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Abstract
Many real-life data sets can be analyzed using linear mixed models (LMMs). Since 
these are ordinarily based on normality assumptions, under small deviations from 
the model the inference can be highly unstable when the associated parameters are 
estimated by classical methods. On the other hand, the density power divergence 
(DPD) family, which measures the discrepancy between two probability density 
functions, has been successfully used to build robust estimators with high stabil-
ity associated with minimal loss in efficiency. Here, we develop the minimum DPD 
estimator (MDPDE) for independent but non-identically distributed observations for 
LMMs according to the variance components model. We prove that the theoretical 
properties hold, including consistency and asymptotic normality of the estimators. 
The influence function and sensitivity measures are computed to explore the robust-
ness properties. As a data-based choice of the MDPDE tuning parameter � is very 
important, we propose two candidates as “optimal” choices, where optimality is in 
the sense of choosing the strongest downweighting that is necessary for the particu-
lar data set. We conduct a simulation study comparing the proposed MDPDE, for 
different values of � , with S-estimators, M-estimators and the classical maximum 
likelihood estimator, considering different levels of contamination. Finally, we illus-
trate the performance of our proposal on a real-data example.
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1 Introduction

A major interest in statistics concerns the estimation of averages and their vari-
ation. The most commonly used method for this purpose is, probably, the Lin-
ear Model (LM). In this model, to give an example from a two-way layout, the 
expected value (mean) �ij of an observation yij may be expressed as a linear com-
bination of unknown parameters such as �ij = � + �i + �j , where � , �i and �j are 
the constants which we are interested in estimating. The linearity in the param-
eters means that we can write a linear model in the form yi = Xi� + �i , where � is 
the vector of unknown parameters, and the Xi s are known matrices. This formu-
lation is the same as that used in case of linear regression model. In the present 
work, we consider the linear mixed models (LMMs), in which some (unknown) 
parameters are not treated as constants but as random variables. Random terms 
come into play when some items cannot be considered as fixed quantities, 
although their distributions are of interest. Hence, they are the tools to general-
ize the results to the entire population under study. The types of data that may be 
appropriately analyzed by LMMs include (i) Clustered data, where the dependent 
variable is measured once for each subject (the unit of analysis) and the units of 
analysis are grouped into, or nested within, clusters; (ii) Repeated-measures data, 
where the dependent variable is measured more than once on the same unit of 
analysis across levels of a factor, which may be time or other experimental condi-
tions; (iii) Longitudinal data, where the dependent variable is measured at several 
points in time for each unit of analysis. For a general review of LMs and LMMs, 
see McCulloch and Searle (2001).

The standard methods used to estimate the parameters in LMMs are methods 
of maximum likelihood and restricted maximum likelihood. Generally, LMMs are 
based on normality assumptions, and it is well-known that these classical meth-
ods are not robust and can be greatly affected by the presence of small deviations 
from the assumptions. Furthermore, outlier detection for modern large data sets 
can be very challenging and, in any case, robust techniques cannot be replaced by 
the application of classical methods on outlier deleted data.

To answer the need for robust estimation in linear mixed models, a few meth-
ods have been proposed. The initial attempts were based on weighted versions of 
the log-likelihood function (see Huggins 1993a, b; Huggins and Staudte 1994; 
Stahel and Welsh 1994; Richardson and Welsh 1995; Richardson 1997; Welsh 
and Richardson 1997). Another attempt, discussed in Welsh and Richardson 
(1997), of robustifying linear mixed models consists of replacing the Gaussian 
distribution by the Student’s t distribution (see also Lange et al. 1989; Pinheiro 
et  al. 2001). However, this modification of the error distribution is intractable 
and complicated to implement. In Copt and Victoria-Feser (2006), a multivariate 
high breakdown point S-estimator, namely the CVFS-estimator, has been adapted 
to the linear mixed models setup, while the estimator given by Koller (2013), 
namely the SMDM-estimator, attempts to achieve robustness by a robustification 
of the score equations. Robust estimators have been proposed, more generally, for 
generalized linear mixed models by Yau and Kuk (2002) and Sinha (2004).
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The density power divergence (DPD) (Basu et  al. (1998)), which measures the 
discrepancy between two probability density functions, has been successfully used 
to build robust estimators for independent and identically distributed observations. 
In Ghosh and Basu (2013), the construction of the DPD and the corresponding mini-
mum DPD estimator (MDPDE) has been extended to the case of independent but 
non-identically distributed data. This approach and theory covers the linear regres-
sion model and has later been extended to more general parametric regression mod-
els (Ghosh and Basu 2016, 2019; Castilla et al. 2018, 2021; Ghosh 2019, etc.). This 
MDPDE has become widely popular in recent times due to its good (asymptotic) 
efficiency along with high robustness, easy computability and direct interpretation 
as an intuitive generalization of the maximum likelihood estimator (MLE).

In the present work, our aim is to propose a robust estimator of the fixed effect 
parameters and variances of random effects under the linear mixed model set up. 
In particular, we are going to consider independent random effects according to the 
standard variance components models. This is done by an application of the defini-
tion and properties of the MDPDE, as formulated by Ghosh and Basu (2013), to the 
linear mixed models scenario. However, in this case, the observations have a com-
plicated, non-identically distributed structure, which makes this adaptation non-triv-
ial, in the computation of the estimator as well as in the theoretical derivations. We 
show that under appropriate conditions on the model matrices, the asymptotic and 
robustness properties hold, and the resulting estimator outperforms the competing 
robust estimators both in the presence and in the absence of contamination in sam-
ple data. Furthermore, the calculation of the sensitivity measures allows us to find 
“optimal” values for the tuning parameter � , where optimality is in terms of the right 
amount of data-specific downweighting needed to achieve robustness with minimal 
loss of efficiency. This is a valuable new contribution to the literature of DPD-based 
inference since, in contrast with the previous knowledge of � as trade-off between 
robustness and efficiency, our results lead to a small positive value of � as an opti-
mum choice in practical applications. Furthermore, the estimation of random effects 
has been also considered, which is an important aspect in the study of LMMs. In 
particular, we provide a closed form to compute the random effects estimates based 
on the minimum DPD estimation. Large-scale numerical explorations, including 
an extensive simulation study, are provided to substantiate the theory developed 
and justify our claims of the superiority of the MDPDE in the proposed applica-
tion domain of LMMs. Finally, our proposal is applied successfully (and robustly) 
to analyze two real-life data, one on orthodontic measures and another on foveal and 
extrafoveal vision acuity.

The rest of the paper is organized as follows. The MDPDE for non-homogeneous 
observations described in Ghosh and Basu (2013) is briefly presented in Sect. 2. In 
Sect. 3, we define the proposed estimator in case of linear mixed models, consider-
ing the estimation of fixed effect parameters and variances of random effects, and 
the prediction of random terms. The asymptotic and robustness properties of our 
procedures are considered in Sect. 4 together with the computational aspects and the 
case of balanced data. Section 5 reports the organization and results of the simula-
tion study we conducted, comparing the performance of the MDPDE to the most 
recent methods, exploring also the case of contaminated data. Section 6 provides the 
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application of the proposed estimator to the real-data example on orthodontic meas-
ures. Concluding remarks are presented in Sect. 7. The proof of the main theorem is 
reported in Appendix A, while the Supplementary Material contains the derivation 
of equivariance properties, some additional theoretical and Monte Carlo results, an 
example which shows the robustness of predicted random terms, and the application 
to the real-data example on foveal and extrafoveal vision acuity.

2  The MDPDE for independent non‑homogeneous observations

The density power divergence family was first introduced by Basu et al. (1998) as 
a measure of discrepancy between two probability density functions. The authors 
used this measure to robustly estimate the model parameters under the usual setup of 
independent and identically distributed data. The density power divergence measure 
d
�
(g, f ) between two probability densities g and f is defined, in terms of a single tun-

ing parameter � ≥ 0 , as

where ln denotes the natural logarithm. Basu et  al. (1998) demonstrated that the 
tuning parameter � controls the trade-off between efficiency and robustness of the 
resulting estimator. With increasing � , the estimator acquires greater stability with 
a slight loss in efficiency. Since the divergence is not defined for � = 0 , d0(g, f ) in 
Equation (2) represents the divergence obtained in the limit of (1) as � → 0 , which 
corresponds to a version of the Kullback–Leibler divergence. On the other hand, 
� = 1 generates the squared L2 distance.

Let G be the true data generating distribution and g the correspond-
ing density function. To model g, consider the parametric family of densities 
F� = {f� ∶ � ∈ Θ ⊆ ℝ

p} . The minimizer of d
�
(g, f�) over � ∈ Θ , whenever it exists, 

is the minimum DPD functional at the distribution point G. Note that the third term 
of the divergence d

�
(g, f�) is independent of � ; hence, it can be discarded from the 

objective function as it has no role in the minimization process. Consider a sequence 
of independent and identically distributed (i.i.d) observations Y1,… ,Yn from the 
true distribution G. Using the empirical distribution function Gn in place of G, the 
MDPDE of � can be obtained by minimizing

over � ∈ Θ . In the above equation, the empirical distribution function is used to 
approximate its theoretical version (or, alternatively, the sample mean is used to 

(1)d
𝛼
(g, f ) = ∫

{
f 1+𝛼 −

(
1 +

1

𝛼

)
f 𝛼g +

1

𝛼

g1+𝛼
}

if 𝛼 > 0,

(2)d0(g, f ) = ∫ g ln

(
g

f

)
if � = 0,

∫ f 1+�
�

−
(
1 +

1

�

)
1

n

n∑
i=1

f �
�
(Yi)
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approximate the population mean). Note that, it is valid in case of continuous densi-
ties also. See Basu et al. (2011) for more details and examples.

Ghosh and Basu (2013) generalized the above concept of robust minimum DPD 
estimation to the more general case of independent non-homogeneous observations, 
i.e., they considered the case where the observed data Y1,… ,Yn are independent but 
for each i, Yi ∼ gi where g1,… , gn are possibly different densities with respect to some 
common dominating measure. We model gi by the family Fi,� = {fi(⋅,�) ∶ � ∈ Θ} 
for i ∈ {1,… , n} . While the distributions fi(⋅,�) can be distinct, they share the same 
parameter vector � . Ghosh and Basu (2013) proposed to minimize the average diver-
gence between the data points and the model densities which leads to the minimization 
of the objective function

where Hi(Yi,�) is the indicated term within the square brackets in the above equa-
tion. Differentiating the above expression with respect to � , we get the estimating 
equations of the MDPDE for non-homogeneous observations. Note that the estimat-
ing equation is unbiased when each gi belongs to the model family Fi,� , respectively. 
When � → 0 , the corresponding objective function reduces to −

∑n

i=1
ln(fi(Yi,�))∕n , 

which is the negative of the log-likelihood function. In Section SM–1 of the Sup-
plementary Material, we report Assumptions (A1)–(A7) which are used to prove the 
asymptotic normality of the MDPDE (Ghosh and Basu 2013).

3  The MDPDE for linear mixed models

The general formulation of a LMM may be expressed as

where Y ∈ ℝ
d is the response vector, X and Z are known design matrices, � is the 

parameter vector for fixed effects, U is the vector of random effects, and � is the 
random error vector. The vector U is assumed to be a random variable, in particular 
U ∼ Nq(0,D) , then �(Y|U = u) = X� + Zu . Notice that we will use U to indicate 
the random variable and u for its realization. Finally, assume that � ∼ Nd(0,R) and � 
and U are independent of each other, then

The estimation of the matrices D and R involves a large amount of parameters; 
indeed, we need to assume some additional structure to the mixed model. According 
to the variance components model, the levels of any random effect are assumed to be 
independent with the same variance. Different effects are assumed independent with 
possibly different variances. Let the model have r random factors Uj with qj levels, 
j ∈ {1,… , r} , with q =

∑r

j=1
qj . As stated in Christensen (2011), a “natural general-

ization" of model 5 is to partition the vector U = [U1,… ,Ur] and matrix 

(3)Hn(�) =
1

n

n∑
i=1

[
∫ fi(y,�)

1+�dy −
(
1 +

1

�

)
fi(Yi,�)

�

]
=

1

n

n∑
i=1

Hi(Yi,�),

(4)Y = X� + ZU + �,

(5)Y ∼ Nd

(
X�,ZDZ⊤ + R

)
.
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Z = [Z1 …Zr] , such that Uj are independent between each other, i.e., ℂov(Ui,Uj) = 0 
for i ≠ j , and ℂov(Uj) = Dj = �

2
j
Iqj , j = 1,… , r . Finally, assume � and Uj independ-

ent for all j and R = �
2
0
Id , where In is the n × n identity matrix.

Then, Y ∼ Nd(X�,V) where

In case of multiple measurements on each of a collection of observational units 
Y1,… ,Yn , where ni denotes the size of each group and 

∑n

i=1
ni = N , the LMM in 

equation (4) can be written for each observation as

where Yi (ni × 1) is the response vector for group i, Xi (ni × k) and Zij (ni × qj) are the 
model matrices, � (k × 1) is the vector of unknown parameters for fixed effects, and 
�i (ni × 1) is the error term. Then, assuming �i ∼ �

2
0
Ini and independent with respect 

to Uj for all i, j,

where Vi = 𝜎
2
0
(Ini +

∑r

j=1
ZijZ

⊤

ij
𝛾j).

Remark Note that the covariance structure of the linear mixed models considered here 
also includes the case of standard random intercept and random slope models. The 
real-data application presented in Sect.  6 provides an example. Indeed, Christensen 
(Christensen 2011) also considered this model for the discussion of all the variance 
components estimation methods. Also note that all the methods and results described 
in this paper can be routinely derived for any other (low-dimensional) parametric 
structure specified for the variance components in the LMM as per the need, but such 
situations (beyond the structure considered here) would rarely occur in practice.

3.1  Robust parameter estimation

In this setting, we can obtain the MDPDE for the p-dimensional parameter vector 
� = (�⊤;𝜎2

j
, j ∈ {0,… , r})⊤ , with p = k + r + 1 , by minimizing the objective func-

tion given in Equation (3) with fi ≡ Nni
(Xi�,Vi) . Upon simplification, the objective 

function is given by

where

V = 𝜎
2
0
Id +

r∑
j=1

ZjZ
⊤

j
𝜎
2
j
= 𝜎

2
0

(
Id +

r∑
j=1

ZjZ
⊤

j
𝛾j

)
, with 𝛾j =

𝜎
2
j

𝜎
2
0

.

(6)Yi = Xi� +

r∑
j=1

ZijUj + �i, i ∈ {1,… , n},

Yi ∼ Nni

(
Xi�,Vi

)
, i ∈ {1,… , n}.

(7)Hn(�) =
1

n

n∑
i=1

[
�i�(� + 1)−

ni

2 −

(
1 +

1

�

)
wi(�)

]
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and

Differentiating the above equation with respect to � , we get the corresponding esti-
mating equation for the MDPDE of � as

Let Uij denote the partial derivative of the matrix Vi with respect to �2
j
 . We have that 

Ui0 = Ini , and Uij = ZijZ
⊤

ij
 , j ∈ {1,… , r} . Then, the partial derivative of the objec-

tive function with respect to �2
j
 , j ∈ {0,… , r} , leads to their MDPDE estimating 

equations as given by

where Tr(⋅) denotes the trace of the argument matrix. Note that for the case � = 0 , 
the estimating equations (9)–(10) correspond to the MLE score equations. Thus, the 
MDPDE at � = 0 is nothing but the usual MLE under LMMs.

3.2  Robust estimation of the random effects

Finally, the estimates obtained by minimizing the objective function in (7) are used 
to predict the random realizations ui|Yi , i = 1,… , n . Consider the joint distribution 
of (Yi,U) ∼ gi(y, u) , and we have that gi(y,u) = gi(y|u)g(u) , where g(u) is the true 
density of U . Let fi(y, u) be the parametric density to model gi(y,u) , then it can be 
expressed as fi(y, u) = fi(y|u)f (u) , which, by the plug-in principle, can be estimated 
using

Hence, we can estimate the random coefficients by minimizing the density power 
divergence measure between the densities gi(y,u) and fi(y, u) given by

where

�i� = (2�)−
ni�

2 |Vi|−
�

2

(8)wi(�) = 𝜂i𝛼 exp
{
−
𝛼

2
(Yi − Xi�)

⊤V−1
i
(Yi − Xi�)

}
.

(9)
𝜕Hn

𝜕�
=

1

n

n∑
i=1

[
− (1 + 𝛼)wi(�)X

⊤

i
V−1

i
(Yi − Xi�)

]
= 0.

(10)

𝜕Hn

𝜕𝜎
2
j

=
1

n

n∑
i=1

{
−

𝛼𝜂i𝛼Tr(V
−1
i
Uij)

2(𝛼 + 1)
ni

2

+
𝛼

2

(
1 +

1

𝛼

)
wi(�)

×
[
Tr(V−1

i
Uij) − (Yi − Xi�)

⊤V−1
i
UijV

−1
i
(Yi − Xi�)

]}
= 0,

fi(y|u) = Nni
(Xi

̂� + Ziui, �̂�
2
0
Ini) and f (u) = Nq(0,

̂D).

Hn(u1,… , un) =
1

n

n∑
i=1

�
�

[
(� + 1)−

ni+q

2 +

(
1 +

1

�

)
ci(ui)

]
,
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and

Differentiating the above equation with respect to ui , i = 1,… , n , we obtain the esti-
mating equations for the MDPDE of ui as

The computational aspects about how equations (9), (10) and (11) are solved numer-
ically are treated in subsection 4.3.

Remark The proposed estimating equations given in equation (11) for the random 
effects ui can be simplified to

since �
�
 does not depend on ui and ci(ui) > 0 ∀i . Then, the estimating equation 

depends on � only through the estimates of the unknown parameters ̂�, �̂�0 and ̂D . 
For � → 0 , the estimates of the unknown parameters correspond to the MLE, then 
the random effects predictions ûi correspond to the standard predictions of random 
effects. Hence, they are the Best Linear Unbiased Predictors (BLUPs). Our formula 
differs from the standard formula since we provide estimates of the random effects 
for each i-th observation, while they are usually reported for each random effect.

4  Theoretical properties of the MDPDE under the Linear mixed 
models

4.1  Asymptotic efficiency

In this subsection, we prove that the theorem stated in Ghosh and Basu (2013), 
about the asymptotic behavior of the MDPDE for non-homogeneous observations, 
holds for the LMM setup. In particular, we present some conditions on the inde-
pendent variables and the variance–covariance matrices that are used to derive the 
asymptotic distribution of the estimator in the LMM application.

We assume that the true densities gi , i = 1,… , n , belong to the model family, i.e., 
gi = fi(⋅,�) for some value of � ∈ Θ . Consider the following assumptions. 

ci(ui) = exp

{
−

𝛼

2�̂�2
0

(Yi − Xi
̂� − Ziui)

⊤(Yi − Xi
̂� − Ziui) −

𝛼

2
u⊤
i
̂D
−1
ui

}

𝜅
𝛼
=

1

(2𝜋)
(ni+q)𝛼

2 (�̂�2
0
)
ni𝛼

2 | ̂D| 𝛼

2

.

(11)
𝜕Hn

𝜕ui
=

(1 + 𝛼)𝜅
𝛼
ci(ui)

n

[
(�̂�2

0
)−1Z⊤

i
(Yi − Xi

̂� − Ziui) −
̂D
−1
ui

]
= 0.

[
(�̂�2

0
)−1Z⊤

i
(Yi − Xi

̂� − Ziui) −
̂D
−1
ui

]
= 0
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 (MM1) Define X�
i
=

(
�i�V

−1
i

(1+�)
ni
2
+1

) 1

2

Xi , for each i, and X� = Block-Diag (X�
i
∶ i ∈ {1,… , n}) . 

Then, the X′ matrix satisfies 

 and Xi and Zi are full rank matrices for all i.
 (MM2) The values of Xi ’s are such that, for all j, k, l

 where 1(ni × 1) is a vector of 1’s.
 (MM3) The matrices Vi and Uij are such that, for all j, k, l ∈ {0,… , r} , 

 where the determinant |Vi| is bounded away from both zero and infinity ∀i.

 (MM4) Define X∗
i
=

(
�
2

i�
V

−1
i

(1+2�)
ni

2
+1

) 1

2

X
i
 , for each i, and X∗ = Block-Diag (X∗

i
∶ i ∈ {1,… , n}) . 

Then, the X∗ matrix satisfies 

(12)inf
n

[
min eigenvalue of

X′⊤X′

n

]
> 0,

(13)sup
n>1

max
1≤i≤n |X

⊤

ij
V

−
1

2

i
| = O(1), sup

n>1

max
1≤i≤n |X

⊤

ij
V−1

i
Xik| = O(1),

(14)

1

n

n∑
i=1

|X⊤

ij
V−1

i
XikX

⊤

il
V

−
1

2

i
1| = O(1),

1

n

n∑
i=1

|X⊤

ij
V

−
1

2

i
|diag(V−

1

2

i
XikX

⊤

il
V

−
1

2

i
)1 = O(1),

(15)

1

n

n∑
i=1

Tr(V−1
i
Uij) = O(1),

1

n

n∑
i=1

Tr(V−1
i
Uij)Tr(V

−1
i
Uik) = O(1),

1

n

n∑
i=1

Tr(V−1
i
UikV

−1
i
Uij) = O(1),

(16)

1

n

n∑
i=1

Tr(V−1
i
UijV

−1
i
UikV

−1
i
Uil) = O(1),

1

n

n∑
i=1

Tr(V−1
i
UijV

−1
i
Uik)Tr(V

−1
i
Uil) = O(1),

1

n

n∑
i=1

Tr(V−1
i
Uij)Tr(V

−1
i
Uik)Tr(V

−1
i
Uil) = O(1),

(17)max
1≤i≤n

[
(X∗⊤X∗)−1X⊤

i
V−1

i
Xi

n

]
= O(1).
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Theorem  1 Consider the setup of the linear mixed model presented in Sect.  3. 
Assume that the true data generating density belongs to the model family and that 
the independent variables satisfy Assumptions (MM1)–(MM4) for a given (fixed) 
� ≥ 0 . Then, we have the following results as n → ∞ keeping ni fixed for each i. 

 (i) There exists a consistent sequence of roots ̂�n = ( ̂�
⊤

n
, 𝜎n

2
j
, j ∈ {0,… , r})⊤ to 

the minimum DPD estimating equations given in (9)–(10).
 (ii) The asymptotic distributions of ̂� and �̂�2

j
 are independent for all j ∈ {0,… , r}.

 (iii) The asymptotic distribution of �
−

1

2

n �n

√
n( ̂�n − �) is p-dimensional normal 

with mean zero and covariance matrix Ip . In particular, the asymptotic dis-

tribution of (X∗⊤X∗)−
1

2 (X�⊤X�)( ̂� − �) is a k-dimensional normal with mean 
zero and covariance matrix Ik , where X′ and X∗ are as defined in Assumptions 
(MM1) and (MM4), respectively.

The derivation of matrices �n and �n and the proof of Theorem 1 are presented 
in Section A.1 of Appendix.

4.2  Influence function

To explore the robustness properties of the coefficient estimates in our treatment 
of linear mixed models, we derive the influence function of the MDPDEs. Denote 
the density power divergence functional T

�
= (T

�
�
, T�

�
) for the parameter vec-

tor �⊤ = (�⊤,� = (𝜎2
0
,… , 𝜎2

r
)) . We continue with the notation of the previous 

subsections.
The influence function of the estimator T�

�
 with contamination at the direction i0 

at the point ti0 is computed to have the form

and the corresponding influence function for the estimator T�

�
 has the form

where

Note that the influence functions in equations (18) and (19), seen as functions of the 
point t , are bounded for any 𝛼 > 0 since they are proportional to the functions ze−z⊤z 

(18)IFi0
(ti0 , T

�
𝛼
,G1,… ,Gn) = (X�⊤X�)−1X⊤

i0
V−1

i0
(ti0 − Xi0

�)fi0 (ti0 ;�)
𝛼 ,

(19)IFi0
(ti0 , T

�

�
,G1,… ,Gn) =

[
n∑
i=1

�i�

4(1 + �)
ni

2
+2
T(V−1

i
Uij,V

−1
i
Uik)

]−1

�i0
,

𝜏i =

(
1

2
fi(ti;�)

𝛼[Tr(V−1
i
Uij)−(ti − Xi�)

⊤V−1
i
UijV

−1
i
(ti − Xi�)]

−
𝜂i𝛼𝛼Tr(V

−1
i
Uij)

2(1 + 𝛼)
ni

2
+1

)
.
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and z⊤ze−z⊤z , respectively, which are bounded for z ∈ ℝ
ni . For � = 0 , the influence 

functions for T�
�
 and T�

�
 are seen to be unbounded; indeed, this case corresponds to 

the non-robust maximum likelihood estimator. Hence, unlike the MLE, the mini-
mum DPD estimators are B-robust, i.e., their associated influence functions are 
bounded, for 𝛼 > 0.

The influence function of the estimators T�
�
 and T�

�
 with contamination in all the n 

cases at the contamination points t1,… , tn , can be derived with similar computations 
and correspond to the sum of equations (18) and (19), respectively, for i0 = 1,… , n . In 
this case also the influence functions are bounded for 𝛼 > 0 and unbounded for � = 0.

Several summary measures of robustness based on the influence function for i.i.d. 
observations have been introduced in Hampel (1968, 1974). Following the same 
approaches, some influence function-based gross summary measures can be defined 
for the non-homogeneous case. For 𝛼 > 0 , the gross-error sensitivity and the self-
standardized sensitivity of the estimator T�

�
 in the case of contamination only in the 

i0-th direction are given by

and

where �max(A) indicates the largest eigenvalue of the matrix A , while they are equal 
to ∞ if � = 0 . Details of the computations are provided in Section SM–2 of the Sup-
plementary Materials. The sensitivity measures for T�

�
 have no compact form and 

they are not reported.

4.3  Computational aspects

The estimating equations (9)–(10) previously introduced can be solved numerically 
in order to obtain the estimates of � = (�⊤;𝜎2

j
, j ∈ {0,… , r})⊤.

Note that denoting wi = wi(�, �
2
j
) , j = 0,… , r , as defined in equation (8), the 

estimating equation for � given in equation (9) corresponds to

(20)

𝛾
u
i0
(T�

𝛼
,G1,… ,Gn) = sup

t

{��IFi0
(t, T�

𝛼
,G1,… ,Gn)��}

=

�
𝜆max

�
(X�⊤X�)−2X⊤
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V−1

i0
Xi0

��1∕2
√
𝛼(2𝜋)

ni𝛼

2 �Vi�
𝛼
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�n�
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)−1IFi0
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1
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�
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𝛼

2 e1∕2
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Solving for � , we get

so that, in an iterative fixed point algorithm, the successive iterates have the relation

The estimating equation (10) for the variance components cannot be written in a 
similar closed form, then it is solved numerically by a quasi-Newton method which 
allows box constraints, that is, each variable can be given a lower and/or upper 
bound.

Finally, the random coefficients can be predicted through the obtained estimates. 
Notice that the quantity �

�
 can be removed to solve equation (11) since it does not 

depend on ui , as well as ci(ui) since ci(ui) > 0 for all i. Hence, equation (11) is sim-
plified to

Then,

This formulation provides a closed form to predict the realizations ui , i = 1,… , n . It 
is worth noting that even if these estimates may appear not robust, in the sense that 
an outliers (Yi,Xi) can affect the predicted ui , they are based on the robust estimates 
̂� , �̂�2

0
 and ̂D.

4.4  An example: the balanced data case

Consider the model defined by Equation (6). Here, we study the simplest case in 
which ni = p , for all i ∈ {1,… , n} , and the associated random effects covariates 
( Zij ) are also the same for all i. In this case, the covariance matrix of Yi is the same 
for all i and is denoted by V having the form

where �j = �
2
j
∕�2

0
 and Uj = Uij as it is independent of i.

−

n∑
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wiX
⊤

i
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i
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⊤

i
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i
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⊤

i
V−1
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i
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)
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wi(�
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(k)

j
)X⊤

i
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(k)

j
)−1Xi

)−1( n∑
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(k)

j
)X⊤
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j
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.

(�̂�2
0
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i
(Yi − Xi

̂�) −
(
(�̂�2

0
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)
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(22)ûi =
(
(�̂�2

0
)−1Z⊤

i
Zi +

̂D
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(�̂�2
0
)−1Z⊤
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The influence function of the functional T�
�
 with contamination in the direction i0 , 

given in Equation (18), can be written as

Using this expression, the gross-error sensitivity for the functional T�
�
 is given by

Similarly, the self-standardized sensitivity of the functional T�
�
 can be written as

The simpler form of the sensitivity measures allows us to assess their performance 

with respect to the tuning parameter � . Indeed, the function (1+�)
p
2
+1

√
�

 in the gross-

error sensitivity (23) has a minimum for the value �∗ =
1

p+1
 , suggesting that this 

value of the parameter � gives the most robust estimator. Similarly, the function 
(1+�)

p+2
4√

�

 in the self-standardized sensitivity (24) has a minimum for the value �̄� =
2

p
 . 

The existence of such minimum values for � is in contrast with the previously held 
knowledge about this parameter. It was introduced as a trade-off between efficiency 
and robustness, instead here we show that, passing some threshold, with increasing 
� , we lose both efficiency and robustness. Finally, the proposed optimal values �∗ 
and �̄� depend only on the dimension of observations and constitute valuable choices 
in practical situations.

In the following, we present a simple example for which we will compute the 
theoretical quantities introduced above. This example in linear mixed models has 
been chosen for its similarity to the case of longitudinal data; it is often also named 
as LMM with random intercept and random slope.

Notice that the MDPDE satisfies the equivariance properties. In particular, the 
regression equivariance allows us to assume, without loss of generality, any suitable 
value for the parameter � while proving the asymptotic properties with the following 
example or for the Monte Carlo studies. Since the MDPDE is also scale and affine 
equivariant, such estimators do not depends on the choice of the coordinate system 
for the variables x and on the measurement unit of y . The derivation of these proper-
ties is reported in Section SM–3 of the Supplementary Material. Furthermore, Sec-
tion SM–4 reports an illustrative example which shows the robustness achieved by 
the random effects predictions computed according to equation (22).

IFi0
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We consider n = 50 different subjects (groups), and for each of them, we have 
p = 10 measurements taken with respect to the factor ui2 , i = 1,… , n , with two 
levels, modeled here as a random effect. The X ’s model matrices are simulated 
from a standard normal. In particular, the model is described by

where U1 ∼ Np(0, �
2
1
Ip) , U2 ∼ N2(0, �

2
2
I2) and �i ∼ Np(0, �

2
0
Ip) , and they 

are independent. Hence, for this model, � = (�0, �1, �
2
1
, �2

2
, �2

0
) , and we take 

� = (1, 2, 0.25, 0.5, 0.25) as the true values of the parameters.
Using the given values, we compute the variance–covariance matrices Vi and 

the matrices �n and �n . First, we will look at the Asymptotic Relative Efficiency 
(ARE) of the minimum density power divergence estimators with respect to the 
fully efficient maximum likelihood estimator. Figure 1 shows the asymptotic rela-
tive efficiencies of the estimators of �1 and �2

2
 for � ∈ [0, 0.6] . It is easy to see that 

there is a loss of efficiency which increases with � . However, for small positive 
values of � , the estimator retains reasonable efficiency. The ARE of the estima-
tors of the other parameters are similar to those displayed here, and are given in 
Section SM–5 of the Supplementary Materials.

On the other hand, to study the robustness properties, Fig.  2 shows 
the influence functions of T�0

�
 and T�

2
1

�
 , with respect to 𝛼 = 0, 0.05, 𝛼∗, �̄� 

where �
∗ = 1∕(p + 1) = 1∕11 and �̄� = 2∕p = 0.2 . Here, we have plotted 

IF(t1,… , tn, T� ,G1,… ,Gn) , the influence function of the estimator T
�
 , com-

puted with respect to constant vectors t = t(1,… , 1)⊤ for varying t ∈ ℝ . Note that 
except for the case � = 0 , we can easily see that the influence function is bounded 
as may also be noted from equations (18) and (19); thus, the estimator will be 
robust with respect to outliers. The influence function for the estimators of other 
parameters behaves similarly; these plots are available in Section SM–5 of the 
Supplementary Materials.

Finally, Fig.  3 shows the gross-error sensitivity and the self-standardized 
sensitivity of the functional T�

�
 . Here, we have considered a particular direction 

i0 ∈ {1,… , n} . Note that in the present case of balanced data, the choice of i0 
does not change the behavior of the sensitivity measures with respect to �.

Yi = �0 + �1Xi + U1 + U2Zi2 + �i,

Fig. 1  Asymptotic relative efficiency with respect to � for �
1
 and �2

2
 , respectively
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Fig. 2  Influence function for the functionals T�
0

�
(left panel) and T�

2

1

�
 (right panel), for different values of 

the tuning parameter �
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5  Monte Carlo simulations

5.1  Model setting

We consider a simulation setting as introduced in Agostinelli and Yohai (2016) and 
reported here in order to facilitate the comparison of the considered estimators.

Consider an LMM for a two-way cross classification with interaction, where the 
model is given by

where f = 1,… ,F, g = 1,… ,G , and h = 1,… ,H . Here, we set F = 2,G = 2 
and H = 3 getting p = F × G × H = 12 . Also xfgh is a k × 1 vector where the 
last k − 1 components are from a standard multivariate normal and the first com-
ponent is identically equal to 1, and �0 = (0, 2, 2, 2, 2, 2)⊤ is a k × 1 vector of the 
fixed parameters with k = 6 . The random variables af  , bg and cfg are the random 
effects which are normally distributed with variances �2

a
 , �2

b
 , and �2

c
 . Arranging 

the yfgh in lexicon order (ordered by h within g within f), we obtain the vector y 
of dimension p, and in the similar way, the p × k matrix x obtained arranging xfgh . 
Similarly, we set a = (a1,… , aF)

⊤ , b = (b1,… , bG)
⊤ and c = (c11,… , cFG)

⊤ , that is, 
a ∼ NF(0, �

2
a
IF) and similarly for b and c , while e = (e111,… , eFGH)

⊤ ∼ Np(0, 𝜎
2
e
Ip) . 

Hence, y is a p multivariate normal with mean � = x� and variance matrix 
�0 = �(�0, �0) = �0(V0 +

∑J

j=0
�jVj) , where V0 = Ip , V1 = IF ⊗ JG ⊗ JH , 

V2 = JF ⊗ IG ⊗ JH , and V3 = IF ⊗ IG ⊗ JH ; ⊗ is the Kronecker prod-
uct and Jk is a k × k matrix of ones. We took �2

a
= �

2
b
= 1∕16 and �2

c
= 1∕8 . 

Then, �
0
= (𝛾01, 𝛾02, 𝛾03)

⊤ = (𝜎2
a
∕𝜎2

e
, 𝜎2

b
∕𝜎2

e
, 𝜎2

c
∕𝜎2

e
)⊤ = (1∕4, 1∕4, 1∕2)⊤ and 

�0 = �
2
e
= 1∕4.

We consider a sample of size n = 100 and four levels of contamination 
� = 0, 5, 10 and 15% . Hence, n × � observations are contaminated according the fol-
lowing contamination scenarios. Let y0 and x0 indicate the response vector and the 
fixed effect model matrix for the contaminated observations.

• Complete contamination: n × � elements of the vector y are replaced by 
observations from y0 ∼ Np(x0�0 + �0,�) . The matrix x0 is such that the 

yfgh = x⊤
fgh
�0 + af + bg + cfg + efgh,

Fig. 3  Gross-error sensitivity (left panel) and self-standardized sensitivity (right panel) of the functional 
T
�
�
 with respect to i

0
= 10
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first column is identically equal to 1, while the last k − 1 columns are from 
Np×(k−1)(�0, 0.005

2Ip×(k−1)) where �0 indicates a p-vector of constants all equal 
to �0 with �0 = 1, 20 in the case of low leverage outliers (lev1) or for large 
leverage outliers (lev20), respectively. �0 is a p-vector of constants all equal to 
�0 with �0 = 0, 1,… , 30.

• Contamination only on the response y : y0 ∼ Np(x�0 + �0,�) with �0 as above.
• Contamination only on the x : n × � rows of x are replaced by x0 , as defined in 

the first scenario, with �0 = 0, 1, 3, 5, 10, 15, 20, 25, 30 . The corresponding ele-
ments of y are replaced by observations sampled from y0 ∼ Np(x0�0,�).

For each contamination scenario, we compute the CVFS-estimator described in 
Copt and Victoria-Feser (2006) with Rocke � function and with asymptotic rejec-
tion probability set to 0.01 as implemented in the R R Core Team (2019) package 
robustvarComp (Agostinelli and Yohai (2019)), the SMDM estimator introduced 
by Koller (2013) as implemented in the R package robustlmm (Koller (2016)), the 
composite �-estimator proposed by Agostinelli and Yohai (2016) and available in 
the R package robustvarComp, and our proposed MDPDE with different choices 
of � . In particular, � ∈ {0, 0.01, 0.1, 0.2,… , 1} ; note that �∗ = 1∕(p + 1) = 1∕13 
and �̄� = 2∕p = 1∕6 . For each case, we run 500 Monte Carlo replications.

5.2  Performance Measures

Let (y, x) be an observation independent of the sample (y1, x1),… , (yn, xn) used to 
compute ̂� and let ŷ = x̂� be the predicted value of y using x . Then, the squared 
Mahalanobis distance between ŷ and y using the matrix �0 is

Since y − x�0 is independent of x and has covariance matrix �0 , putting 
A = �(x⊤�−1

0
x) , we have

Then, to evaluate an estimator ̂� of � by its prediction performance, we can use

Let N be the number of replications in the simulation study, and let ̂� j , 1 ≤ j ≤ N be 
the value of ̂� at the j-th replication, then we can estimate �

[
m(̂�, �0,A)

]
 by the 

mean square Mahalanobis distance as

m(�y, y,�0) = (�y − y)⊤�−1
0
(�y − y)

= (�� − �0)
⊤x⊤�−1

0
x(�� − �0) + (y − x�0)

⊤

�
−1
0
(y − x�0).

�
[
m(�y, y,�0)

]
= �

[
(�� − �0)

⊤A(�� − �0)
]
+ trace

[
�
−1
0
(y − x�0)(y − x�0)

⊤

]

= �

[
(�� − �0)

⊤A(�� − �0)
]
+ p.

�

[
m(��, �0,A)

]
= �

[
(�� − �0)

⊤A(�� − �0)
]
.



144 G. Saraceno et al.

1 3

It is easy to prove that as in this case, x is a p × k matrix where the cells are inde-
pendent N(0, 1) random variables, then A = trace(�−1

0
)Ik.

Given two p-dimensional covariance matrices �1 and �0 , one way to measure how 
close �1 and �0 are is through the use of the Kullback–Leibler divergence between 
two multivariate normal distributions with the same mean and covariance matrices 
equal to �1 and �0 , given by

Since (�0, �0) determines �0 = �(�0, �0) , the covariance matrix of y given x for the 
particular LMM considered in our simulation (as described in Sect. 5.1), one way to 
measure the performance of an estimator (�̂, �̂) of (�0, �0) is by �

[
KLD(�(�̂, �̂),�0)

]
 . 

Let (�̂j, �̂j), 1 ≤ j ≤ N , be the value of (�̂, �̂) at the j-th replication, then we can esti-
mate �

[
KLD(�(�̂, �̂),�0)

]
 by the mean Kullback–Leibler divergence

5.3  Results

We begin with the performance of the estimators in the absence of contamination. 
Table 1 shows the relative efficiency of the CVFS-estimator, the SMDM-estimator, 
the Composite �-estimator and the MDPDE for different values of � with respect to 
maximum likelihood. The efficiency of the estimators of � has been measured by the 

MSMD =
1

N

N∑
j=1

m(̂� j, �0,A).

KLD(�1,�0) = trace
(
�1�

−1
0

)
− log

(
det(�1�

−1
0
)
)
− p.

MKLD =
1

N

N∑
j=1

KLD(�(�̂j, �̂j),�0).

Table 1  Relative efficiency 
for the SMDM-estimator, 
CVFS-estimator, Composite �
-estimator and MDPDE for 
different values of � with respect 
to the maximum likelihood 
computed by the MSMD for the 
fixed terms � and by the MKLD 
for the random terms

Method (�) MSMD EFF. MKLD EFF.

SMDM – 0.956 0.147
CVFS – 0.706 0.453
Composite � – 0.807 0.833
MDPDE 0.01 0.999 0.996

�
∗ 0.960 0.945

0.1 0.937 0.915
�̄� 0.853 0.814
0.2 0.805 0.760
0.3 0.658 0.603
0.4 0.519 0.470
0.5 0.400 0.361
0.6 0.302 0.273
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MSMD ratio, while the MKLD ratio was used for the efficiency of an estimator of 
(�, �).

The MDPDEs exhibit a high relative efficiency, even greater than the competitor 
estimators, for small values of � , while the efficiency decreases with increasing � . 
Note that the MDPDEs are far more successful in retaining the efficiency of the esti-
mators of the random components. For very small values of � , the MDPDEs domi-
nate either competitor (at least up to � = �

∗ for SMDM, and at least up to � = 0.2 for 
CVFS) in terms of both (MSMD and MKLD) efficiency measures. As the value of � 
increases, the MSMD efficiency of the MDPDE eventually lags behind its competi-
tors, but in terms of MKLD efficiency, it beats the competitors at least up to � = 0.4 , 
except for the Composite �-estimator that has a higher efficiency than the MDPDE 
for 𝛼 > �̄� . On the whole, it is clear that under pure data, a properly chosen mem-
ber of the MDPDE class can perform competitively, if not better, compared to the 
SMDM, the CVFS and the Composite � -estimators.

Now, we consider the contamination settings. At first, Tables 2 and 3 report the 
maximum values of MSMD and MKLD over the values of �0 and leverage �0 con-
sidered for the complete contamination and separated contamination, respectively, 
of the MDPDE for different values of � compared to the CVFS-, the SMDM- and 
Composite �-estimators.

Small values of � , as expected, provide much higher maximum values with 
respect to the other estimators in Table 2. However, for slightly larger values of � , 
the MDPDEs are extremely competitive with the existing estimators. It may be eas-
ily observed that in case of complete contamination, the MDPDE at �̄� clearly beats 
the competitors (CVFS, SMDM and Composite � ) over both performance meas-
ures at both leverage values (except in case of complete contamination at MSMD, 
lev20, where its performance measure is equal to that of CVFS). In this example, 
the MDPDE at � = 0.2 fares even better. In case of contamination on the y , the 

Table 2  Complete 
contamination. Maximum 
values of MSMD and MKLD 
for the CVFS-, SMDM-, 
Composite �-estimators and 
for the MDPDE at different 
values of � under 10% of outlier 
contamination

MSMD MKLD

Method (�) lev1 lev20 lev1 lev20

CVFS – 0.010 0.122 0.197 1.057
SMDM – 0.023 0.450 1.341 9.125
Composite � – 0.022 0.136 0.398 0.872
MDPDE 0 9.007 9.005 3.508e22 1.605e25

0.01 1.114 0.120 106.185 0.732

�
∗( 1

13
) 0.017 0.121 0.650 0.716

0.1 0.012 0.121 0.387 0.710

�̄�(1
6
) 0.008 0.122 0.139 0.695

0.2 0.008 0.122 0.105 0.688
0.3 0.007 0.123 0.106 0.673
0.4 0.007 0.125 0.116 0.665
0.5 0.008 0.127 0.137 0.662
0.6 0.010 0.130 0.170 0.666
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estimators show similar performance, while, when only the x is contaminated, the 
MSMD values are almost equal for all the considered estimators suggesting that the 
estimation of the fixed effects parameter � is not affected. However, as in the previ-
ous case, the MDPDE for values of � close to zero show larger MKLD values, but 
slightly increasing � the MDPDE outperforms the competitors.

Figures 4a and 4b display the MSMD and MKLD as function of �0 , compar-
ing the CVFS-, SMDM- and Composite �-estimators with the MDPDEs for three 
chosen values of � , under 10% of outlier contamination. In particular, we choose 

Table 3  Contamination on x 
and y separately. Maximum 
values of MSMD and MKLD 
for the CVFS-, SMDM-, 
Composite �-estimators and for 
MDPDE considering different 
values of � under 10% of outlier 
contamination

MSMD MKLD

Method (�) x y x y

CVFS – 0.004 0.008 0.092 0.210
SMDM – 0.003 0.021 0.820 1.667
Composite � – 0.004 0.010 0.042 0.305
MDPDE 0 0.003 8.998 1.012 203.248

0.01 0.003 1.134 0.035 109.762

�
∗( 1

13
) 0.003 0.016 0.036 0.609

0.1 0.003 0.011 0.037 0.389

�̄�(1
6
) 0.003 0.008 0.042 0.134

0.2 0.003 0.007 0.046 0.109
0.3 0.004 0.007 0.060 0.108
0.4 0.005 0.007 0.081 0.120
0.5 0.007 0.008 0.108 0.145
0.6 0.009 0.009 0.145 0.185
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�
∗ and �̄� since they are the values suggested by theory, and � = 0.3 since it shows 

the lowest (or very close to the lowest) maximum values of MSMD and MKLD. 
We can see that most of the MDPDEs outperform the CVFS- and SMDM-estima-
tors, especially in case of leverage 20 (lev20), where the SMDM-estimator shows 
an unbounded behavior. On the other hand, in the case of leverage 1 (lev1), even 
if the CVFS-estimator presents lower maximum value of MSMD and MKLD 
for very small values of �0 , the MDPDEs show a better performance when �0 
increases. In fact, the MDPDE at � = 0.3 is competitive or better than CVFS at all 
values of �0 . Finally, Fig. 5a and 5b shows the MSMD and MKLD as function of 
�0 if the response y is contaminated and as function of �0 in case of contamina-
tion on the x . The CVFS-, SMDM- and Composite �-estimators are compared 
with the MDPDEs for three chosen values of � , under 10% of outlier contamina-
tion. These results confirm that the MDPDEs, at least for one value of � , out-
perform the competitor estimators. Complete results of the simulation study, for 
all the considered estimators and levels of contamination, are reported in Section 
SM–6 of the Supplementary Materials.
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6  Real‑data example: Orthodontic Distance Growth

Let us now present an application of the proposed estimation method to a real-data 
example on orthodontic measures, while Section SM–8 of the Supplementary Mate-
rials reports the analysis of the real-life data on foveal and extrafoveal vision acuity 
(and crowding) studying their interrelationships with one’s reading performances. 
We compare the estimates obtained by the minimum DPD method with those 
obtained using the classical (non-robust) restricted MLE, computed using the lmer 
function in R, as well as the robust competitors, that is, the SMDM-estimator, the 
CVFS-estimator and the Composite �-estimator. A very important consideration in 
real situations is the selection of an “optimum” value of � that applies to the given 
data set. We will consider the values �∗ and �̄� , derived from theoretical computa-
tions, since they are the suggested optimal values.

We consider an orthodontic study conducted by Potthoff and Roy (1964) where 
the distance (in millimeters) between the pituitary and the pterygomaxillary fissure 
has been measured on 16 boys and 11 girls at 8, 10, 12, and 14 years. The data set is 
available as part of the R package nlme (Pinheiro et al. 2022). Figure 6 displays the 
measurements for each individual in the study together with the least-squares fit of 
the simple linear regression model.

From Fig. 6, it is possible to see that the data set possibly contains some outliers. 
In particular, the measurements for subject M09 have more variability around the 
fitted line with two possible within-subject outliers and the slope for subject M13 
is larger than the others indicating a possible outlier at the level of random effects. 
Finally, subject M10 could be also considered as outlying observation for the large 
distance values since the first measurement. Overall, the intercept and the slope 
seem to vary with the subject, and the responses for the girls show less variation 
around the fitted lines than for boys.

According to the mentioned features, the orthodontic distance growth with 
respect to age can be modeled using the linear mixed model of the form

for i = 1,… , 27 and j = 1,… , 4 , where yij denotes the distance for subject i at age tj ; 
�0 and �1 represent the fixed effect intercept for boys and girls, respectively; �2 and �3 
represent the fixed effect slope for boys and girls, respectively; Ii(F) indicates an 
indicator function for the girls group; ( U1,U2 ) is the vector of random terms and 
( ui1, ui2 ) is the vector of realizations for subject i; �ij is the error term. Notice that in 
this example, the random effect for the age is nested into the random effect for the 
subject level, so a possible correlation between them has to be considered. Accord-
ing to this, the variance components to be estimated are �2

j
 , j = 0, 1, 2 as previously 

described and the covariance �12 between the random variables U1 and U2.
Table  4 and Table  5 report the estimates for the fixed terms and for the vari-

ance components, respectively, obtained by the MLE, the SMDM-estimator, the 
CVFS-estimator, the Composite �-estimator and MDPDE for � = �

∗ = 0.2 and 
𝛼 = �̄� = 0.5 . Furthermore, we computed the maximum likelihood estimates for the 
reduced data set obtained removing the observations M09, M10 and M13, indicated 

yij =�0 + �1Ii(F) + (�2 + �3Ii(F))tj + ui1 + ui2tj + �ij
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Fig. 6  Orthodontic growth patterns in 11 girls (F) and 16 boys (M) from 8 to 14 years of age. Blue lines 
correspond to the individual least-squares fit of the simple linear regression model

Table 4  Orthodont data set. Estimates of fixed effects parameters obtained by the MLE (with and with-
out the outlying observations), the SMDM-estimator, the CVFS-estimator, the Composite �-estimator 
and MDPDE for � = �

∗ = 0.2 and 𝛼 = �̄� = 0.5

MLE SMDM CSVF Comp. � MDPD−0.2 MDPD−0.5 MLE (without)

𝛽
0

16.34 16.91 16.30 17.43 17.20 17.09 17.15

𝛽
1

1.03 0.53 1.32 0.08 0.35 0.74 0.22

𝛽
2

0.78 0.71 0.72 0.67 0.69 0.68 0.68

𝛽
3

−0.30 −0.23 −0.22 −0.20 −0.23 −0.24 −0.20
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as outliers. The estimates of �2 and �3 parameters are quite similar among the con-
sidered estimators. The fixed effect parameters differ mainly for the intercept �0 
and �1 , which indicates the effect of gender on the response yi . Robust estimators 
show values closer to zero than the standard MLE, indicating that the orthodontic 
distance is less affected by gender. This can be explained by the fact that MLE is 
sensitive to the presence of outlying observations obtaining a bigger value. Indeed, 
when such observations are removed, the maximum likelihood estimates are simi-
lar to MDPDE. The main differences on the estimation of the random effects terms 
are both in size (error variance component) and shape (correlation components). 
The MDPDEs assign less variance to the error term, and the other estimates are in 
general smaller. As before, the estimates given by the MLE and MDPDE are very 
close when the outliers are removed. Notice that the SMDM- and CVFS-estimates 
are quite different with respect to the others, especially for the variance components 
parameters.

Figure  7 shows the QQ-plots of the estimates of the random terms uij for 
i = 1,… , 27 and j = 1, 2 , obtained by the MLE, the SMDM-estimator, the 
CVFS-estimator, the Composite �-estimator and MDPDE for � = �

∗ = 0.2 and 
𝛼 = �̄� = 0.5 . The QQ-plots seem to show some structure and confirm the larger 

Table 5  Orthodont data set. Estimates of variance components parameters obtained by the MLE (with 
and without the outlying observations), the SMDM-estimator, the CVFS-estimator, the Composite �-esti-
mator and MDPDE for � = �

∗ = 0.2 and 𝛼 = �̄� = 0.5

MLE SMDM CSVF Comp. � MDPD−0.2 MDPD−0.5 MLE (without)

�̂�
2

0
1.72 1.21 1.41 1.09 0.93 0.95 0.88

�̂�
2

1
5.79 1.08 0.46 2.00 3.51 3.06 3.35

�̂�
12

−0.29 0.03 −0.00 0.02 −0.10 −0.09 −0.13
�̂�
2

2
0.03 0.00 0.02 0.01 0.02 0.02 0.02

Fig. 7  Orthodont data set. QQ-plots of the random effects estimated by the MLE, the SMDM-estimator, 
the CVFS-estimator, the Composite �-estimator and MDPDE for � = �

∗ = 0.2 and 𝛼 = �̄� = 0.5
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variances estimated by MLE then those given by MDPDE; however, notice that the 
sample size ( n = 27 ) is quite low. Figure 13a and 13b, in Section SM–7 of the Sup-
plementary Materials, shows the QQ-plots of the random effects estimated by differ-
ent methods separately.

Finally, Fig. 8 shows the fitted lines given by fixed effects estimates and random 
effects predictions for the MLE and MDPDE with � = 0.2 , represented in blue and 
orange, respectively. It is easy to see that the MDPDE achieves a better fit. In par-
ticular, notice the case of Subject M10 previously indicated as possible outlier.

Notice that for the simulation study in Sect. 5.2, the predictions of the response 
variable have been computed as ŷ = x̂� , without considering the random effect esti-
mates, since we were interested in evaluating the performance with respect to fixed 
effects estimation. In practical situations, such as the one presented in this section, 
when a linear mixed model is considered, both fixed effects and random effects esti-
mates must be considered, i.e., ŷi = Xi

̂� + Ziûi.

7  Conclusions

In this paper, we have developed an estimator based on the density power diver-
gences to deal with the robustness issues in the linear mixed model setup. We dem-
onstrated that the desirable asymptotic properties of the MDPDE, such as consist-
ency and asymptotic normality, hold for the linear mixed model setup. In order to 
assess the robustness properties, the influence function and sensitivity measures of 
the estimator were computed. We found that the estimator is B-robust for 𝛼 > 0 . 
From a practical point of view, the choice of the value of the tuning parameter � 
is fundamental in applications. The behavior of the sensitivity measures suggested 
two optimal values, denoted by �∗ and �̄� , depending on the dimension p, where the 
term “optimal” is in the sense of providing minimum sensitivity, and thus produc-
ing maximum robustness. The existence of such values is in contrast to the previous 
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knowledge about the parameter � . Indeed, it was shown that when � continues to 
increase beyond a certain value, we lose both robustness and efficiency.

The simulation study confirmed how the performance of the minimum density 
power divergence estimator changes with respect to � . Furthermore, the MDPDE 
outperforms the competitor estimators; indeed our approach leads to more resistant 
estimators in the presence of case-wise contamination. Finally, the application of 
our estimator to a real-life data set indicated that the MDPDE has similar results to 
the classical maximum likelihood estimator.

We feel that many important extensions of this work are necessary and can be 
potentially useful. So far, the MDPDE has been implemented only for balanced data 
(although the theory that we have developed is perfectly general). In future, we pro-
pose to extend the implementation to the more general case of groups with possibly 
different dimensions. The problem of testing of hypothesis also deserves a deeper 
look in the linear mixed models scenario.

Appendix A

A.1 Proof of Theorem 1

First let us note that under the setup of the linear mixed models introduced in Sect. 3, 
given a fixed � ≥ 0 , for each i, the matrices �i and Ji defined in Section SM–1 of 
Supplementary Material simplify to the forms

where

for j, k ∈ {0,… , r} , with T(c,A,B) = c�2Tr(A)Tr(B) + 2Tr(AB)

for general matrices A,B and a constant c ( c = 1 if not specified). Finally, put

J(i) = �gi
[∇Hi(Yi,�)] =

(
J
(i)

11
0

0 J
(i)

22

)
,

�
(i) = �argi(∇Hi(Yi,�)) =

(
�

(i)

11
0

0 �
(i)

22

)
,

J
(i)

11
=
4X⊤

i
V−1

i
Xi

(1 + 𝛼)
ni

2
+1
,

(j, k)-th element of J
(i)

22
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T(V−1

i
Uij,V

−1
i
Uik)
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ni

2
+2

,

�
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Also, we assumed that the true data generating density belongs to the model family. 
Then, the proof of our Theorem 1 is immediate from the results stated by Ghosh and 
Basu (2013), provided we can show that the general Assumptions (A1)–(A7) are 
satisfied under the our assumed Conditions (MM1)–(MM4) for the special case of 
LMMs.

Now, the assumption that the true data generating density belongs to the model fam-
ily, together with that the model density is normal with mean Xi� and variance matrix 
Vi , ensures that Assumptions (A1)–(A3) are directly satisfied. Also, Assumption (A4) 
follows from Condition (MM1).

Next, we prove Equation (1) of Assumption (A6). For any j = 1,… , p , the j-th par-
tial derivative with respect to � is given by

Then, considering Zi = V
−

1

2

i
(Yi − Xi�),

Since the supn>1 max1≤i≤n |X⊤

ij
V

−
1

2

i
| = O(1) by Assumption (MM2) and supn>1 𝜂i𝛼 is 

bounded thanks to the boundness of |Vi| in (MM3), by the dominated convergence 
theorem (DCT), we have
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n
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Also

and this follows for all j = 1,… , p . On the other hand, consider the partial deriva-
tive with respect to �2

j
 , j = 0, 1,… , r , given in Equation (10). Hence, denoting with 

Zi = V
−

1

2

i
(Yi − Xi�) , we have

where in the last term Zi = (Yi − Xi�) . Note that

; hence, by Equation (15),
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The expectation in the first two terms goes to zero as N → ∞ by the DCT, as before, 
and the sums are bounded by Equation (15) in condition (MM3). This holds for all 
j = 0,… , r.

Finally, Assumptions (A5), (A7) and Equation (2) similarly hold using Equations 
(14) and (16), (17), (13) and (15), respectively.
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