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Abstract
This paper deals with the estimation of kurtosis on large datasets. It aims at over-
coming two frequent limitations in applications: first, Pearson’s standardized fourth 
moment is computed as a unique measure of kurtosis; second, the fact that data 
might be just samples is neglected, so that the opportunity of using suitable infer-
ential tools, like standard errors and confidence intervals, is discarded. In the paper, 
some recent indexes of kurtosis are reviewed as alternatives to Pearson’s stand-
ardized fourth moment. The asymptotic distribution of their natural estimators is 
derived, and it is used as a tool to evaluate efficiency and to build confidence inter-
vals. A simulation study is also conducted to provide practical indications about the 
choice of a suitable index. As a conclusion, researchers are warned against the use 
of classical Pearson’s index when the sample size is too low and/or the distribu-
tion is skewed and/or heavy-tailed. Specifically, the occurrence of heavy tails can 
deprive Pearson’s index of any meaning or produce unreliable confidence intervals. 
However, such limitations can be overcome by reverting to the reviewed alternative 
indexes, relying just on low-order moments.

Keywords  Pearson’s �2 · Asymptotic distributions · Coverage · Heavy-tailedness · 
Skewness

1  Introduction

Undoubtedly, Karl Pearson can be considered as the “father” of kurtosis: indeed, 
he was the first statistician who firmly stated that several phenomena could be rep-
resented by means of frequency distributions which significantly differ from the 
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Gaussian [see Pearson (1894)]. To represent such distributions, he introduced the 
well-known “Pearson’s system,” whose elements depart from normality according 
to the values taken by their moments. Specifically, the standardized third moment �1 
reflects departure from symmetry while the standardized fourth moment �2 reflects 
the degree of what Pearson called “flat-toppedness” of the distribution. It was only 
in Pearson (1905), however, that the term “kurtosis” was coined and that �2 , as com-
pared with the value 3 taken for the normal distribution, was firstly identified as a 
measure of kurtosis (the interested reader can refer to Fiori and Zenga (2009) for an 
exhaustive review of the genesis of �2 in Pearson’s thought).

Over time, the use of �2 as a measure of kurtosis was extended, beyond Pearson’s 
system, to the entire universe of frequency distributions. However, in this passage, 
some problems arose. First, out of Pearson’s system, �2 cannot be simply linked to 
the value taken by the density function at the mean [see Kaplansky (1945)]. Thus, 
to provide a general interpretation, Darlington [see Darlington (1970)] linked �2 to 
the tendency to bimodality, while Finucan [see Finucan (1964)] underlined its con-
current sensitivity to the “tailedness” of the distribution. Second, and more danger-
ously, �2 is undefined for distributions with infinite fourth moment.

Despite the lines of criticism above, �2 is nowadays often considered as the main 
measure of kurtosis and sometimes it is even identified with such a phenomenon, 
which reflects something vaguely connected to tails of the distribution. However, 
alternative measures have been proposed in the literature. There are, actually, large 
differences among them, motivated by the fact that the definition of kurtosis rests 
on location, scale and skewness, which are vague concepts as well. For instance, 
Balanda and McGillivray [see Balanda and MacGillivray (1988)] write that “a 
shape characteristic that we call kurtosis can be vaguely defined as the location and 
scale-free movement of probability mass from the shoulders of a distribution into 
its center and tails,” but, to apply such a logic, one needs both to provide a sharp 
definition of location, scale and skewness and, with more difficulties, to establish 
where the shoulders and the tails of a distribution are positioned. The entanglement 
of kurtosis with skewness is, in effect, the most cumbersome problem in this system 
of cross-referenced summary measures of a distribution: while it is easy to find scale 
measures which are independent of location, for instance, kurtosis indexes may 
behave differently according to the underlying degree of skewness [see Balanda and 
MacGillivray (1990), Blest (2003), and Jones et al. (2011)].

Today, researchers can thus rely on many alternatives of �2 to measure kurtosis 
and, as a result, choosing the one to be computed on a given dataset is hard, both 
because they are all reasonable and because their efficacy may strongly depend on 
other unexplored characteristics of the same data. Operationally, there are, in this 
sense, some open questions about kurtosis: does the performance of the mostly 
known indexes significantly differ when they are computed on data? Specifically, 
if data are samples, does the need for a extremely large size prevents to use some 
particular indexes? How such performances and such indications about the sample 
size are affected by other possible shape deviations of the underlying population, 
like skewness?

In this paper, we will try to answer some of the questions addressed above. We 
will focus on the recent approach to kurtosis due to Zenga [see Zenga (1996) and 



575

1 3

Some measures of kurtosis and their inference on large datasets﻿	

Zenga (2006)], but we will use Pearson’s �2 and Geary’s �G [see Geary (1936)], 
which is also a widespread classical index, as benchmarks. Actually, Zenga (1996) 
introduced a kurtosis curve and two kurtosis indexes, but the following literature 
explored their properties just from a descriptive point of view [see Zenga (2006) and 
the references therein]. After briefly reviewing that literature, we will thus provide 
the sample asymptotic distribution of the two indexes and introduce two asymptotic 
confidence intervals for the related population parameters. In our opinion, that can 
be considered as a first achievement of the paper. In addition, we will report some 
results of a simulation study aimed at comparing the sample performances of the 
considered indexes, along with their sensitivity to the sample size and the shape 
characteristics of the population.

The paper is organized as follows. In Sect.  2, Zenga’s approach to kurtosis is 
reviewed, along with a variant due to De Capitani and Polisicchio [see De Capi-
tani and Polisicchio (2016)], and the kurtosis indexes K2(�) , K2(�) , K1(�) , K1(�) are 
recalled. In Sect. 3, the asymptotic distributions of the estimators of such indexes are 
derived, along with the ones for Pearson’s �2 and Geary’s �G . In Sect. 4, a simulation 
study is performed in order to evaluate the accuracy of the approximation provided 
by the asymptotic theory and the practical applications of the considered indexes on 
large datasets. Sect. 5 concludes.

2 � Recalling Zenga’s approach to kurtosis

Zenga (1996) based the study of kurtosis on suitable transformations of a random 
variable X which produce new distributions possibly characterized by different lev-
els of kurtosis, while maintaining the same median and the same mean absolute 
deviation around the median. Equivalently, after denoting by � the median of X,  a 
change in the concentration of the random variables

is produced by the transformations above, which, in these sense, resembles those 
considered in the Pigou-Dalton “principle of transfers”. Thus, the appeal of Zenga’s 
approach rests in the opportunity to use all the well-established tools for concentra-
tion of positive variables in the context of kurtosis. A good review of this approach 
is given in Zenga (2006), where the international reader can found details about the 
original references on the topic. Further useful references are Fiori (2008), Domma 
(2004) and Fiori (2007), where a careful comparison between the logic of the two 
indexes K2, K1 (details below) and of Pearson’s �2 is given. More recently, De Capi-
tani and Polisicchio [see De Capitani and Polisicchio (2016)] reviewed Zenga’s 
approach by replacing the median � with an arbitrary “cutting point” k in the defini-
tion of the two variables in (1). Such a substitution, especially if k is chosen as the 
mean � , turns out to be a powerful alternative when kurtosis in studied in asym-
metric models. In the following, we will then start with a generic k and set k = � or 
k = � when needed.

(1)D = (X − 𝛾 |X > 𝛾) and S = (𝛾 − X |X ≤ 𝛾)
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Let X be a random variable with continuous distribution function F. Assume that 
X has finite expectation � = E[X] and median � = F−1(0.5) . Moreover, suppose to 
measure the dispersion of X by its mean absolute deviation around k:

(note that, when unspecified, integrals range from −∞ to +∞ ). Now, re-define the 
variables in (1) as

and let FDk and FSk denote their distribution functions, which can be easily deter-
mined from F. Finally, denote by �Dk and �Sk the expectations of Dk and Sk and 
notice that �k = qk �Sk + (1 − qk) �Dk, where qk = F(k). Obviously, Dk and Sk are, by 
construction, non-negative random variables. Their Lorenz curves are thus:

Zenga’s kurtosis diagram of the random variable X is defined as the graph of the fol-
lowing function Gk ∶ [−1, 1] → [0, 1],

Consistently, a synthetic index of kurtosis (denoted here as K2(k) to emphasize 
its dependency on k) is defined as the weighted average of the Gini concentration 
indexes of Dk and Sk:

Notice that the two components of K2(k) can be rewritten in terms of Gini’s mean 
difference: after setting

one gets

The two ratios above evaluate the kurtosis of X on the left and on the right of k, 
by looking at the relative variability of Sk and Dk , respectively. By a similar logic, 
Zenga (1996) considered an alternative index based on the ratios between variances 
and second moments,

(2)�k = ∫ |t − k| dF(t)

(3)Dk = (X − k |X > k) and Sk = (k − X |X ≤ k)

LDk
(p) =

1

�Dk ∫
p

0

F−1
Dk
(t) dt and LSk (p) =

1

�Sk ∫
p

0

F−1
Sk
(t) dt .

Gk(p) =

{
LSk (−p) − 1 ≤ p ≤ 0

LDk
(p) 0 ≤ p ≤ 1 .

K2(k) =qk ∫
1

0

[
p − LSk (p)

]
dp + (1 − qk) ∫

1

0

[
p − LDk

(p)
]
dp

=K−
2
(k) + K+

2
(k) .

�Sk
= ∫ ∫ |x − y| dFSk

(x) dFSk
(y) and �Dk

= ∫ ∫ |x − y| dFDk
(x) dFDk

(y),

K−
2
(k) = qk

�Sk

2 �Sk
and K+

2
(k) = (1 − qk)

�Dk

2 �Dk

.
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which give

When the cutting point k is chosen as � or � , some simplifications apply. For 
instance, it is easy to notice that �S� = (2 q�)

−1 �� and �D�
= ((2 (1 − q�))

−1 ��, so 
that

[see De Capitani and Polisicchio (2016)], where �� and � = ∫ ∫ |x − y| dF dF are 
not actually referred to any conditional distributions. As emphasized in the follow-
ing, K2(�) is, in effect, the only considered index which does not need to be sepa-
rated into components to be evaluated. Other simplifications come after noticing that 
q� = 1∕2 so that, for instance, �D�

= 2 �� − �S� .

Despite some possible simplifications, the occurrence of conditional distributions is 
the main problem in the determination of the asymptotic distributions of the sample 
estimators of the above-defined indexes. To ease such a process, in the following we 
will express our indexes in terms of some suitable non-conditional random variables. 
Consider the indicator function 1(A) on the set A and define

Similarly, consider the functions

and notice that

After choosing k = � or k = �, the considered kurtosis indexes can be easily re-
defined as functionals of the following non-conditional random variables:

More specifically, begin by considering the expectation as a first functional and set

Var(Sk)

E(S2
k
)

= 1 −
E2(Sk)

E(S2
k
)

and
Var(Dk)

E(D2

k
)

= 1 −
E2(Dk)

E(D2

k
)
,

K1(k) =qk

[
1 −

E2(Sk)

E(S2
k
)

]
+ (1 − qk)

[
1 −

E2(Dk)

E(D2

k
)

]

=K−
1
(k) + K+

1
(k) .

(4)K2(�) =
�

��
− 1

h−(x, k) = (k − x)1(x ≤ k) and h+(x, k) = (x − k)1(x > k).

H−(x, y, k) =|(k − x)1(x ≤ k) − (k − y)1(y ≤ k)| = |h−(x, k) − h−(y, k)|
H+(x, y, k) =|(x − k)1(x > k) − (y − k)1(y > k)| = ||h+(x, k) − h+(y, k)||

H−(x, y, k) + H+(x, y, k) = |x − y|.

(5)X−
k
= h−(X, k) and X+

k
= h+(X, k).

�− = E
(
X−
�

)
and �+ = E

(
X+
�

)
.
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It turns out that

Now consider Gini’s mean difference as a second functional, that is, for every ran-
dom variable X, 

and define

One can easily notice that

so that �S�
= 4(�− − �−). Similarly, �D�

= 4(�+ − �+), which finally gives:

When the cutting point is k = �, the two functionals above let one define

so that the needed summary measures of the conditional random variables in (3) can 
be computed as

and as

Consequently, the components of the index K2(�) are written as

�− =∫ h−(x, �) dF(x) = ∫
�

−∞

(� − x) dF(x) =
1

2
�S�

�+ =∫ h+(x, �) dF(x) = ∫
∞

�

(x − �) dF(x) =
1

2
�D�

.

�(X) = E[ |X − Y| ] where (X, Y) are i.i.d. ∼ X

�− = �(X−
�
) and �+ = �(X+

�
).

�− =∫ ∫ |h−(x, �) − h−(y, �)| dF(y) dF(x) =

=∫ ∫ H−(x, y, �) dF(y) dF(x) =

=∫
�

−∞ ∫
�

−∞

|x − y| dF(y) dF(x) + ∫
�

−∞ ∫
∞

�

(� − x) dF(y) dF(x)+

+ ∫
∞

� ∫
�

−∞

(� − y) dF(y) dF(x) =
1

4
�S�

+ �−

(6)
K−
2
(�) =

�−

2�−
−

1

2
, K+

2
(�) =

�+

2�+
−

1

2
and K2(�) =

�−

2�−
+

�+

2�+
− 1.

d− = E
(
X−
�

)
, d+ = E

(
X+
�

)
, D− = �(X−

�
) and D+ = �(X+

�
),

�S� =
d−

q�
and �D�

=
d+

1 − q�

�S�
=

D− − 2 (1 − q�) d
−

q2
�

and �D�
=

D+ − 2 q� d
+

(1 − q�)
2

.
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Now notice that d− = d+ = ��∕2 and D− + D+ = �, so that (4) is actually re-
obtained: once again, the definition of K2(�) does not need any conditional distri-
butions. However, the decomposition provided by (7) is likely to be useful in those 
applications where the left and right kurtosis should be studied separately. For 
instance, in a statistical test aiming at comparing the two sides of kurtosis, one might 
need to know the joint sample distribution of the estimators of the two components.

Let us now turn to the indexes K1(�) and K1(�). To re-define them in terms of 
non-conditional random variables, we need to consider the l− th moments as well 
(l ≥ 2). Define first

and consider, for now, �−
2
 and �+

2
∶ by definition,

so that E(S2
�
) = 2�−

2
 and, similarly, E(D2

�
) = 2�+

2
. It is easily seen that

and that

When the cutting point k = � is chosen and the l− th moments are considered,

one can easily obtain that

and

(7)K−
2
(�) =

D−

2d−
− (1 − q�) and K+

2
(�) =

D+

2d+
− q�.

�−
l
= E

[(
X−
�

)l
]

and �+
l
= E

[(
X+
�

)l
]

�−
2
= ∫

�

−∞

(� − x)2 dF(x) =
E(S2

�
)

2
,

K−
1
(�) =

1

2
−

(�−)2

�−
2

, K+
1
(�) =

1

2
−

(�+)2

�+
2

(8)K1(�) = 1 −

[
(�−)2

�−
2

+
(�+)2

�+
2

]
.

d−
l
= E

[(
X−
�

)l
]

and d+
l
= E

[(
X+
�

)l
]
,

K−
1
(�) = q� −

(d−)2

d−
2

, K+
1
(�) = (1 − q�) −

(d−)2

d+
2

(9)K1(�) = 1 −

[
(d−)2

d−
2

+
(d−)2

d+
2

]
.
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On passing, notice that when the distribution of X is symmetric, � = � 
and d−

2
= d+

2
= �2∕2 , where �2 denotes the variance of X. In this chance, 

K1(�) = K1(�) = 1 − (��∕�)
2, which is closely related to the definition of Geary’s 

kurtosis measure �G = ��∕�.

3 � Asymptotics

3.1 � Asymptotic theory for K
2
(�) and K

2
(
)

As above outlined, the first aim of this paper is to derive the asymptotic distribution 
of the natural estimators of the considered kurtosis indexes. Let us start from the 
“simplest” of them, K2(�). After easing notation by q = q� and d = ��, recall that

Now let (X1,… ,Xn) be a iid random sample from F and consider

where �̂n =
1

n2

∑n

i=1

∑n

j=1
�Xi − Xj�, d̂n = 1

n

∑n

i=1
�Xi − �̂n� and �̂n =

1

n

∑n

i=1
Xi. Notice 

that, in the definition of the estimator K̂2n(�̂n), the cutting point � is estimated from 
data as well. When the integral representation of the latter estimators is recalled, it 
is not difficult to approximate them by suitable linear combinations of the sample. 
After denoting by F̂n the empirical distribution function, for instance,

which is a well-known result by Hoeffding (1948). We will use a similar logic for 
the remaining component d̂n in (10); the following lemma, whose proof is found in 
De Capitani and Pasquazzi (2015), is of use:

Lemma 1  Let F be a continuous distribution function and let (X1,X2,… ,Xn) be a 
iid random sample from F. Denote by F̂n the empirical distribution function, and 
let ẑn = T(F̂n) be an estimator of z = T(F) such that ẑn = z + OP(n

−1∕2) for n → ∞ . 
Now consider the estimators

K2(�) =
[
D−

2d−
− (1 − q)

]
+

[
D+

2d+
− q

]
=

�

d
− 1.

(10)K̂2n(�̂n) =
�̂n

d̂n

− 1,

(11)

�̂n − � = ∫ ∫ |x − y| dF̂n(y) dF̂n(x) − �

= ∫ 2

(
∫ |x − y| dF(y) − �

)
dF̂n(x) + oP(n

−1∕2)

=
1

n

n∑
i=1

[
2∫ |Xi − y| dF(y) − 2�

]
+ oP(n

−1∕2)

=
1

n

n∑
i=1

g1(Xi) + oP(n
−1∕2)
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of the functionals

Then, the following asymptotic representations hold:

Lemma 1 easily gives:

Of course, the linearization of �̂n and d̂n is a useful step to derive both their marginal 
asymptotic distributions (a known result in the literature) and their joint distribu-
tions, which is the key for the needed conclusion in Theorem 1. Before stating it, let 
us define two further functionals for a given random variable X ∼ F,

and set, to ease notation,

Theorem 1  Let (X1,X2,… ,Xn) be a iid random sample from a continuous distribu-
tion function F such that E(X1) = 𝜇 < ∞ and E[(X1 − E(X1))

2] = 𝜎2 < ∞ . Then, the 

vector 
√
n
�
�̂n − � , d̂n − d

�T
 is asymptotically normally distributed with zero mean 

and variance matrix �, where

�I1n = � (�zn − x)1(x ≤ �zn) d�Fn(x) and �I2n = � (x −�zn)1(x > �zn) d�Fn(x)

(12)

I1 = � (z − x)1(x ≤ z) dF(x) and I2 = � (x − z)1(x > z) dF(x).

�I1n = � (z − x)1(x ≤ z) d�Fn(x) + F(z)(�zn − z) + oP(n
−1∕2)

�I2n = � (x − z)1(x > z) d�Fn(x) − (1 − F(z))(�zn − z) + oP(n
−1∕2).

(13)

d̂n − d = 2�
�̂n

−∞

(�̂n − x) dF̂n(x) − d

= 2

(
� (� − x)1(x ≤ �) dF̂n(x) + q(�̂n − �)

)
− d + oP(n

−1∕2)

=
1

n

n∑
i=1

{
2[(� − Xi)1(Xi ≤ �) + q(Xi − �)] − d

}
+ oP(n

−1∕2)

=
1

n

n∑
i=1

g2(Xi) + oP(n
−1∕2).

F(X) =∫ ∫ ∫ |x − y||x − z| dF(z) dF(y) dF(x) = ∫
(
∫ |x − y| dF(y)

)2

dF(x)

D(X) =∫ ∫ x|x − y| dF(y) dF(x)

F = F(X), D = D(X) and D
−
�
= D(X−

�
).
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As a consequence, 
√
n(K̂2n(�̂n) − K2(�)) is asymptotically normal with zero mean 

and variance

Proof  Thanks to the linearizations above, the result is a simple application of the 
central limit theorem, the Cramer–Wold device and the delta method. The expres-
sions for �11 and �22 can be found in Hoeffding (1948) and Gastwirth (1974), 
respectively. Concerning the asymptotic covariance �12 , note first that

Hence,

	�  ◻

�11 = 4
(
F − �2

)

�22 = 4q�2 − 4(1 − 2q)d−
2
− d2

�12 = 4q(D − ��) − 4

(
D

−
�
+

d2

4

)
− 2d�.

�2

K2(�)
=

1

d2
�11 +

�2

d4
�22 −

2�

d3
�12 .

D
−
�
= ∫ ∫ h−(x,�)H−(x, y,�) dF(y) dF(x)

= ∫
�

−∞ ∫
�

−∞

(� − x) |x − y| dF(y) dF(x) + ∫
�

−∞ ∫
∞

�

(� − x)2 dF(y) dF(x)

= ∫
�

−∞ ∫
�

−∞

(� − x) |x − y| dF(y) dF(x) + (1 − q)d−
2
.

Cov
[
g1(X), g2(X)

]

= 4E

{(
� |X − y| dF(y)

)[
(X − �)q − (X − �)1(X ≤ �)

]}
− 2d�

= 4qE

[(
� |X − y| dF(y)

)
(X − �)

]
+

− 4E

[(
� |X − y| dF(y)

)
(X − �)1(X ≤ �)

]
− 2d�

= 4q� � (x − �) |x − y| dF(y) dF(x)+

− 4�
�

−∞ � (x − �) |x − y| dF(y) dF(x) − 2�d

= 4q(D − ��) − 4�
�

−∞ �
�

−∞

(x − �) |x − y| dF(y) dF(x)+

− 4�
�

−∞ �
∞

�

(x − �) |x − y| dF(y) dF(x) − 2�d

= 4q(D − ��) − 4

(
D

−
�
+

d2

4

)
− 2d�.
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On passing, notice that asymptotic linearizations similar to (11) and (13) can be 
provided for the m− th sample centered moment �̂mn =

1

n

∑n

i=1
(Xi − �̂n)

m, for every 
real m (see Serfling (1980), p. 72). Hence, the asymptotic distribution of the estima-
tors of Geary’s �G and Pearson’s �2

where �̂2
n
= �̂2n, are easily derived as in the next theorem:

Theorem 2  Let (X1,X2,… ,Xn) be a iid random sample from a continuous distribu-
tion function F such that E(X1) = 𝜇 < ∞ and E[(X1 − E(X1))

l] = 𝜇l < ∞ up to l = 4. 
Then, 

√
n(�̂Gn − �G) is asymptotically normally distributed with zero mean and 

variance

where

Moreover, under the assumption that 𝜇l < ∞ up to l = 8, 
√
n(�̂2n − �2) is asymptoti-

cally normal with zero mean and variance

where

Proof  The representation of d̂n in (13) can be used, along with

to prove that the two statistics are asymptotically jointly normal. Now consider that, 
after some computations, Cov[g3(X), g2(X)] =

1

�

[
�3 q − d−

3

]
−

� d

2
, so that the delta 

method easily gives the result for �̂Gn. Concerning �̂2n, one can use Theorem B in 
Serfling (1980), pag. 72 to show that the second and the fourth sample centered 
moments are jointly asymptotically normal, and again, the result follows from a sim-
ple application of the delta method. 	�  ◻

�̂Gn =
d̂n

�̂n
and �̂2n =

�̂4n

�̂4
n

,

�2

�G
=

1

�2
A11 +

d2

�4
A22 −

2d

�3
A12,

A11 = 4q�2 − 4(1 − 2q)d−
2
− d2 A22 =

�4 − �4

4�4
A12 =

1

�

[
�3q − d−

3

]
−

�d

2
.

�2

�2
=

1

�8
B11 +

�2

4

�16
B22 −

2�4

�12
B12

B11 = (�8 − �2

4
) + 8�3(2�3�

2 − �5), B22 = 4�4(�4 − �4), and

B12 = 2�2(�6 − �4�
2 − 4�2

3
).

�̂n − � =
1

n

n∑
i=1

(X − �)2

2�
−

�

2
+ oP(n

−1∕2) =
1

n

n∑
i=1

g3(Xi) + oP(n
−1∕2),
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We now turn to the estimation of K2(�). After recalling (6), a first step is to 
estimate �− and �+ by

respectively. In the formula above, �̂n = inf

{
x ∶ F̂n(x) ≥ 1∕2

}
 denotes the sample 

median, which, assuming that F has density f strictly positive and continuous in � , is 
known to admit the following asymptotic representation (see Serfling (1980), p. 77):

Moreover, Lemma 1 can be applied again to get

Similarly, Lemma 1 gives �̂+
n
− �+ =

1

n

∑n

i=1
l4(Xi) + oP(n

−1∕2), where

However, to get a linearization for the estimators of �− and �+,

a different statement is needed:

Lemma 2  Under the assumptions of Lemma 1, consider the estimators

respectively, of the functionals

(14)�̂−
n
= ∫ h−(x, �̂n) dF̂n(x) and �̂+

n
= ∫ h+(x, �̂n) dF̂n(x) ,

(15)�̂n − � =
1

f (�) �
(
1

2
− 1(x ≤ �)

)
dF̂n(x) + op(n

−1∕2) .

(16)

�̂−
n
− �− = � (� − x)1(x ≤ �) dF̂n(x) +

1

2
(�̂n − �) − �− + oP(n

−1∕2)

= �
[
(� − x)1(x ≤ �) − �− +

1

2f (�)

(
1

2
− 1(x ≤ �)

)]
dF̂n(x) + oP(n

−1∕2)

=
1

n

n∑
i=1

[
(� − Xi)1(Xi ≤ �) −

1(Xi ≤ �)

2f (�)
−

(
�− −

1

4f (�)

)]
+ oP(n

−1∕2)

=
1

n

n∑
i=1

l3(Xi) + oP(n
−1∕2) .

(17)l4(Xi) = (Xi − 𝛾)1(Xi > 𝛾) −
1(Xi > 𝛾)

2f (𝛾)
−

(
𝛿+ −

1

4f (𝛾)

)
.

�̂−
n
= ∫ ∫ H−(x, y, �̂n) dF̂n(y) dF̂n(x) and �̂+

n
= ∫ ∫ H+(x, y, �̂n) dF̂n(y) dF̂n(x),

�I3n = � � |(�zn − x)1(x ≤ �zn) − (�zn − y)1(y ≤ �zn)| d�Fn(y) d
�Fn(x)

�I4n = � � |(x −�zn)1(x > �zn) − (y −�zn)1(y > �zn)| d�Fn(y) d
�Fn(x),
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Then, the following asymptotic representations hold:

For the sake of readability, the proof of Lemma 2 is reported in Appendix. Its appli-
cation easily gives:

where the first summand can be regarded as the mean difference of the pseudo-
sample 

{
(� − Xi)1(Xi ≤ �)

}n

i=1
 . By the usual asymptotic representation, one thus 

obtains:

Analogously, �̂+
n
− �+ =

1

n

∑n

i=1
l2(Xi) + op(n

−1∕2) where

We are now ready to provide the asymptotic distribution of the natural estimator of 
K2(�),

I3 = � � |(z − x)1(x ≤ z) − (z − y)1(y ≤ z)| dF(y) dF(x)

I4 = � � |(x − z)1(x > z) − (y − z)1(y > z)| dF(y) dF(x).

�I3n = � � |(z − x)1(x ≤ z) − (z − y)1(y ≤ z)| d�Fn(y) d
�Fn(x)

+ 2F(z)(1 − F(z))(�zn − z) + oP(n
−1∕2)

�I4n = � � |(x − z)1(x > z) − (y − z)1(y > z)| d�Fn(y) d
�Fn(x)+

− 2F(z)(1 − F(z))(�zn − z) + oP(n
−1∕2).

�̂−
n
= ∫ ∫ H−(x, y, �) dF̂n(y) dF̂n(x) +

1

2
(�̂n − �) + oP(n

−1∕2)

�̂−
n
− �− = �

(
2� H−(x, y, �) dF(y) − 2�−

)
dF̂n(x)

+
1

2f (�) �
(
1

2
− 1(x ≤ �)

)
dF̂n(x) + oP(n

−1∕2)

=
1

n

n∑
i=1

[
2� H−(Xi, y, �) dF(y) −

1(Xi ≤ �)

2f (�)
−

(
2�− −

1

4f (�)

)]

+ oP(n
−1∕2)

=
1

n

n∑
i=1

l1(Xi) + oP(n
−1∕2)

l2(Xi) = 2∫ H+(Xi, y, 𝛾) dF(y) −
1(Xi > 𝛾)

2f (𝛾)
−

(
2𝛥+ −

1

4f (𝛾)

)
.

K̂2n(�̂n) =
�̂−
n

2�̂−
n

+
�̂+
n

2�̂+
n

− 1
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in the next theorem, whose statement requires to set

Theorem 3  Let (X1,X2,… ,Xn) be a iid random sample from an absolutely continu-
ous distribution function F whose density f is strictly positive and continuous at � . 
Assume that E(X1) < ∞ and E[(X1 − E(X1))

2] < ∞ . Then, 
√
n(K̂2n(�̂n) − K2(�)) is 

asymptotically normally distributed with zero mean and variance �2

K2(�)
= �

⊺
��, 

where �⊺ =
[

1

2�−
,

1

2�+
, −

�−

2(�−)2
, −

�+

2(�+)2

]
 and � =

(
�ij

)
i,j=1,…,4

 is a symmetric matrix 
with elements:

From the proof of the theorem, which is left in Appendix, one can also easily 
derive the asymptotic distributions of the two components of K̂2n(�̂n) or of their dif-
ference. Even if details are omitted here, notice that those results could be useful in 
many testing problems aiming at comparing the right and the left side of kurtosis. 
As above anticipated, despite no decomposition is needed to get (10), when those 
testing problems arise, one can apply a similar reasoning to the single components 
of K̂2n(�̂n) as well. The evaluation of Zenga’s indexes as tools to compare different 
sides of kurtosis will be the object of a future research.

F
− = F(X−

�
) , F

+ = F(X+
�
) , D

− = D(X−
�
) , D

+ = D(X+
�
) ∶

�11 = 4
(
F

− − (�−)2
)
−

�− − �−

f (�)
+

1

16f 2(�)

�22 = 4

(
F

+ −
(
�+

)2)
−

�+ − �+

f (�)
+

1

16f 2(�)

�33 =
(
�−
2
− (�−)2

)
−

�−

2f (�)
+

1

16f 2(�)

�44 =
(
�+
2
− (�+)2

)
−

�+

2f (�)
+

1

16f 2(�)

�12 = 4�+
(
�− −

�−

2

)
+ 4�−

(
�+ −

�+

2

)
−

�+ + �−

2f (�)

−

(
2�− −

1

4f (�)

)(
2�+ −

1

4f (�)

)

�13 = 2(D− − �−�−) +
1

16f 2(�)
−

2�− − �−

4f (�)

�14 = 2�−�+ −
�−

2f (�)
−

(
2�− −

1

4f (�)

)(
�+ −

1

4f (�)

)

�23 = 2�−�+ −
�+

2f (�)
−

(
2�+ −

1

4f (�)

)(
�− −

1

4f (�)

)

�24 = 2
(
D

+ − �+�+
)
+

1

16f 2(�)
−

2�+ − �+

4f (�)

�34 = −

(
�− −

1

4f (�)

)(
�+ −

1

4f (�)

)
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3.2 � Asymptotic theory for K
1
(�) and K

1
(
)

After recalling (9), a natural estimator for K1(�) is easily obtained from

and

Again, a linear approximation for d−
n
 is provided by Lemma 1. For d−

2n
 and d+

2n
 a new 

statement is needed (proof in Appendix):

Lemma 3  Under the assumptions of Lemma 1, consider the estimators

of the functionals

Then, the following asymptotic representations hold:

where I1 and I2 are as in (12).

Now,

and a similar result is obtained for d̂+
2n
. The next theorem (stated without proof) 

follows:

Theorem 4  Let (X1,X2,… ,Xn) be a random sample from a continuous distribution 
function F such that E(X1) < ∞ and E[(X1 − E(X1))

4] < ∞ . After considering

d̂−
n
= ∫ h−(x, �̂n) dF̂n(x)

d̂−
2n

= ∫
(
h−(x, �̂n)

)2
dF̂n(x), d̂+

2n
= ∫

(
h+(x, �̂n)

)2
dF̂n(x).

�I5n = � (�zn − x)2 1(x ≤ �zn) d�Fn(x) and �I6n = � (x −�zn)
2
1(x > �zn) d�Fn(x)

I5 = � (z − x)2 1(x ≤ z) dF(x) and I6 = � (x − z)2 1(x > z) dF(x).

�I5n = � (z − x)2 1(x ≤ z) d�Fn(x) + 2I1 (�zn − z) + oP(n
−1∕2)

�I6n = � (x − z)2 1(x > z) d�Fn(x) − 2I2 (�zn − z) + oP(n
−1∕2)

d̂−
2n
− d−

2
=

1

n

n∑
i=1

[
(� − Xi)

2
1(Xi ≤ �) + 2d−(Xi − �) − d−

2

]
+ oP(n

−1∕2)

K̂1n(�̂n) = 1 −

[
(d̂−

n
)2

d̂−
2n

+
(d̂−

n
)2

d̂+
2n

]
,
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the random variable 
√
n(K̂1n(�̂n) − K1(�)) is asymptotically normally distributed 

with zero mean and variance �2

K1(�)
= �

⊺
��, where �⊺ =

[
−

2d−

d−
2

−
2d−

d+
2

,

(
d−

d−
2

)2

,

(
d−

d+
2

)2
]
 

and � =
(
�ij

)
i,j=1,2,3

 is a symmetric matrix with elements:

Finally, to estimate K1(�) as defined in (8), the tools in (14) can be used jointly 
with

While an asymptotic representation for �̂−
n
 and �̂+

n
 has been already provided in (16) 

and (17), respectively, for �̂−
2n

 and �̂−
2n

 another application of Lemma 3, jointly with 
(15) is needed: �̂−

2n
− �−

2
=

1

n

∑n

i=1
r(Xi) + oP(n

−1∕2) with

(and analogously for �̂+
2n

 ). The next theorem, whose proof is omitted as well, follows 
easily:

Theorem  5  Let (X1,X2,… ,Xn) be a random sample from an absolutely continu-
ous distribution function F whose density f is strictly positive and continuous at 
� = F−1(1∕2) . Assume that that E(X1) < ∞ and E[(X1 − E(X1))

4] < ∞ . Then, the 
random variable 

√
n(K̂1n(�̂n) − K1(�)), with

is asymptotically normal with zero mean and variance �2

K1(�)
= �

⊺
��, where 

�
⊺ =

[
−

2�−

�−
2

, −
2�−

�+
2

,

(
�−

�−
2

)2

,

(
�−

�+
2

)2
]
 and � =

(
�ij

)
i,j=1,…,4

 is a symmetric matrix 

whose elements are:

�11 = q2�2 + (1 − 2q)d−
2
− (d−)2

�22 =
(
d−
4
−
(
d−
2

)2)
− 4d−

(
d−
3
− �2d−

)

�33 =
(
d+
4
−
(
d+
2

)2)
− 4d+

(
d+
3
− �2d+

)

�12 = (1 − q)d−
3
− d−(3d−

2
− 2q�2)

�13 = qd+
3
+ 2(1 − q)d−�2 − 3d−d+

2

�23 = 2d−(d−
3
+ d+

3
) − 4(d−)2�2 − d−

2
d+
2
.

�̂−
2n

= ∫
(
h−(x, �̂n)

)2
dF̂n(x) and �̂−

2n
= ∫

(
h+(x, �̂n)

)2
dF̂n(x).

r(Xi) = (� − Xi)
2
1(Xi ≤ �) −

2�−

f (�)
1(Xi ≤ �) −

(
�−
2
−

�−

f (�)

)

K̂1n(�̂n) = 1 −

(
(�̂−

n
)2

�̂−
2n

+
(�̂+

n
)2

�̂+
2n

)
,
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4 � Simulation study

The asymptotic theory for the considered kurtosis indexes provides deeper tools than 
simple point estimation, thanks to the evaluation of standard errors and the computa-
tion of confidence intervals. Despite that all the asymptotic distributions above share 
the same theoretical rate of convergence, however, the quality of their approximation 
may result differently good when the indexes are computed on samples with a fixed, 
though large, size. That is likely to depend both on the chosen index and on the 
characteristics of the sampled population. With this respect, notice that, even if one 
could think to improve results by suitable modifications in the definition of a given 
index (or sometimes in the computation of its standard error), such changes often 
depend on the choice of a specific model for the population. In many applications, 
however, the user just wonders which index to choose for kurtosis, without the pos-
sibility of making any preliminary assumption, because it is not yet clear whether 
the underlying population is affected by skewness or heavy tails.

To get further insight about the practical usage of the considered indexes on 
(large) samples, this section reports some results of a simulation study aimed at 
comparing the coverage rates of the related confidence intervals and, more gener-
ally, at evaluating their performance as estimators. To get coverage, data were 

�11 = �−
2
− (�−)2 −

�−

2f (�)
+

1

16f 2(�)

�22 = �+
2
− (�+)2 −

�+

2f (�)
+

1

16f 2(�)

�33 =
(
�−
4
−
(
�−
2

)2)
+

(
�−

f (�)

)2

−
2�−�−

2

f (�)

�44 =
(
�+
4
−
(
�+
2

)2)
+

(
�+

f (�)

)2

−
2�+�+

2

f (�)

�12 = −

(
�− −

1

4f (�)

)(
�+ −

1

4f (�)

)

�13 =
(
�−
3
− �−

2
�−

)
−

(�−)2

f (�)
+

�−

4f 2(�)
−

�−
2

4f (�)

�14 = −

(
�− −

1

4f (�)

)(
�+
2
−

�+

f (�)

)

�23 = −

(
�−
2
−

�−

f (�)

)(
�+ −

1

4f (�)

)

�24 =
(
�+
3
− �+

2
�+

)
−

(
�+

)2
f (�)

+
�+

4f 2(�)
−

�+
2

4f (�)

�34 = −

(
�−
2
−

�−

f (�)

)(
�+
2
−

�+

f (�)

)
.
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randomly drawn from distributions for which the exact value of each kurtosis index 
can be computed as a function of the model parameters. The latter, in addition, were 
varied to explore a wide set of situations of kurtosis, skewness and heavy-tailedness. 
The usual Wald 0.95-confidence interval 𝜃̂n∓1.96 (A�SV∕n)1∕2 was applied where, for 
each sample index 𝜃̂n, AŜV  denotes the estimated asymptotic variance according to 
the formulas provided in Theorems 1 to 5. On passing, notice that such formulas 
require to use simulated data to estimate several moments and functionals of the 
underlying population and of the variables in (5). At this aim, the ordered dataset 
x(1),… x(n) proves to be a useful tool both where the median is the cutting point (for 
instance, �−

2
 can be estimated as 1

n

∑m−1

i=1

�
x(m) − x(i)

�2
,
 where m = ⌊0.5(n + 1)⌋ ) and to 

ease the computation of some sample functionals. Indeed, following Zenga et  al. 
(2007), the estimate of F  can be computed as

where x̄ and s2 are the sample mean and variance and tj =
∑j

i=1
x(i) (j = 1,… , n). 

Analogously, we obtain that a computationally easy formula for the estimate of D is

Consider first a set of simulations from the normal model. Despite the regular-
ity of the distribution, the estimation process may be still strongly affected by the 
quality of the sampled data, especially if it rests on the evaluation of some “deep” 
characteristics of the population, like moments of high order. This fact is fairly 
known for the estimation of Pearson’s �2 : to evaluate asymptotic standard errors, 
for instance, one needs to estimate central moments up to the 8-th order as well. In 
addition, though the estimator �̂2n is asymptotically unbiased, a not negligible bias 
can be observed even in large samples. Table 1 provides evidence of the two draw-
backs: it reports the results obtained by computing �̂2n on 10,000 simulated sam-
ples from the standard normal distribution and by comparing it with its true value 3. 
First of all, notice that a significant bias (0.1136) is shown when the sample size is 
fixed to n = 50 and that such a bias is not completely negligible even for n = 2000 
(still 0.0040), especially if compared with that corresponding to other indexes (com-
mented below). Of course, some corrections to get unbiased estimates from �̂2n exist 
[see Joanes and Gill (1998)], but they rest on the assumption of normality of the 
population, which is suitable here but not generally and thus, as above commented, 
it is not safe for many applications. As a second issue, Table 1 underlines the prob-
lems arising in the evaluation of the standard error of �̂2n ∶ the standard deviation of 
the 10,000 simulated values of �̂2n is compared with the mean of (AŜV∕n)1∕2 over 
the same samples. When n = 50, a clear problem of underestimation of the standard 
error exists (0.4502 against 0.5933) and, again, this divergence is not completely 
negligible when n is raised to 2000 (0.1057 against 0.1093). More importantly for 
applications, the problems arising in bias and standard error of �̂2n reflect on a bad 
performance in terms of coverage: Table 1 shows that, for 0.95-confidence intervals 

s2 +
4

n3

n∑
i=1

(i x(i) − ti)
2 −

4

n2

n∑
i=1

(x(i) − x̄)(i x(i) − ti),

1

n2

n∑
i=1

x(i)
[
2(i x(i) − ti) − n(x(i) − x̄)

]
.
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based on samples of size n = 50, the actual coverage (0.8065) is significantly far 
from the nominal value. One may check that no relevant changes can be induced by 
varying both the model parameters or the confidence level (results not shown) and 
that the coverage problem is not negligible even when n = 2000 (see Table 1).

Turning to the other considered kurtosis indexes, the problems above seem to 
have minor incidence, with some distinctions. Table 1 reports the true value of 
each kurtosis index for the normal model and the corresponding simulated bias 
on the 10,000 samples, which is considerably lower than the one for �̂2. Geary’s 
�̂Gn is almost as unbiased as Zenga’s indexes based on the median ( ̂K1n(�̂n) and 
K̂2n(�̂n) ), but its bias is of opposite sign: that is coherent with a general tendency 
to underestimate the real extent of kurtosis. Zenga’s indexes using the mean as 
a cutting point ( ̂K1n(�̂n) and K̂2n(�̂n) ) suffer from a slightly higher bias than the 
latter ones: perhaps that can be ascribed to the scarce robustness of the sample 
mean. Nonetheless, the effect clearly vanishes when the sample size increases, 
which is sensible if one considers that, in the normal model, the mean and 
the median are actually the same parameter. For all indexes other than �̂2n, the 
mean estimated asymptotic standard error is almost coincident with the simu-
lated value. In this aspect (and conversely to the problems in bias), K̂1n(�̂n) and 
K̂2n(�̂n) behave better than K̂1n(�̂n) and K̂2n(�̂n) but, again, that effect is not sig-
nificant when the sample size increases. Finally, the most relevant strength of the 

Table 1   Simulation results when sampling from the standard normal model

The table gives the true value of the considered indexes (true), the simulated bias (bias), the simu-
lated Standard Error (sim. SE), the mean estimated Standard Error (mean est. SE) that is the aver-
age root of AŜV∕n over the simulated samples and the simulated coverage for 95%-confidence inter-
vals (coverage). Bias, sim. SE, mean est. SE and coverage are given for each considered sample size: 
n = (50, 250, 1000, 2000)
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) K̂
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True 3.0000 0.7979 0.3634 0.3634 0.4142 0.4142
n = 50 Bias −0.1136 0.0038 −0.0027 −0.0125 −0.0033 −0.0126

Sim. SE 0.5933 0.0294 0.0462 0.0463 0.0356 0.0356
Mean est. SE 0.4502 0.0299 0.0491 0.0469 0.0415 0.0390
Coverage 0.8065 0.9356 0.9501 0.9255 0.9657 0.9390

n = 250 Bias −0.0221 0.0008 −0.0004 −0.0026 −0.0005 −0.0025
Sim. SE 0.3030 0.0132 0.0210 0.0210 0.0158 0.0157
Mean est. SE 0.2632 0.0134 0.0215 0.0212 0.0167 0.0164
Coverage 0.8823 0.9480 0.9513 0.9470 0.9575 0.9536

n = 1000 Bias −0.0060 0.0003 −0.0002 −0.0008 −0.0003 −0.0008
Sim. SE 0.1532 0.0067 0.0106 0.0107 0.0080 0.0080
Mean est. SE 0.1461 0.0067 0.0107 0.0107 0.0081 0.0081
Coverage 0.9252 0.9488 0.9500 0.9477 0.9540 0.9502

n = 2000 Bias −0.0040 0.0002 −0.0002 −0.0004 −0.0002 −0.0004
Sim. SE 0.1093 0.0048 0.0076 0.0076 0.0057 0.0057
Mean est. SE 0.1057 0.0047 0.0076 0.0076 0.0057 0.0057
Coverage 0.9289 0.9484 0.9479 0.9480 0.9510 0.9497
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competitors of �̂2n in Table 1 is their ability to reach coverage rates very close to 
the nominal value. This fact seems to be particularly true for K̂1n(�̂n) (and partly 
for the related K̂2n(�̂n) ), even if the values in the table should be judged with some 
caution, due to the simulation error which can be roughly assessed as ∓0.0065 
for 10,000 replications. Anyway, practical differences from the nominal 0.95 are 
observed just for the case n = 50 and they are surely of minor relevance, if com-
pared with those commented above for �̂2n.

A second set of simulations was conducted by using the T-distribution, to get 
insight about the sensitivity of the considered indexes to heavy-tailedness. A new 
problem arises because, to guarantee the existence of the r− th moment, the dis-
tribution needs to have at least r + 1 degrees of freedom (df). Thus, few df may 
prevent the computation of the true value of a given kurtosis index as popula-
tion parameter, despite that its estimate can be still obtained from the simulated 
data. Obviously, under this chance (denoted as “scenario A”), the performance of 
the estimator cannot be even evaluated. More interestingly, another scenario (B) 
arises when the df are enough to compute a given population parameter, but too 
low to provide the existence of the asymptotic variance of its estimator, which is 
likely to depend on high-order moments. Being that the unaware user may still 
use the dataset to compute standard errors and confidence intervals, simulations 
are quite useful here, to evaluate the potential error occurred when using not 
properly defined tools. Naturally, each index can be evaluated under a third sce-
nario C, where there are sufficient df both to guarantee its existence as a param-
eter and for the applicability of the related asymptotic theory.

Clearly, the index which mostly depends on the existence of moments is �2. 
Table  2 reports a first set of simulations where n = 50 and the df are set to 3, 
which means that �2 falls under scenario A and that its estimator cannot be val-
ued. Notice that there are consequences also for �G , K1(�) , and K1(�), which are 
all under scenario B: while the mean asymptotic standard error (which is theoreti-
cally undefined) departs just partially from the simulated value, the actual cover-
age is, indeed, always remarkably distant from the nominal 0.95. This problem 
seems to be more severe for the K1− indexes than for �G, which shows also a lower 
bias. On the contrary, the K2−indexes, which fall under scenario C, perform quite 
well in this critical situation, both from the point of view of bias and from that 
of coverage. If the df are raised to 5 (see Table 2, again with n = 50 ), Pearson’s 
�2 falls under scenario B: the bias of its estimator, which can now be evaluated, 
reveals to be huge. As expected, this fact combines with a very bad coverage rate 
of the related confidence interval. The remaining indexes are now under scenario 
C, but, in spite of that, the estimators based on second moments ( ̂�Gn , K̂1n(�̂n) , 
and K̂1n(�̂n) ) behave worse than those based just on the first moment ( ̂K2n(�̂n) and 
K̂2n(�̂n) ), which show practically no bias and almost exact coverage. Starting from 
9 df, all the considered indexes are in scenario C, but notice that the performance 
of �̂2n is still far from being optimal, with no justification based on the existence 
of moments. Even when the df are raised to 15, the coverage rate for �̂2n reaches 
just 0.6626 when n = 50 (see details in Table 2). On the contrary, in this chance, 
the coverage for all other indexes gets quite close to the nominal value.
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Overall, Table 2 shows that, when heavy-tailedness prevents the existence of 
moments, K̂2n(�̂n) and K̂2n(�̂n) seem to be the most accurate choice, both because 
the related indexes are always defined (and thus their estimates are meaningful) 
and because a good inference is provided in a wide range of situations. It is inter-
esting to underline that, differently from what happened with the normal model, 
the real criterion to distinguish among Zenga’s indexes seems not to be the cut-
ting point (mean or median), but the index definition in terms of moments. To 
appreciate possible effects of the sample size, while Table 2 just considers cases 
where n = 50, Table  3 concentrates on two relevant situations (5 df and 15 df) 
with raising values of n (250, 1000 and 2000). Large sample sizes obviously tend 
to even out differences among the indexes; however, the conclusions of Table 2 
are substantially confirmed. Notice that, despite the high sample size, �̂2n cannot 
recover from its disadvantage. In addition, a certain tendency for over-coverage 
seems to characterize K̂2n(�̂n).

Tables 2 and 3 show the effects of heavy tails conjugated with that of the non-
existence of moments. To get further insight, a new set of simulations was con-
sidered under the the Generalized Error distribution [see Subbotin (1923)]. This 

Table 2   Simulation results when sampling from the T distribution with n = 50

For each considered value of the degrees of freedom (df = 3, 5, 9, 15), the table gives the true value of 
the considered indexes (true), the simulated bias (bias), the simulated Standard Error (sim. SE), the mean 
estimated Standard Error (mean est. SE) that is the average root of AŜV∕n over the simulated samples 
and the simulated coverage for 95%-confidence intervals (coverage)
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3 df True — 0.6366 0.5947 0.5947 0.5000 0.5000
Bias — 0.0651 −0.1105 −0.1274 −0.0173 −0.0306
Sim. SE — 0.0771 0.0798 0.0760 0.0480 0.0460
Mean est. SE — 0.0416 0.0504 0.0550 0.0449 0.0458
Coverage — 0.4597 0.4084 0.3736 0.8973 0.8493

5 df True 9.0000 0.7351 0.4596 0.4596 0.4583 0.4583
Bias −4.3251 0.0173 −0.0328 −0.0441 −0.0091 −0.0193
Sim. SE 2.8916 0.0508 0.0642 0.0636 0.0412 0.0410
Mean est. SE 0.4427 0.0165 0.0228 0.0227 0.0193 0.0189
Coverage 0.1480 0.7900 0.8078 0.7631 0.9407 0.9019

9 df True 4.2000 0.7700 0.4071 0.4071 0.4364 0.4364
Bias −0.5982 0.0086 −0.0137 −0.0240 −0.0060 −0.0158
Sim. SE 1.3845 0.0372 0.0536 0.0536 0.0376 0.0376
Mean est. SE 0.1451 0.0075 0.0113 0.0110 0.0095 0.0091
Coverage 0.5157 0.8917 0.9104 0.8729 0.9548 0.9259

15 df True 3.5455 0.7827 0.3874 0.3874 0.4269 0.4269
Bias −0.2982 0.0068 −0.0091 −0.0191 −0.0057 −0.0151
Sim. SE 0.9499 0.0330 0.0495 0.0500 0.0363 0.0366
Mean est. SE 0.0871 0.0050 0.0079 0.0076 0.0066 0.0063
Coverage 0.6626 0.9172 0.9367 0.9031 0.9621 0.9333
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model has a shape parameter � providing normality when � = 2 and heavy or light 
tails when � is, respectively, less or greater than 2, but, in contrast with the T-dis-
tribution, it possesses all moments. Table  4 shows some results obtained by a 
combination of three sample sizes ( n = 50;250;1000 ) and two values of the shape 
parameter ( � = 0.5;4 ), while the location and the scale parameters of the model 
were always set to get zero mean and unit variance. The first part of the table, 
the one with heavy tails, resembles what faced for the T-distribution with few 
df: all indexes except K̂2n(�̂n) and K̂2n(�̂n) suffer from the irregularity of the dis-
tribution and, while �̂Gn and the K1−indexes recover fast with the increase in the 
sample size, �̂2n is still quite inaccurate even for n = 1000. On the contrary, in the 

Table 3   Simulations results when sampling from the T-distribution with 5 and 15 degrees of freedom 
(df)

The table gives the true value of the considered indexes (true), the simulated bias (bias), the simulated 
Standard Error (sim. SE), the mean estimated Standard Error (mean est. SE) that is the average root of 
AŜV∕n over the simulated samples and the simulated coverage for 95%-confidence intervals (coverage). 
Bias, sim SE, mean est. SE and coverage are given for each considered sample size n = (50, 250, 1000)
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5 df True 9.0000 0.7351 0.4596 0.4596 0.4583 0.4583
n = 250 Bias −2.8133 0.0050 −0.0108 −0.0131 −0.0018 −0.0039

Sim. SE 5.0339 0.0291 0.0381 0.0379 0.0191 0.0191
Mean est. SE 1.3184 0.5987 0.6919 0.6902 0.5488 0.5473
Coverage 0.2560 0.8459 0.8325 0.8194 0.9451 0.9371

n = 1000 Bias −1.5766 0.0014 −0.0035 −0.0041 −0.0006 −0.0011
Sim. SE 7.5739 0.0175 0.0237 0.0237 0.0097 0.0097
Mean est. SE 1.8301 0.0285 0.0391 0.0390 0.0193 0.0192
Coverage 0.3580 0.8828 0.8774 0.8706 0.9487 0.9469

n = 2000 Bias −1.0158 0.0005 −0.0016 −0.0019 −0.0002 −0.0005
Sim. SE 13.3304 0.0135 0.0182 0.0181 0.0069 0.0069
Mean est. SE 1.9984 0.0154 0.0215 0.0215 0.0097 0.0097
Coverage 0.3986 0.8969 0.8934 0.8903 0.9465 0.9454

15 df True 3.5455 0.7827 0.3874 0.3874 0.4269 0.4269
n = 250 Bias −0.0674 0.0013 −0.0017 −0.0039 −0.0009 −0.0029

Sim. SE 0.6153 0.0155 0.0238 0.0239 0.0165 0.0165
Mean est. SE 0.4227 0.0054 0.0083 0.0082 0.0061 0.0060
Coverage 0.7899 0.9367 0.9402 0.9319 0.9554 0.9480

n = 1000 Bias −0.0158 0.0004 −0.0006 −0.0011 −0.0003 −0.0008
Sim. SE 0.3520 0.0078 0.0122 0.0122 0.0083 0.0083
Mean est. SE 0.2785 0.0156 0.0243 0.0243 0.0168 0.0167
Coverage 0.8517 0.9426 0.9440 0.9414 0.9531 0.9508

n = 2000 Bias −0.0082 0.0002 −0.0003 −0.0006 −0.0002 −0.0004
Sim. SE 0.2688 0.0057 0.0089 0.0089 0.0060 0.0060
Mean est. SE 0.2118 0.0078 0.0122 0.0122 0.0084 0.0083
Coverage 0.8844 0.9437 0.9431 0.9419 0.9505 0.9495
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second part of Table 4 ( � = 4 and light tails), the situation is similar to the one of 
Table 1 (normal model): the performance of all indexes is far from being critical, 
with some limitations just for �̂2n. Heavy-tailedness, then, confirms to be a major 
inconvenience for the performance of many kurtosis indexes, beyond the problem 
of the existence of moments.

All the above considered simulations were based on symmetric models. To 
check for cases where the user faces skew data, Table  5 reports some results 
obtained with the standard skew-normal model [for a recent review, see Azzalini 
and Capitanio (2014)]. In this family, the standard normal distribution is obtained 
by setting the shape parameter (denoted here as � ) to zero. Large positive values 

Table 4   Simulation results when sampling from the Generalized Error Distribution with shape parameter 
� = (0.5, 4)

The table gives the true value of the considered indexes (true), the simulated bias (bias), the simulated 
Standard Error (sim. SE), the mean estimated Standard Error (mean est. SE) that is the average root of 
AŜV∕n over the simulated samples and the simulated coverage for 95%-confidence intervals (coverage). 
Bias, sim SE, mean est. SE and coverage are given for each considered sample size n = (50, 250, 1000)
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� = 0.5 True 25.2000 0.5477 0.7000 0.7000 0.6250 0.6250
n = 50 Bias −15.3803 0.0588 −0.0802 −0.1211 −0.0310 −0.0742

Sim. SE 32.9222 0.0048 0.0051 0.0072 0.0023 0.0038
Mean est. SE 3.3602 0.0481 0.0474 0.0752 0.0439 0.0728
Coverage 0.1428 0.6346 0.5601 0.6058 0.8569 0.7962

n = 250 Bias −8.3927 0.0163 −0.0241 −0.0345 −0.0064 −0.0199
Sim. SE 11.4192 0.0425 0.0424 0.0446 0.0227 0.0268
Mean est. SE 3.7552 0.0315 0.0298 0.0343 0.0215 0.0294
Coverage 0.2784 0.7717 0.7340 0.7269 0.9143 0.9016

n = 1000 Bias −3.4837 0.0048 −0.0076 −0.0104 −0.0017 −0.0058
Sim. SE 14.5569 0.0247 0.0254 0.0256 0.0115 0.0123
Mean est. SE 5.3612 0.0207 0.0206 0.0211 0.0113 0.0131
Coverage 0.4668 0.8518 0.8372 0.8260 0.9388 0.9379

� = 4 True 2.1884 0.8409 0.2929 0.2929 0.3662 0.3662
n = 50 Bias 0.0095 0.0001 0.0064 −0.0050 0.0012 −0.0089

Sim. SE 0.2821 0.0249 0.0412 0.0414 0.0346 0.0347
Mean est. SE 0.2731 0.0263 0.0480 0.0432 0.0418 0.0372
Coverage 0.9326 0.9511 0.9682 0.9422 0.9709 0.9385

n = 250 Bias 0.0021 0.0001 0.0012 −0.0012 0.0002 −0.0020
Ssim. SE 0.1219 0.0109 0.0183 0.0184 0.0154 0.0154
Mean est. SE 0.1201 0.0111 0.0192 0.0186 0.0163 0.0157
Coverage 0.9442 0.9492 0.9549 0.9474 0.9573 0.9464

n = 1000 Bias 0.0008 0.0000 0.0004 −0.0002 0.0001 −0.0004
Sim. SE 0.0598 0.0055 0.0092 0.0092 0.0077 0.0077
Mean est. SE 0.0601 0.0055 0.0093 0.0092 0.0078 0.0077
Coverage 0.9488 0.9508 0.9535 0.9503 0.9533 0.9510
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of � increase right skewness of the distribution, while negative values make it 
skewed to the left. For our purposes, the direction of skewness is not relevant; 
thus, just two positive values (1 and 4) are set; such values are combined with 
three sample sizes (50, 250 and 1000). Looking at Table 5, one can notice that 
�̂2n is also strongly affected by skewness, differently from the other considered 
indexes. However, when the degree of skewness increases, �̂Gn reveals some prob-
lems as well, performing quite worse than in the case of symmetric distributions 
with light tails. On the contrary, Zenga’s indexes show a good robustness to skew-
ness, with a dominance of those using the median as a cutting point (conjugated 
with a slight tendency to over-coverage).

Table 5   Simulation results when sampling from the skew normal distribution with shape parameter 
� = (1, 4)

The table gives the true value of the considered indexes (true), the simulated bias (bias), the simulated 
Standard Error (sim. SE), the mean estimated Standard Error (mean est. SE) that is the average root of 
AŜV∕n over the simulated samples and the simulated coverage for 95%-confidence intervals (coverage). 
Bias, sim. SE, mean est. SE and coverage are given for each considered sample size n = (50, 250, 1000)
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� = 1 True 3.0617 0.7962 0.3654 0.3651 0.4154 0.4152
n = 50 Bias −0.1253 0.0036 −0.0024 −0.0121 −0.0030 −0.0121

Sim. SE 0.4321 0.0009 0.0021 0.0022 0.0013 0.0013
Mean est. SE 0.2088 0.4621 0.5894 0.5767 0.5420 0.5258
Coverage 0.7977 0.9320 0.9485 0.9250 0.9630 0.9391

n = 250 Bias −0.0299 0.0010 −0.0008 −0.0029 −0.0007 −0.0027
Sim. SE 0.3332 0.0136 0.0214 0.0214 0.0160 0.0160
Mean est. SE 0.1410 0.0136 0.0216 0.0213 0.0167 0.0164
Coverage 0.8633 0.9461 0.9487 0.9447 0.9561 0.9504

n = 1000 Bias −0.0057 0.0002 −0.0001 −0.0006 −0.0002 −0.0007
Sim. SE 0.1695 0.0068 0.0107 0.0107 0.0080 0.0080
Mean est. SE 0.1131 0.0068 0.0108 0.0108 0.0081 0.0081
Coverage 0.9146 0.9470 0.9485 0.9465 0.9530 0.9500

� = 4 True 3.6828 0.7948 0.3495 0.3367 0.4041 0.3945
n = 50 Bias −0.3113 0.0053 −0.0017 −0.0110 −0.0029 −0.0116

Sim. SE 1.0857 0.0337 0.0453 0.0446 0.0353 0.0350
Mean est. SE 0.3011 0.0051 0.0078 0.0073 0.0066 0.0061
Coverage 0.6708 0.9132 0.9542 0.9281 0.9656 0.9374

n = 250 Bias −0.0609 0.0010 0.0000 −0.0021 −0.0003 −0.0023
Sim. SE 0.6523 0.0157 0.0210 0.0207 0.0160 0.0159
Mean est. SE 0.2478 0.0154 0.0213 0.0206 0.0167 0.0162
Coverage 0.8059 0.9362 0.9487 0.9425 0.9555 0.9488

n = 1000 Bias −0.0211 0.0002 0.0002 −0.0004 0.0001 −0.0004
Sim. SE 0.3387 0.0078 0.0104 0.0102 0.0079 0.0078
Mean est. SE 0.2149 0.0079 0.0106 0.0103 0.0081 0.0080
Coverage 0.8765 0.9480 0.9565 0.9529 0.9587 0.9537
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Of course, skewness and heavy tails might jointly affect data and, to understand 
the effect of that, a final set of simulations was conducted by using the skew-T 
model [see Azzalini and Capitanio (2014)]. Not surprisingly, the index which best 
opposes the related “double” violation to normality is K̂2n(�̂n). Indeed, as noticed 
from Table 2 on, the effect of heavy tails tends to favor indexes based on moments 
of first order. In addition, skewed distributions and a generic attitude to robust-
ness lead to the dominance of the median as a cutting point (see Tables 1 and 5, for 
instance). The conclusions above are clearly depicted in Table 6 which considers, 
for the sake of brevity, just the case n = 50 and combines two values of the shape 
parameter ( � = 1;4 ) with two levels of df (5 and 15). Notice that, like for the T-dis-
tribution, the existence of some moments depends on the latter parameter: in our 
settings, however, the only index under scenario B is �2 when there are 5 df, while 
all other indexes are under scenario in C in all situations considered in Table 6. Even 
after discarding cases where the application of the asymptotic theory is shaky, how-
ever, the performance of �̂2n results to be strongly affected by both skewness and 
heavy-taildeness. The same is partially true for �̂Gn and mildly for the K1−indexes. 

Table 6   Simulation results when sampling from the Skew T-Distribution with n = 50

The table gives the true value of the considered indexes (true), the simulated bias (bias), the simulated 
Standard Error (sim. SE), the mean estimated Standard Error (mean est. SE) that is the average root of 
AŜV∕n over the simulated samples and the simulated coverage for 95%-confidence intervals (cover-
age). Bias, sim. SE, mean est. SE and coverage are given for each combination of degrees of freedom 
df = (5, 15) and shape parameter � = (1, 4)
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� = 1 True 11.9208 0.7306 0.4538 0.4463 0.4555 0.4510
5 df Bias −6.9916 0.0214 −0.0326 −0.0427 −0.0094 −0.0193

Sim. SE 3.2644 0.0524 0.0617 0.0599 0.0401 0.0395
Mean est. SE 1.1239 0.0374 0.0510 0.0511 0.0432 0.0420
Coverage 0.0950 0.7633 0.8264 0.7917 0.9459 0.9135

� = 1 True 3.7063 0.7809 0.3879 0.3866 0.4271 0.4263
15 df Bias −0.3660 0.0064 −0.0080 −0.0178 −0.0047 −0.0139

Sim. SE 1.0784 0.0341 0.0497 0.0500 0.0362 0.0364
Mean est. SE 0.2625 0.0144 0.0223 0.0216 0.0188 0.0178
Coverage 0.6170 0.9097 0.9338 0.9005 0.9636 0.9343

� = 4 True 20.6763 0.7202 0.4114 0.3749 0.4309 0.4067
5 df Bias −14.6303 0.0301 −0.0232 −0.0309 −0.0064 −0.0151

Sim. SE 4.4112 0.0622 0.0570 0.0503 0.0390 0.0365
Mean est. SE 0.3894 0.0091 0.0113 0.0110 0.0097 0.0090
Coverage 0.0634 0.6848 0.8668 0.8606 0.9528 0.9272

� = 4 True 4.8169 0.7778 0.3651 0.3472 0.4118 0.3987
15 df Bias −0.8830 0.0096 −0.0063 −0.0158 −0.0043 −0.0133

Sim. SE 1.8370 0.0402 0.0482 0.0467 0.0362 0.0357
Mean est. SE 0.1382 0.0055 0.0079 0.0074 0.0067 0.0062
Coverage 0.4867 0.8773 0.9418 0.9153 0.9616 0.9355
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In addition, notice that a distinguishing feature of K̂2n(�̂n) seems to be its definite 
tendency to over-coverage: this fact can be an advantage, because it leaves room to 
seek for shorter, thus more informative, confidence intervals. As a final comment, let 
us consider that Table 6 depicts some very realistic situations, resulted from the sum 
of many deviations from regularity. Therefore, one should be at least aware that, 
under many circumstances, the use of some classical indexes of kurtosis (markedly 
of �2 ), or at least the use of a limited set of them, may lead to inaccurate results.

5 � Conclusions

This paper gave indications about the usage of several kurtosis measures on large 
datasets. The need to estimate kurtosis is found in many fields of applications, basi-
cally in all those circumstances where departure from normality may cause the unre-
liability of classical tools and, more generally, where the shape of the distribution 
is of interest. The empirical finance is surely one of those fields as demonstrated by 
the ubiquitous fat-tailedness of daily stock returns, the widespread use of GARCH 
models and the attempts made in the literature to improve the Black–Scholes for-
mula [see Corrado and Su (1996) and Carnero et al. (2004)]. At the same time, those 
examples show that kurtosis is too often simply identified with the centered fourth 
moments, while this paper shows that more informative measures can be considered. 
Actually, some practitioners may find it difficult to compute indexes other than the 
well-established �2, mainly because they are unsure on how to interpret the obtained 
results. However, the meaning of those alternative indexes is quite similar to the one 
for �2 , because it suffices to compare an observed value with its theoretical counter-
part in the case of the normal distribution (which, for the indexes considered in this 
paper, is provided in the first row of Table 1). We want to highlight, in addition, that 
computing a different kurtosis index, or at least a range of alternative measures, can 
provide a series of advantages.

First of all, researchers should consider that, despite its size, a dataset is often 
a sample from a given population. Thus, the simple point estimation is meaning-
less unless accompanied by the corresponding standard error. Our simulations reveal 
that, while there is scarcely a problem of bias, all considered kurtosis measure are 
often characterized by high standard errors and, as a consequence, the real extent 
of kurtosis is likely to be different from the estimated value. To ease the interpreta-
tion, the user should then revert to confidence intervals which, however, must also 
provide reliable results. In this sense, the choice of a kurtosis index must match the 
need to guarantee the desired coverage of confidence intervals, against possible 
choices of the sample size or possible irregularities of the sampled distribution.

Something which is often neglected is that, even when the sampled popula-
tion is quite regular, too low sample sizes can still lead to unreliable results, if 
some indexes are applied. As expected, such problems arise when the indexes are 
based on unrobust summaries of the sample. Specifically, when n is as low as 50, 
our simulations show that �2 cannot be properly estimated even for samples from 
the normal distribution: some problems arise both in bias both in the coverage 
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of confidence intervals. Being based on the 4-th power of deviations from the 
mean, namely, �2 is likely to be strongly affected by the sample variability which, 
first, reflects into high standard errors. The real problem, however, is that even 
those standard errors cannot be easily estimated because, in turn, they depend 
on the 8-th centered moment. As a consequence, confidence intervals for �2 are 
quite large, thus not informative, and unreliable. The same problem, of course, 
affects other indexes, but to a lesser extent: among the considered indexes, �G, 
K1(�) and K1(�) are defined upon moments up to the second order, so that the 
related standard errors need moments up to the fourth. A further improvement, 
of course, can be obtained by Zenga’s K2−indexes, whose definition rests on first 
moments, while standard errors just depend on the second order. In our opinion, 
then, when the sample size is too low, the researcher cannot forget to include 
K2(�) and (markedly) K2(�) in the set of computed kurtosis measures and to check 
whether they provide contrasting evidence with respect to the classical indexes.

High sample sizes, of course, make the choice of a specific index redundant. 
Our simulation show that, when n is around 200, all considered indexes provide 
similarly reliable information. However, this judgment fits just those situations 
(like the one depicted in Table 1) where the underlying distribution is quite regu-
lar, while it is not uncommon to face heavy-tailed and/or skewed populations. The 
former kind of irregularity is, in our opinion, the one which deserves most atten-
tion when a kurtosis index is chosen. First, heavy-tailed distributions often do not 
possess some moments, a fact which can make the point estimate meaningless, 
because the related parameter does not even exist. Sometimes this problem affects 
just the estimation of standard errors, but it can be considered almost as severe 
as before because, in this case, confidence intervals are not properly defined. Of 
course, a possible indication is to use preliminary statistical testing to check for 
the existence of the needed moments in the underlying distribution. The literature 
provides both graphical and parametric methods based on tail-index estimation 
[Hill (1975)] and, more recently, some nonparametric approaches using bootstrap 
[see Ng and Yau (2018)]. However, it is clear that the process to get a final assess-
ment of kurtosis could results too cumbersome, at least if compared with the pos-
sibility of starting with indexes which are quickly robust against the nonexistence 
of moments, like K2(�) and K2(�). In addition, our simulations (see Table 4) show 
that heavy-tailedness itself may undermine the performance of some indexes, 
beyond the problem of the existence of moments, so that just robust indexes are 
actually a safe choice. The researcher must be aware, however, that even those 
indexes cannot always cope with too low sample sizes, as evidenced in Tables 2 
and 4.

Overall, K2(�) and K2(�) react to heavy-tailedness quite similarly. A distinction 
among them could be appreciated in the case of skewness. The use of the median as 
a cutting point seems to be the strength of K2(�) over K2(�) (see Table 5). Nonethe-
less, under a mild skewness, the real answer is just a high sample size: excluding �2, 
no relevant differences can be reported over 200 observations, similar to the case of 
a fully regular distribution. Of course, things change when skewness is conjugated 
with heavy tails: our simulation show that, in those cases, the only reliable choice is 
K2(�), even if n is as high as 200.
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As a final remark, we would like to underline that the conclusions above can be use-
ful, beyond the process of the estimation of kurtosis, when researchers need to compare 
the levels of kurtosis of two populations or of two sides of a distribution. Indeed, suit-
able testing procedures can be built upon the asymptotic distributions derived in this 
paper, so that it is important to have knowledge of their sensitivity to the level of the 
sample size and to the characteristics of the sampled population. This study will be the 
object of a future research.

Concerning other topics of research, the above-reported need to use estimated kurto-
sis in many fields of application leaves, in our opinion, a relevant problem unexplored: 
the dependence of data across time. Such a characteristic is frequently encountered, for 
instance, in financial applications based on the analysis of returns. Beyond a specific 
framework, however, we think that the search for reliable inferential instruments for 
kurtosis under serial dependence is an urgent problem which deserves attention in the 
nearest future. That issue could be the starting point for the development of further gen-
eralizations of the presented methodology. In the literature, for instance, a certain need 
is exhibited to conjugate the study of kurtosis with the measurement of dependence 
among variables, to cope with the so-called co-kurtosis [see Martellini and Ziemann 
(2010)]. Again, we think that, even in the multivariate framework, some efforts could 
be paid to go well beyond the usual identification with the fourth centered moment, so 
that kurtosis can be measured by means of other logics.

Appendix

Proof of Lemma 2

First, recall that, under the assumptions of the lemma, F̂n(̂zn) − F̂n(z) = oP(1) and, con-
sequently, F̂n(̂zn) = F(z) + oP(1) [see De Capitani and Pasquazzi (2015)]. Now, sim-
plify notation in Î3n and decompose it as:

After assuming that ẑn ≤ z , it is easily seen that

Î3n =∫ ∫ H−(x, y, ẑn) dF̂n(y) dF̂n(x)

=∫ ∫
[
H−(x, y, ẑn) − H−(x, y, z)

]
dF̂n(y) dF̂n(x)

+ ∫ ∫ H−(x, y, z) dF̂n(y) dF̂n(x) .

H−(x, y, ẑn) − H−(x, y, z) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ẑn − z (x, y) ∈ (−∞, ẑn] × [z,∞) ∪ [z,∞) × (−∞, ẑn]

x − z (x, y) ∈ [̂zn, z] × [z,∞)

y − z (x, y) ∈ [z,∞) × [̂zn, z]

ẑn − x (x, y) ∈ [̂zn, z] × (−∞, ẑn]

ẑn − y (x, y) ∈ (−∞, ẑn] × [̂zn, z]

−�x − y� (x, y) ∈ [̂zn, z] × [̂zn, z]

0 otherwise .
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Moreover, note that

Finally, being that

one has

(18)

∫
ẑn

−∞ ∫
∞

z

(̂zn − z) dF̂n(y) dF̂n(x)

+ ∫
∞

z ∫
ẑn

−∞

(̂zn − z) dF̂n(y) dF̂n(x)

= 2∫
ẑn

−∞ ∫
∞

z

(̂zn − z) dF̂n(y) dF̂n(x)

= 2(̂zn − z)F̂n (̂zn)(1 − F̂n(z))

= 2(̂zn − z) (F(z) + oP(1))(1 − F(z) − OP(n
−1∕2))

= 2(̂zn − z)F(z) (1 − F(z)) + oP(n
−1∕2)

(19)

∫
z

ẑn
∫

∞

z

(x − z) dF̂n(y) dF̂n(x) + ∫
∞

z ∫
z

ẑn

(y − z) dF̂n(y) dF̂n(x)

= 2∫
z

ẑn
∫

∞

z

(x − z) dF̂n(y) dF̂n(x)

= 2(1 − F̂n(z))∫
z

ẑn

(x − z) dF̂n(x)

= oP(n
−1∕2)

(20)

∫
z

ẑn
∫

ẑn

−∞

(̂zn − x) dF̂n(y) dF̂n(x)

+ ∫
ẑn

−∞ ∫
z

ẑn

(̂zn − y) dF̂n(y) dF̂n(x)

= 2∫
z

ẑn
∫

ẑn

−∞

(̂zn − x) dF̂n(y) dF̂n(x)

= 2F̂n(̂zn)∫
z

ẑn

(̂zn − x) dF̂n(x)

= oP(n
−1∕2).

|||||
−∫

z

�zn
∫

z

�zn

|x − y| d�Fn(y) d
�Fn(x)

|||||
< |z −�zn| (�Fn(z) −

�Fn(�zn))
2 = oP(n

−1∕2),

(21)−∫
z

ẑn
∫

z

ẑn

|x − y| dF̂n(y) dF̂n(x) = oP(n
−1∕2) .
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Now, expressions from (18) to (21) allow to write, at least when ẑn ≤ z,

However, similar steps can be followed under the assumption that �zn > z, which 
shows that the statement above is a general result. The proof for Î3n is obtained 
consistently.

Proof of Lemma 3

As in the proof of Lemma 2, notice first that

with l = 1;2 . Now decompose Î5n as

The asymptotic representation for Î6n can be obtained similarly.

Proof of Theorem 3

Clearly, � is the asymptotic variance matrix of the vector

Î3n = 2(̂zn − z)F(z) (1 − F(z)) + ∫ ∫ H−(x, y, z) dF̂n(y) dF̂n(x) + oP(n
−1∕2).

∫
z

ẑn

(̂zn − x)l dF̂n(x) = oP(n
−1∕2) and ∫

z

ẑn

(z − x)l dF̂n(x) = oP(n
−1∕2)

Î5n =� (̂zn − x)2 1(x ≤ ẑn) dF̂n(x)

=�
z

−∞

(̂zn − x)2 dF̂n(x) + �
ẑn

z

(̂zn − x)2 dF̂n(x)

=�
z

−∞

[
(̂zn − z) + (z − x)

]2
dF̂n(x) + oP(n

−1∕2)

=F̂n(z)(̂zn − z)2 + �
z

−∞

(z − x)2 dF̂n(x)

+ 2(̂zn − z)�
z

−∞

(z − x) dF̂n(x) + oP(n
−1∕2)

=�
z

−∞

(z − x)2 dF̂n(x)

+ 2(̂zn − z)

[(
�

z

−∞

(z − x) dF̂n(x) − I1

)
+ I1

]
+ oP(n

−1∕2)

=� (z − x)2 1(x ≤ z) dF̂n(x) + 2I1 (̂zn − z) + oP(n
−1∕2).
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whose asymptotic normality follows from the linearizations provided in Section 3.1, 
the central limit theorem and the Cramer–Wold device. Then, the result about 
K̂2n(�̂n) is an application of the delta method. To get into details about the the deriva-
tion of the elements of �, consider first the following expectations:

Similarly, ∫ ∫ H+(x, y, 𝛾)1(x > 𝛾) dF(y) dF(x) = 𝛥+ −
𝛿+

2
 . In addition,

and ∫ ∫ H+(x, y, �)1(x ≤ �) dF(y) dF(x) =
�+

2
. Moreover,

and analogously ∫ ∫ H+(x, y, �) (� − x)1(x ≤ �) dF(y) dF(x) = �+�−. Now notice 
that

√
n

⎡
⎢⎢⎢⎢⎣

�̂−
n
− �−

�̂+
n
− �+

�̂−
n
− �−

�̂+
n
− �+

⎤
⎥⎥⎥⎥⎦

� � H−(x, y, 𝛾)1(x ≤ 𝛾) dF(y) dF(x)

= � � H−(x, y, 𝛾) (1 − 1(x > 𝛾)) dF(y) dF(x)

= 𝛥− − �
∞

𝛾 �
𝛾

−∞

(𝛾 − y) dF(y) dF(x)

= 𝛥− −
𝛿−

2

∫ ∫ H−(x, y, 𝛾)1(x > 𝛾) dF(y) dF(x)

= ∫
∞

𝛾 ∫ H−(x, y, 𝛾) dF(y) dF(x)

= ∫
∞

𝛾 ∫
𝛾

−∞

(𝛾 − y) dF(y) dF(x)

=
𝛿−

2

∫ ∫ H−(x, y, 𝛾) (x − 𝛾)1(x > 𝛾) dF(y) dF(x)

= ∫
∞

𝛾 ∫
𝛾

−∞

(𝛾 − y)(x − 𝛾) dF(y) dF(x)

= ∫
∞

𝛾

(x − 𝛾) dF(x)∫
𝛾

−∞

(𝛾 − y) dF(y)

= 𝛿+𝛿−
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and that, equivalently,

Thus, a last relevant expectation can be computed as:

The elements of � can now be obtained:

(and similarly for �22).

� H−(x, y, 𝛾) dF(y) =

⎧
⎪⎨⎪⎩
�

𝛾

−∞

�x − y� dF(y) + 𝛾 − x

2
x ≤ 𝛾

𝛿− x > 𝛾

� H+(x, y, 𝛾) dF(y) =

⎧
⎪⎨⎪⎩

𝛿+ x ≤ 𝛾

�
∞

𝛾

�x − y� dF(y) + x − 𝛾

2
x > 𝛾 .

∫
(
∫ H+(x, y, �) dF(y) ∫ H−(x, y, �) dF(y)

)
dF(x)

= ∫
�

−∞

�+
(
∫

�

−∞

|x − y| dF(y) + � − x

2

)
dF(x)

+ ∫
∞

�

�−
(
∫

∞

�

|x − y| dF(y) + x − �

2

)
dF(x)

= �+
(
∫

�

−∞ ∫
�

−∞

|x − y| dF(y) dF(x) + ∫
�

−∞

� − x

2
dF(x)

)

+ �−
(
∫

∞

� ∫
∞

�

|x − y| dF(y) dF(x) + ∫
∞

�

x − �

2
dF(x)

)

= �+
(
�− −

�−

2

)
+ �−

(
�+ −

�+

2

)
.

�11 = Var
(
l1(X)

)

= E

[
4

(
� H−(X, y, �) dF(y)

)2

+
1(X ≤ �)

4f 2(�)
− 2

1(X ≤ �)

f (�) � H−(X, y, �) dF(y)

]
+

−

(
2�− −

1

4f (�)

)2

= 4F
− +

1

8f 2(�)
−

2

f (�)

(
�− −

�−

2

)
−

(
2�− −

1

4f (�)

)2
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(and similarly for �44).

(and similarly for �24).

(and similarly for �23 ). Finally,

�33 = Var
(
l3(X)

)

= E

[
(� − X)2 1(X ≤ �) +

1(X ≤ �)

4f 2(�)
−

(� − X)1(Xi ≤ �)

f (�)

]
+

−

(
�− −

1

4f (�)

)2

= �−
2
+

1

8f 2(�)
−

�−

f (�)
−

(
�− −

1

4f (�)

)2

𝛴12 = Cov(l1(X) , l2(X))

= E

[(
2� H−(X, y, 𝛾) dF(y) −

1(X ≤ 𝛾)

2f (𝛾)

)(
2� H+(X, y, 𝛾) dF(y) −

1(X > 𝛾)

2f (𝛾)

)]
+

−

(
2𝛥− −

1

4f (𝛾)

)(
2𝛥+ −

1

4f (𝛾)

)

= 4𝛿+
(
𝛥− −

𝛿−

2

)
+ 4𝛿−

(
𝛥+ −

𝛿+

2

)
−

1

f (𝛾)

𝛿+

2
−

1

f (𝛾)

𝛿−

2

−

(
2𝛥− −

1

4f (𝛾)

)(
2𝛥+ −

1

4f (𝛾)

)
;

𝛴13 = Cov(l1(X) , l3(X))

= E

[(
2� H−(X, y, 𝛾) dF(y) −

1(X ≤ 𝛾)

2f (𝛾)

)(
(𝛾 − X)1(X ≤ 𝛾) −

1(X ≤ 𝛾)

2f (𝛾)

)]
+

−

(
2𝛥− −

1

4f (𝛾)

)(
𝛿− −

1

4f (𝛾)

)

= 2D
− −

1

f (𝛾)

(
𝛥− −

𝛿−

2

)
+

𝛿−

2f (𝛾)
+

1

8f 2(𝛾)
−

(
2𝛥− −

1

4f (𝛾)

)(
𝛿− −

1

4f (𝛾)

)

𝛴14 = Cov(l1(X) , l4(X))

= E

[(
2� H−(X, y, 𝛾) dF(y) −

1(X ≤ 𝛾)

2f (𝛾)

)(
(X − 𝛾)1(X > 𝛾) −

1(X > 𝛾)

2f (𝛾)

)]
+

−

(
2𝛥− −

1

4f (𝛾)

)(
𝛿+ −

1

4f (𝛾)

)

= 2𝛿−𝛿+ −
1

f (𝛾)

𝛿−

2
−

(
2𝛥− −

1

4f (𝛾)

)(
𝛿+ −

1

4f (𝛾)

)
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