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Abstract
In this work, we propose an extension of the versatile joint regression framework 
for bivariate count responses of the R package GJRM by Marra and Radice (R pack-
age version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The 
underlying estimation algorithm is based on a quadratic approximation of the pen-
alty. The method enables variable selection and the corresponding estimates guaran-
tee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimen-
sional count response settings. The proposal’s empirical performance is investigated 
in a simulation study and an application on FIFA World Cup football data.

Keywords  Count data regression · FIFA world cups · Football penalisation · Joint 
modelling · Regularisation

1  Introduction

Various scenarios with bivariate count data can be thought of, where the two out-
comes are expected to depend on one another. In particular, the dependency between 
two outcomes often can be of a competitive nature. Jointly observed numbers of 
goals (or more generally, points) in a given football match; or sales numbers of two 
competing products like car brands in a given sales branch; or the observed count 
for red and white blood cells in a blood sample are examples where some form of 
dependency can be expected. Therefore, the inclusion of copula structures may be 
useful when statistical models are applied in such settings.

The historical development of copula models in this context (and especially 
in sports settings) is diverse. In general, bivariate Poisson modelling approaches 
are well established and started without any form of dependency. For example, 
in the case of modelling football scores, independent Poisson distributions were 
used e.g. by Lee (1997), Karlis and Ntzoufras (2000), Dyte and Clarke (2000), 
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Groll et  al. (2015) or Ley et  al. (2019). However, in recent years many differ-
ent approaches have been proposed to include dependency. For example, in the 
context of football, Dixon and Coles (1997) were among the first to explicitly 
account for dependency between scores of competing teams by expanding the 
independent Poisson approach by an additional dependence parameter to adjust 
for certain under and overrepresented match results. An even more flexible 
approach to this is the usage of copulae, as a lot of different copula families 
can be applied to consider a wide range of different dependency structures. In 
football, a first specific copula, namely the bivariate Poisson distribution, was 
employed by Karlis and Ntzoufras (2003). Moreover, McHale and Scarf (2007) 
proposed alternative copula models with Poisson margins to model shots-for and 
shots-against. In general, for the use of copula models for count responses, see 
e.g. Nikoloulopoulos and Karlis (2010), Trivedi and Zimmer (2017) and the ref-
erences therein.

The Generalised Joint Regression Modelling (GJRM) infrastructure by Marra 
and Radice (2020), implemented in the GJRM add-on package for R, is a power-
ful tool for joint regression modelling. But to this point, no classical penalisa-
tion approaches for shrinkage of regression coefficient estimates and variable 
selection are available. In this work, we extend the existing GJRM infrastructure 
by allowing for a lasso-penalty (Tibshirani 1996; Friedman et al. 2010) and by 
this means add tools for variable selection and sparsity.

The LASSO technique has already been successfully applied in the context of 
football. For example, in Groll and Abedieh (2013) a penalised generalised lin-
ear mixed model has been used for modelling and prediction of European cham-
pionship match data, and in Groll et al. (2015), a similar LASSO model has been 
applied on FIFA World Cup data. An L 1-penalised approach for Bradley-Terry-
type models has also been proposed by Schauberger et al. (2017) on data for the 
German Bundesliga. Here, we will build upon these ideas and introduce L 1-type 
penalisation to generalised joint regression modelling for count data, also with a 
specific emphasis on football applications.

The remainder of the manuscript is structured as follows. In Sect. 2, we give an 
overview about the general model specifications and introduce the LASSO-penalty 
and how it can be embedded into the framework. We investigate the penalised mod-
el’s performance in both a simulation study (Sect. 3) and the real life situation of 
FIFA World Cup football data (Sect. 4), before we conclude in Sect. 5.

2 � Methodology

In this section, we give a brief overview of the basic methodological framework 
into which the proposed penalty approach is embedded. It is essentially a more 
compact version of Sect. 2.1 in van der Wurp et al. (2020). Note that in the fol-
lowing all concepts are illustrated for the two-dimensional response case, but 
can principally easily be extended to higher dimensions.



129

1 3

Introducing LASSO‑type penalisation to generalised joint…

2.1 � Model structure and estimation approach

Given a bivariate response of count data yi = (yi1, yi2)
T , i = 1,… , n, where some 

form of dependency is assumed and shall be taken into account (e.g. scores of 
two competing teams in sports like football or sales numbers of two competing 
products), the corresponding joint cumulative distribution function (cdf) F(⋅, ⋅) of 
the two underlying discrete outcome variables Y1, Y2 ∈ ℕ0 is given by

with F1(⋅) and F2(⋅) denoting the marginal cdfs of Y1 and Y2 , respectively, realis-
ing values in (0, 1) and C� ∶ [0, 1]2 → [0, 1] is a two-place copula function. C�(⋅, ⋅) 
does not depend on the marginal distributions but rather on its parameter � that can 
be scalar- or vector-valued and controls the dependency strength, depending on the 
copula class chosen. A list of common copula classes implemented in GJRM can be 
found in Table 1 of Marra and Radice (2019). The most important properties of cop-
ula classes as well as details on the most well-known copula families can be found in 
standard copula literature such as Nelsen (2006).

The joint probability mass function (pmf) c�(⋅, ⋅) for a chosen copula class 
C�(⋅, ⋅) and discrete, integer-valued responses only exists on the two-dimensional 
integer grid and is expressed as

Although several distributions suitable for count data are implemented in GJRM, 
here we focus on and use the notation of Poisson distributed marginals as it is 
deemed adequate for our application. The marginal distribution parameters are 
therefore �1 and �2 and are modelled by a set of covariate vectors, denoted by x1, x2 
of length p1 and p2 , respectively. Covariates influencing the copula parameter � , 
which for simplicity and notational convenience in the following is taken to be sca-
lar, are collected in the vector x� of length p� . In general, x1, x2, x� can be of differ-
ent lengths and may contain partly or completely the same set of covariates. The 
corresponding regression equations are

where �(1), �(2) and �(�) are p1 -, p2 - and p�-dimensional vectors of regression effects, 
respectively. The marginal regressions (1) and (2) stem from the usual GLM-
approach in Poisson regression, while g(�) from (3) denotes a link function that is 

P(Y1 ≤ y1, Y2 ≤ y2) = C�

(
P(Y1 ≤ y1), P(Y2 ≤ y2)

)

= C�(F1(y1), F2(y2)) ,

c�(F1(y1), F2(y2)) =C�(F1(y1), F2(y2)) − C�(F1(y1 − 1), F2(y2))

− C�(F1(y1), F2(y2 − 1)) + C�(F1(y1 − 1), F2(y2 − 1)).

(1)log(�1) = �1 = �
(1)

0
+ x

(1)

1
�
(1)

1
+⋯ + x(1)

p1
�(1)
p1

= (x(1))T�(1) ,

(2)log(�2) = �2 = �
(2)

0
+ x

(2)

1
�
(2)

1
+⋯ + x(2)

p2
�(2)
p2

= (x(2))T�(2) ,

(3)g(�) = �� = �
(�)

0
+ x

(�)

1�
�
(�)

1�
+⋯ + x(�)

p�
�(�)
p�

= (x(�))T� (�),
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suitable for the chosen copula class C�(⋅, ⋅) (see Marra and Radice 2019). The vec-
tors x(1) , x(2) x(�) are subsets (not necessarily disjoint) of a complete set of covar-
iates x of length d, with p1 + p2 + p� = p ≥ d . It should be noted that the linear 
predictors from equations (1)–(3) are a substantial simplification of the possibilities 
allowed for in the GJRM framework.

Defining the composed vector of coefficients ���T ∶=
(
(���(1))T , (���(2))T , (���(�))T

)
 , the 

log-likelihood of the copula regression model is given by

where for i = 1,… , n and j = 1, 2 , we have

The log-likelihood is maximised in GJRM by using a trust region algorithm from the 
trust package by Geyer (2015). The corresponding required first and second order 
derivatives are included in the GJRM framework and were provided by Marra and 
Radice (2020).

Moreover, the GJRM infrastructure allows for the implementation of any quad-
ratic penalty on (all or parts of) the regression coefficients ��� of the form 1

2
���
TS��� , 

where S is a penalty matrix. This particularly includes the usage of splines to allow 
for nonlinear predictors. In this case, the smooth covariate effect is found in m corre-
sponding entries of ��� and S , respectively, where m depends on the number of spline 
basis functions. van der Wurp et  al. (2020) tweaked 1

2
���
TS��� to incorporate a pen-

alty on the differences between the marginal coefficient vectors ���(1) and ���(2) to force 
them to be equal, a feature that is specifically relevant in competitive settings such as 
sports applications. The next section discusses the specific construction of a suitable 
penalty matrix S to incorporate LASSO-type penalties.

2.2 � Implementation of (adaptive) LASSO‑type penalisation

The model’s aforementioned log-likelihood �(���) can be penalised in different ways. 
A first step in this direction could be ridge regression (Hoerl and Kennard 1970) 
penalising the squared regression coefficients. However, for better interpretability 
and stability with respect to multicollinearity issues, we prefer a method that can 
perform variable selection. Hence, we aim to incorporate a shrinkage penalty via 
a standard LASSO approach. In general, the penalised likelihood can be written as

with � denoting a generic penalty strength parameter. Note that the sum in the pen-
alty term in (5) typically does not contain any of the intercepts �(j)

0
, j = 1, 2, and �(�)

0
 , 

as these usually shall not be penalised.

(4)�(�) =

n∑
i=1

log
{
c�
(
F1(yi1),F2(yi2)

)}
,

Fj(yij) = exp(− exp(�ij))

yij∑
m=0

exp(�ij)
m

m!
.

(5)�p(���) = �(���) − �
∑
l

|�l| ,
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To incorporate this into the GJRM framework, which only allows for quadratic 
penalty structures, we adapt the approach and notation presented by Oelker and Tutz 
(2017), where a generic penalty term |�| is quadratically approximated via 

√
�2 + c . 

Their notation leads to separate penalty matrices for each term l ∈ {1,… , p} that 
shall be penalised, namely

where �T
l
���
[k] with �l ∈ ℝ

p can depict any linear transformation on the coefficient 
vector ��� in the k-th iteration step of the underlying fitting procedure. The arbitrary 
small value of c > 0 ( c = 10−9 in our application and simulation) guarantees a 
denominator greater than zero. For the specific choice of the standard LASSO, the 
vectors �l are chosen such that �T

0
��� = �0 , �T1��� = �1 and so forth. Hence, the matrix in 

(6) is a matrix of zeros, which only contains a single non-zero value 1∕
√

(�
[k]

l
)2 + c 

on the corresponding diagonal element.
The matrices �l for each variable that is supposed to be penalised are finally sim-

ply added up. This can also be written via

where � is a suitable chosen weight matrix such as

with diag[…] denoting a  diagonal matrix and “ ◦ ” the Hadamard matrix product. 
Note that intercepts are not penalised in this setting, which is e.g. reflected by the 
value of 0 in the first diagonal element. The strength of the LASSO penalty is con-
trolled by the penalty parameter � , which needs to be tuned. Note that covariates 
are standardised to a standard deviation of 1, which is necessary for a balanced and 
comparable penalisation.

This weighting scheme leads to a penalisation of

(6)
�l =

1√(
�T
l
���
[k]
)2

+ c

⋅ �l�
T
l
,

(7)S = � ⋅� = � ⋅

p∑
l=1

�l ,

(8)� = diag

⎡
⎢⎢⎢⎢⎣
0,

1��
�
[k]

1

�2

+ c

,… ,
1��

�
[k]
p

�2

+ c

⎤
⎥⎥⎥⎥⎦
◦

⎛⎜⎜⎜⎝

0 0 … 0

0 1 … 0

⋮ ⋱

0 0 … 1

⎞⎟⎟⎟⎠
,

(9)

𝓁p(𝛽𝛽𝛽) = 𝓁(𝛽𝛽𝛽) −
1

2
𝛽𝛽𝛽
TS𝛽𝛽𝛽

= 𝓁(𝛽𝛽𝛽) −
1

2
𝜈 ⋅

p∑
i=1

𝛽2
i√(

𝛽
[k]

i

)2

+ c

,
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where the fraction is the approximation of 𝛽2
i
∕ |𝛽[k]

i
| . Although this is not reducable, 

it could be argued that this is closely related to the absolute value |�i| , which is the 
pursued penalisation from (5).

The proposed LASSO approximation by Oelker and Tutz (2017) yields “almost 
identical” (see Chapter 3.1 therein) results to the “actual” LASSO. As this approach 
is straightforward within the infrastructure of GJRM and generally much easier to 
implement than the actual LASSO (particularly in more complex settings), we deem 
it to be preferable in the present case. Typically, quadratically approximated LASSO 
is also faster with respect to computational complexity compared to actual LASSO, 
which involves numerical techniques as for example coordinate descent.

2.2.1 � Group lasso for categorical predictors

For the case of categorical covariates, we follow the group lasso approach from 
Meier et al. (2008), leading to a group of coefficients being penalised and shrunk 
towards zero as a single entity (see also Oelker and Tutz 2017, and Groll et  al. 
2019). Assume that a set of j coefficients �i+1,… , �i+j correspond to e.g. the respec-
tive columns in the design matrix of a dummy-encoded factor variable.

With suitably chosen �l and �l , the corresponding entries in the weight matrix � 
in (7) and (8) are then replaced by

with vi denoting the group weight that corresponds to all coefficients belonging to 
the same group. It is given by

where j refers to the size of the group �i+1,… , �i+j (i.e. for a dummy-encoded factor 
variable to the number of levels minus one), and, hence, to the group’s complexity.

In this case, for the covariates’ standardisation process we follow the Meier et al. 
(2008) standardisation technique for groups of categorical predictors. The corre-
sponding block matrices �g from the design matrix � are orthonormalised using 
a QR-decomposition. Finally, note that the coefficient estimates obtained by the 
LASSO fitting routine are transformed back in order to correspond to the original 
scale.

(10)

� = diag

⎡
⎢⎢⎢⎢⎣
… ,

1��
�
[k]

i

�2

+ c

, vi,… , vi,
1��

�
[k]

i+j+1

�2

+ c

,…

⎤
⎥⎥⎥⎥⎦
◦

⎛⎜⎜⎜⎝

0 0 … 0

0 1 … 0

⋮ ⋱

0 0 … 1

⎞⎟⎟⎟⎠
,

(11)
vi =

1�
i+j∑

r=i+1

�
�
[k]
r

�2

+ c

⋅
√
j,
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2.2.2 � Adaptive weights

Additionally, following e.g. Zou and Hastie (2006), multiplicative adaptive weights 
wl can be incorporated, which are based on the (inverse of) the unregularised maxi-
mum likelihood estimates, i.e. wl = 1∕|�T

l
𝛽̂𝛽𝛽ML| (see also Oelker and Tutz 2017). For 

ordinary lasso, this results in the weight

corresponding to equation (8).
In the case of group lasso with adaptive weights, the structure from equation (10) 

is modified by expanding the weights correspondingly. The group weights vi are 
then calculated via

with ���c,ML denoting the corresponding subvector (�i+1,ML,… , �i+j,ML)
T of ���ML and 

are hence identical for all coefficients corresponding to the same group.

2.3 � Optimising the penalty parameter �

Next, different approaches to optimise the penalty parameter � are presented. Note 
that there exists a variety of alternatives, though no obvious best choice exists.

First, the AIC from Akaike (1973) has been shown to be a viable option for cop-
ula models (see, e.g. Marra and Radice 2017 or van der Wurp et al. 2020). Second, 
the BIC (Schwarz 1978) can be suitable when a stronger penalisation of the num-
ber of coefficients estimated is preferable and, hence, if sparser models are desir-
able. Third and last, we implemented a K-fold cross validation (CV) approach (with 
K = 10 in both the simulation and application chapters), which uses the unpenalised 
predictive external log-likelihood �(𝛽̂𝛽𝛽|ytest,Xtest) (exLLH) as a goodness-of-fit meas-
ure on the unseen test fold, where ytest denotes the response and Xtest the covariate 
design matrix from the left out fold and 𝛽̂𝛽𝛽 was estimated on all other folds used for 
training.

The resulting fit of each of those approaches is observed together with the corre-
sponding optimal value of �opt . In the following simulation study, those models and 
each approach’s tuning for � are compared with regard to their performance, which is 
measured in two dimensions, the first being the SSE on the coefficients and the second 
being the true-positive and true-negative ratios of coefficients, indicating how many 
features and noise variables were identified as such (see Sect. 3).

� = diag

⎡
⎢⎢⎢⎢⎣
0,

1

�𝛽1,ML�
��

𝛽
[k]

1

�2

+ c

,… ,
1

�𝛽p,ML�
��

𝛽
[k]
p

�2

+ c

⎤
⎥⎥⎥⎥⎦
◦

⎛
⎜⎜⎜⎝

0 0 … 0

0 1 … 0

⋮ ⋱

0 0 … 1

⎞
⎟⎟⎟⎠
,

vi =
1

�����c,ML��2 ⋅

�
i+j∑

r=i+1

�
�
[k]
r

�2

+ c

⋅
√
j
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To optimise � , a suitable grid of values needs to be chosen. A possible pragmatic 
strategy is to start with an arbitrary small value of � and increase the value stepwise 
until all penalised coefficients fall below a chosen threshold �lasso and are set to zero 
(see next section for more details). A suitable grid from 0 to the found value of � is cre-
ated, putting more emphasis (by using smaller steps) on the lower end.

2.4 � Threshold "lasso
 for approximative LASSO

Note that due to the quadratic approximation of the penalty in equations (6) and (11), 
coefficient estimates cannot be set exactly to zero. Instead, coefficients that should be 
zero differ from zero in some late decimals. For this reason, one usually uses rounded 
coefficients, with the consequence that estimates very close to zero are simply set to 
zero, and the corresponding covariates are excluded from the model (see, e.g. Table 1 
in Schauberger and Tutz 2017, and Footnote 18 in Hambuckers et al. 2018). In both our 
simulations (Sect. 3) and the application (Sect. 4), a threshold of �lasso = 0.01 turned 
out to be a good choice for these specific scenarios. As the approximative LASSO is 
using standardised covariates, the parameter of �lasso itself is quite easy to interpret. 
Our choice of 0.01 implies a change of 0.01 in the linear predictor if the corresponding 
covariate is changed by one standard deviation. Although, principally, the �lasso could 
also be tuned, reasonable choices corresponding to the aforementioned interpretation 
can be made in the context of the individual application. Our choice of 0.01 is both easy 
to interpret and yields satisfying results in both the application and the corresponding 
simulation (which was motivated by the application).

However, as this parameter can also be seen as kind of a “second layer tuning 
parameter”, in future research one could think about more sophisticated choices, which 
lead to good results independent of the specific application at hand, such as e.g. choices 
based on certain quantiles of the unregularised maximum-likelihood estimates (in the 
spirit of the adaptive LASSO). This, however, is beyond the scope of the present work.

3 � Simulation study

In this section, we present a thorough simulation study to show the usefulness of our 
proposed penalisation approach. A selection of different setups, copula classes and 
dependency strengths will be investigated.

3.1 � Setting

We create covariates x1,… , x8 sampled from correlated Gaussian distributions 
(see Table  1), which are chosen to have an influence on one of the marginal 
parameters each. Additionally, we create noise variables z1,… , z30 of which each 
will be used in only one marginal regression approach and additional noise varia-
bles z31,… , z35 that will be assigned to both margins simultaneously. This is done 
to simulate settings where some variables can be assumed to have an influence 
on both margins at the same time and some do not. The groups (x1, x2, x3) and 
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(x4, x5, x6) are sampled with high levels of correlation to include the setting of 
highly collinear covariates. One group is only used in the first marginal regres-
sion formula while the second is margin-overlapping. Another setting without 
multicollinearity was investigated as well. This yielded virtually the same results 
and was therefore excluded.

The marginal Poisson coefficients �i1 and �i2 were then specified via

while the copula parameter � is not depending on covariates and is hence specified 
by an intercept �(�)

0
 only together with a suitably chosen link function g(⋅) . Each pair 

of outcomes ( yi1, yi2 ) is then sampled from a given copula with marginal Poisson 
parameters from equations (12) and (13). The selection of copula classes consists of 
the Archimedean copulas N (Gaussian), C0 (Clayton), F (Frank), G (Gumbel), C90 
(Clayton rotated by 90 degrees), and J (Joe).

To depict settings with different dependency strengths, a grid of values for Kend-
all’s � is chosen as (−0.75,−0.5,−0.25,−0.1, 0.1, 0.25, 0.5, 0.75) . Respective copula 
parameters � (note that all copulas mentioned above depend on a scalar parameter) 
are derived from these � values with given conversions (for more details in this 
regard, see, e.g. van der Wurp et al., 2019).

We use the SSE in coefficients such as

with true coefficients

Note again that due to the quadratic approximation of the penalty terms, coefficients 
are never estimated to exact zero by the fitting routine (compare Sect. 2.4), even for 
very large values of the penalty parameter � . Hence, for all simulations a suitable 

(12)�i1 = exp
(
�
(1)

0
+ x1�

(1)

1
+ x2�

(1)

2
+ x3�

(1)

3
+ x4�

(1)

4

)
,

(13)�i2 = exp
(
�
(2)

0
+ x5�

(2)

1
+ x6�

(2)

2
+ x7�

(2)

3
+ x8�

(2)

4

)
,

SSE =

4∑
r=0

[(
𝛽(1)
r

− 𝛽(1)
r

)2
+
(
𝛽(2)
r

− 𝛽(2)
r

)2]
+

24∑
r=5

[(
𝛽(1)
r

)2
+
(
𝛽(2)
r

)2]

���
(1) = (�

(1)

0
,… , �

(1)

4
, 0,… , 0)T = (0.55, 0.1, 0.15, 0.1, −0.1, 0,… , 0)T ,

���
(2) = (�

(2)

0
,… , �

(2)

4
, 0,… , 0)T = (0.75, −0.2, 0.10, −0.20, −0.25, 0,… , 0)T .

Table 1   Sampling distributions 
for covariates

Covariance matrix Σ yields correlations of r
x1x2

= 0.8, r
x1x3

= 0.5 and 
r
x2x3

= 0.3 (and identical for x4, x5, x6 ), respectively

Covariate Distribution Covariate Distribution

(x1, x2, x3)
T N((−1,−1,−1.5)T ,Σ) x8 N(−1, 0.52)

(x4, x5, x6)
T N((−0.25, 1,−1)T ,Σ) z1,… , z30 N(5, 22)

x7 N(2, 0.52) z31,… , z35 N(5, 22)
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threshold for the coefficients to be set to zero (after standardising the covariates) had 
to be chosen. Here, the choice �lasso = 0.01 turned out to be adequate. Stricter or less 
strict thresholds may be discussed and investigated. We also derive the true posi-
tive rate (TPR) and true negative rate (TNR) on the coefficients to investigate if our 
LASSO model is able to correctly identify features and noise. They are calculated 
via

Both TPR and TNR from (14) and (15) are to be maximised, while of course the 
SSE is to be minimised.

As copula classes C0, G, and J cannot depict negative correlation structures in 
terms of Kendall’s � , while C90 cannot depict positive ones, and N and F can do 
both, this approach overall creates 8 + 8 + 4 + 4 + 4 + 4 = 32 different settings 
regarding copula class and it’s parameter � corresponding to 8 or 4, respectively, dif-
ferent values of Kendall’s � . A sample size of n = 250 was chosen and each setting 
repeated 100 times.

3.2 � Results

The results have to be analysed in multiple dimensions. First, the raw per-
formance, measured by the SSE, is displayed in Fig.  1 for the Gaussian (N) 
copula class (both used to generate data and to fit the model). Principally, the 

(14)TPR =
1

10

4∑
r=0

1(
�
(1)
r ≠0

) + 1(
�
(2)
r ≠0

) ∈ [0, 1],

(15)TNR =
1

40

24∑
r=5

1(
�
(1)
r =0

) + 1(
�
(2)
r =0

) ∈ [0, 1].

Fig. 1   Simulation results of the standard GJRM approach and LASSO-penalised versions of it for Gauss-
ian (N) copula models in terms of SSE on the estimated and true coefficients for 100 settings of each 
correlation strength �
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LASSO-penalty approach clearly improves the estimations compared to the unpe-
nalised one no matter which strategy is chosen for tuning the penalty strength. 
The differences between using AIC, BIC or a cross validation approach for the 
optimisation of the penalty parameter � are rather small, though the results from 
AIC and CV show more variability. In this setting, the BIC can compete with 
the other two approaches. However, the simulation setup with 10 features and 40 
noise variables should be kept in mind here – a higher ratio of features to noises 
might not favour the stronger penalisation that clearly.

Second, the feature selection ability, i.e. the ability to correctly identify fea-
tures and noise, is depicted by the true positive and true negative rates. The TPR 
is the ability to identify features. Figure  2 illustrates the TPR exemplarily for 
the case of a Gaussian copula. The unpenalised ML-estimation, unsurprisingly, 
achieves a perfect score of 1 ( ̂= 100% ). The results reflect the SSE-results from 
above, as again AIC and CV approaches are very similar in performance.

The same applies for the TNR (see Fig.  3, again exemplarily for a Gaussian 
copula): the stronger penalisation resulting from the BIC is able to detect more 
noise variables than all other approaches.

In summary, using the AIC or a CV approach leads to roughly the same perfor-
mance in all mentioned dimensions. Taking the high computational expenditures 
for the CV into account, it is deemed redundant, and the AIC is preferable. How-
ever, comparing the AIC- and BIC-results reveals some substantial differences. 
As expected, a stronger penalisation will lead to a higher TNR and a lower TPR. 
In terms of the SSE on estimated and true coefficients, the BIC approach seems to 
be slightly better. But minimising the SSE might not always be the main goal. In 
particular, if prediction of new observations is the main objective, a more sparse 
model might be preferable. Moreover, a sparser model is typically easier to inter-
pret and, hence, might be preferred by practitioners, as long as the loss in perfor-
mance is relatively small.

Fig. 2   Simulation results of the standard GJRM approach and LASSO-penalised versions of it for Gauss-
ian (N) copula models in terms of true positive rate, depicting the mean ratio of correctly identified 
model features for 100 settings of each correlation strength �



138	 H. van der Wurp, A. Groll 

1 3

Additionally, a structure depending on the copula parameter � (and the cor-
relation in terms of Kendall’s � ), was observed. Interestingly, a stronger copula 
structure lessens the difference between results for AIC and BIC for both TPR 
and TNR (Figs. 2 and 3). This behaviour is also visible for the unpenalised ML 
approach (Fig. 1). In settings with stronger dependency, the resulting SSE in the 
estimates is lower compared to weaker dependency settings. As of now, this has 
no implications on how to optimise the penalisation parameter or our penalisation 
methodology itself.

Although Figs.  1, 2, 3 focus on the Gaussian (N) Copula class as an example, 
the results were virtually identical for copula classes Clayton (C0), Frank (F), Clay-
ton rotated (C90), Gumbel (G0) and Joe (J), confirming the previous findings (see 
Fig. 7 for SSE, Fig. 8 for true positive rate, and Fig. 9 for true negative rate, all in 
appendix).

Note that we focused here only on simulation settings with p < n , as the type 
of football applications we are considering, i.e. single matches as observations 
with covariates on the team level, most typically are embedded in this framework. 
In other contexts, particularly in medical ones with e.g. gene information on the 
covariate side, p could potentially be much larger or maybe even exceed n (the latter 
is usually known as the “p larger than n case”). Principally, the proposed LASSO 
approach can also be applied to such settings, but we recommend to extend the sim-
ulations presented here in this direction then.

4 � Application on FIFA world cup data

The proposed penalisation approach is now applied to a real world football data set 
containing FIFA World Cup matches from the tournaments in 2002, 2006, 2010, 
2014 and 2018 with 64 matches each.

Fig. 3   Simulation results for of the standard GJRM approach and LASSO-penalised versions of it for 
Gaussian (N) copula models in terms of true negative rate, depicting the mean ratio of correctly identi-
fied noise variables for 100 settings of each correlation strength �
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4.1 � Data

The data set originates from Groll et al. (2015) and was also already used by Schau-
berger and Groll (2018), by Groll et al. (2019) and, finally, used and expanded by 
van der Wurp et  al. (2020), from where essentially the following summary was 
taken. 

(a)	 GDP per capita. This is used as ratio of the GDP per capita for each respective 
country and the worldwide average GDP per capita (source: https://​unsta​ts.​un.​
org/​unsd/​snaama/​Index).

(b)	 Population. The population size of each country is used as ratio of the global 
population to take global population growth into account (source: https://​data.​
world​bank.​org/​indic​ator/​SP.​POP.​TOTL).

(c)	 ODDSET probability. The odds (taken from the German state betting agency 
ODDSET) are converted into winning probabilities. Therefore, the variable 
reflects the probabilities for each team to win the respective World Cup; these 
odds were calculated before the start of each tournament.

(d)	 FIFA ranking. The FIFA ranking provides a ranking system for all national teams 
measuring the performance of the team over the last four years (source: https://​
de.​fifa.​com/​fifa-​world-​ranki​ng/).

(e)	 Host. A dummy variable indicating if a national team is the hosting country.
(f)	 Continent. A dummy variable indicating if a national team is from the same 

continent as the host of the World Cup (including the host itself).
(g)	 Confederation. This categorical variable comprises the confederation of the 

respective team with (in principle) six possible values: Africa (CAF); Asia 
(AFC); Europe (UEFA); North, Central America and Caribbean (CONCACAF); 
Oceania (OFC); South America (CONMEBOL). The confederations OFC and 
AFC had to be merged because in the data set only one team (New Zealand, 
World Cup 2006) from OFC participated in one of the considered World Cups.

(h)	 (Second) maximum number of teammates. For each squad, both the maximum 
and second maximum number of teammates playing together in the same 
national club.

(i)	 Deviation from average age. The absolute deviation of each squad’s age from 
the average age of all teams, i.e. |agei − age| (here: age = 27.171).

(j)	 Number of Champions League (Europa League) players. As a measurement of 
the success of the players at club level, the number of players in the semi finals 
(taking place only a few weeks before the respective World Cup) of the UEFA 
Champions League (CL) and UEFA Europa League.

(k)	 Number of players abroad. For each squad, the number of players playing in 
clubs abroad (in the season previous to the respective World Cup).

(l)	 Factors describing the team’s coach: For the coach of each national team, age 
and duration of his tenure are observed. Furthermore, a dummy variable is 
included, whether the coach has the same nationality as his team or not.

(m)	 Knockout. A dummy variable indicating if a match is a knockout one.
(n)	 Titleholder. A dummy variable indicating if a team is the current World Cham-

pionship title holder.

https://unstats.un.org/unsd/snaama/Index
https://unstats.un.org/unsd/snaama/Index
https://data.worldbank.org/indicator/SP.POP.TOTL
https://data.worldbank.org/indicator/SP.POP.TOTL
https://de.fifa.com/fifa-world-ranking/
https://de.fifa.com/fifa-world-ranking/
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These variables are available for each team and are used to model the number of goals 
scored by each team per individual match. Table 2 shows a shortened version of the full data 
set. The final data set (Table 2c) was created by matching the teams’ covariates (Table 2b) 
with the match result data (Table 2a). Due to the FIFA tournament structures, the order in 
the matches (a team being first or second named, as World Cups do not have a home and 
away team for every match) are not completely random. To avoid influences correlating 
with the marginal intercepts, we removed these structures by performing a coin-toss for each 
match, deciding to flip the first and second named teams or to keep them as they are.

The model formulas in R-pseudo code are given by

�1 ∼ 1 + CL.players(1) + UEFA.players(1) + nation.coach(1) + age.coach(1)+

tenure.coach(1) + legionaires(1) + max.teammates(1) + sec.max.teammates(1) + age.dev(1)+

rank(1) + GDP(1) + host(1) + confederation(1) + continent(1) + odds(1) + population(1)+

knockout + titleholder(1),

�2 ∼ 1 + CL.players(2) + UEFA.players(2) + nation.coach1(2) + age.coach(2)+

tenure.coach(2) + legionaires(2) + max.teammates(2) + sec.max.teammates(2) + age.dev(2)+

rank(2) + GDP(2) + host(2) + confederation(2) + continent(2) + odds(2) + population(2)+

knockout + titleholder(2),

and

� ∼ 1,

Table 2   Exemplary table showing the results of four matches (a) and a subset of the covariates of the 
involved teams (b); The matched data sets for each game are shown in (c)

FRA 0:1 SEN
URU 1:2 DEN
DEN 1:1 SEN
FRA 0:0 URU
...

...
...

(a) Table of results (b) Table of covariates

Year Team AgeDev Rank Oddset . . .
2002 France 1.129 1 0.149 . . .
2002 Senegal 2.871 42 0.006 . . .
2002 Uruguay 1.871 24 0.009 . . .
2002 Denmark 0.229 20 0.012 . . .
...

...
...

...
...

. . .

(c) Matched data set

y1 y2 Team1 Team2 Year AgeDev1 AgeDev2 . . .
0 1 FRA SEN 2002 1.129 2.871 . . .
1 2 URU DEN 2002 1.871 0.229 . . .
1 1 DEN SEN 2002 0.229 2.871 . . .
0 0 FRA URU 2002 1.129 1.871 . . .
...

...
...

...
...

...
...

. . .
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where the inclusion of 1 corresponds to the use of an intercept. All covariates are 
team-specific and denoted by (1) and (2) for the respective team, except for the vari-
able Knockout. The copula parameter � is only modelled via an intercept, meaning 𝜃̂ 
will be a fixed value for all matches.

4.2 � Comparison of predictive performance

This section presents six measures to investigate the predictive performance and is 
principally a shortened version of van der Wurp et al. (2020), as both the setting and 
the principal aim of the analysis were rather similar.

As prediction of future matches here is the main objective, we focus on out-of-
sample data to validate the models. We therefore incorporated a cross-validation 
approach. Each time four out of five World Cups were used to fit the model (includ-
ing optimisation of � from Sect. 2.2). The left-out World Cup was then used to vali-
date the resulting models in multiple dimensions.

We take multiple measures into account to observe the quality of predictions. A 
natural candidate to evaluate the predictive performance of the models is to derive 
the (predictive log-)likelihood (exLLH) from equation (4) on all observations of the 
respective left-out World Cup.

Closely related to this, we also calculate the Euclidean distance between observa-
tion (y1, y2) and prediction 𝜆̂𝜆𝜆i = (𝜆̂i1, 𝜆̂i2)

T . Note that ���i = (�i1, �i2)
T is the bivariate 

mean of the bivariate distribution for a single match i in a given copula model. The 
corresponding MSE can then be calculated via

over a set of n matches.
Alternatively, when it comes to modelling football matches, the three match out-

comes win, draw and loss are also of particular interest. Hence, we also provide 
several performance measures that focus on these categorical outcomes. First, we 
calculate the resulting three-way probabilities 𝜋̂il for the i-th match. The index 
l = 1, 2, 3 indicates win, draw and loss from the first mentioned team’s perspective. 
Alternatively, these outcomes principally could have been also modelled directly by 
using models for categorical responses. Instead, we model the outcome in terms of 
goals (y1, y2) by decision to include more information.

With 𝜋̂il from above, the following measures can be applied: The rank probabil-
ity score (RPS see, e.g. Schauberger and Groll 2018). For a given match i, let the 
dummy coding of the true result of win, draw, loss be denoted by Kronecker’s delta 
�il . In the case of three possible outcomes, the RPS is defined via

Second, the multinomial likelihood (MLLH) is defined as

MSE =
1

n

n∑
i=1

||�i − 𝜆̂𝜆𝜆i||22 = 1

n

n∑
i=1

(yi1 − 𝜆̂i1)
2 + (yi2 − 𝜆̂i2)

2

RPSi =
1

2

2∑
r=1

(
r∑

l=1

𝜋̂il − 𝛿il

)2

.
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which is essentially the predicted probability 𝜋̂il for the true outcome. Third, the 
classification rate (CR) indicates how many matches have been classified into the 
three-way outcomes correctly, assuming that the highest probability refers to a clas-
sification. It is calculated via

The last dimension of predictive performance is the result of betting strategies for 
the FIFA World Cup 2018. With given predicted probabilities from our models and 
corresponding betting odds from bookmakers (taken from oddsportal.com), the 
expected return per bet can be calculated such as E[returnil] = ̂𝜋il ⋅ oddsil − 1 . The 
simplest possible betting strategy, to bet only on outcomes with a positive expected 
return and only one outcome per match, can be expanded by adding a threshold � . 
Only bets with an expected return of > 𝜀 should be placed in this case, indicating a 
more or less careful (depending on the choice of � ) approach. Here, we simply used 
� = 0.

4.3 � Results

All calculations have been performed with adaptive weights and a Group LASSO 
approach for the factor covariates of the confederations. Before presenting results, 
we will give a short overview of the used benchmarks and models. The reference 
model, an independent Poisson approach, using two Poisson distributions with 
no dependence structure at all, was used as the most simple benchmark. Another 
benchmark model accounts for the copula structure and is the standard approach via 
GJRM. van der Wurp et al. (2020) improved these results by incorporating a novel 
penalty to penalise the  differences between corresponding marginal coefficients, 
which can be assumed to be equal.

Due to the computational intensity of the CV approach, we only focus on the 
promising copula classes, namely Frank (F), which already performed well in prior 
research. First, the GJRM with LASSO penalty structure from Sect. 2.2 is applied 
and evaluated. Second, we combine this penalty with the one from van der Wurp 
et al. (2020) to allow for general sparsity and the assumption of equal marginal coef-
ficients at the same time. For the LASSO penalty, multiple tuning approaches for 
the penalty parameter � are used, namely AIC, BIC and the predictive log-likelihood 
(exLLH). Other CV-based tuning approaches (e.g. CV-measures on the three-way 
probabilities like RPS, multinomial likelihood and classification rate) could gener-
ally also easily be implemented.

But before going into detailed results, we will present a short overview about the 
model’s properties in the regularisation context, showing LASSO path plots and 
how the presented optimisation approaches for � from Sect. 2.3 are deciding on pen-
alty strengths.

MLLHi = 𝜋̂
𝛿i1
i1
𝜋̂
𝛿i2
i2
𝜋̂
𝛿i3
i3
,

CRi = 1(ỹi = argmax
l∈{1,2,3}

(𝜋̂il)) .
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While passing through the �-grid, the estimation process is given a vector of 
zeroes as starting values when using the LASSO penalty only. However, when both 
penalties are active simultaneously, the previous estimates are given as starting val-
ues for the next �-step. In both our application and simulations, this yielded best 
results.

4.3.1 � LASSO results and properties

To create the exemplary plots and to show the influence of � , we use the full dataset 
of all five World Cups from 2002 to 2018 and the Frank copula class.

The resulting path plots are depicted in Fig. 4. The penalty’s quadratic properties 
lead to superlinear growth in coefficients �i for decreasing � . For better readability, 
it may be advised to show results on the index of � instead. ‘Wiggly’ paths (paths 
that are not increasing monotonously from right to left) are the result of substantial 
multicollinearity and correlations and are expected in real life data. The tuning for � 
was performed with AIC, BIC and the cross validated predictive log-likelihood. In 
all applications related to this dataset, tuning by BIC results in the highest penalty 
strength, usually yielding a very sparse model, often simply the intercept model (see 
also Fig. 4). Tuning by AIC results in the least penalised models, often rather close 
to unregularised ML estimation. Third, tuning by the cross validated predictive log-
likelihood yields models in between, offering a compromise. As prediction strength 
is deemed important in this setting, we deem this to be the most sensible approach.

Figure 5 depicts the course of the predictive log-likelihood. The very common 
structure of lower values for a strong penalty (reading from the right end) that 
increase for a decreasing penalty strength is clearly visible. And at the left end 
(small � values), the model enters the area of overfitting, resulting in a decreasing 
likelihood.

The AIC curve (depicted in Fig. 6) has roughly the expected structure as well. 
The uptick in increase in degrees of freedom (dfs; here estimated by the number of 
non-zero coefficients, see also top graph in Fig. 6) for the smallest values of � man-
ages to overcome the increase of likelihood, resulting in a slightly increased AIC 
close to the ML estimation. The AIC yields the most complex model. The BIC, on 
the other hand, prefers stronger penalised models. In all applications to this data set, 
optimising the BIC actually coincided with minimising the dfs, resulting in the mere 
intercept model. As discussed earlier, we deem the predictive log-likelihood to be 
the most sensible approach. This is corroborated by the results from Fig. 6.

4.3.2 � Prediction results

The results for our cross-validation-like approach cycling through all five tourna-
ments can be found in Table 3. Rows 1 to 3 are the updated results from van der 
Wurp et  al. (2020), improving the model by first incorporating a (in this scenario 
rather weak) copula structure and then penalising the differences between marginal 
coefficients. The small differences between row 1 and 2 indicate that the Frank cop-
ula structure is only a small improvement, if at all, in this specific setting.
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By extending these approaches with a LASSO penalty, we were able to achieve 
further improvements regarding the predictive performance measures. Row 4 of 
Table 3 shows a strongly improved MSE and predictive log-likelihood compared to 
the unpenalised model from row 2. In this application, the CV approach seems supe-
rior compared to the AIC and BIC equivalents. We deem this is the most sensible 
tuning procedure if prediction strength is one of the main goals. Additionally, we 
focus on the results for MSE and predictive log-likelihood instead of the other meas-
ures, as they rely on the three-way probabilities and observations, which the model 
itself does not take into account.

It is notable that if coefficients are forced to be equal (row 3) this yields roughly 
the same improvements as the LASSO model from row 4. The combination of both 
approaches, however, which is easily obtained with our extensions to the GJRM 
infrastructure, yields no further improvements (row 7) but performs decent as well 
with regard to all measures. As the resulting model (row 7) might be more sparse 
compared to the LASSO-only version (row 4), due to the vectors of coefficients 
being equal between the margins, we deem both models to be potential winners with 
a high value regarding interpretability. By no means, this implies that the penalties 

Fig. 4   LASSO path plots depending on the penalty strength � (left) and (for better readability) by the 
index points of our �-grid (right). The vertical marks are the chosen optimal penalty parameters by inter-
nal AIC, predictive log-likelihood and internal BIC, left to right in that order. Intercepts paths are not 
included, as they are not penalised

Fig. 5   Curve for predictive log-likelihood (exLLH) in cross validation, depending on � (left) and the 
index points of our �-grid (right), summed up across all observations and folds
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should be combined in general. It is easy to imagine settings where both penalties 
are suitable and where only one of them is.

As we use the application mostly for illustrative purposes, we abstain from inter-
preting the obtained estimates in detail. The model’s coefficients can be found in 
Table 4 for the model with both penalties from row 7 and in Table 6 in the appendix 
for the LASSO-only model from row 4.

Due to substantial multicollinearities and correlations the coefficients need to be 
interpreted with caution. The missing coefficient for being the current titleholder 
(despite France’s miserable performance in 2002, Italy’s in 2010, Spain’s in 2014 
and of course Germany’s in 2018) is noted as a tongue-in-cheek remark. Interest-
ingly, in the LASSO-model (see Table 6 in the appendix), the titleholder’s curse can 
be found, but only for the first named team. As we swapped the teams randomly, this 
is considered to be an artefact and a prime example for the usefulness of both penal-
ties combined. Some other coefficients are quite intuitive, like the negative influence 
of a match being a knockout-game (bad teams already dropped out at this phase of 
the tournament) or the negative influence of the FIFA rank (high numerical values 
indicate bad ranked teams).

4.4 � Stage‑wise prediction of FIFA world cup 2018

To demonstrate possible prediction approaches, we predicted the FIFA World Cup 
of 2018 in each stage. The group stage of 48 matches was predicted using the four 

Fig. 6   Curves for degrees of freedom (top row), AIC (2nd row) and BIC (bottom row), depending on � 
(left) and the index points of our �-grid (right)
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previous tournaments and then added to the training data set to predict the round of 
16, continuing this procedure throughout the tournament. The final match was grouped 
together with the match for the 3rd place. The results can be found in Table 5.

This corroborates the results from before. In a purely predictive setting, both pen-
alty structures improve the quality of predictions in terms of MSE and predictive 
log-likelihood. The other measures are based on the three-way-outcome and are not 
directly taken into account in the fitting process of the model. Especially the betting 
results are to be taken cautiously, as these are extremely reliant on single events, e.g. 
South Korea’s win against Germany with bookmaker’s odds of 19.2. All penalties 
yield a visible improvement in prediction.

5 � Conclusions

In this work, we proposed and incorporated LASSO penalties into the GJRM 
framework used to model bivariate count data responses with a copula structure. 
We also included adaptive weights into the estimation scheme and, additionally, 
implemented a group LASSO methodology for the handling of categorical pre-
dictors. The proposed approach adds previously missing regularisation in this 
context and is able to provide some control over sparsity.

We investigated the penalty’s performance in a simulation study and showed its 
usage in a real life data set of FIFA World Cup matches. The simulation results are 
pretty clear: If some variables are expected to be noise, the LASSO penalty can 
be used to identify relevant model features and detect noise variables. It clearly 
outperforms the corresponding unpenalised models for all investigated copula 
classes. Both the AIC the BIC are reasonable choices for tuning the LASSO pen-
alty strength. Additionally, we identified a cross validation approach, which is 
based on the predictive out-of-sample log-likelihood, as a sensible compromise 
between the very sparse BIC-results and the barely penalised AIC-results.

One aspect that turned out to be problematic in the present application was the pres-
ence of substantial multicollinearity among the covariates. Hence, in future work the 

Table 3   Results for all six performance measures and a selection of models

MSE and predictive log-likelihood (exLLH) correspond to the original response, while RPS, predictive 
multinomial log-likelihood (MLLH), classification rate and betting (gains relative to sum of stakes) cor-
respond to measures on the three-way probabilities

Cop Penalty Tuner MSE exLLH RPS MLLH Cl. rate Betting

1 – – – 2.9829 −187.0996 0.2012 0.4011 0.5250 0.0623
2 F – – 3.0154 −187.2698 0.2008 0.4086 0.4969 0.0959
3 F Equal – 2.8191 −183.7188 0.1990 0.4007 0.5219 0.0494
4 F LASSO CV 2.7783 −182.8722 0.2012 0.3885 0.5219 −0.1230
5 F LASSO AIC 2.8567 −184.1996 0.1996 0.3994 0.5125 −0.0609
6 F LASSO BIC 2.9302 −187.3526 0.2331 0.3401 0.3500 0.1298
7 F Equal+LASSO CV 2.7940 −183.7778 0.2038 0.3878 0.5188 0.1648
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presented LASSO penalty could be generalised to allow for an elastic net approach (see 
Zou and Hastie 2005), combining LASSO and ridge penalisation. This is known to be 
particularly useful in situations with collinearity and correlation in the design matrix.

As this work was motivated by the application to football data, high dimen-
sional cases with p very large or even larger than n were not investigated. How-
ever, principally, the proposed LASSO approach can also be used in such settings, 
which are common e.g. in gene expression data. Hence, in future research such 
settings could be further investigated.

Moreover, the presented modelling approach is so far restricted to linear or simple poly-
nomial covariate effects only. Hence, in future research it is planned to combine the pen-
alty approach proposed in van der Wurp et al. (2020) with the option to model smooth, 
nonlinear effects, e.g. via P-splines (see Eilers and Marx 1996, or Wood 2017). In order 
to maintain the merits of sparsity and variable selection, here the adaptation of existing 
boosting approaches designed for generalised additive models (see, e.g. Tutz and Binder 
2006, Schmid and Hothorn 2008, or Groll and Tutz 2012) or generalised additive models 
for location, scale and shape (see Mayr et al. 2012; Hofner et al. 2014) seems promising.

Table 4   Coefficients for the 
fitted model with a combination 
of both LASSO and equalisation 
penalty

Missing values imply an estimate of zero

� �

(Intercept)    0.830 GDP 0.024
CL.players    0.033 Host1 0.299
UEFA.players    0.039 ConfedCAF 0.089
Nation.coach1 ConfedCONCACAF 0.001
Age.coach −0.007 ConfedCONMEBOL 0.319
Tenure.coach −0.033 ConfedUEFA 0.176
Legionaires Continent1
Max.teammates Odds
Sec.max.teammates Population 0.018
Age KnockoutTRUE −0.380
Rank −0.007 Titleholder

Table 5   Results for all six performance measures and a selection of models for the stage-wise prediction 
of FIFA World Cup 2018

MSE and predictive log-likelihood (average per game, exLLH) correspond to the original response, 
while RPS, predictive multinomial log-likelihood (MLLH), classification rate and betting (gains relative 
to sum of stakes) correspond to measures on the three-way probabilities

Cop Penalty Tuner MSE exLLH RPS MLLH cl. rate betting

1 – – – 2.9577 −2.9528 0.2217 0.3851 0.5313 0.0431
2 F – – 3.0213 −2.9904 0.2242 0.3897 0.4219 −0.3661
3 F Equal – 2.7010 −2.8881 0.2154 0.3784 0.4531 0.0122
4 F LASSO CV 2.7314 −2.8841 0.2197 0.3808 0.5156 0.1127
5 F LASSO AIC 2.8380 −2.9161 0.2219 0.3829 0.4688 0.0779
6 F LASSO BIC 2.6566 −2.8558 0.2396 0.3440 0.3594 0.1298
7 F Equal+LASSO CV 2.6270 −2.8581 0.2091 0.3830 0.5000 0.0652
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Appendix

See Figs. 7, 8, 9 and Table 6

Fig. 7   Simulation results of the standard GJRM approach and LASSO-penalised versions of it for differ-
ent copula models in terms of SSE on the estimated and true coefficients for 100 settings of each correla-
tion strength �

Fig. 8   Simulation results of the standard GJRM approach and LASSO-penalised versions of it for differ-
ent copula models in terms of true positive rate, depicting the mean ratio of correctly identified model 
features for 100 settings of each correlation strength �
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Fig. 9   Simulation results of the standard GJRM approach and LASSO-penalised versions of it for dif-
ferent copula models in terms of true negative rate, depicting the mean ratio of correctly identified noise 
variables for 100 settings of each correlation strength �

Table 6   Coefficients for the fitted model with LASSO penalisation

Missing values imply an estimation of zero

���
(1)

���
(2)

���
(1)

���
(2)

(Intercept) 1.338 0.261 GDP 0.007 0.019
CL.players 0.016 0.035 host1 0.194 0.188
UEFA.players 0.050 confedCAF −0.164 0.033
Nation.Coach1 0.077 confedCONCACAF −0.063 −0.015
Age.Coach −0.013 confedCONMEBOL 0.102 0.011
Tenure.Coach −0.041 confedUEFA 0.062 0.125
Legionaires continent1
Max.teammates −0.020 odds 0.642 0.501
Sec.max.teammates Population 0.007 0.038
Age −0.026 KnockoutTRUE −0.349 −0.144
Rank −0.012 Titleholder −0.765
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