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Abstract
We consider a linear measurement error model (MEM) with AR(1) process in the 
state equation which is widely used in applied research. This MEM could be equiva-
lently re-written as ARMA(1,1) process, where the MA(1) parameter is related to 
the variance of measurement errors. As the MA(1) parameter is of essential impor-
tance for these linear MEMs, it is of much relevance to provide instruments for 
online monitoring in order to detect its possible changes. In this paper we develop 
control charts for online detection of such changes, i.e., from AR(1) to ARMA(1,1) 
and vice versa, as soon as they occur. For this purpose, we elaborate on both cumu-
lative sum (CUSUM) and exponentially weighted moving average (EWMA) con-
trol charts and investigate their performance in a Monte Carlo simulation study. The 
empirical illustration of our approach is conducted based on time series of daily 
realized volatilities.
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1 Introduction

The class of measurement error models (MEMs) is of much importance in numerous 
empirical settings (Durbin and Koopman 2009; Hamilton 1994a). A standard MEM 
is a system of linear equations, where state equations describe dynamics of latent 
variables and measurement (observation) equations relate observable and latent 
variables via measurement errors. In this paper we consider popular linear MEMs 
which are bivariate linear state-space systems with only one observation equation, 
whereby the single state equation is an AR(1) process with iid innovations (cf. 
Hamilton 1994; Brockwell and Davis 2009). Under stationarity assumption, such 
MEM processes can exhibit a broad variety of autoregressive dynamics. Its essential 
characteristic is the ratio of the state innovation variance to the measurement error 
variance which determines the usefulness of a MEM representation for a particular 
application compared to a simple AR(1) alternative (cf. Kim and Nelson 1999; Tsay 
2010; Bollerslev et al. 2016).

In this paper we focus on sequential (online) monitoring of possible changes in 
this variance ratio, which—to the best of our knowledge—has not been done in the 
current literature up to now. Our primer aim is to detect a change of the MEM to 
AR(1) or vice versa as soon as it occurs. For these purposes, we re-write the MEM 
under consideration equivalently as an ARMA(1,1) specification. In case of negligi-
ble measurement errors, ARMA(1,1) reduces to AR(1) model, so that our task is to 
detect alterations in the MA(1) part. Hence, we show that monitoring of the MEMs 
is equivalent to monitoring of changes from ARMA(1,1) to AR(1) and vice versa. 
Sequential monitoring of parameter changes in autoregressive models has been con-
sidered already in the early papers of Schmid (1997), Lu and Reynolds (2001); a 
comprehensive literature review is given by Okhrin and Schmid (2008) who discuss 
various aspects of monitoring changes in parameters of linear time series models. 
The literature dealing with the sequential monitoring of ARMA model parameters, 
however, is mostly concentrated on detection of changes in the means, see e.g., Jiang 
et al. (2000), Rabyk and Schmid (2016), Lazariv and Schmid (2019), Golosnoy and 
Seifert (2021), with a remarkable exception of Rosolowski and Schmid (2006) who 
elaborate tools for monitoring of the whole autocovariance function of a stationary 
ARMA(1,1) process.

For online monitoring changes in the MA(1) parameter, we apply control charts 
which are the instruments (decision rules) borrowed from statistical process control 
for the purpose to detect changes in the parameters of the process of interest as soon 
as they occur (cf. Montgomery 2013). In particular, we consider both exponentially 
weighted moving average (EWMA) and cumulative sum (CUSUM) control charts 
which are the most popular monitoring procedures in practice. The control statistics 
suitable for our monitoring task are derived based on the ideas of the statistical test-
ing approach recently developed by Golosnoy et  al. (2021) for the class of linear 
state space models. We investigate the detecting ability of these control charts for 
MA(1) parameter changes in an extensive Monte Carlo simulation study. We find 
that the EWMA charts with the smoothing (memory) parameter � = 0.01 provides 
the quickest detection for the zero-state average run length, whereas � = 0.1 for the 
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conditional steady-state average run length criterion. These findings are in line with 
the results in Morais et al. (2015). Moreover, we provide an empirical illustration by 
monitoring daily realized volatility models for the major world indices of financial 
stock markets. The timing of signals from both EMWA and CUSUM charts allows 
the following economic interpretations: the AR(1) model appears to be more suit-
able for the crisis periods on financial markets with a high speed of information 
transfer, where the ARMA(1,1) suits better for the (comparatively) calm periods.

The rest of the paper is organized as follows. In Sect. 2 we introduce a MEM with 
AR(1) process in the state equation, and show that it could be equivalently written 
as an ARMA(1,1) process. Hence, monitoring for changes in the MEM is equivalent 
to monitoring for changes of the MA(1) parameter. We also introduce the control 
statistic which is suitable for our monitoring purposes. In Sect. 3 we propose both 
CUSUM and EWMA control charts for sequential (online) monitoring of changes 
in the MA(1) parameter. The detection performance of the control chart is evaluated 
in the Monte Carlo simulation study in Sect. 4. In Sect. 5 we provide an empirical 
application of the proposed control charts for monitoring the process of daily log 
realized volatility, as well as discuss directions for further research. Section 6 con-
cludes the paper, whereas the proofs are placed in the Appendix.

2  The measurement error model

Assume the following common measurement error model (MEM) representation for 
the de-meaned observable variable yt:

where the latent state variable st exhibits an AR(1) dynamics so that we remain 
within the class of Markov processes; ut is the Gaussian measurement error, �t is the 
Gaussian innovation error with ut independent on �s for all t, s. Eq. (1) is referred to 
as the measurement (observation) equation and (2) is known as the state equation. 
The MEM stationarity condition is given by |𝜙| < 1 , hereafter we focus on � ∈ (0, 1) 
(without loss of generality) which is the case in the majority of applications.

The essential characteristic of this MEM is the variance ratio �2
u
∕�2

�
 . In case when 

�2
u
∕�2

�
→ 0 the measurement error gets negligible and the system boils down to an 

AR(1) equation. In case when �2
u
 is not negligible, one should apply the MEM. For 

a given data generating process our research question is whether a MEM is indeed 
required for modeling yt-dynamics or the measurement error is negligible so that 
a simple AR(1) model could be used? This issue is of much empirical relevance 
because AR(1) models are much easier to handle compared to MEMs.

For the purposes of our analysis we re-write the MEM in Eqs. (1)–(2) in the form 
of an equivalent ARMA(1,1) representation which parametrization is provided in 
the next proposition.

(1)yt = st + ut, ut ∼ N iid (0, 𝜎
2
u
), 𝜎2

u
> 0,

(2)st =𝜙st−1 + 𝜖t, 𝜖t ∼ N iid (0, 𝜎
2
𝜖
), 𝜎2

𝜖
> 0,
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Proposition 1 Let yt follow a MEM, parameterized in (1) and (2) with an AR(1) 
parameter � ∈ (0, 1) and Gaussian iid innovations ut and �t , with ut independent on 
�s for all t, s. Then the distribution of the MEM process given in (1) and (2) is equiv-
alent to the distribution of an ARMA(1,1) process given by

with the parameters � ∈ (−1, 0) and 𝜎2
a
> 0 which are given as the following func-

tions of the MEM parameters

Hence, in case of �2
u
→ 0 it holds that � → 0 and �2

a
= �2

�
 , i.e., ARMA(1,1) reduces 

to AR(1) model.

As we are interested in monitoring whether the MA(1) part of the MEM is 
of relevance, we define the variable xt in an intermediate step by removing the 
AR(1) part:

Since xt is an MA(1) process, its autocovariance function is then given as

In order to differentiate between AR(1) and ARMA(1,1) one should monitor for pos-
sible shifts in the MA(1) parameter � which is of pivotal for our study. As we observe 
in (7), the MA(1) parameter � influences linearly the covariance Cov (xt, xt−1) . For 
this reason we introduce another variable vt defined as

Next, by making use of the ideas and the results in Golosnoy et al. (2021) we derive 
the moments of vt which is given in the following proposition.

Proposition 2 For the ARMA(1,1) representation of the MEM model given in (3) 
with the innovations at ∼ N iid (0, �

2
a
) , the moments of vt = xtxt−1∕�

2
a
 are given by

(3)yt = �yt−1 + at + �at−1, at ∼ N iid (0, �
2
a
),

(4)�2
a
= − ��2

u
∕�,

(5)� = −
�2
�
+ �2

u
(1 + �2)

2��2
u

+

√√√√
[
�2
�
+ �2

u
(1 + �2)

2��2
u

]2
− 1.

(6)xt ∶= yt − �yt−1 = �t + ut − �ut−1 = at + �at−1.

(7)
Var (xt) = �2

�
+ �2

u
(1 + �2) = �2

a

(
1 + �2

)
,

Cov (xt, xt−1) = − �2
u
� = �2

a
�,

Cov (xt, xt−�) = 0 for � ≥ 2.

(8)vt ∶=
xtxt−1

�2
a

.

(9)E (vt) = �,
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As � ∈ (−1, 0) it holds that Var (vt) ∈ (0, 5) and Corr (vt, vt−1) ∈ (0, 1∕5).

Hence, due to E (vt) = � , monitoring changes in the mean of vt is equivalent to 
monitoring changes in the MA(1) parameter � . We exploit this property in the next 
section by applying the popular control charts for monitoring {vt}-process in order to 
make online detection of changes in its mean.

3  Control charts for MEMs

The majority of papers dealing with the online monitoring of parameter changes in 
ARMA(1,1) models and their extensions are focused on the detection of changes in 
the means (cf. Jiang et al. 2000; Bodnar and Schmid 2007; Golosnoy et al. 2012; 
Rabyk and Schmid 2016; Lazariv and Schmid 2019; Golosnoy and Seifert 2021). 
A prominent exception from this literature stand is the paper of Rosolowski and 
Schmid (2006) where several multivariate EWMA control charts are applied for a 
quite general task of monitoring changes in both mean and autocovariances of a sta-
tionary and invertable ARMA(1,1) process.

Compared to the general approach of Rosolowski and Schmid (2006), in this 
paper we pursue a more specific task of online monitoring for possible changes in 
the MA(1) parameter � . In general, we define the in-control value of the MA(1) 
parameter as � = �0 , whereas the out-of-control value is � = �1 , with either 𝜃1 > 𝜃0 
or 𝜃1 < 𝜃0 . A signal could be used as an indicator to judge whether the MEM should 
be re-calibrated. The particular shifts (special cases) we are eager to detect are, 
firstly, from AR(1) to ARMA(1,1) which implies a change from �0 = 0 to some 
�1 ∈ (−1, 0) ; secondly, shifts from ARMA(1,1) to the direction of AR(1) which 
implies a change from � = �0 for a given �0 ∈ (−1, 0) to 𝜃 = 𝜃1 > 𝜃0 . In our empiri-
cal application we have also to cover the case with the in-control � = �0 ∈ (−1, 0) 
and the alternative � = �1 ∈ (−1, 0) such that 𝜃1 < 𝜃0 . Hence, the direction of shifts 
is known under the null hypothesis of no change (the in-control state), so that one-
sided control charts are suitable. Next we introduce modified CUSUM- and EWMA-
type control charts (cf. Okhrin and Schmid 2008) for the purpose of monitoring 
mean shifts in the (weakly) autocorrelated process {vt} defined in (8).

3.1  CUSUM charts

The CUSUM charts are well-known monitoring procedures which exhibit some 
optimality detection properties. The control statistic of the upper-sided CUSUM 
control chart for detecting increases in MA(1) parameter �0 is given by

(10)Var (vt) = 1 + 3�2 + �4,

(11)Cov (vt, vt−1) = �2, and Cov (vt, vt−�) = 0, for � ≥ 2.
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whereby the CUSUM parameter � is recommended to be selected as the half of the 
shift to detect:

The run length of the upper CUSUM control chart is given by

with the in-control variance of vt given as Var0(vt) = 1 + 3�2
0
+ �4

0
 . The upper 

control limit h+
�
 is selected such that it provides a pre-defined in-control average 

run length (ARL). We use the headstart feature which is also known (cf. Lucas 
and Crosier 1982) as the fast initial response (FIR), and set the starting value as 
S+
0
= h+

�
Var0(vt)

1∕2∕2.
The lower-sided CUSUM chart for detecting decreases in �0 ∈ (−1, 0) is defined 

by analogy via the statistic

with the run length of the lower CUSUM chart given by

where h−
�
 is the lower control limit.

3.2  EWMA charts

The EWMA control charts are very popular in practice because of their simple 
design and good detecting properties. The EWMA control statistic Zt for monitoring 
mean changes in {vt}-process is given by

with a smoothing parameter � ∈ (0, 1] . The value � = 1 leads to the no-memory 
Shewhart control chart.

The run lengths of the upper and lower EWMA control charts are given as

where Var0(Zt) is the in-control variance of statistic Zt . Its exact expression is given 
by

S+
t
=max{0, S+

t−1
+ (vt − �0) − �},

(12)� =
1

2

|||E H1
(vt) − E H0

(vt)
||| =

1

2
||�1 − �0

||.

RL+ = inf{t ∈ ℕ | S+
t
> h+

𝛿
Var0(vt)

1∕2},

S−
t
=min{0, S−

t−1
+ (vt − �0) + �},

RL− = inf{t ∈ ℕ | S−
t
< h−

𝛿
Var0(vt)

1∕2},

Zt = �(vt − �0) + (1 − �)Zt−1 = (1 − �)tZ0 + �

t−1∑

j=0

(1 − �)j(vt−j − �0),

Z0 = 0, t ≥ 1,

RL+ = inf{t ∈ ℕ | Zt > h+
𝜆
Var0(Zt)

1∕2},

RL− = inf{t ∈ ℕ | Zt < h−
𝜆
Var0(Zt)

1∕2},
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with the derivation provided in the Appendix. For t → ∞ , the exact variance con-
verges to the limit value

Further in our analysis we use the exact variance of the EWMA statistic given in 
(13).

4  Monte Carlo simulations

In this section we evaluate the ability of the CUSUM and EWMA charts to detect 
changes in the MA(1) parameter � . For this purpose we investigate the performance 
of the CUSUM and EWMA control schemes in a Monte Carlo simulation study. In 
particular, we simulate xt directly as an MA(1) process:

The in-control value of the MA parameter is denoted by �0 . A change occurs at 
t = 1 such that the MA parameter shifts to its out-of-control value �1 . We investigate 
two out-of-control settings which are mostly relevant for our analysis, namely the 
situations: 

 (i) �0 = 0, �1 = −1∕2 , i.e., shift from AR(1) to ARMA(1,1), an upper-side control 
chart applicable;

 (ii) �0 = −1∕2, �1 = 0 , i.e., shift from ARMA(1,1) to AR(1), a lower-side control 
chart applicable.

The recommendation for the choice of the CUSUM chart parameter is to select � 
as the half of the shift one is eager to detect. As in our design the absolute size of 
shifts in � in both directions is 1/2, we select the CUSUM parameter � = 1∕4 in the 
Monte Carlo simulations. Concerning the choice of the EWMA smoothing param-
eter � we consider different values from the interval [0.01, 1], as it is recommended 
by Lazariv et al. (2015) because even smaller � values could lead to numerical insta-
bilities. Note that all these parameter values are common advices from the literature, 
the optimal choice of control chart parameters depends on the selected performance 
measure, the distribution of the control statistic as well as on the size of the actual 
shift which is (typically) unknown in applications.

Unfortunately, the exact distribution of our control statistic is unknown so we 
cannot provide theoretical control limits even for the simplest no-memory control 
charts. In general, for memory control charts (CUSUM and EWMA) it is not pos-
sible to get exact theoretical control limits, so that numerical methods should be 

(13)

Var0(Zt) =
�

2 − �

[
(1 − (1 − �)2t)(1 + 3�2

0
+ �4

0
) + 2(1 − �)(1 − (1 − �)2(t−1))�2

0

]
,

(14)lim
t→∞

Var0(Zt) =
�

2 − �

[
(1 + 3�2

0
+ �4

0
) + 2(1 − �)�2

0

]
.

xt =

{
𝜃0at−1 + at, for t < 1

𝜃1at−1 + at, for t ≥ 1
with at ∼ N iid (0, 1).
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applied. The path of the process {xt} is simulated B = 106 times, then the process 
{vt} is computed as in  (8). For a given control chart, we obtain the run lengths 
RL(b) for the repetitions b = 1, ...,B , so the Average Run Length (ARL) is esti-
mated by

In order to get control limits for the control charts, we first simulate the process 
without any change and compute control limits which provide the in-control ARL 
equal to ARL0 = 100 . Afterwards, we evaluate the detecting ability of the charts 
under considerations by comparing them with respect to the out-of-control ARLs 
denoted by ARL1 where the changes in the MA(1) parameter occurs immediately at 
t = 1 , which is also known as the zero-state ARL (cf. Montgomery 2013). Moreo-
ver, we report the out-of-control conditional steady state (ss) ARL (cf. Knoth 2021) 
which is defined as ssARL = E (RL − m + 1|RL ≥ m) for a change at m > 1 , i.e., no 
false alarms until time point m. In our application we select m = 51 ; of course, the 
choice m = 1 corresponds to the zero-state ARL. The results of the Monte Carlo 
simulations are summarized in Table 1.

The speed of detecting changes in the MA(1) parameter is measured by out-
of-control ARLs. The results in Table 1 indicate that the CUSUM chart detects 
changes rather slowly compared to the in-control ARL 100, namely the out-of-
control (zero-state) ARL is 12.83 for the shift from ARMA(1,1) to AR(1) and 
14.60 for the shift from AR(1) to ARMA(1,1). The no-memory Shewhart control 
charts (i.e., the EWMA charts with � = 1 ) are even worse with the out-of-control 
ARLs 36.96 and 22.39, respectively. Applying the EWMA charts with smaller 
�-values leads to substantial decrease in the out-of-control ARLs. The conven-
tional choice � = 0.1 provides the out-of-control ARLs 13.69 and 13.38 which 
are comparable with those from the CUSUM charts. However, a further decrease 
in � to the value � = 0.01 provides 7.06 and 6.77, respectively, which are almost 
twice lower than the out-of-control ARLs for the corresponding CUSUM charts. 
Hence, the CUSUM monitoring schemes are clearly not optimal for our setting 
with respect to the out-of-control ARL criterion. Note that a further reduction of 
� could lead to numerical problems as it is discussed by Lazariv et al. (2015) and 
Morais et al. (2015).

Concerning the results for the conditional steady-state ssARL it is worth to note 
that ssARL > ARL1 for the small values of � , moreover, the smallest ssARL are 
achieved for � = 0.1 (15.94) for the shift to AR(1) and for � = 0.1 (16.02) for the 
shift to ARMA(1,1). For � = 1 (i.e., the no-memory Shewhart chart) we observe 
that ssARL ≈ ARL1 which also holds for � = 0.7 and � = 0.85 . Although ssARLs 
for the CUSUM are larger than ARL1 s, the former get more comparable with the 
smallers ssARLs for the EWMA charts. Hence, for the steady-state ARL criterion 
the CUSUM chart remains a sound alternative to the EWMA procedures. These 
detection results are not surprising as we are focused on the detection of quite small 
shifts compared to the in-control variance of the underlying (monitored) process, see 
Proposition 2.

ÂRL = (1∕B) ⋅

B∑

b=1

RL(b).
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5  The empirical application

We apply the control charts for monitoring changes both from AR(1) to 
ARMA(1,1) and from ARMA(1,1) to AR(1) for the series of daily log realized 
volatility measures. The family of nonlinear GARCH models (cf. Tsay 2010) are 
typically applied to daily asset returns on financial risky assets in order to assess 
conditional heteroskedasticity and volatility clustering phenomenon. Time series 
models which exploit realized volatility measures based on intraday (high-fre-
quency) information serve to the same purpose. Such time series models [e.g., 
those of Corsi (2009) and its further modifications] are widely used nowadays as 
realized volatilities are believed to be more precise measures of the true volatility 
compared to squared daily returns which are exploited in GARCH-type models.

Realized volatilities are consistent estimators of the true daily integrated 
volatilities under fairly general regularity conditions (cf. Barndorff-Nielsen and 
Shephard 2002). Hence, realized volatility measures would converge in probabil-
ity to the true daily integrated volatilities when the number of intraday observa-
tions is very large. Empirically, however, measurement errors appear be present 
in realized volatility series as the number of observations per day is finite. The 
daily volatility model with measurement errors in realized volatilities is discussed 
e.g., by Bollerslev et al. (2016) in their Section 2.2. In particular, they argue “The 
consistency of realized volatility for integrated volatility estimation, coupled with 
the fact that the measurement error is serially uncorrelated under general condi-
tions, motivate the use of reduced form time series models for the observable 
realized volatility as a simple way to forecast the latent integrated volatility of 
interest.” It is much related to our setting, in particular, the AR(1) dynamics of 
the state variables corresponds to Eq. (6) in Bollerslev et  al. (2016) and origi-
nates—to the best of our knowledge—from the stochastic volatility literature (cf. 
Jacquir et al. 1994).

The log transformation of realized volatilities is a commonly applied procedure 
for their time series modeling as it provides a distribution which is more sym-
metric and closer to normality (cf. Andersen et al. 2001). Hence, we extend the 
online monitoring approach of Golosnoy et al. (2012) where the aim is to detect 
changes in the mean of an ARMA(1,1) model for daily log realized volatilities.

We consider daily realized volatility time series of three important stock mar-
ket indices S&P500 (SPX), DAX 30 (GDAXI), and Nikkei 225 (N225) which are 
obtained from the Oxford-Man Institute’s realized library (cf. Heber et al. 2009). The 
data covers the period 2002–2019. For estimation purposes we consider the observa-
tions in 2002–2006 as the in-sample period which is a (comparatively) ‘calm’ time 
period on financial markets before the start of the financial crisis in 2007, whereas 
the remaining years 2007–2019 form the out-of-sample period. Hence, our sample 
ends before the outbreak of Covid-19 pandemic situation which has dramatically 
influenced the financial markets world-wide at the beginning of 2020.

We represent daily log realized volatilities denoted by RVt by means of a mul-
tiplicative volatility component model (cf. Engle and Sokalska 2012) which has a 
convenient property to be additive in logs:
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where R̃Vt is the long-term (possibly non-stationary) component and yt is the 
remaining short-memory part which is of our interest. Next, we filter out the long-
term component R̃Vt by the exponential smoothing

in order to extract the short-term component yt . The value � = 0.05 reflects the 
impact of new information and is the empirically recommended value for the expo-
nential smoothing approach (cf. Golosnoy et al., 2019). For the initialization, we set 
R̃V0 equal to the long-run average of RVt , so the mean of yt is zero.

For the extracted process {yt} we estimate by the maximum likelihood approach 
both AR(1) or ARMA(1,1) models based on the in-sample period 2002–2006, as 
well as based on the full sample. We report the estimates in Table 2 together with 
the AIC and BIC goodness-of-fit measures. Note that all series are clearly station-
ary. Based on the AIC/BIC criteria, the ARMA(1,1) is preferred over AR(1) for all 
three time series which indicates on the presence of measurement errors, in line with 
the findings of Bollerslev et al. (2016). The parameter estimates from the in-sample 
period are very similar to those obtained from the full sample which is an indicator 
that the in-sample period provides a good representation of the complete sample.

Then we compute xt and vt series as discussed in Sect.  2 for either AR(1) or 
ARMA(1,1) model estimates both in sample and out of sample. Based on the pro-
cess {vt} , we apply the CUSUM and EWMA control charts presented in Sect.  3. 
The normality assumption used in the Monte Carlo simulations is usually rejected 

(15)RVt = R̃Vt + yt,

(16)R̃Vt = �RVt−1 + (1 − �)R̃Vt−1, with � = 0.05,

Table 2  Parameter estimates for AR(1) and ARMA(1,1) models for yt-processes

All estimates are statistically different from zero at 1% level

Index, model �̂ �̂ �̂2

a
AIC/103 BIC/103

In sample parameter estimates, 2002–2006

S&P500, AR(1) 0.556 – 0.420 6.441 6.454
S&P500, ARMA(1,1) 0.818 – 0.401 0.398 6.271 6.289
DAX30, AR(1) 0.485 – 0.297 5.358 5.370
DAX30, ARMA(1,1) 0.827 – 0.479 0.281 5.175 5.194
Nikkei225, AR(1) 0.510 – 0.334 5.542 5.554
Nikkei225, ARMA(1,1) 0.795 – 0.405 0.320 5.406 5.424

Full sample parameter estimates, 2002-2019

S&P500, AR(1) 0.522 – 0.378 8.434 8.447
S&P500, ARMA(1,1) 0.824 − 0.441 0.357 8.175 8.195
DAX30, AR(1) 0.467 – 0.291 7.328 7.341
DAX30, ARMA(1,1) 0.828 −0.497 0.276 7.089 7.109
Nikkei225, AR(1) 0.500 – 0.302 7.211 7.224
Nikkei225, ARMA(1,1) 0.796 −0.419 0.289 7.031 7.050
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by empirical modeling of log realized volatilities (cf. Golosnoy et  al. 2012). This 
happens in many situations due to outliers which lead to undesired false signals. 
In order to reduce the number of false signals in the empirical study we select the 
control limits such that they provide a more conservative in-control ARL value 200 
which corresponds to around 16 false signals for the in-control state for the monitor-
ing period 2007–2019 with ca. 3300 daily observations. We apply both upper and 
lower control charts for monitoring ARMA(1,1) processes, whereby for monitoring 
AR(1) processes we apply only the lower-sided charts. For the EWMA charts we set 
the smoothing parameter � = 0.01 . For the lower-sided CUSUM for the in-control 
AR(1) we set � = 1∕4 as the half of change from �0 = 0 to �1 = −1∕2 , see (12). For 
the CUSUM charts with the in-control ARMA(1,1) we select the parameter � in a 
data-driven way. In particular, for the estimated ARMA(1,1) parameters �̂� and �̂� we 
choose 𝛿 = −�̂�∕2 for the upper CUSUM charts for detection of changes from AR(1) 
to ARMA(1,1) and set 𝛿 = (�̂� − �̂�)∕2 for the lower CUSUM charts for detection of 
changes in � to the direction further away from AR(1) to the boundary value −� . 
Given AR(1) or ARMA(1,1) estimates obtained either from in sample or from full 
sample, and the pre-selected parameters of the control charts, we compute the con-
trol limits for the in-control state by a Monte Carlo simulation with 106 replications. 
Then we apply the control charts by making a re-start after each obtained signal.

In Table 3 we provide the number of empirical reject signals for monitoring both 
AR(1) and ARMA(1,1) models. Concerning monitoring validity of the AR(1) model 
in Table 3 (the upper block), the number of signals from the EWMA charts is much 
higher than from the CUSUM charts for all three financial markets, as it is also 
expected from our Monte Carlo results. The obtained number of signals for S&P500 
index is much higher than for DAX  30 and Nikkei  225. Remarkably, there is no 
much difference for the number of signals for the in sample and full sample param-
eter estimates. Note that our results based on the full-sample estimate provide a kind 
of Phase I analysis for the period 2007-2019. In general, the number of obtained 
signals from the CUSUM charts is at least three times higher than it can be expected 
in control. This indicates on the evidence that the simple AR(1) approach is not suf-
ficient for the modeling purposes of the short-run component of realized volatility 
and the addition of the MA(1) component could be useful.

The number of signals by monitoring validity of the ARMA(1,1) models in 
Table 3 (the lower block) is more balanced for the CUSUM and EWMA charts. The 
rejects of ARMA(1,1) by the upper control charts are the support for a change in 
the direction of AR(1) alternative, whereas the rejects of ARMA(1,1) by the lower 
charts are in favor of a more pronounced MA(1) component. As it is to expect, the 
number of signals from the lower charts for monitoring ARMA(1,1) is in all cases 
smaller than from the lower charts for AR(1) monitoring. Concerning the upper 
control charts, there are about twice more signals than expected for S&P500 and 
DAX30, whereas the number of signals for Nikkei225 roughly corresponds to the 
in-control expectations. This points on the evidence that ARMA(1,1) provides a fair 
time series modeling for Nikkei225 during the considered period of time.

To illustrate the signal timings we provide in Figs. 1, 2, and 3 the dates of the 
control charts alarms for S&P500, DAX 30, and Nikkei 225, respectively. EWMA 
signals are depicted as red points, whereas CUSUM signals as blue points. The 
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upper plots show the signals for in-control AR(1) and out-of-control ARMA(1,1), 
the middle plots for the in-control ARMA(1,1) and out-of-control changes in AR(1) 
direction, whereas the lower plots the in-control ARMA(1,1) and out-of-control 
in the direction of a more pronounced ARMA(1,1) model with an MA(1) param-
eter closer than in control to the boundary value −�̂� . Hence, in the upper plots we 
confront the rejects of AR(1) whereas in the middle and lower plots the rejects of 
ARMA(1,1) models.

We observe for all panels that the timing of signals from the CUSUM and 
EWMA charts coincide to much extent which is an indicator that both charts do 
react on possible shifts in the MA(1) part. Moreover, it is clearly observable that sig-
nals from all charts are clustered in time. In particular, signals from the upper charts 
(the middle panel) for a less pronounced MA(1) component are mostly located 

Fig. 1  Signals for S&P500: EWMA (red), CUSUM (blue) with charts based on in sample (left) and full 
sample (right) parameter estimates (colour figure online)

Fig. 2  Signals for DAX 30: EWMA (red), CUSUM (blue) with charts based on in sample (left) and full 
sample (right) parameter estimates (colour figure online)
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during the subprime mortgage crisis in 2007–2009. This is not surprising, as it is 
well-known that the speed of information transfer (related to the number of news 
per day) increases substantially during crisis periods, so that the MA(1) compo-
nent gets superfluous in such situations. On the contrary, the lower charts for a more 
pronounced MA(1) component provide signals mostly in the (comparatively) calm 
post-crises period starting from 2011. Since the speed of information transfer usu-
ally decreases during the calm time, this finding also appears to be rather plausible.

In general, it is not always an easy task to differentiate between correct and false 
(i.e., driven by outliers) signals. Although standing alone outliers could trigger false 
signals by control charts, note that for our statistic (8) based on the product xtxt−1 
their impact would be mitigated compared with (for example) a statistic based on 
the square x2

t
 . In our case an outlier xt would influence both xtxt−1 and xt+1xt , so 

that in the empirical application we could then expect some separately standing 
back-to-back (pairs of) signals depicted as strongly overlapping circles. We indeed 
observe some of such alone-standing pairs for all considered markets, however, the 
majority of signals are not alone-standing but clustered in time indicating on struc-
tural changes. For this reason we suppose that the outlier problem is not pronounced 
much in our application.

Finally, we would like to discuss some possible directions for future research. The 
first possibility is to exploit more fully the available high-frequency information by 
monitoring the MEM model estimated based (say) on hourly data. In this setting, 
however, one should take into account the stylized facts which are typical for intra-
day asset returns, for example the intraday periodicity issue (cf. Dette et al. 2022a, 
b) and the related problems. The second possible direction for further research is 
related to the economic interpretation of signals and transferring them into financial 
decisions. To this extent note that in general signals from control charts in financial 
applications are more a supplementary decision-making tool which indicates on the 
necessity of the further in-depth analysis. This is much different from situations in 
macroeconomic applications as e.g., by sequential monitoring of the business cycle 

Fig. 3  Signals for Nikkei 225: EWMA (red), CUSUM (blue) with charts based on in sample (left) and 
full sample (right) parameter estimates (colour figure online)
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(cf. Golosnoy and Hogrefe 2013) or monitoring changes in the inflation expectation 
process (cf. Golosnoy and Roestel 2019) where—based on publicly available infor-
mation—the majority of signals could be (although often with some time delay) 
either interpreted as reasonable ones or classified as outliers. On the contrary, inter-
preting dates of financial signals is not an easy task, as it would require gathering 
much more external information which appears to be a costly process. For this rea-
son, this would go beyond the illustration of our methodology in the current paper 
but could be an interesting topic for future investigations. Finally, the monitoring of 
MEM models could be extended for monitoring MEMs in multivariate settings (cf. 
Golosnoy and Rossen 2018) or for the purpose of monitoring for changes in various 
types of networks (cf. Klüppelberg and Seifert 2019, 2020; Chen et al. 2022).

6  Summary

We consider a measurement error model (MEM) where the state variable follows 
AR(1) dynamics. Such a MEM could be equivalently written as an ARMA(1,1) 
model, however, when the measurement error gets negligible the MEM reduces to 
a simple AR(1) representation. We focus on the task of sequential monitoring of the 
MEM which is equivalent to monitoring the MA(1) parameter with the aim to detect 
possible changes in the MA(1) part as soon as they occur. For this purpose we elab-
orate both CUSUM and EWMA control charts for online detection of changes from 
AR(1) to ARMA(1,1) and vice versa. The control statistic for these charts is based 
on the testing approach elaborated by Golosnoy et  al. (2021). In the Monte Carlo 
simulation study we show that these changes (which are numerically rather small 
compared to the process variance) could be detected not immediately but only with 
some detection delay. The empirical illustration is based on monitoring of AR(1) 
and ARMA(1,1) models for the short-run component of daily log realized volatility 
series of the leading stock market indices. The obtained signals support the evidence 
that the AR(1) models are more suitable during crisis periods, whereas the MEM, 
i.e., the ARMA(1,1) representation, for no-crisis periods in financial markets.

Appendix

Proof of Proposition 1

We provide the expressions for � and �2
a
 of the ARMA(1,1) model as the functions 

of the MEM parameters �, �2
�
 and �2

u
 in order to show that MEM and ARMA(1,1) 

model are equivalent in distributions. Consider xt = yt − �yt−1 for both formulations:

In order to show the equivalence, we consider the autocovariances for both 
representations

MEM ∶ yt − �yt−1 = �t + ut − �ut−1,
ARMA(1,1): yt − �yt−1 = at + �at−1.
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From the second equation we get

which implies that � has an opposite sign than � . Substituting it into the first equa-
tion yields

Solving this quadratic equation yields two possible solutions

The radicand in  (18) is positive, because 𝜎2
𝜖
+ 𝜎2

u
(1 − 𝜙)2 > 0 implies that 

𝜎2
𝜖
+ 𝜎2

u
(1 + 𝜙2) > 2𝜙𝜎2

u
.

As we focus on � ∈ (0, 1) we get the unique solution:

as it guarantees that � ∈ (−1, 0) as b > 1 implies that b2 − 1 > (b − 1)2 and, hence, 
𝜃 = −b +

√
b2 − 1 > −1 . Note that the other solution leads to 𝜃 < −1 in the MA(1) 

part of the ARMA(1,1).   ◻

Proof of Proposition 2

From Eq. (17) we get that E (xtxt−1) = ��2
a
 which yields E (vt) = � . We can write

Next we observe that

(17)
Var (xt) =E (x2

t
) = �2

�
+ �2

u
(1 + �2)

!
= �2

a
(1 + �2)

Cov (xt, xt−1) =E (xtxt−1) = −��2
u

!
= ��2

a
.

�2
a
= −

�

�
�2
u
,

0 = �2
�
+ �2

u
(1 + �2) + (�−1 + �)��2

u
,

⇔ 0 = �2 +
�2
�
+ �2

u
(1 + �2)

��2
u

� + 1.

(18)�1|2 = −
�2
�
+ �2

u
(1 + �2)

2��2
u

±

√√√√
[
�2
�
+ �2

u
(1 + �2)

2��2
u

]2
− 1.

(19)� = −
�2
�
+ �2

u
(1 + �2)

2��2
u

+

����
�
�2
�
+ �2

u
(1 + �2)

2��2
u

�2
− 1 =∶ −b +

√
b2 − 1 ,

�2
a
vt = xtxt−1 = (at + �at−1)(at−1 + �at−2) = atat−1 + �atat−2 + �a2

t−1
+ �2at−1at−2.

�4
a
v2
t
= a2

t
a2
t−1

+ �a2
t
at−1at−2 + �ata

3
t−1

+ �2ata
2
t−1

at−2

+�a2
t
at−1at−2 + �2a2

t
a2
t−2

+ �2ata
2
t−1

at−2 + �3atat−1a
2
t−2

+�ata
3
t−1

+ �2ata
2
t−1

at−2 + �2a4
t−1

+ �3a3
t−1

at−2

+�2ata
2
t−1

at−2 + �3atat−1a
2
t−2

+ �3a3
t−1

at−2 + �4a2
t−1

a2
t−2
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Then we immediately obtain E (v2
t
) = 1 + 4�2 + �4 and Var (vt) = 1 + 3�2 + �4 

because the fourth moment of at ∼ N iid (0, �
2
a
) is 3�4

a
 . Now consider

which gives that E (vtvt−1) = 2�2 and Cov (vt, vt−1) = �2 . Finally, for � ≥ 2 we obtain

This leads to E (vtvt−�) = �2 and, consequently, to Cov (vt, vt−�) = 0 for � ≥ 2 .   ◻
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