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Abstract
We consider a sieve bootstrap procedure to quantify the estimation uncertainty of 
long-memory parameters in stationary functional time series. We use a semipara-
metric local Whittle estimator to estimate the long-memory parameter. In the local 
Whittle estimator, discrete Fourier transform and periodogram are constructed from 
the first set of principal component scores via a functional principal component 
analysis. The sieve bootstrap procedure uses a general vector autoregressive repre-
sentation of the estimated principal component scores. It generates bootstrap repli-
cates that adequately mimic the dependence structure of the underlying stationary 
process. We first compute the estimated first set of principal component scores for 
each bootstrap replicate and then apply the semiparametric local Whittle estimator 
to estimate the memory parameter. By taking quantiles of the estimated memory 
parameters from these bootstrap replicates, we can nonparametrically construct con-
fidence intervals of the long-memory parameter. As measured by coverage probabil-
ity differences between the empirical and nominal coverage probabilities at three 
levels of significance, we demonstrate the advantage of using the sieve bootstrap 
compared to the asymptotic confidence intervals based on normality.

Keywords Functional principal component analysis · Functional autoregressive 
fractionally integrated moving average · Vector autoregression · Local Whittle 
estimator · Long-run covariance function

1 Introduction

The past few decades have seen extensive studies and developments in analyzing 
long-range dependence (LRD) time series, which appear to exist in many fields, 
such as agriculture, economics, finance, and geophysics (see, e.g., Beran 1994; 
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Robinson 2003; Palma 2007; Giraitis et al. 2012; Beran et al. 2013). These books 
describe stochastic processes with greater persistence than short-range dependent 
ones. By greater persistence, the autocovariance for LRD processes decays to zero 
more slowly than for short-range ones. Indeed, the autocovariance is not summable, 
and the spectral density is unbounded at zero frequency.

One of the most important issues in analyzing LRD time series is estimating the 
memory parameter, which quantifies the strength of persistence. Li et al. (2020) con-
sidered a rescale/range (R/S) estimator to estimate the memory parameter. While 
the R/S estimator is consistent, it has a slow convergence rate and performs poorly 
in finite samples, especially small samples. For improving the convergence rate, Li 
et al. (2021) considered a semiparametric local Whittle estimator, which is known 
to be more efficient. Further, Li et al. (2021) provided asymptotic results for para-
metrically constructing confidence intervals of the memory parameter. The asymp-
totic confidence intervals are the benchmark for our empirical comparison. Through 
a series of Monte-Carlo studies, Shang (2020) evaluated and compared time-domain 
and frequency-domain estimators and found that the local Whittle estimator is often 
one of the most accurate estimators in long-range dependent stationary functional 
time series. Thus, we consider the local Whittle estimator to estimate the mem-
ory parameter, although the sieve bootstrap can also be applied to other memory 
estimators.

Let {Xt ∶ t ∈ ℤ} be a sequence of functional observations, where each Xt is a 
random function of a stochastic process (Xt(u) ∶ u ∈ I) , I ⊂ ℝ is a compact set, ℝ 
is the real line and ℤ = {0,±1,…} . Generally speaking, two major stationary short-
range dependent functional time series structures have been considered in the lit-
erature: one extends small-ball probability for mixing sequences (see, e.g., Ferraty 
and Vieu 2006; Bathia et al. 2010); the other extends linear and nonlinear sequences 
and martingale using m-dependent approximation techniques (see, e.g., Bosq 2000; 
Hörmann and Kokoszka 2010; Horváth and Kokoszka 2012; Rice and Shang 2017). 
It is assumed that Xt = g(�t, �t−1,…) , where g ∶ S

∞
→ H and {�t ∶ t ∈ ℤ} with 

�t = (�t(u) ∶ u ∈ I) is a sequence of independent and identically distributed (i.i.d.) 
random elements in a measurable space S , and H is a separable Hilbert space. In 
Sect. 4, we follow the second structure to generate observations from a stochastic 
process that follows a functional autoregressive fractionally integrated moving aver-
age (ARFIMA) model.

With a time series of functions (X1,X2,… ,Xn) , a central issue is to model the 
temporal dependence accurately. A challenge associated with functional time series 
is the curse of dimensionality. So, a common practice is to project a time series 
of functions onto a dominant subspace, such as the first eigenfunction of long-run 
covariance function (see, e.g., Li et al. 2020, 2021, 2022; Chen and Pun 2021). In so 
doing, we simplify the problem from a functional to univariate time series analysis.

Long-run covariance and spectral density estimation enjoy a vast literature in func-
tional time series, beginning with the seminal work of Horváth et al. (2012) and Pana-
retos and Tavakoli (2013). Still, the most commonly used technique is smoothing the 
periodogram at frequency zero by employing a weight function and bandwidth param-
eter. While Li et al. (2020) considered a set of linearly decaying weights to estimate the 
long-run covariance, Rice and Shang (2017) considered a kernel sandwich estimator 
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and presented a plug-in algorithm to estimate the optimal bandwidth parameter in the 
kernel sandwich estimator.

Our estimation procedure begins with estimating the long-run covariance function. 
We then obtain the first functional principal component and its associated scores via 
eigendecomposition of the estimated long-run covariance function. From a univariate 
time series of the principal component scores, we apply the semiparametric local Whit-
tle estimator, described in Sect. 2, to estimate the memory parameter. Li et al. (2021) 
presented theoretical development of the local Whittle estimator for stationary func-
tional time series and provided asymptotic confidence intervals for the memory param-
eter. We aim to improve the confidence interval calibration through the sieve bootstrap 
method in Sect. 3. Via a series of simulation studies in Sect. 4, we evaluate and com-
pare the finite-sample performance between the asymptotic and bootstrapped confi-
dence intervals of the memory parameters. The conclusion is given in Sect. 5, along 
with some idea on how the methodology presented here can be further extended.

2  Estimation of the long‑memory parameter

2.1  Estimation of the long‑run covariance function

We consider a stationary ergodic functional time series, which exhibits both stationar-
ity and ergodicity. In essence, the stochastic process will not change its statistical prop-
erties with time, and its statistical properties can be captured from a single, sufficiently 
long sample of the process. For such a random process, the long-run covariance func-
tion can be defined as

where u, v ∈ I  and � denotes a time-series lag variable. A feature of long-memory 
processes is that the integral operator of C(u, v) is not finite. As a result, the norm of 
the autocovariance function �

�
 of such a process decays much more slowly than that 

of the usual short-memory functional time series.
While the long-run covariance can be expressed as a bi-infinite summation, its esti-

mation is not trivial. For a finite sample, a natural estimator of C(u, v) is

where d denotes a memory parameter.

C(u, v) =

∞∑

�=−∞

�
�
(u, v)

=

∞∑

�=−∞

cov[X0(u),X�
(v)]

=

∞∑

�=−∞

E{[X0(u) − �(u)][X
�
(v) − �(v)]},

(1)Ĉn(u, v) =
1

n1+2d

|�|≤n∑

|�|=0
(n − |�|)�̂

�
(u, v),
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In practice, the population mean �(u) can be estimated by its empirical counter-
part X(u) = 1

n

∑n

t=1
Xt(u) ; and the autocovariance �

�
(u, v) can also be estimated by

From (1), the estimation of the long-run covariance function relies on knowing the 
value of the memory parameter. However, the first term on the right-hand side of (1) 
is a constant, and it does not affect the estimation of the orthonormal functions span-
ning the dominant subspace of functional time series. Following (Li et al. 2020), we 
perform eigendecomposition on

From (2), we observe the long-run covariance function is a sum of autocovariance 
function with decreasing weights. In practice, it is essential to determine the optimal 
value of � to balance the trade-off between squared bias and variance. In Li et al. 
(2020), � is chosen as the minimum between sample size n and the number of dis-
cretized data points in a function. Alternatively, it is also the approach we take; one 
could consider a kernel sandwich estimator

where h is called the bandwidth parameter, and Wq(⋅) is a symmetric weight function 
with bounded support of order q. As with any kernel estimator, the choice of kernel 
function is not as important as the bandwidth parameter. Therefore, Rice and Shang 
(2017) proposed a plug-in algorithm for determining the optimal bandwidth parame-
ter that minimizes the asymptotic mean-squared normed error between the estimated 
and actual long-run covariance functions.

2.2  Dynamic functional principal component analysis

Via Mercer’s lemma, the estimated long-run covariance function ̂̂Cn(u, v) can be 
approximated by

where 𝜃1 > 𝜃2 > ⋯ ≥ 0 are the eigenvalues of ̂̂Cn(u, v) , and [�1(u),�2(u),…] are the 

orthonormal functional principal components. Because of the inner product in the 
Hilbert space, we could project a time series of functions onto a set of orthogonal 

�𝛾
�
(u, v) =

�
1

n

∑n−�

j=1
[Xj(u) − X(u)][Xj+�(v) − X(v)] if � ≥ 0;

1

n

∑n

j=1−�
[Xj(u) − X(u)][Xj+�(v) − X(v)] if � < 0.

(2)̂̂
Cn(u, v) =

|�|≤n∑

|�|=0
(n − |�|)�̂

�
(u, v).

̂̂
Cn(u, v) =

∞∑

�=−∞

Wq

(
�

h

)
�̂
�
(u, v),

̂̂
Cn(u, v) =

∞∑

k=1

�k�k(u)�k(v),
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functional principal components. This results in the Karhunen-Loève expansion of a 
realization of the stochastic process,

where �t,k = ⟨Xt(u) − X(u),�k(u)⟩ denotes the kth set of principal component scores 
for time t.

Since the eigenvalues are ordered in descending order, the first eigenvalue and its 
associated eigenfunction form the dominant subspace of the functional time series. 
It is custom to use the first set of principal component scores �t,1 to determine the 
memory parameter (see also Li et al. 2020, 2021, 2022; Chen and Pun 2021). Alter-
natively, one could also consider taking the L2 norm of several leading principal 
component scores (see, e.g., Li et al. 2020). The memory parameters estimated from 
both approaches are similar, so we choose to work with the former.

2.3  Local Whittle estimator

The local Whittle estimator is a Gaussian semiparametric estimation method to 
estimate the memory parameter based on the periodogram. Introduced by Künsch 
(1987), Robinson (1995) and Velasco (1999), this frequency-domain estima-
tor does not require the specification of a parametric model for the data. Instead, 
it depends on the specification of the shape of the spectral density of the time 
series. The spectral density f (�) of a stationary time series is assumed to satisfy

where 0 < G < ∞ and − 1

2
< d <

1

2
 . To estimate d, we define an objective function

where ln(⋅) denotes natural logarithm, I(�i) denotes the sample periodogram, 
which is the square of discrete Fourier transform of the scores, �i = (2�i)∕n , 
i = 1,… ,m , and m is a positive integer and m = o(n) (Robinson 1995). Customarily, 
m = ⌊n0.65 + 1⌋ . By minimizing the objective function, we define the estimates

where the closed interval of admissible estimates of d, Θ = [−
1

2
,
1

2
] denotes an 

admissible range for stationary time series. While G and d can be estimated jointly 
in (3), one could also use an iterative estimation procedure

Xt(u) = X(u) +

∞∑

k=1

�t,k�k(u),

f (�) ∼ G�−2d, � → 0,

Q(G, d) =
1

m

m∑

i=1

{
ln(G�−2d

i
) +

I(�i)

G�−2d
i

}
,

(3)(�G,�d) = argmin
0<G<∞, d∈Θ

Q(G, d),

d̂ = argmin
d∈Θ

R(d)
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where

Li et al. (2021, Theorem 1) shows that 
√
m(d̂ − d)

d
�����→ N(0, 1∕4) , as n → ∞ . Based 

on this asymptotic result, we can construct our parametric confidence intervals as:

where Q(⋅) represents a quantile function of the standard Gaussian distribution, and 
� denotes a level of significance, such as � = 0.2, 0.05 and 0.01.

3  Sieve bootstrapping

Bootstrapping has been receiving increasing attention in the functional time series 
literature to quantify estimation or prediction uncertainty. Franke and Nyarige 
(2019) proposed a residual-based bootstrap for functional autoregressions. Pila-
vakis et al. (2019) established theoretical results for the moving block and tapered 
block bootstrap. Shang (2018) considered a maximum entropy bootstrap procedure 
to study the estimation accuracy of the long-run covariance function. Paparoditis 
(2018) proposed a sieve bootstrap under the functional autoregressions and derived 
bootstrap consistency as the sample size and order of autoregression both tend to 
infinity. From a nonparametric perspective, Zhu and Politis (2017) proposed a kernel 
estimation of the first-order nonparametric functional autoregression model and its 
bootstrap approximation.

We revisit the sieve bootstrap of Paparoditis (2018). The basic idea of the 
sieve bootstrap is to generate a functional time series of pseudo-random elements 
(X∗

1
,X∗

2
,… ,X∗

n
) , which appropriately imitate the temporal dependence of the 

original functional time series. The sieve bootstrapping begins with centering the 
observed functional time series by computing Yt = Xt − Xn , where Xn =

1

n

∑n

t=1
Xt . 

Via Karhunen-Loève representation, random element Yt can be decomposed into 
two parts:

R(d) = ln Ĝ(d) −
2d

m

m∑

i=1

ln �i, Ĝ(d) =
1

m

m∑

i=1

�2d
i
I(�i).

(4)
[
d̂ +

1

2
× m

−
1

2 × Q
(
�

2

)
, d̂ +

1

2
× m

−
1

2 × Q
(
1 −

�

2

)]
,

(5)

Yt =

∞∑

k=1

�k,t�k

=

K∑

k=1

�k,t�k +

∞∑

k=K+1

�k,t�k,

=

K∑

k=1

�k,t�k + Ut,K



427

1 3

Sieve bootstrapping the memory parameter in long‑range…

where K denotes the number of retained functional principal components. While the 
first terms on the right-hand side of (5) are considered as the main driving part of Xt , 
the second term is treated as white noise.

The value of K is determined as the integer that minimizes ratios of two adja-
cent empirical eigenvalues given by

where �̂k represents the kth estimated eigenvalue from the functional principal com-
ponent analysis, kmax is a pre-specified positive integer, � is a pre-specified small 
positive-valued number, and 1(⋅) is the binary indicator function. Without a prior 
knowledge about a possible maximum value of k, it is unproblematic to choose a 
relatively large kmax , e.g., kmax = #{k��̂k ≥ 1

n

∑n

k=1
�̂k} (Ahn and Horenstein 2013). 

Since small empirical eigenvalues �̂k are close to zero, we adopt the threshold con-
stant � =

1

ln[max(�̂1,n)]
 to ensure consistency of k.

We compute sample variance operator 1
n

∑n

t=1
Yt ⊗ Yt , and then obtain the first 

K set of estimated orthonormal eigenfunctions (�̂k, k = 1, 2,… ,K) correspond-
ing to the K largest estimated eigenvalues. By projecting a time series of func-
tions onto these orthonormal eigenfunctions, we obtain a time series of estimated, 
K-dimensional vector of scores; that is,

where t = � + 1, � + 2,… , n , with êt being the estimated residuals. The order � of 
the fitted VAR model is chosen using a corrected Akaike information criterion (Hur-
vich and Tsai 1993), that is, by minimizing

over a range of values of � . ��e,� =
1

n

∑n

t=�+1
�et,��e

⊤

t,�
 is the variance of the residuals 

and êt,� is the residuals after fitting the VAR(�) model to the K-dimensional time 
series of estimated scores (�̂1, �̂2,… , �̂n) . Computationally, the VARselect function 
in the vars package (Pfaff 2008) is implemented for selecting the optimal VAR order 
and estimating parameters.

Given the VAR is an autoregression, it requires a burn-in period to remove the 
effects of starting values. With a burn-in sample of 100, we generate the vector 
time series of scores

K = argmin
1≤k≤kmax

{
�𝜆k+1

�𝜆k

× 1

(
�𝜆k

�𝜆1

≥ 𝜏

)
+ 1

(
�𝜆k

�𝜆1

< 𝜏

)}
,

�̂ t =

�∑

�=1

Â�,��̂ t−� + êt,

AICC(�) = n ln
|||�̂e,�

||| +
n(nK + �K2)

n − K(� + 1) − 1
,

�∗
t
=

�∑

�=1

Â�,��
∗
t−�

+ e
∗
t
, t = 1, 2,… , n + 100,
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where we use the starting value �∗
t
= �̂ t for t = 1, 2,… , � . The bootstrap residuals e∗

t
 

are i.i.d. resampled from the set of centered residuals {êt − en, t = � + 1, � + 2,… , n} , 
and en =

1

n−�

∑n

t=�+1
êt.

Through the Karhunen-Loève expansion in (5), we obtain bootstrap samples

where U∗
t,K

 are i.i.d. resampled from the set {Ût,K − Un, t = 1, 2,… , n} , 
Un =

1

n

∑n

t=1
Ût,K and Ût,K = Yt −

∑K

k=1
�̂t,k�̂k . We discard the first 100 generated 

X
∗
t
 observations and keep (X∗

101
,X∗

102
,… ,X∗

n+100
) as the bootstrap generated pseudo 

functional time series.

4  Numerical studies

4.1  Functional ARFIMA model

We simulate realizations of a stochastic process that follows a functional ARFIMA 
model. The functional ARFIMA (p, d, q) can be defined as

and

where B denotes the backshift operator, �t denotes the white noise operator, and 
�s(u, v) and �s(u, v) are the kernel functions. Provided the usual conditions on the 
autoregressive and moving-average operators are satisfied, the models  (6) and  (7) 
represent a stationary process if d < 1∕2 and is invertible if d > −1∕2.

The functional ARFIMA model can be viewed as a generalization of some widely 
used parametric time-series models. When d = 0 , model in (6) and (7) becomes the 
functional autoregressive moving average of Klepsch et  al. (2017). Further, when 
q = 0 , it further reduces to the functional autoregressive model of Bosq (2000) and 
Liu et al. (2016); when p = 0 , it reduces to the functional moving average model of 
Chen et al. (2016) and Aue and Klepsch (2017).

We consider generating a time series of functions through a functional 
ARFIMA(p, d, q) model, where function support I = [0, 1] , {�t ∶ t ∈ ℤ} a sequence 
of i.i.d. standard Brownian motions over [0, 1], in the following two cases:

Case 1: p = 1, q = 0 , d = 0.05, 0.10,… , 0.45 , �1(u, v) = cFAR × exp{−(u2 + v
2)∕2},

X
∗
t
= Xn +

K∑

k=1

�∗
t
�̂k + U∗

t,K
,

(6)∇dXt(u) = Yt(u), ∇ = 1 − B, −1∕2 < d < 1∕2,

(7)Yt(u) −

p∑

s=1
∫
I

�s(u, v)Yt−s(v)dv = �t(u) +

q∑

s=1
∫
I

�s(u, v)�t−s(v)dv,
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Case 2: p = 1, q = 1 , d = 0.05, 0.10,… , 0.45 , �1(u, v) = cFAR × exp{−(u2 + v
2)∕2} , 

�1(u, v) = cFMA ×min(u, v).

The constants cFAR and cFMA in �1(u, v) and �1(u, v) are selected to ensure that both 
‖�1‖ and ‖�1‖ are smaller than one (see, e.g., Rice and Shang 2017; Kokoszka et al. 
2017), so the simulated curve time series are stationary and invertible. We consider 
the following sets of constants:

Set 1: ‖�1‖ = ‖�1‖ = 0.5 , which corresponds to cFAR = 0.34 and cFMA = 1.5.
Set 2: ‖�1‖ = ‖�1‖ = 0.9 , which corresponds to cFAR = 0.612 and cFMA = 4.765.

The sample sizes are n = 250 and 500, each with R = 200 replications.
As an illustration, in Fig. 1, we present one replicate of n = 250 functional time 

series generated from a ARFI(1, d) model with d = 0.2 . Following (Mestre et  al. 
2021), we plot the functional autocorrelation and partial autocorrelation functions 
to check the linear temporal dependence in the simulated functional time series. For 
the ARFI(1, d) model, the functional partial autocorrelation function reveals a sig-
nificant correlation at lag one. For the ARFIMA(1, d, 1) model, the functional auto-
correlation and partial autocorrelation functions do not clearly indicate the autore-
gressive and moving-average orders.

In Fig. 2, we present one bootstrap sample using the sieve bootstrap method and 
compute its functional autocorrelation and partial autocorrelation functions. The 
bootstrap samples obtained from the sieve bootstrap method capture the linear tem-
poral dependence exhibited in the original functional time series.

Via the local Whittle estimator, we estimate the memory parameter d̂ = 0.3101 
and 0.3346 for simulated data generated from the ARFI(1, d) and ARFIMA(1, d, 1) 

Fig. 1  A simulated functional time series generated from the functional ARFI(1, 0.2) model (top row) 
and the functional ARFIMA(1, 0.2, 1) model (bottom row) with n = 250
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models, respectively. Because the sample size n = 250 is relatively small, it is 
expected that there will be a considerable difference between the sample and popu-
lation parameters. To quantify the estimation uncertainty, we construct 80%, 95%, 
and 99% CIs using the asymptotic and sieve bootstrap procedures in Fig. 3. The CIs 
based on the asymptotic normality are constructed from (4), while the CIs based on 
the sieve bootstrapping are percentiles of 400 bootstrap memory estimates.

Figure 3 displays the CIs constructed by the asymptotic and sieve bootstrap pro-
cedures for one simulated functional time series. To assess overall performance, we 

Fig. 2  A bootstrapped functional time series generated from the functional ARFI(1, 0.2) model (top row) 
and the functional ARFIMA(1, 0.2, 1) model (bottom row)

(a) (b)

Fig. 3  For one replicate of the simulated functional time series generated from the ARFI(1,  0.2) and 
ARFIMA(1, 0.2, 1) model, we display the true and estimated memory parameters and the 80%, 95%, and 
99% CIs using the asymptotic and sieve bootstrap procedures
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repeat the following evaluation criteria for R = 200 replicates and report the results 
in Sect. 4.3.

4.2  Evaluation criteria of the interval forecast accuracy

To measure the interval forecast accuracy, we consider the empirical coverage prob-
ability. For each value of d, we compute the empirical coverage probability (ECP) at 
a level of significance � as

where 1(⋅) represents the binary indicator function, and ( ̂dlb
r,�
, d̂ub

r,�
 ) represents the 

lower and upper bounds of asymptotic or bootstrap CIs for the rth replication. From 
the ECP� , we compute the coverage probability difference (CPD� ), which is the 
absolute difference between the empirical and nominal coverage probabilities at var-
ious levels of significance.

4.3  Simulation results

We consider the asymptotic CIs based on  (4). Implemented by Li et  al. (2021), 
this parametric approach of constructing CIs provides symmetric lower and upper 
CIs. In contrast, the sieve bootstrapping produces a set of bootstrap functional 
time series. For each of the B = 400 bootstrap samples, we can implement the 
local Whittle estimator in Sect. 2 to compute an estimate of the memory param-
eter. By taking quantiles of all bootstrap memory parameter estimates, we obtain 
a nonparametric approach to constructing CIs. This nonparametric approach con-
structs lower and upper bounds that can be asymmetric.

In Table  1, we present the ECP� in  (8) and CPD� for three levels of signifi-
cance. Under a ARFI(1, d) model, these results are averaged over R = 200 repli-
cates for n = 250 and 500. The CIs constructed by the sieve bootstrapping gener-
ally have a better calibration than those constructed by the asymptotic normality 
results. By better calibration, the empirical coverage probabilities are closer to 
the nominal coverage probabilities. This finding is not surprising since the CIs of 
the sieve bootstrap can be asymmetric around the sample estimate of the memory 
parameter. For the sieve bootstrap method, the empirical coverage probabilities 
gradually deviate from the nominal coverage probabilities as the memory param-
eter d increases from 0.05 to 0.45. This phenomenon holds for the functional 
time series with a moderate temporal dependence, and it becomes less so for the 
stronger dependence. With various significance levels, we observe that the mean 
CPDs obtained from the sieve bootstrap are generally smaller than those obtained 
from the asymptotic normality. As the sample size increases from n = 250 to 500, 
the CPD becomes smaller for both approaches. When the temporal dependence is 

(8)ECP𝛼 = 1 −
1

R

R∑

r=1

[
1(d > �dub

r,𝛼
) + 1(d < �dlb

r,𝛼
)
]
,
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Table 1  With n = 250 and 500, 200 replicates of the functional time series are generated from the 
ARFI(1, d) model with ‖�1‖ = ‖�1‖ = 0.5 or 0.9

‖ ⋅ ‖ n Criterion Asymptotic CIs Bootstrap CIs

d � = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.5 250 ECP 0.05 0.515 0.705 0.855 0.730 0.940 0.985
0.10 0.525 0.715 0.845 0.710 0.945 0.990
0.15 0.495 0.710 0.845 0.710 0.945 0.990
0.20 0.475 0.695 0.845 0.715 0.935 0.985
0.25 0.480 0.695 0.820 0.695 0.905 0.980
0.30 0.505 0.690 0.995 0.680 0.890 0.985
0.35 0.485 0.985 0.995 0.650 0.865 0.975
0.40 0.980 0.985 0.990 0.600 0.865 0.970
0.45 0.980 0.985 0.995 0.590 0.880 0.970

CPD 0.05 0.285 0.245 0.135 0.070 0.010 0.005
0.10 0.275 0.235 0.145 0.090 0.005 0.000
0.15 0.305 0.240 0.145 0.090 0.005 0.000
0.20 0.325 0.255 0.145 0.085 0.015 0.005
0.25 0.320 0.255 0.170 0.105 0.045 0.010
0.30 0.295 0.260 0.005 0.120 0.060 0.005
0.35 0.315 0.035 0.005 0.150 0.085 0.015
0.40 0.180 0.035 0.000 0.200 0.085 0.020
0.45 0.180 0.035 0.005 0.210 0.070 0.020
Mean 0.276 0.177 0.084 0.124 0.042 0.009

500 ECP 0.05 0.665 0.865 0.940 0.845 0.955 0.985
0.10 0.630 0.870 0.935 0.840 0.960 0.985
0.15 0.630 0.870 0.935 0.830 0.955 0.985
0.20 0.640 0.880 0.935 0.830 0.945 0.990
0.25 0.635 0.875 0.930 0.810 0.945 0.985
0.30 0.635 0.865 0.935 0.750 0.925 0.980
0.35 0.620 0.870 1 0.715 0.905 0.970
0.40 0.590 1 1 0.675 0.880 0.955
0.45 0.975 1 1 0.655 0.870 0.960

CPD 0.05 0.135 0.085 0.050 0.045 0.005 0.005
0.10 0.170 0.080 0.055 0.040 0.010 0.005
0.15 0.170 0.080 0.055 0.030 0.005 0.005
0.20 0.160 0.070 0.055 0.030 0.005 0
0.25 0.165 0.075 0.060 0.010 0.005 0.005
0.30 0.165 0.085 0.055 0.050 0.025 0.010
0.35 0.180 0.080 0.010 0.085 0.045 0.020
0.40 0.210 0.050 0.010 0.125 0.070 0.035
0.45 0.175 0.050 0.010 0.145 0.080 0.030
Mean 0.170 0.073 0.040 0.062 0.028 0.013
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Table 1  (continued)

‖ ⋅ ‖ n Criterion Asymptotic CIs Bootstrap CIs

d � = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.9 250 ECP 0.05 0.745 0.895 0.960 0.820 0.945 0.985

0.10 0.735 0.890 0.960 0.815 0.945 0.975

0.15 0.730 0.890 0.955 0.800 0.915 0.970

0.20 0.740 0.885 0.950 0.810 0.920 0.970

0.25 0.730 0.890 0.945 0.805 0.910 0.965

0.30 0.720 0.890 0.960 0.815 0.900 0.965

0.35 0.720 0.925 0.960 0.800 0.905 0.960

0.40 0.875 0.925 0.960 0.795 0.915 0.955

0.45 0.865 0.935 0.960 0.810 0.920 0.960

CPD 0.05 0.055 0.055 0.030 0.020 0.005 0.005

0.10 0.065 0.060 0.030 0.015 0.005 0.015

0.15 0.070 0.060 0.035 0.000 0.035 0.020

0.20 0.060 0.065 0.040 0.010 0.030 0.020

0.25 0.070 0.060 0.045 0.005 0.040 0.025

0.30 0.080 0.060 0.030 0.015 0.050 0.025

0.35 0.080 0.025 0.030 0.000 0.045 0.030

0.40 0.075 0.025 0.030 0.005 0.035 0.035

0.45 0.065 0.015 0.030 0.010 0.030 0.030

Mean 0.069 0.047 0.033 0.009 0.031 0.023

500 ECP 0.05 0.740 0.895 0.965 0.785 0.930 0.990

0.10 0.740 0.900 0.970 0.760 0.925 0.975

0.15 0.740 0.905 0.975 0.705 0.925 0.975

0.20 0.745 0.910 0.975 0.700 0.940 0.975

0.25 0.730 0.915 0.970 0.700 0.935 0.980

0.30 0.735 0.915 0.965 0.705 0.940 0.985

0.35 0.750 0.915 0.980 0.775 0.940 0.985

0.40 0.745 0.945 0.980 0.795 0.930 0.985

0.45 0.865 0.945 0.980 0.820 0.945 0.980

CPD 0.05 0.060 0.055 0.025 0.015 0.020 0.000

0.10 0.060 0.050 0.020 0.040 0.025 0.015

0.15 0.060 0.045 0.015 0.095 0.025 0.015

0.20 0.055 0.040 0.015 0.100 0.010 0.015

0.25 0.070 0.035 0.020 0.100 0.015 0.010
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‖ ⋅ ‖ n Criterion Asymptotic CIs Bootstrap CIs

d � = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.30 0.065 0.035 0.025 0.095 0.010 0.005

0.35 0.050 0.035 0.010 0.025 0.010 0.005

0.40 0.055 0.005 0.010 0.005 0.020 0.005

0.45 0.065 0.005 0.010 0.020 0.005 0.010

Mean 0.060 0.034 0.017 0.055 0.016 0.009

For each replicate, we compute empirical coverage probabilities and coverage probability differences 
for the CIs constructed by the asymptotic and sieve bootstrap procedures at three levels of significance. 
Empirical coverage probability is abbreviated as ECP, while coverage probability difference is abbrevi-
ated as CPD. The smallest averaged CPD values are highlighted in bold for each level of significance

Table 1  (continued)

stronger, we observe a further improvement in estimation accuracy from the sieve 
bootstrapping.

In Table  2, we present the ECP� in  (8) and CPD� for three levels of signif-
icance. Under an ARFIMA(1,  d,  1) model, these results are averaged over 
R = 200 replicates for n = 250 and 500. The CIs constructed by the sieve boot-
strapping also have a better calibration than those constructed by the asymptotic 
normality. As the sample size increases from n = 250 to 500, the CPD gener-
ally becomes smaller for both approaches. When the temporal dependence is 
stronger, we observe a further improvement in estimation accuracy from the sieve 
bootstrapping.

4.4  Simulation of functional time series via discrete Fourier transform

Following an early work of Li et al. (2021), we also consider another data generating 
process by using an algorithm of Davies and Harte (1987) to simulate functional time 
series. Let Xt be a ‘fractional noise’ process with autocovariance

where d = −0.3,−0.15, 0, 0.15, 0.3 . These parameter values are chosen to reflect 
negative dependent, short-range dependent and long-range dependent properties. 
For each n, let gk ∶= gn,k , k = 0, 1,… , 2n − 1 , be the discrete Fourier transform of 
the real sequence {�0, �1,… , �n−1, �n, �n−1,… , �1} , i.e.,

and gk = g2n−k for k = n,… , 2n − 1 . Let �t be an i.i.d. standard Brownian motion 
sequence over a domain [0, 1] and then we construct

�j =
1

2

(
|j + 1|1+2d − 2|j|1+2d + |j − 1|1+2d

)
,

gk = �0 + 2

n−1∑

j=1

�j cos

(
�kj

n

)
+ �n cos(k�), k = 0, 1,… , n − 1,
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Table 2  With n = 250 and 500, R = 200 replicates of the functional time series are generated from the 
ARFIMA(1, d, 1) model with ‖�1‖ = ‖�1‖ = 0.5 or 0.9

‖ ⋅ ‖ n Criterion d Asymptotic CIs Bootstrap CIs

� = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.5 250 ECP 0.05 0.420 0.605 0.790 0.575 0.860 0.965
0.10 0.415 0.610 0.790 0.590 0.860 0.955
0.15 0.380 0.610 0.795 0.600 0.860 0.960
0.20 0.380 0.595 0.795 0.595 0.855 0.970
0.25 0.365 0.595 0.795 0.595 0.830 0.970
0.30 0.375 0.575 1.000 0.600 0.840 0.965
0.35 0.380 0.985 1.000 0.580 0.835 0.960
0.40 0.980 0.985 1.000 0.575 0.825 0.950
0.45 0.985 0.985 1.000 0.555 0.815 0.940

CPD 0.05 0.380 0.345 0.200 0.225 0.090 0.025
0.10 0.385 0.340 0.200 0.210 0.090 0.035
0.15 0.420 0.340 0.195 0.200 0.090 0.030
0.20 0.420 0.355 0.195 0.205 0.095 0.020
0.25 0.435 0.355 0.195 0.205 0.120 0.020
0.30 0.425 0.375 0.010 0.200 0.110 0.025
0.35 0.420 0.035 0.010 0.220 0.115 0.030
0.40 0.180 0.035 0.010 0.225 0.125 0.040
0.45 0.185 0.035 0.010 0.245 0.135 0.050
Mean 0.361 0.246 0.114 0.215 0.108 0.031

500 ECP 0.05 0.585 0.810 0.925 0.770 0.935 0.985
0.10 0.575 0.820 0.925 0.780 0.940 0.980
0.15 0.580 0.810 0.925 0.785 0.935 0.975
0.20 0.585 0.815 0.925 0.770 0.925 0.970
0.25 0.565 0.805 0.930 0.725 0.915 0.970
0.30 0.545 0.815 0.925 0.665 0.905 0.965
0.35 0.535 0.800 1 0.640 0.880 0.965
0.40 0.515 1 1 0.630 0.865 0.960
0.45 0.980 1 1 0.630 0.860 0.960

CPD 0.05 0.215 0.140 0.065 0.030 0.015 0.005
0.10 0.225 0.130 0.065 0.020 0.010 0.010
0.15 0.220 0.140 0.065 0.015 0.015 0.015
0.20 0.215 0.135 0.065 0.030 0.025 0.020
0.25 0.235 0.145 0.060 0.075 0.035 0.020
0.30 0.255 0.135 0.065 0.135 0.045 0.025
0.35 0.265 0.150 0.010 0.160 0.070 0.025
0.40 0.285 0.050 0.010 0.170 0.085 0.030
0.45 0.180 0.050 0.010 0.170 0.090 0.030
Mean 0.233 0.119 0.046 0.089 0.043 0.020
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Table 2  (continued)

‖ ⋅ ‖ n Criterion d Asymptotic CIs Bootstrap CIs

� = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.9 250 ECP 0.05 0.710 0.870 0.970 0.850 0.975 1

0.10 0.710 0.875 0.960 0.825 0.955 0.995

0.15 0.675 0.870 0.955 0.820 0.950 0.995

0.20 0.685 0.875 0.960 0.815 0.950 0.990

0.25 0.690 0.880 0.955 0.815 0.950 0.990

0.30 0.705 0.880 0.975 0.800 0.950 0.985

0.35 0.695 0.945 0.975 0.820 0.945 0.985

0.40 0.910 0.945 0.980 0.820 0.935 0.980

0.45 0.900 0.950 0.980 0.815 0.935 0.980

CPD 0.05 0.090 0.080 0.020 0.050 0.025 0.010

0.10 0.090 0.075 0.030 0.025 0.005 0.005

0.15 0.125 0.080 0.035 0.020 0.000 0.005

0.20 0.115 0.075 0.030 0.015 0.000 0.000

0.25 0.110 0.070 0.035 0.015 0.000 0.000

0.30 0.095 0.070 0.015 0.000 0.000 0.005

0.35 0.105 0.005 0.015 0.020 0.005 0.005

0.40 0.110 0.005 0.010 0.020 0.015 0.010

0.45 0.100 0.000 0.010 0.015 0.015 0.010

Mean 0.104 0.051 0.022 0.020 0.007 0.006

500 ECP 0.05 0.780 0.920 0.970 0.830 0.960 0.995

0.10 0.790 0.925 0.970 0.815 0.965 0.985

0.15 0.785 0.925 0.975 0.785 0.955 0.975

0.20 0.785 0.930 0.975 0.775 0.960 0.985

0.25 0.790 0.935 0.975 0.780 0.950 0.985

0.30 0.780 0.930 0.975 0.790 0.955 0.985

0.35 0.800 0.930 0.985 0.815 0.950 0.985

0.40 0.795 0.950 0.980 0.825 0.950 0.985

0.45 0.900 0.955 0.990 0.845 0.945 0.980

CPD 0.05 0.020 0.030 0.020 0.030 0.010 0.005

0.10 0.010 0.025 0.020 0.015 0.015 0.005

0.15 0.015 0.025 0.015 0.015 0.005 0.015

0.20 0.015 0.020 0.015 0.025 0.010 0.005

0.25 0.010 0.015 0.015 0.020 0.000 0.005

0.30 0.020 0.020 0.015 0.010 0.005 0.005
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For each replicate, we compute empirical coverage probabilities and coverage probability differences 
for the CIs constructed by the asymptotic and sieve bootstrap procedures at three levels of significance. 
Empirical coverage probability is abbreviated as ECP, while coverage probability difference is abbrevi-
ated as CPD. The smallest averaged CPD values are highlighted in bold for each level of significance

‖ ⋅ ‖ n Criterion d Asymptotic CIs Bootstrap CIs

� = 0.20 0.05 0.01 � = 0.20 0.05 0.01

0.35 0.000 0.020 0.005 0.015 0.000 0.005

0.40 0.005 0.000 0.010 0.025 0.000 0.005

0.45 0.100 0.005 0.000 0.045 0.005 0.010

Mean 0.022 0.018 0.013 0.022 0.006 0.007

Table 2  (continued)

We take n = 250 and 500 with R = 200 replications. For each replication, we gener-
ate B = 400 bootstrap pseudo functional time series.

As an illustration, in Fig.  4, we present one replicate of n = 250 functional time 
series generated from  (9) with d = −0.3, 0 and 0.3 to reflect negative dependence, 
short-range dependence and long-range dependence. We plot the functional autocor-
relation and partial autocorrelation functions to examine the behavior of the linear tem-
poral dependence.

In Table 3, we present the ECP� and CPD� for three levels of significance. These 
results are averaged over R = 200 replicates for n = 250 and 500. As measured by the 
averaged CPD, the CIs constructed by the sieve bootstrapping generally have a better 
calibration than those constructed by the asymptotic normality results. By better cali-
bration, the ECPs are closer to the nominal coverage probabilities. The CIs obtained 
from the sieve bootstrapping have a better calibration when d ≤ 0 , whereas the CIs 
obtained from the asymptotic normality have a better calibration when d > 0 . Our find-
ing further confirms the validity of the asymptotic CIs for long-memory functional time 
series. As the sample size increases from n = 250 to 500, the CPD becomes smaller for 
the parametric approach based on the asymptotic normality.

5  Conclusion

Not all long-memory estimators have an asymptotic distribution. For those other 
than the local Whittle estimator, it may not be possible to construct parametric confi-
dence intervals of the memory parameter. In contrast, the sieve bootstrapping gener-
ates pseudo stationary functional time series, where the temporal dependence in the 
original functional time series is adequately preserved. For each bootstrap replicate, 

(9)

Xt =
1

2n1∕2

�√
2�0g

1∕2

0
+
√
2�ng

1∕2
n

+ 2

n−1�

k=1

�kg
1∕2

k
cos

�
�kt

n

��
, 0 ≤ t ≤ n.
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any long-memory estimator can be applied. Therefore, the sieve bootstrap method 
presents a general framework for constructing confidence intervals of the memory 
parameter. Using the ARFI(1, d) and ARFIMA(1, d, 1) models, via a series of simu-
lation studies, we evaluate and compare the empirical and nominal coverage prob-
abilities between the asymptotic and bootstrap confidence intervals using the local 

Fig. 4  With the same random seed, we simulate functional time series with d = −0.3, 0 , and 0.3. These d 
values are chosen to reflect negative dependence, short-range dependence, and long-range dependence in 
the series. For each simulated series, we also display its corresponding functional autocorrelation func-
tion
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Whittle estimator. Averaged over nine d values from 0.05 to 0.45, the sieve bootstrap 
confidence intervals produce a better calibration than the asymptotic confidence 
intervals, especially when the functional time series exhibits a stronger dependence. 
In addition, we also consider a simulation study where functional time series can 
exhibit negative dependent, short-range, and long-range dependent. Averaged over 
five d values from − 0.30 to 0.30, the sieve bootstrap confidence intervals produce 
a better calibration than the asymptotic confidence intervals, especially when the 
memory parameter d ≤ 0.

There are several ways in which the present paper could be further extended. 
We briefly mention four below: (1) In the local Whittle estimator, the bandwidth 
parameter m = ⌊n0.65 + 1⌋ is used in the simulation studies. It is possible to explore 
other values centered around 0.65. (2) In the sieve bootstrap, we generate B = 400 

Table 3  With n = 250 and 500, 200 replicates of the functional time series are generated from the 
ARFI(1, d) model

For each replicate, we compute empirical coverage probabilities and coverage probability differences 
for the CIs constructed by the asymptotic and sieve bootstrap procedures at three levels of significance. 
Empirical coverage probability is abbreviated as ECP, while coverage probability difference is abbrevi-
ated as CPD
The smaller averaged CPD values are highlighted in bold

n Criterion d Asymptotic CIs Bootstrap CIs

� = 0.20 0.05 0.01 � = 0.20 0.05 0.01

250 ECP − 0.30 0.475 0.690 1 0.855 0.99 1
− 0.15 0.595 0.765 0.885 0.860 0.960 0.995
0 0.650 0.830 0.905 0.805 0.960 0.980
0.15 0.675 0.845 0.920 0.580 0.875 0.965
0.30 0.690 0.850 0.930 0.660 0.805 0.910

CPD − 0.30 0.325 0.260 0.010 0.055 0.040 0.010
− 0.15 0.205 0.185 0.105 0.060 0.010 0.005
0 0.150 0.120 0.085 0.005 0.010 0.010
0.15 0.125 0.105 0.070 0.220 0.075 0.025
0.30 0.110 0.100 0.060 0.140 0.145 0.080
Mean 0.183 0.154 0.066 0.096 0.056 0.026

500 ECP − 0.30 0.525 0.730 0.885 0.725 0.875 0.975
− 0.15 0.590 0.820 0.920 0.845 0.990 0.990
0 0.625 0.850 0.940 0.850 0.940 0.970
0.15 0.695 0.870 0.940 0.555 0.780 0.945
0.30 0.705 0.875 0.950 0.675 0.825 0.905

CPD − 0.30 0.275 0.220 0.105 0.075 0.075 0.015
− 0.15 0.210 0.130 0.070 0.045 0.040 0.000
0 0.175 0.100 0.050 0.050 0.010 0.020
0.15 0.105 0.080 0.050 0.245 0.170 0.045
0.30 0.095 0.075 0.040 0.125 0.125 0.085
Mean 0.172 0.121 0.063 0.108 0.084 0.033
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bootstrap functional time series. It is possible to explore other values of bootstrap 
replication to achieve possible improvement in calibration. (3) Shang (2020) pre-
sented a comparison of point forecast accuracy, in terms of bias, variance, and mean 
square error, among several time-domain and frequency-domain memory estimators. 
The sieve bootstrap can evaluate interval forecast accuracy, in terms of empirical 
coverage probability, for those memory estimators. 4) With the sieve bootstrapping, 
it is possible to develop hypothesis tests for testing the presence of long memory.
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