 
and inter-cluster (between clusters) times, and the expected value of the inter-cluster 
times under a convenient normalization. The intervals estimator of Ferro and Segers 
(2003) corresponds to a moment-based estimator derived from the limiting mixture 
distribution. It only requires the choice of a high threshold exempting the choice of a 
runs parameter. It will be denoted 𝜃(I).

Although interexceedance times, Ti = ji+1 − ji , i = 1, ...,Nu , are not independent 
and a likelihood procedure assumes independence, this assumption may be disre-
garded under the validity of condition D(s)(un) for some s (Süveges 2007; Süveges  
2010). On the other hand, the normalized intra-cluster times are theoretically zero 
in the limit but they are observed as positive values and thus will be assigned to the 
exponential part of the limiting mixture law.

By considering the new r.v.  K-gap S(K)(un) = max(T(un) − K, 0) , the small-
est times Ti are set to zero, which improves the identification of intra-cluster times. 
Süveges  (2010) shows that the maximum likelihood (ML) method can be applied 
to the limit mixture model in order to estimate � , replacing interexceedance times 
by K-gaps S(K) and under condition D(s)(un) for s = K + 1 . In Süveges (2007), it was 
only addressed the case K = 1 . This method corresponds to the so called K-gaps 
estimator, here denoted 𝜃(K) . Choosing K involves some care, since if too large leads 

(3)lim
n→∞

P
(
M1,s ≤ un|X1 > un

)
= 𝜃,

(4)𝜃(C) =
UZ

u

Nu

,
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to more null times and consequent assignment to the degenerate part of the limiting 
mixture law, while too small K means fewer null times and hence an assignment ten-
dency to the exponential component of the mixture law.

The censored estimator introduced in Holěsovský and Fusek (2020) is similar to 
the K-gaps estimator but the smallest interexceedance times (less than some inte-
ger c) are censored. The choice of c is not so sensitive as the choice of K, how-
ever, the likelihood expression underlying the censored estimator does not allow an 
explicit formula for it, which makes its analysis and improvements difficult. A new 
approach is considered in Holesovsky and Fusek (2022), where the extremal index 
estimation is based on truncation. The small interexceeding times are truncated by 
a given parameter t, corresponding to K in the K-gaps estimator or c in the censored 
estimator. If condition D(s)(un) holds for XXX with s = t + 1 , under the same mixing 
condition considered to derive the limiting mixture law of P(X1 > un)T(un) , Holes-
ovsky and Fusek (2022) prove that P(X1 > un)(T(un) − t)|T(un) > t converges in 
distribution to an exponential law with expected value 1∕� . Let T(1) ≤ ... ≤ T(Nu−1)

 
be the order statistics of T1, ..., TNu−1

 , assume that T(N−Nt−1)
≤ t < T(N−Nt)

 , 
with Nt the number of times that are greater than some fixed positive t, and 
{S1, ..., SNt

} = {T(N−Nt)
− t, ..., T(N−1) − t} the set of exceedance times above the trun-

cation value t. The ML method can be applied since truncated times are not affected 
by the sequence dependence (inter-cluster times are asymptotically independent 
(Ferro and Segers 2003) and intra-cluster times have not propensity to exceed t 
under local dependence condition D(t+1)(un) ). A simple ML estimator for � corre-
sponds to the arithmetic inverse of sample mean

The derivation of the bias of (5) and of a penultimate approximation of the limiting 
distribution leads to an improved and bias corrected estimator, yielding the so-called 
truncated estimator

with

where 𝜃 is given in (5).
In applications, it can be difficult to check the validity of D(s)(un) condition. Vari-

ous proposals have been presented, such as diagnostic plots of anti-D(s)(un) (Süveges 
2007; Ferreira and Ferreira 2018), the information matrix test (Süveges  2010; 
Fukutome and Süveges 2014; Fukutome et al. 2019), or based on a stability check of 
the runs estimator (Cai 2019). However, the study of this issue is not closed and still 
awaits developments. The automation procedure in Fukutome and  Süveges  (2014); 
Fukutome et al. (2019) allows to select both s and un . More precisely, considering 

(5)𝜃 =
nNt

Nu

∑Nt

i=1
Si

(6)𝜃(T) = 𝜃BC −
Nu

2n(Nu − 1)

[
1 + 𝜃BC(Nu − 4) −

(
𝜃BC

)2
(Nu − 1)

]
,

𝜃BC =
(Nu − 1)𝜃 − 1

Nu − 1 + (Nu∕n)t
,
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the K-gaps estimator, it is based on misspecification tests through the informa-
tion matrix test (IMT) presented in ( Süveges 2010). All combinations of pairs of 
thresholds and run parameters in plausible ranges are tested for misspecification 
of the model, and the pair (u, K) that generates the largest number of observations 
after declustering, within a list of pairs of small misspecification (IMT < 0.05) is 
selected, provided the number of exceedances is larger than 80. We will apply this 
automation procedure to select both threshold and runs parameter involved in each 
of the estimators: runs 𝜃(R) , cycles 𝜃(C) , intervals 𝜃(I) , K-gaps 𝜃(K) and truncated 𝜃(T) , 
in order to compare their performances through simulation and further on the analy-
sis of real data. For a given selected pair (u, K), we will assume the validity of con-
dition D(K+1)(u) . In the case of the intervals estimator, only the IMT threshold selec-
tion will be used since it solely depends on the threshold choice.

There are other estimation methods of � entailing the choice of a single tuning 
parameter. Maxima methods as described in Gomes (Gomes 1993; Ancona-Nav-
arrete and Tawn 2000; Northrop 2015) and more recently in Ferreira and Ferreira 
(2022) require the choice of a block length in order to generate a block maxima 
sequence from the original one. The two first references present methods that need 
to resample the original data to produce a sample of block maxima with approxi-
mate d.f. G. Northrop proposal in Northrop (2015) avoids this drawback by com-
paring the limiting GEV H of the maxima Mn of XXX directly to the marginal d.f. F. 
More precisely, for large enough n, we have H ≈ Fn� , thus Y = −n logF(Mn) has 
exponential law with mean value 1∕� . The Northrop estimator is based on the ML 
approach, considering the sample of block maxima {M(i−1)b,ib, i = 1, ..., [n∕b]} of b 
consecutive values of {X1, ...,Xn} and estimating the unknown d.f. F by the respec-
tive empirical d.f.. This corresponds to the disjoint blocks estimator. The sliding 
blocks version of Northrop estimator is based on a sample of overlapping block 
maxima {Mi−1,i+b−1, i = 1, ..., n − b + 1} , leading to

with Yi = −b log F̂(Mi−1,i+b−1) , i = 1, ..., n − b + 1 . We will use the sliding blocks 
𝜃(N) which compares favorably with the disjoint blocks (Northrop 2015). This will 
be denoted the Northrop estimator.

In Ferreira and Ferreira (2022) a new block maxima method was intro-
duced to estimate the extremal index. It is based on a bivariate sequence 
{(Yn,1 = X∗

n
, Yn,2 = (1∕2)X∗

n
∨ (1∕2)Xn)}n generated from the original XXX which is 

assumed to have standard Fréchet marginals and by an i.i.d.  sequence {X∗
n
}n also 

having standard Fréchet marginals. Operator ∨ stands for “maximum". It is proved 
that the component-wise maxima of sequence {(Yn,1, Yn,2)}n. has a limiting bivariate 
extreme value copula C(u, v) = min(uv

�

1+� , v) with tail dependence coefficient

leading to estimator

(7)𝜃(N) =

(
1

n − b + 1

n−b+1∑

i=1

Yi

)−1

,

(8)� = lim
v→1−

2 −
1 − C(v, v)

1 − v
=

1

1 + �
.
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Algorithm: The estimation procedure follows the steps below: 

 Step 1. Take the marginal transformation − 1

log F̃X (Xi)
 , where F̃X is an empirical d.f. of 

sample X1, ...,Xn with dimension n, in order to have approximately standard 
Fréchet marginals.

 Step 2. Generate an i.i.d. sequence with standard Fréchet d.f., X∗
1
, ...,X∗

n
 , and take 

(X∗
i
, (1∕2)X∗

i
∨ (1∕2)Xi) , i = 1, ..., n.

 Step 3. Choose the blocks length b to generate a bivariate sample of component-wise 
maxima, and estimate � (see Ferreira and Ferreira 2022 and references therein 
f o r  d e t a i l s ) .  H e r e  w e  c o n s i d e r  s l i d i n g  b l o c k s �
Zj,1, Zj,2

�
=
�⋁j+b−1

i=j
X∗
i
,
⋁j+b−1

i=j
(1∕2)X∗

i
∨ (1∕2)Xi

�
, 1 ≤ j ≤ n − b + 1.

 Step 4. Calculate �̃  in (9).
 Step 5. Repeat steps 2–4 a large number R of times, obtain estimates �̃1, ..., �̃R and 

estimate 

 in order to achieve robustness given the existence of arbitrariness in the gen-
eration of a random sample (Step 2) in each estimate.

Step 4 is based on estimator (9 which requires an estimate of the tail dependence 
coefficient � . We follow the proposal of Ferreira and Ferreira (2022) with

where G̃j , j = 1, 2 , is an empirical distribution function of the GEV marginal Gj of 
Z1,j . For more details, see Ferreira and Ferreira 2022. In Ferreira and Ferreira (2022) 
it was considered R = 10000 and block maxima taken on disjoint blocks. Here we 
consider the sliding blocks approach as in the Northrop estimator. Some prior simu-
lations lead us to the proposal that R = 100 is reasonable for a robustness of the 
method. This approach will be denoted Ferreira estimator.

In the following we provide a catalog of some distributions and their associ-
ated extremal indices. Additional lists of models and respective extremal indices 
are also exposed in Gomes and Neves (2015, 2020).

• A first order auto-regressive with maximum operator (MAR), 
Xi = max(�Xi−1, �i) , i ≥ 1 , X0 = �1∕(1 − �) , {�i} i.i.d.  with standard Fréchet 
marginals (Davis and Resnick 1989), for which � = 1 − � . See, e.g., ( Lead-
better (1983)) and references therein;

(9)�̃ =
1

�̃ ∨ 1∕2
− 1.

(10)𝜃(F) =
1

R

R∑

j=1

�𝜃j

�̃ = 3 −
1

1 −
1

n

∑n

i=1

�
G̃1(Zi,1) ∨ G̃2(Zi,2)

� ,
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Table 1  Simulation results obtained for the runs (R), cycles (C), intervals (I), truncated (T) and K-gaps 
(K): mean, absolute bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage 
proportion of the true extremal index value within the estimated confidence intervals (cov), the intervals 
range width (rw) and the ratio between “cov" and “rw"

Mean Abias Rmse Sd Cov Rw Cov/rw

R
MMFrec 0.1463 0.0537 0.0564 0.0173 0.9630 0.0831 11.5854
MAR 0.4300 0.0700 0.0791 0.0369 0.6190 0.1466 4.2211
ARUnif 0.8165 0.0665 0.1307 0.1125 0.7070 0.1054 6.7102
ARCau 0.5048 0.1352 0.1452 0.0528 0.2750 0.1636 1.6811
MCBEV 0.3296 0.0016 0.0655 0.0655 0.8300 0.1891 4.3896
ARCH 0.7461 0.0889 0.0968 0.0383 0.2260 0.1264 1.7878
AR 0.5879 0.4121 0.4181 0.0704 0.0040 0.1576 0.0254
C
MMFrec 0.1349 0.0651 0.0678 0.0188 0.8280 0.0846 9.7900
MAR 0.4287 0.0713 0.0809 0.0384 0.8000 0.1480 5.4070
ARUnif 0.7770 0.0270 0.1378 0.1352 0.5050 0.1104 4.5730
ARCau 0.4780 0.1620 0.1713 0.0558 0.1530 0.1638 0.9343
MCBEV 0.3202 0.0078 0.0713 0.0709 0.7590 0.1817 4.1780
ARCH 0.7438 0.0912 0.1007 0.0425 0.2200 0.1274 1.7263
AR 0.5822 0.4178 0.4245 0.0751 0.0040 0.1590 0.0252
I
MMFrec 0.2332 0.0332 0.0467 0.0329 0.6500 0.1228 5.2913
MAR 0.4975 0.0025 0.0508 0.0508 0.9670 0.2388 4.0501
ARUnif 0.9963 0.2463 0.2470 0.0189 0.0130 0.0297 0.4373
ARCau 0.8012 0.1612 0.1856 0.0920 0.3190 0.2608 1.2234
MCBEV 0.3737 0.0457 0.0763 0.0611 0.8310 0.2622 3.1695
ARCH 0.9089 0.0739 0.0973 0.0633 0.7370 0.2093 3.5207
AR 0.6741 0.3259 0.3312 0.0588 0.0450 0.2745 0.1639
T
MMFrec 0.2037 0.0037 0.0295 0.0293 0.2510 0.1211 2.0727
MAR 0.5035 0.0035 0.0424 0.0423 0.8910 0.1620 5.5000
ARUnif 0.9887 0.2387 0.2409 0.0319 0.0301 0.0833 0.3620
ARCau 0.7040 0.0640 0.0925 0.0669 0.4220 0.2012 2.0974
MCBEV 0.3883 0.0603 0.0905 0.0674 0.4670 0.2042 2.2870
ARCH 0.9090 0.0740 0.0890 0.0495 0.3980 0.1530 2.6013
AR 0.6914 0.3086 0.3140 0.0578 0.0050 0.1815 0.0275
K-gaps
MMFrec 0.1708 0.0292 0.0345 0.0184 0.8340 0.0929 8.9819
MAR 0.4593 0.0407 0.0546 0.0364 0.7010 0.1192 5.8818
ARUnif 0.8478 0.0978 0.1358 0.0943 0.4410 0.0835 5.2834
ARCau 0.5552 0.0848 0.0969 0.0469 0.3020 0.1346 2.2444
MCBEV 0.3561 0.0281 0.0699 0.0640 0.5760 0.1224 4.7048
ARCH 0.7726 0.0624 0.0716 0.0351 0.3280 0.1065 3.0800
AR 0.6174 0.3826 0.3878 0.0636 0.0000 0.1300 0.0000



110 M. Ferreira 

1 3

• A moving maxima Xi = maxj=0,...,d ajZd−j with {Zi} i.i.d.  standard Fréchet 
(MMFrec), where parameters aj ≥ 0 and ∑d

j=0
aj = 1 (Deheuvels 1983), for 

which � = maxj=0,...,d aj (see, e.g.,  Beirlant et al. (2004));
• A Markov chain with standard Gumbel marginals and 1-lag bivariate logistic 

dependence (MCBEV), P(Xi ≤ x,Xi+1 ≤ y) = exp(−(x−1∕� + y−1∕�)�) . Calcula-
tions of � for particular cases are found in Smith (1992);

• An ARCH(1) process, Xi = (� + �X2
i−1

)1∕2�i , with i.i.d. standard Gaussian inno-
vations {�i} . (Embrechts et al. 1997) addresses the (not straightforward) extremal 
index computation of ARCH models;

• A first order auto-regressive with Cauchy standard marginals (ARCau), 
Xi = �Xi−1 + �i , {�i} i.i.d.  having Cauchy d.f.  with mean 0 and scale 1 − |�| . 
According to (Hsing and  McCormick 1991), � = 1 − � if � ≥ 0 and � = 1 − �2 if 
𝜌 < 0;

• A first order auto-regressive negatively correlated uniform (ARUnif), 
Xi = −(1∕r)Xi−1 + �i , i ≥ 1 , {�i} i.i.d.  where P(�1 = k∕r) = 1∕r for k = 1, ..., r , 
with X0 ∼ U(0, 1) independent of �i , having � = 1 − 1∕r2

• An AR(1) process, Xi = �Xi−1 + �i , i ≥ 1 , {�i} i.i.d.  N(0,  1), 
X0 ⌢ N(0, 1∕(1 − 𝜙2)) , with � = 1;

These models will be used in the simulation study, in the next section.

3  Simulation study

In this section we analyze the estimation of the extremal index through simulation. 
We compare the performances of the runs (R) estimator in (2), the cycles (C) esti-
mator in (4), the truncated (T) estimator in (6), the intervals (I) estimator of Ferro 
and Segers (2003), the K-gaps (K) estimator of Süveges  (2010), along with the 
block maxima estimators of Northrop (N) in (7) and Ferreira (F) in (10). The first 
five estimators require the selection of a runs parameter and a threshold, except the 
intervals estimator only needing the choice of a threshold. To this end we apply the 
IMT method ( Süveges  2010; Fukutome and M.A. Süveges M. 2014; Fukutome 
et al. 2019) described in Sect. 2. The block maxima estimators require the settlement 
of a block length and no automation procedure is considered. In the study we take 
block lengths b = 10, 20, ..., 70 . The software( R Core Team 2020) was used and the 
R codes of estimators can be seen in https:// github. com/ msfer reira uminho/ msrf.

The simulation study is based on the following models: a first order max auto-
regressive (MAR) process with standard Fréchet marginals and autoregressive 
parameter � = 0.5 ( Davis and Resnick 1989) satisfying condition D(2)(un) (see, 
e.g.,Cai (2019)); a moving maxima (MMFrec) process with coefficients aj = 1∕5 , 
j ∈ {1, 2, 3, 7, 8} ( Deheuvels 1983) for which D(5)(un) holds (Ferreira and Ferreira 
2018); a Markov chain (MCBEV) with standard Gumbel marginals and logistic joint 
distribution with dependence parameter � = 0.5 (Smith 1992); an ARCH(1) process 
with Gaussian innovations, autoregressive parameter � = 0.5 and variance param-
eter � = 1.9 ⋅ 10−5 (Embrechts et  al. 1997); an AR(1) process with Cauchy mar-
ginals and auto-regressive parameter � = −0.6 ( Chernick 1978) and a negatively 

https://github.com/msferreirauminho/msrf
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correlated uniform AR(1) process with r = 2 ( Hsing and McCormick 1991), respec-
tively denoted ARCau and ARUnif and both satisfying condition D(3)(un) . The 
extremal index values of the processes MAR, MMFrec, MCBEV, ARCH, ARCau 
and ARUnif are 0.5, 0.2, 0.328, 0.835, 0.64 and 0.75, respectively. We also consider 
a classical first order AR(1) process with Gaussian marginals and auto-regressive 
parameter 0.5, here denoted AR, which is almost independent and satisfies condition 
D(1)(un) having � = 1 . As far as we know, there is no theoretical analysis on condi-
tion D(s)(un) for MCBEV model and we mention an empirical evaluation conducted 
in Ferreira and Ferreira (2018). Cai (2019) proved that D(s)(un) doesn’t hold for a 
particular ARCH model.

We consider 1000 replicas of each model and compute the mean, the absolute 
bias (abias), the root mean squared error (rmse) and the standard deviation (sd). 
Bootstrap confidence intervals were obtained through percentile method technique 
on time series. Confidence intervals were obtained through bootstrap percentile 
method technique on time series with fixed block length 20 ( Kunsch 1989; Politis 
and Romano 1994), except in the case of the intervals estimator where the boot-
strap proposal in Ferro and Segers (2003) was used. In the case of the likelihood 
estimators (K-gaps and Northrop block maxima), the confidence intervals are based 
on the asymptotic Normality. In Ferreira sliding blocks estimator we considered per-
centiles 2.5 and 97.5 applied on the auxiliary estimates �̃j , j = 1, ...,R , produced by 
the method in Step 5 of the Algorithm in Sect. 2. We present the the proportion of 
intervals in the simulations that included the true value of � (cov), the mean range 
width (rw) and the rate cov/rw corresponding to the proportion of coverage (cov) 
divided by the mean range width (rw). Some of the confidence intervals associated 
to Northrop sliding blocks failed to be computed because of the invalid standard 
error estimates which were accounted in column “NAs” of Table 2. The results for 
the runs, cycles, intervals, truncated and K-gaps estimators are presented in Table 1 
and the estimates of Ferreira sliding blocks derived in (10) can be seen in Table 3. 
The rate cov/rw is plotted in Fig. 2 obtained for the runs, the cycles, the intervals, 
the truncated and the K-gaps estimators (left-top), for the Ferreira and Northrop slid-
ing blocks estimators with block lengths b = 10, 20, ..., 70 (right-top) and the third 
bottom plot includes all estimators where for each of the sliding blocks estimators 
we address the best scenario (corresponding to the block length with the estimated 
largest rate, denoted by B) and the worst scenario (where the block length choice led 
to the smallest estimated rate, denoted by W). Analogous plots are represented in 
Figs. 3 and 4 relating to abias and rmse, respectively.

Cases closer to the border values of the extremal index domain were also con-
sidered, namely, MAR(� = 0.9 ) with � = 0.1 and MAR(� = 0.1 ) with � = 0.9 . In 
the almost independence Gaussian AR model with � = 1 , besides parameter � = 0.5 
which induces strong dependence, we also analyze the AR weaker dependence mod-
els AR(� = 0.1 ) and AR(� = −0.1 ) where � is still unit but they are even more close 
of independence. See Tables 4, 5 and 6.

The cycles (C), the runs (R) and K-gaps (K) estimators present a somewhat homo-
geneous performance across the various models, with the K-gaps estimator slightly 
better behaved. We recall that we are applying the IMT method in all estimators, 
except in the sliding blocks, which was developed under the K-gaps estimator. On 
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Table 2  Simulation results obtained for the Northrop (2015) sliding blocks estimator: mean, absolute 
bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of the true 
extremal index value within the estimated confidence intervals (cov), the intervals range width (rw), the 
ratio between “cov" and “rw" and the number of replicates where the confidence intervals couldn’t be 
calculated (NAs)

Mean Abias Rmse Sd Cov Rw Cov/rw NAs

N b=10
MMFrec 0.3431 0.1431 0.1444 0.0189 0.0000 0.0640 0.0000 0
MAR 0.5522 0.0522 0.0626 0.0345 0.6700 0.1329 5.0433 0
ARUnif 0.9998 0.2498 0.2498 0.0026 0.0000 0.0145 0.0000 356
ARCau 0.8294 0.1894 0.1933 0.0387 0.0000 0.1047 0.0000 15
MCBEV 0.4319 0.1039 0.1089 0.0326 0.0440 0.1134 0.3881 0
ARCH 0.8996 0.0646 0.0800 0.0471 0.6433 0.1512 4.2547 2
AR 0.6616 0.3384 0.3412 0.0432 0.0000 0.1748 0.0000 0
N b=20
MMFrec 0.2721 0.0721 0.0750 0.0209 0.0655 0.0741 0.8836 7
MAR 0.5264 0.0264 0.0567 0.0502 0.9068 0.1896 4.7823 2
ARUnif 0.9557 0.2057 0.2113 0.0482 0.0482 0.1217 0.3958 66
ARCau 0.7303 0.0903 0.1084 0.0600 0.5859 0.1937 3.0249 5
MCBEV 0.3887 0.0607 0.0767 0.0468 0.7230 0.1679 4.3057 0
ARCH 0.8572 0.0222 0.0707 0.0671 0.8655 0.2181 3.9692 11
AR 0.6916 0.3084 0.3156 0.0672 0.0261 0.2677 0.0973 2
N b=30
MMFrec 0.2489 0.0489 0.0545 0.0241 0.3777 0.0822 4.5925 15
MAR 0.5185 0.0185 0.0668 0.0642 0.9130 0.2389 3.8209 0
ARUnif 0.9101 0.1601 0.1755 0.0720 0.3922 0.1964 1.9966 31
ARCau 0.6991 0.0591 0.0966 0.0764 0.8248 0.2566 3.2147 1
MCBEV 0.3736 0.0456 0.0736 0.0579 0.8640 0.2052 4.2108 0
ARCH 0.8405 0.0055 0.0830 0.0829 0.8809 0.2707 3.2537 9
AR 0.7186 0.2814 0.2951 0.0888 0.1401 0.3265 0.4292 1
N b=40
MMFrec 0.2374 0.0374 0.0462 0.0271 0.6214 0.0898 6.9219 86
MAR 0.5153 0.0153 0.0773 0.0758 0.8608 0.2689 3.2014 16
ARUnif 0.8827 0.1327 0.1582 0.0861 0.6002 0.2472 2.4276 117
ARCau 0.6852 0.0452 0.1008 0.0901 0.8301 0.2938 2.8257 35
MCBEV 0.3660 0.0380 0.0786 0.0689 0.8696 0.2362 3.6817 3
ARCH 0.8321 0.0029 0.0959 0.0959 0.8535 0.3018 2.8281 51
AR 0.7383 0.2617 0.2829 0.1075 0.2876 0.3559 0.8083 30
N b=50
MMFrec 0.2302 0.0302 0.0419 0.0291 0.7029 0.0963 7.2989 145
MAR 0.5144 0.0144 0.0870 0.0859 0.8494 0.2971 2.8595 37
ARUnif 0.8618 0.1118 0.1482 0.0974 0.7037 0.2839 2.4785 119
ARCau 0.6769 0.0369 0.1085 0.1020 0.8348 0.3217 2.5945 62
MCBEV 0.3613 0.0333 0.0850 0.0783 0.8583 0.2638 3.2533 5
ARCH 0.8264 0.0086 0.1067 0.1064 0.8339 0.3296 2.5300 73
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the other hand, the intervals (I) and the truncated (T) estimators show some sensitiv-
ity to the different models: they perform very well in the MMFrec, MAR, MCBEV 
and ARCH, but their biases and rmse are high in the ARUnif model.

We can also see that the choice of the block-maxima size to be used in sliding 
blocks estimators is important as their behavior improve in the best block choices. 
Indeed, both Ferreira and Northrop sliding blocks estimators present the best overall 
performances along the different models under the best block choices. Both North-
rop and Ferreira sliding blocks have to deal with a trade-off between bias (larger 
for small block-maxima lengths) and variance (increases with the block-maxima 
length). This can be observed in Tables 2 and 3. In practice one can plot estimates 
for several block-maxima sizes b and choose the smallest b above which estimates 
are approximately constant (Northrop 2015).

In the coverage rate (Fig. 2), it is observed that the K-gaps estimator presents an 
overall better performance. Yet, the coverage percentages (“cov") in Table 1 are not 
as large as would be desirable. This is particularly notorious in cases where estimates 
present larger rmse like AR model. In order to analyze the effect of bootstrap block-size 
choice on CI coverage, we have also applied the automatic block-size choice method 
developed in Politis and White (2004) and (Patton et al. 2009), available in R pack-
age blocklength Stashevsky 2022. We recall that the bootstrap CI requiring block-size 
selection was considered for the runs, cycles and truncated estimators. The results of 
the automatic block-size choice method are in Table 7 where we observe improvements 
for the truncated estimator, except in the ARCH model. On the other hand, the ARCH 
model benefits from the automatic method within the runs and cycles estimators. The 

Table 2  (continued)

Mean Abias Rmse Sd Cov Rw Cov/rw NAs

AR 0.7536 0.2464 0.2743 0.1206 0.3947 0.3838 1.0283 65
N b=60
MMFrec 0.2250 0.0250 0.0399 0.0311 0.7695 0.1056 7.2873 37
MAR 0.5120 0.0120 0.0952 0.0945 0.8839 0.3398 2.6008 1
ARUnif 0.8443 0.0943 0.1424 0.1067 0.7638 0.3097 2.4662 39
ARCau 0.6685 0.0285 0.1163 0.1128 0.8688 0.3664 2.3715 9
MCBEV 0.3572 0.0292 0.0913 0.0866 0.8880 0.2964 2.9961 3
ARCH 0.8199 0.0151 0.1169 0.1160 0.8503 0.3567 2.3836 18
AR 0.7629 0.2371 0.2698 0.1288 0.5111 0.4172 1.2252 10
N b=70
MMFrec 0.2225 0.0225 0.0404 0.0336 0.7870 0.1150 6.8446 136
MAR 0.5132 0.0132 0.1043 0.1035 0.8463 0.3550 2.3842 37
ARUnif 0.8338 0.0838 0.1415 0.1140 0.7731 0.3331 2.3209 114
ARCau 0.6665 0.0265 0.1263 0.1235 0.8318 0.3850 2.1607 49
MCBEV 0.3557 0.0277 0.0990 0.0951 0.8687 0.3135 2.7708 10
ARCH 0.8153 0.0197 0.1243 0.1227 0.8273 0.3828 2.1612 85
AR 0.7714 0.2286 0.2658 0.1357 0.5303 0.4194 1.2643 42
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Table 3  Simulation results obtained for the ( Ferreira and Ferreira 2022) sliding blocks estimator: mean, 
absolute bias (abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of 
the true extremal index value within the estimated confidence intervals (cov), the intervals range width 
(rw), the ratio between “cov" and “rw" and the number of replicates where the confidence intervals 
couldn’t be calculated (NAs)

Mean Abias Rmse Sd Cov Rw Cov/
rw

F b=10
MMFrec 0.3419 0.1419 0.1428 0.0155 0.0660 0.2725 0.2422
MAR 0.5711 0.0711 0.0943 0.0620 0.9930 0.4422 2.2454
ARUnif 0.8559 0.1059 0.1138 0.0416 1.0000 0.4055 2.4663
ARCau 0.7349 0.0949 0.1102 0.0561 0.9980 0.4937 2.0213
MCBEV 0.4467 0.1187 0.1388 0.0720 0.7090 0.3454 2.0528
ARCH 0.8287 0.0063 0.0471 0.0467 1.0000 0.4290 2.3312
AR 0.7899 0.2101 0.2156 0.0484 0.9470 0.4589 2.0637
F b=20
MMFrec 0.2733 0.0733 0.0755 0.0181 1.0000 0.3157 3.1674
MAR 0.5651 0.0651 0.1097 0.0883 0.9950 0.5839 1.7041
ARUnif 0.8006 0.0506 0.0794 0.0612 1.0000 0.5225 1.9138
ARCau 0.6966 0.0566 0.0972 0.0791 1.0000 0.0678 1.6957
MCBEV 0.4300 0.1020 0.1451 0.1032 0.9100 0.4707 1.9334
ARCH 0.7984 0.0366 0.0713 0.0612 1.0000 0.5236 1.9100
AR 0.7923 0.2077 0.2155 0.0576 0.9910 0.5303 1.8687
F b=30
MMFrec 0.2514 0.0514 0.0558 0.0217 1.0000 0.3638 2.7488
MAR 0.5698 0.0698 0.1244 0.1031 0.9980 0.6636 1.5040
ARUnif 0.7726 0.0226 0.0742 0.0707 1.0000 0.5914 1.6910
ARCau 0.6840 0.0440 0.1000 0.0899 0.9990 0.6467 1.5447
MCBEV 0.4379 0.1099 0.1644 0.1223 0.9500 0.5712 1.6632
ARCH 0.7804 0.0546 0.0865 0.0672 1.0000 0.5847 1.7104
AR 0.7861 0.2139 0.2230 0.0629 0.9990 0.5831 1.7132
F b=40
MMFrec 0.2407 0.0407 0.0480 0.0255 1.0000 0.4125 2.4245
MAR 0.5749 0.0749 0.1345 0.1118 0.9970 0.7121 1.4000
ARUnif 0.7516 0.0016 0.0769 0.0769 1.0000 0.6417 1.5584
ARCau 0.6767 0.0367 0.1032 0.0965 0.9900 0.6870 1.4540
MCBEV 0.4495 0.1215 0.1818 0.1354 0.9720 0.6419 1.5143
ARCH 0.7646 0.0704 0.0992 0.0698 1.0000 0.6362 1.5719
AR 0.7763 0.2237 0.2335 0.0669 1.0000 0.6271 1.5947
F b=50
MMFrec 0.2346 0.0346 0.0453 0.0292 1.0000 0.4617 2.1658
MAR 0.5789 0.0789 0.1403 0.1161 0.9980 0.7476 1.3349
ARUnif 0.7355 0.0145 0.0817 0.0804 1.0000 0.6849 1.4600
ARCau 0.6718 0.0318 0.1050 0.1001 0.9990 0.7207 1.3862
MCBEV 0.4625 0.1345 0.1960 0.1426 0.9810 0.7005 1.4003
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MAR model with � = 0.1 also gains with the automated method. The Ferreira slid-
ing blocks estimator presents both the highest coverage proportions (cov) and range 
widths (rw), leading to low coverage rates (“cov/rw"), as can be seen in Table 3 and 
Fig. 2. The compromise between both high coverage (“cov") and coverage rate (“cov/
rw") points out the Northrop sliding blocks estimator as the best choice, particularly for 
larger block-maxima sizes.

The AR model with stronger dependence (i.e., dependence parameter � = 0.5 ) pre-
sents the worst performance in all estimators (see, e.g., Figs. 2, 3 and 4). Both sliding 
blocks estimators seem to be the most promising in this model, which has an extremal 
index equal to one and, therefore, a boundary value in the support of � . However, the 
same is not true with weaker dependent AR models (i.e., with dependence parameter 
� = ±0.1 ), where the absolute bias and rmse are lower, particularly within intervals 
(I), truncated (T) and Northrop (N) estimators (Tables 4, 5 and 6). The bootstrap con-
fidence intervals of runs (R) and cycles (C) exhibit very small coverage percentages as 
well as the ones of K-gaps estimator based on ML, for all considered AR models. In 
the challenging cases of � with values close to the domain boundaries 0 and 1 through 
model MAR with autoregressive parameters � = 0.1 and � = 0.9 , corresponding to 

Table 3  (continued)

Mean Abias Rmse Sd Cov Rw Cov/
rw

ARCH 0.7508 0.0842 0.1119 0.0737 1.0000 0.6769 1.4773
AR 0.7661 0.2339 0.2440 0.0694 0.9980 0.6660 1.4985
F b=60
MMFrec 0.2300 0.0300 0.0450 0.0330 0.9990 0.5061 1.9740
MAR 0.5800 0.0800 0.1450 0.1190 0.9980 0.7797 1.2800
ARUnif 0.7210 0.0290 0.0840 0.0810 1.0000 0.7212 1.3865
ARCau 0.6670 0.0270 0.1050 0.1010 0.9990 0.7522 1.3280
MCBEV 0.4720 0.1440 0.2050 0.1450 0.9930 0.7447 1.3334
ARCH 0.7390 0.0960 0.1220 0.0750 1.0000 0.7097 1.4090
AR 0.7540 0.2460 0.2550 0.0700 0.9990 0.7007 1.4257
F b=70
MMFrec 0.2272 0.0272 0.0460 0.0371 0.9990 0.5530 1.8066
MAR 0.5825 0.0825 0.1447 0.1189 0.9980 0.8038 1.2417
ARUnif 0.7096 0.0404 0.0929 0.0837 1.0000 0.7506 1.3322
ARCau 0.6596 0.0196 0.1038 0.1020 0.9980 0.7781 1.2827
MCBEV 0.4814 0.1534 0.2138 0.1490 0.9930 0.7766 1.2786
ARCH 0.7265 0.1085 0.1319 0.0751 1.0000 0.7420 1.3477
AR 0.7410 0.2590 0.2686 0.0713 1.0000 0.7333 1.3637
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� = 0.9 and � = 0.1 , respectively, we observe that estimators of runs (R), cycles (C), 
K-gaps and Ferreira sliding blocks (F) tend to behave better for � = 0.1 than � = 0.9 
while in the truncated (T) estimator the conclusion is opposite. The intervals (I) and 
Northrop sliding blocks (N) present an overall better performance in both situations.

Table 4  Simulation results of models MAR with � = 0.1 and � = 0.9 , AR(� = 0.1 ) and AR(� = −0.1 ), 
obtained for the runs (R), cycles (C), intervals (I), truncated (T) and K-gaps (K): mean, absolute bias 
(abias), root mean squared error (rmse), standard deviation (sd), the coverage proportion of the true 
extremal index value within the estimated confidence intervals (cov), the intervals range width (rw) and 
the ratio between “cov" and “rw"

Mean Abias Rmse Sd Cov Rw Cov/rw

R
MAR(� = 0.9); � = 0.1 0.0941 0.0059 0.0233 0.0225 0.7020 0.1017 6.9058
MAR(� = 0.1); � = 0.9 0.6735 0.2265 0.2415 0.0839 0.0140 0.1319 0.1062
AR(� = −0.1); � = 1 0.7750 0.2250 0.2426 0.0909 0.0050 0.1148 0.0435
AR(� = 0.1); � = 1 0.7026 0.2974 0.3083 0.0812 0.0010 0.1244 0.0080
C
MAR(� = 0.9); � = 0.1 0.0913 0.0087 0.0246 0.0230 0.7700 0.1022 7.5342
MAR(� = 0.1); � = 0.9 0.6480 0.2520 0.2722 0.1030 0.0104 0.1342 0.1043
AR(� = −0.1); � = 1 0.7394 0.2606 0.2868 0.1199 0.0000 0.1210 0.0000
AR(� = 0.1); � = 1 0.6689 0.3311 0.3480 0.1070 0.0000 0.1314 0.0000
I
MAR(� = 0.9); � = 0.1 0.1010 0.0010 0.0273 0.0273 0.7920 0.1585 4.9971
MAR(� = 0.1); � = 0.9 0.8977 0.0023 0.0675 0.0675 0.9250 0.2216 4.1737
AR(� = −0.1); � = 1 0.9901 0.0099 0.0222 0.0198 1.0000 0.0878 11.3901
AR(� = 0.1); � = 1 0.9383 0.0617 0.0852 0.0587 0.9630 0.1782 5.4052
T
MAR(� = 0.9); � = 0.1 0.1340 0.0340 0.1257 0.1212 0.3500 0.1592 2.1985
MAR(� = 0.1); � = 0.9 0.9025 0.0025 0.0469 0.0464 0.9660 0.1797 5.3756
AR(� = −0.1); � = 1 0.9971 0.0029 0.0113 0.0109 0.8410 0.1690 4.9763
AR(� = 0.1); � = 1 0.9446 0.0554 0.0761 0.0531 0.8100 0.1786 4.5353
K-gaps
MAR(� = 0.9); � = 0.1 0.1034 0.0034 0.0243 0.0240 0.8790 0.0735 11.9590
MAR(� = 0.1); � = 0.9 0.7178 0.1822 0.1929 0.0634 0.0170 0.1123 0.1513
AR(� = −0.1); � = 1 0.8090 0.1910 0.2047 0.0736 0.0000 0.0982 0.0000
AR(� = 0.1); � = 1 0.7423 0.2577 0.2659 0.0658 0.0000 0.1089 0.0000
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Table 5  Simulation results of models MAR with � = 0.1 and � = 0.9 , AR(� = 0.1 ) and AR(� = −0.1 ), 
obtained for the ( Northrop 2015) sliding blocks estimator: mean, absolute bias (abias), root mean 
squared error (rmse), standard deviation (sd), the coverage proportion of the true extremal index value 
within the estimated confidence intervals (cov), the intervals range width (rw), the ratio between “cov" 
and “rw" and the number of replicates where the confidence intervals couldn’t be calculated (NAs)

Mean Abias Rmse Sd Cov Rrw Cov/rw NAs

N b=10
MAR(� = 0.9); � = 0.1 0.1939 0.0939 0.0946 0.0115 0.0000 0.0249 0.0000 76
MAR(� = 0.1); � = 0.9 0.9103 0.0103 0.0492 0.0481 0.8779 0.1591 5.5171 1
AR(� = −0.1); � = 1 0.9935 0.0005 0.0184 0.0172 0.9919 0.0548 18.0998 9
AR(� = 0.1); � = 1 0.9490 0.0510 0.0660 0.0419 0.7938 0.1357 5.8484 1
N b=20
MAR(� = 0.9); � = 0.1 0.1484 0.0484 0.0505 0.0147 0.0050 0.0461 0.1084 0
MAR(� = 0.1); � = 0.9 0.9030 0.0030 0.0655 0.0655 0.8825 0.2086 4.2302 13
AR(� = −0.1); � = 1 0.9823 0.0177 0.0372 0.0328 0.9621 0.1069 9.0034 51
AR(� = 0.1); � = 1 0.9526 0.0474 0.0701 0.0516 0.8799 0.1629 5.4019 26
N b=30
MAR(� = 0.9); � = 0.1 0.1331 0.0331 0.0374 0.0173 0.4474 0.06707 7.3683 1
MAR(� = 0.1); � = 0.9 0.8991 0.0009 0.0771 0.0771 0.8799 0.2368 3.7158 9
AR(� = −0.1); � = 1 0.9721 0.0279 0.0520 2 0.0441 0.9615 0.1463 6.5733 38
AR(� = 0.1); � = 1 0.9504 0.0496 0.0777 0.0599 0.9229 0.1902 4.8521 14
N b=40
MAR(� = 0.9); � = 0.1 0.1257 0.0257 0.0324 0.0196 0.7296 0.0707 10.3239 5
MAR(� = 0.1); � = 0.9 0.8952 0.0048 0.0863 0.0862 0.8463 0.2653 3.1899 76
AR(� = −0.1); � = 1 0.9641 0.0359 0.0646 0.0538 0.9287 0.1832 5.0686 159
AR(� = 0.1); � = 1 0.9475 0.0525 0.0853 0.0673 0.8890 0.2108 4.2171 126
N b=50
MAR(� = 0.9); � = 0.1 0.1715 0.0215 0.0309 0.0222 0.8141 0.0798 10.2055 10
MAR(� = 0.1); � = 0.9 0.8918 0.0082 0.0951 0.0948 0.8313 0.2851 2.9155 117
AR(� = −0.1); � = 1 0.9574 0.0426 0.0745 0.0612 0.9272 0.2149 4.3135 190
AR(� = 0.1); � = 1 0.9426 0.0574 0.0938 0.0743 0.8862 0.2444 3.6256 165
N b=60
MAR(� = 0.9); � = 0.1 0.1185 0.0185 0.0308 0.0246 0.8900 0.0905 9.8349 0
MAR(� = 0.1); � = 0.9 0.8860 0.0140 0.1038 0.1030 0.8447 0.3107 2.7188 28
AR(� = −0.1); � = 1 0.9503 0.0497 0.0848 0.0688 0.9263 0.2250 4.1170 64
AR(� = 0.1); � = 1 0.9376 0.0624 0.1025 0.0814 0.9057 0.2533 3.5762 56
N b=70
MAR(� = 0.9); � = 0.1 0.1170 0.0170 0.0321 0.0273 0.8516 0.0944 9.0179 16
MAR(� = 0.1); � = 0.9 0.8838 0.0162 0.1101 0.1090 0.8328 0.3295 2.5274 109
AR(� = −0.1); � = 1 0.9453 0.0547 0.0929 0.0751 0.9165 0.2651 3.4565 198
AR(� = 0.1); � = 1 0.9344 0.0656 0.1093 0.0875 0.8847 0.2835 3.1203 159
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Table 6  Simulation results of models MAR with � = 0.1 and � = 0.9 , AR(� = 0.1 ) and AR(� = −0.1 ), 
obtained for the Ferreira and Ferreira (2022) sliding blocks estimator: mean, absolute bias (abias), root 
mean squared error (rmse), standard deviation (sd), the coverage proportion of the true extremal index 
value within the estimated confidence intervals (cov), the intervals range width (rw), the ratio between 
“cov" and “rw" and the number of replicates where the confidence intervals couldn’t be calculated (NAs)

Mean Abias Rmse Sd Cov Rw Cov/
rw

F b=10
MAR(� = 0.9); � = 0.1 0.2160 0.1160 0.1206 0.0333 0.0750 0.1854 0.4046
MAR(� = 0.1); � = 0.9 0.8695 0.0305 0.0466 0.0352 1.0000 0.3887 2.5730
AR(� = −0.1); � = 1 0.9216 0.0784 0.0811 0.0207 1.0000 0.3285 3.0438
AR(� = 0.1); � = 1 0.9069 0.0931 0.0958 0.0230 1.0000 0.3472 2.8804
F b=20
MAR(� = 0.9); � = 0.1 0.1935 0.0935 0.1056 0.0491 0.6500 0.2345 2.7717
MAR(� = 0.1); � = 0.9 0.8409 0.0591 0.0746 0.0455 1.0000 0.4858 2.0585
AR(� = −0.1); � = 1 0.8838 0.1162 0.1198 0.0294 1.0000 0.4419 2.2627
AR(� = 0.1); � = 1 0.8776 0.1224 0.1261 0.0306 1.0000 0.4497 2.2237
F b=30
MAR(� = 0.9); � = 0.1 0.2024 0.1024 0.1208 0.0640 0.7600 0.2957 2.5702
MAR(� = 0.1); � = 0.9 0.8185 0.0915 0.0963 0.0513 1.0000 0.5541 1.8047
AR(� = −0.1); � = 1 0.8563 0.1437 0.1483 0.0367 1.0000 0.5191 1.9266
AR(� = 0.1); � = 1 0.8527 0.1473 0.1517 0.0363 1.0000 0.5229 1.9125
F b=40
MAR(� = 0.9); � = 0.1 0.2179 0.1179 0.1403 0.0761 0.8120 0.3637 2.2324
MAR(� = 0.1); � = 0.9 0.7990 0.1010 0.1156 0.0563 1.0000 0.6087 1.6454
AR(� = −0.1); � = 1 0.8332 0.1668 0.1720 0.0421 1.0000 0.5780 1.7300
AR(� = 0.1); � = 1 0.8328 0.1677 0.1719 0.0399 1.0000 0.5788 1.7276
F b=50
MAR(� = 0.9); � = 0.1 0.2360 0.1363 0.1611 0.0859 0.8400 0.4395 1.9113
MAR(� = 0.1); � = 0.9 0.7843 0.1157 0.1299 0.0591 1.0000 0.6499 1.5387
AR(� = −0.1); � = 1 0.8144 0.1856 0.1316 0.0473 1.0000 0.6250 1.5999
AR(� = 0.1); � = 1 0.8127 0.1873 0.1929 0.0459 1.0000 0.6285 1.5912
F b=60
MAR(� = 0.9); � = 0.1 0.2566 0.1566 0.1837 0.0960 0.8670 0.5148 1.6840
MAR(� = 0.1); � = 0.9 0.7674 0.1326 0.1475 0.0646 1.0000 0.6913 1.4466
AR(� = −0.1); � = 1 0.7953 0.2047 0.2104 0.0488 1.0000 0.6707 1.4910
AR(� = 0.1); � = 1 0.7961 0.2039 0.2100 0.0504 1.0000 0.6686 1.4957
F b=70
MAR(� = 0.9); � = 0.1 0.2769 0.1769 0.2060 0.1055 0.8960 0.5931 1.5106
MAR(� = 0.1); � = 0.9 0.7538 0.1472 0.1616 0.0667 1.0000 0.7231 1.3830
AR(� = −0.1); � = 1 0.7788 0.2212 0.2278 0.0546 1.0000 0.7053 1.4178
AR(� = 0.1); � = 1 0.7768 0.2232 0.2298 0.0545 1.0000 0.7092 1.4101
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4  Application

We consider the daily maximum temperatures in the months of July and August, 
from 2001 to 2021, collected at the climatologic station Abrantes in center of 
Portugal (in Celsius degrees) available at “SNIRH: Sistema Nacional de Infor-
mação dos Recursos Hídricos".1 The data is plotted in Fig. 5, in which succes-
sive high temperatures are seen, which are typical in this inland city. The results 
in Table  8 are obtained through the application of IMT procedure, leading to 
threshold 37.7 and K = 2 . Thus we assume D(3)(un) dependence condition. Fig-
ure 6 represents the estimates of 𝜃(R) , 𝜃(I) , 𝜃(C) . 𝜃(T) and 𝜃(K) , for thresholds cor-
responding to quantiles from 0.8 to 0.99. The estimators give quite close results 
to each other, except the sliding blocks 𝜃(F) with larger values (Fig. 6, left). How-
ever, most of 𝜃(F) estimates are within the Northrop sliding blocks confidence 
bands (Fig.  6, right), which we use as reference according to the simulation 
study findings in Sect. 3. Our guess is that possible values for � range between 
0.4 and 0.55.

5  Discussion

The extremal index is a very important measure in inferring extreme values of 
time series. In addition to affecting the limiting law behavior of the maximum, it is 
also associated with a clustering effect of exceedances of high values that can have 

Table 7  Coverage proportion of the true extremal index value within the estimated bootstrap confidence 
intervals (cov), the intervals range width (rw) and the ratio between “cov" and “rw", considering auto-
mated choice of block length in Politis and White (2004) and Patton et al. (2009), within runs (R), cycles 
(C) and truncated (T) estimators

R C T

Cov Rw Cov/rw Cov Rw Cov/
rw

Cov Rw cov/rw

MMFrec 0.9490 0.0826 11.4905 0.7820 0.0843 9.2772 0.2850 0.1203 2.3685
MAR 0.8190 0.1480 5.5354 0.8120 0.1478 5.4939 0.7670 0.1635 4.6920
MAR(� = 0.9); � = 0.1 0.8700 0.1050 8.2818 0.9080 0.1341 0.2088 0.6730 0.1814 5.3630
MAR(� = 0.1); � = 0.9 0.0280 0.1272 0.2202 0.0280 0.1048 8.6648 0.9730 0.1480 4.5471
ARUnif 0.7190 0.1083 6.6377 0.4890 0.1134 4.3107 0.0185 0.0778 0.2381
ARCau 0.3310 0.1618 2.0455 0.1830 0.1628 1.1243 0.3273 0.2009 1.6291
MCBEV 0.7600 0.1866 4.0721 0.7300 0.1836 3.9768 0.4640 0.2048 2.2652
ARCH 0.6530 0.1187 5.5014 0.6250 0.1191 5.2458 0.0790 0.1471 0.5371
AR 0.0040 0.1532 0.0261 0.0040 0.1580 0.0253 0.0040 0.1814 0.0221
AR(� = 0.1); � = 1 0.0010 0.1244 0.0080 0.0010 0.1319 0.0076 0.9460 0.1813 5.2166
AR(� = −0.1); � = 1 0.0040 0.1178 0.0339 0.0040 0.1243 0.0322 0.9570 0.1732 5.5241

1 https:// snirh. apamb iente. pt/ index. php? idMain= 1 & idItem= 1.6.

https://snirh.apambiente.pt/index.php?idMain=1%20&idItem=1.6
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harmful consequences. The estimation of the extremal index is a long-standing sub-
ject in extreme value theory, and it still attracts the attention of researchers. Here we 
present a study that covers several estimators, from the classic runs estimator to the 
most recent methodologies in block maxima, such as ( Ferreira and Ferreira (2022)) 
work resorting the theory of bivariate extremes. This new approach is still at an early 

Fig. 2  The ratio between the coverage proportion of the true extremal index value within the estimated 
intervals and the respective range width (“cover/range") obtained for: (left-top) the runs (R), the cycles 
(C), the intervals (I), the truncated (T) and the K-gaps (K); (right-top) the sliding blocks of ( Ferreira and 
Ferreira (2022)) (black) and of ( Northrop (2015), ) (grey), for block lengths b = 10, 20, ..., 70 ; (bottom) 
the runs (R), the cycles (C), the intervals (I), the truncated (T) and the K-gaps (K), the sliding blocks of 
( Ferreira and Ferreira (2022)) (black) and of ( Northrop (2015)) (grey), for block lengths corresponding 
to the largest “cover/range", denoted by B (from best) and with the smallest “cover/range", denoted by W 
(from worst)
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stage, and there is room to improve both the estimation methodology that requires 
the generation of auxiliary samples and the analysis of the asymptotic behavior of 
the estimator and obtaining confidence intervals. Finding the asymptotic variance of 
the extremal index estimators is a great challenge given the context of serial depend-
ence. Thus the resampling methodologies appear as good alternatives. However the 

Fig. 3  The absolute bias (abias) obtained for: (left-top) the runs (R), the cycles (C), the intervals (I), the 
truncated (T) and the K-gaps (K); (right-top) the sliding blocks of (Ferreira and Ferreira (2022)) (black) 
and of Northrop (2015) (grey), for block lengths b = 10, 20, ..., 70 ; (bottom) the runs (R), the cycles (C), 
the intervals (I), the truncated (T) and the K-gaps (K), the sliding blocks of Ferreira and Ferreira (2022) 
(black) and of Northrop (2015) (grey), for block lengths corresponding to the smallest “abias", denoted 
by B (from best) and with the largest “abias", denoted by W (from worst)
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choice of bootstrap block length is a critical point of estimation. A careful analysis 
is still needed to ameliorate in practice the coverage probabilities which proved to be 
poor in some cases. The great advanced in computing capabilities that we are cur-
rently witnessing opens up good prospects for the implementation and development 
of techniques such as bootstrap or jackknife. The area of machine learning is also a 
whole new horizon waiting to be explored.

Fig. 4  The root mean squared error (rmse) obtained for: (left-top) the runs (R), the cycles (C), the inter-
vals (I), the truncated (T) and the K-gaps (K); (right-top) the sliding blocks of Ferreira and Ferreira 
(2022) (black) and of Northrop (2015) (grey), for block lengths b = 10, 20, ..., 70 ; (bottom) the runs (R), 
the cycles (C), the intervals (I), the truncated (T) and the K-gaps (K), the sliding blocks of Ferreira and 
Ferreira (2022) (black) and of Northrop (2015) (grey), for block lengths corresponding to the smallest 
“rmse", denoted by B (from best) and with the largest “rmse", denoted by W (from worst)
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Fig. 5  Daily maximum temperature (in Celsius degrees) in the months of July and August, from 2001 to 
2021, at the climatologic station Abrantes in the center of Portugal

Table 8  Estimation results obtained for daily maximum temperatures when applying the runs (R), cycles 
(C), intervals (I), truncated (T) and K-gaps (K) estimators based on IMT method which leads to the 
validity of D(3) condition and the choice of threshold 37.7

Estimate Lower Upper Rw

R 0.4190 0.3373 0.5670 0.2297
C 0.4095 0.3550 0.5589 0.2040
I 0.4423 0.3293 0.6456 0.3162
T 0.4474 0.3796 0.6328 0.2532
K 0.4340 0.3595 0.5128 0.1533

Fig. 6  Left: Estimates of � for daily maximum temperatures obtained with the runs (R), cycles (C), intervals 
(I), truncated (T) and K-gaps (K) estimators using thresholds corresponding to quantiles 0.8, 0.875, 0.9, 0.
95, 0.975, 0.99, under the validity of D(3) condition derived from IMT method, and estimates of � obtained 
from sliding blocks 𝜃(F)

sl
 and 𝜃(N)

sl
 , for block sizes b = 10, 20, ..., 70 ; Right: Sliding blocks estimates from 𝜃(F)

sl
 

and 𝜃(N)
sl

 , for block sizes b = 10, 20, ..., 70 , and 𝜃(N)
sl

 lower and upper 95% confidence bands
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