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Abstract
Spatial price comparisons rely to a high degree on the quality of the underlying 
price data that are collected within or across countries. Below the basic heading 
level, these price data often exhibit large gaps. Therefore, stochastic index number 
methods like the Country–Product–Dummy (CPD) method and the Gini–Eltetö–
Köves–Szulc (GEKS) method are utilised for the aggregation of the price data into 
higher-level indices. Although the two index number methods produce differing 
price level estimates when prices are missing, the present paper demonstrates that 
both can be derived from exactly the same stochastic model. For a specific case of 
missing prices, it is shown that the formula underlying these price level estimates 
differs between the two methods only in weighting. The impact of missing prices 
on the efficiency of the price level estimates is analysed in two simulation studies. It 
can be shown that the CPD method slightly outperforms the GEKS method. Using 
micro data of Germany’s Consumer Price Index, it can be observed that more nar-
rowly defined products improve estimation efficiency.

Keywords Spatial price comparison · Below basic heading · Multilateral index 
number methods · CPD method · GEKS method

1 Introduction

In general, index number theory is divided into three primary strands: the test 
approach (e.g. Balk 1995), which relies on a framework of desirable properties for 
the valuation of index number methods; the economic approach (e.g. Diewert 1995), 
which builds on microeconomic theory in the context of cost and utility functions; 
and the stochastic approach (e.g. Clements et  al. 2006), which embeds the index 
number theory into a statistical framework. The stochastic approach to index num-
bers has especially gained increasing attention in recent years.
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Within the International Comparison Program (ICP), for example, stochas-
tic index number methods are used for the compilation of Purchasing Power Pari-
ties (PPPs) in the participating countries (see World Bank 2020, p. 82 for the ICP 
round in 2017 and World Bank 2015, pp. 256–257 for the ICP rounds in 2005 and 
2011). In the first stage of aggregation, PPPs are calculated by the two probably 
best-known index number methods of the stochastic approach: the Country–Prod-
uct–Dummy (CPD) method, originally developed by Summers (1973), and the 
GEKS method, named after its authors Gini (1924, 1931), Eltetö and Köves (1964) 
and Szulc (1964). Strictly speaking, the CPD method is used by all countries except 
those belonging to the Commonwealth of Independent States (CIS) and those par-
ticipating in the Eurostat-OECD PPP programme.1 The latter rely on the GEKS 
method. This heterogeneous choice among countries seems to be due to histori-
cal reasons, although a consistent usage would be desirable from a statistical per-
spective.2 Whether one of the two index number methods is actually better suited 
for price comparisons at this first stage of aggregation is not evident (e.g. Diewert 
2010, pp. S17–S18). Further analysis of their statistical properties thus might pro-
vide additional guidance in this regard.

The CPD method is a simple case of a hedonic regression. It explains the price of 
some product by the product itself and the region where that price was observed. In 
the literature, it is well-known that the GEKS method can be put into a regression 
approach as well (e.g. Rao and Timmer 2003, pp.  498–500). Initially, however, it 
was designed as a technique to adjust a set of bilateral index numbers such that these 
satisfy internal consistency in a multilateral context. The CPD and GEKS meth-
ods might be complemented by the much less prominent Country–Dummy (CD) 
method, which reaches back to Summers (1973) as well. Similarly, within a regres-
sion framework, it explains the regional price ratio of some product by the general 
price level of the regions. A comprehensive survey of these stochastic index number 
methods is provided, for example, by Balk (2008) and Auer (2012).

In the literature, the CPD and GEKS methods are typically considered indepen-
dently of each other. This, in fact, makes sense because of the different rationale 
behind their model specifications. Balk (1981, p. 75), however, points out that both 
methods are closely related.3 In our paper, we demonstrate that both the CPD and the 
GEKS methods can be derived from the same stochastic model originally introduced 
by Summers (1973, p. 5) and Selvanathan and Rao (1992, pp. 338–340). Moreover, 
we show that the CD method also traces back to this model. This deeper anchoring 
of the three multilateral index number methods into the stochastic approach is this 
paper’s first contribution.

1 More precisely, variants of CPD and GEKS were used in the 2011 and 2017 ICP rounds, which incor-
porate so called importance weights into the CPD framework and information on representative products 
into the GEKS approach.
2 The ICP as well as Eurostat’s PPP programme started independently of each other and almost simulta-
neously in the late 1960s. By EU Regulation (EC) No 1445/2007, Eurostat is tied to the GEKS method 
(see also Eurostat-OECD 2012, pp. 53–54).
3 In a temporal framework, Balk (1980, 1981) applies the CPD and GEKS methods to the case of sea-
sonally unavailable products.
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At the basic heading level, a spatial price comparison relies exclusively on the 
prices that were collected in different regions for a number of products.4 If the price 
of each product is observed in each region, then the available price matrix is said 
to be complete. For a complete price matrix, it is known that the CPD method and 
the GEKS method generate exactly the same estimates for the regional price levels 
(e.g. World Bank 2013, pp. 115–116). Strictly speaking, this is true when the bilat-
eral price index numbers underlying the GEKS method are calculated as a Jevons 
index (henceforth, we use the term GEKS-Jevons method for this setting). A com-
plete price matrix, however, is rarely available in practice. More often there are large 
gaps in the price data due to missing prices. In this case, the CPD and GEKS-Jevons 
methods no longer produce the same results, although it would be helpful to know 
how these differences evolve.

For this purpose, Ferrari et al. (1996) consider a price matrix with two groups of 
regions. For the first group of regions, the matrix is complete, and for each region 
of the second group, the same prices are missing. The authors show that in this 
case, the CPD method and the GEKS-Jevons method generate different results, and 
that the differences are due to different weights in a correction term. We extend the 
work of Ferrari et al. (1996) by a more general scenario of missing prices where all 
regions exhibit gaps. We show that their results also remain valid in this new set-
ting. Now, however, the price level estimates rely not on one but on two correction 
terms that are weighted differently between the CPD and the GEKS-Jevons meth-
ods. Moreover, it can be shown that the price levels differ between intragroup com-
parisons (the prices of two regions that belong to the same group of regions are 
compared) and intergroup comparisons. For intragroup comparisons, the CPD price 
levels correspond to the Jevons index of the two regions under consideration. These 
further insights into the calculation of price levels in the case of missing prices are 
the paper’s second contribution.

Our theoretical derivations draw on a specific case of an incomplete price matrix. 
To evaluate the impact of missing prices on the price level estimates also in a more 
general setting, we conduct a Monte Carlo analysis. For that purpose, we build arti-
ficial price data, randomly introduce gaps into these data sets and apply the CPD 
and GEKS-Jevons methods (a similar approach was undertaken by Dikhanov 2010). 
This enables us to evaluate the impact of missing prices on the estimation efficiency 
separately for both index number methods and, in addition, to analyse possible dif-
ferences between them. Not surprisingly, it turns out that the estimation efficiency 
in general suffers from an increasing number of gaps. Moreover, the CPD method 
slightly outperforms the GEKS-Jevons method under different tested scenarios. 
These findings are the paper’s third contribution.

We also adopt our simulation strategy to more realistic price data. For that pur-
pose, we draw on a subset of the micro price data underlying the official Consumer 
Price Index (CPI) of Germany. On the basis of these data, we are able to confirm the 
findings of our first simulation study. Moreover, we use the product descriptions pro-
vided in the data to analyse how the estimation efficiency reacts to narrower product 

4 We use the term region in place of countries, cities or any other geographical entity.
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definitions. This issue has practical relevance for two reasons. First, with respect to 
our simulation results, it shows that one may increase the estimation efficiency with 
a narrower product definition. Second, it also reveals that this gain in the efficiency 
is closely related to the regional volatility of the prices. More specifically, with low 
regional price fluctuations, one could rely on relatively loose product definitions as 
narrower ones do not significantly improve estimation efficiency. This finding may 
have an important implication for the compilation of regional price indices in prac-
tice. A narrow product definition using CPI data usually entails a lot of data preproc-
essing (e.g. Weinand and Auer 2020,  pp.  420–421). Our results indicate that this 
extensive workload can be reduced when the regional volatility of prices within a 
basic heading is taken into account. This is the paper’s fourth contribution.

The remainder of the paper is laid out as follows. Section 2 provides an overview 
of the stochastic approach to index numbers in the context of spatial price compari-
sons at the basic heading level. Section 3 discusses appropriate error term specifica-
tions in the light of empirical studies on spatial price comparisons. Section 4 pre-
sents the theoretical derivations for a specific case of incomplete price data and the 
results of our simulation studies, while Sect. 5 concludes.

2  Stochastic approach to spatial price index numbers

Two central requirements for spatial price comparisons are transitivity and char-
acteristicity of the price index numbers. They are defined in Sect. 2.1, along with 
some other basic concepts. In Sect. 2.2, we derive the CPD and CD methods from 
a stochastic model initially proposed by Summers (1973) and Selvanathan and Rao 
(1992) in the context of spatial price comparisons. Likewise, in Sect. 2.3, we derive 
the GEKS-Jevons method from this model.

2.1  Basic concepts and definitions

Usually, the price levels of more than two regions are compared. A basic require-
ment of such multilateral price comparisons is called transitivity. It postulates that 
Psr , the relative price level between the regions r and s, should be equal to the prod-
uct of the price levels Pst and Ptr , where t is some arbitrary third region that serves 
as a bridge (e.g. Rao and Banerjee 1986, p. 304). Consequently, transitivity ensures 
the internal consistency of some multilateral system of index numbers. A second 
postulate, initially advocated by Drechsler (1973), is denoted as characteristicity. It 
states that the price comparison between two regions r and s should be based exclu-
sively on information relating to these two regions. Both requirements play a central 
role for spatial price comparisons.

Below the basic heading level, neither expenditure weights nor quantity informa-
tion are available. In this case, elementary price indices are used for the aggregation 
of prices into higher-level (or: basic heading) indices. An elementary index number 
formula widely used among statistical offices is the Jevons (1865) index (e.g. OECD 
2018, pp. 8–9). For the regions r and s, it is defined by:
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where pr
i
 is the price of product i in region r and N the number of products.5

The Jevons index outperforms most other elementary index number formulas 
under the axiomatic approach to index numbers and is also (weakly) supported 
under the economic approach (e.g. Diewert 1995, pp. 5–20). In particular, Hill and 
Hill (2009, p. 198) point out that the Jevons index numbers are transitive if prices 
are available for each product and region. Moreover, from (1), it is obvious that each 
index number on its own is characteristic. In practice, however, price information for 
individual products is frequently missing below the basic heading level. Equation 
(1) shows that the Jevons index is only applicable to regionally matched price obser-
vations. Thus, price comparisons between different pairs of regions (e.g. Ṗst vs. Ṗsr ) 
might stem from varying sets of matched prices. Consequently, a multilateral system 
of bilateral Jevons index numbers would still be characteristic, but no longer transi-
tive. Taking into account the trade-off between transitivity and characteristicity, the 
stochastic approach to index numbers offers alternatives to ensure transitivity even 
in the event that prices are missing.

Following the stochastic model advocated by Summers (1973, p. 5) and Selvana-
than and Rao (1992, pp. 338–340), the price ratio of product i for regions r and s 
is defined by the multiplicative relationship of two terms: the general price level 
of region r relative to region s, Psr , and a random component, �rs

i
 . If transitivity is 

assumed, Psr can be written as Pr∕Ps (e.g. Rao and Banerjee 1986, pp. 304–306). 
Hence, the logarithm of this multiplicative relationship can be expressed by

where usr
i
= ln �sr

i
 is assumed to be some normally distributed random variable 

with expected value 0 and variance �2 for all products i = 1, 2,… ,N and regions 
s, r = 1, 2,… ,R.6 In the following, we show that the stochastic model in (2) serves 
as a starting point for the derivation of the CD, the CPD and the GEKS-Jevons 
methods, respectively.

2.2  CPD method and Country–Dummy method

CPD method Taking the sum over all regions s = 1,… ,R in Eq. (2) and rearranging 
leads to

(1)Ṗsr
J
=

N∏
i=1

(
pr
i
∕ps

i

) 1

N ,

(2)ln
(
pr
i
∕ps

i

)
= ln (Pr∕Ps) + usr

i
,

5 In the following, we denote bilateral price index numbers by a dot, e.g. Ṗsr , in order to indicate that the 
price index number is not necessarily transitive in a multilateral context.
6 In order to derive the CCD index (see Caves et al. 1982) under the stochastic approach, Selvanathan 
and Rao (1992, pp. 338–340) assume heteroskedastic disturbances. In the context of intertemporal price 
comparisons, Clements and Izan (1981, pp. 745–746) show that the Divisia index can be derived from 
(2) under plausible specifications of the error term.
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Although the price ps
i
 on the right-hand side of the equation is initially known, 

the price level Ps is not. Therefore, the arithmetic average of the logarithmic price 
to price level ratios, 1

R

∑R

s=1
ln
�
ps
i
∕Ps

�
 , is also unknown. We denote this term by 

ln�i . From an economic point of view, it represents the average deflated price of 
product i. This interpretation reveals similarities to the “international price” of the 
Geary–Khamis method.7 In addition, we define 1

R

∑R

s=1
usr
i
= ur

i
 . Consequently, Eq. 

(3) can be rewritten as

Equation (4) represents the logarithmic form of the CPD method’s underlying model 
(Summers 1973, p. 10). It explains the price of product i in region r, pr

i
 , by region 

r’s general price level Pr and product i’s general value �i . Because ur
i
 is a linear com-

bination of the disturbances usr
i

 in (2), it follows a normal distribution with expected 
value 0. The variance of the disturbances is assumed to be identical among the 
regions and products in the original form of the CPD method.

In order to transform (4) into a standard regression model, we introduce for 
each region t (t = 1,… ,R) the dummy variable regiont and for every product j 
(j = 1,… ,N) the dummy variable productj:

Defining �t = ln (Pt∕k) and �j = ln
(
k ⋅ �j

)
 , with k being some constant, we can 

express Eq. (4) by

Equation (6) can be viewed as a linear regression model, albeit one suffering from 
perfect multicollinearity. Furthermore, we are interested in estimates of the price 
levels Pt . Since �t = ln (Pt∕k) , we first need to specify k. Both problems can be 
simultaneously solved by specifying k in terms of the parameter �t.

If we define region t = 1 (or some other region) as the base region that serves as 
a reference for the price levels of the other regions, that is, k = P1 , it follows that 
�1 = ln

(
P1∕P1

)
= 0 . As a consequence, �1region1 = 0 for all observations. There-

fore, the term �1region1 can be dropped from Eq. (6):

(3)ln pr
i
= lnPr +

1

R

R∑
s=1

ln
(
ps
i
∕Ps

)
+

1

R

R∑
s=1

usr
i
.

(4)ln pr
i
= lnPr + ln�i + ur

i
.

(5)regiont =

{
1 if r = t

0 if r ≠ t
and productj =

{
1 if i = j

0 if i ≠ j
.

(6)

ln pr
i
=

R∑
t=1

�tregiont +

N∑
j=1

�j productj + ur
i

∀ r = 1,… ,R and i = 1,… ,N.

7 Geary (1958) and Khamis (1972) included country and product specific quantities in the definition 
of the international price. If the quantities are identical across countries, the definition simplifies to 
1

R

∑R

s=1
ps
i
∕Ps.
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Perfect multicollinearity is removed. The parameters �t are estimated using ordinary 
least squares (OLS). The corresponding estimator, �̂t , is defined as the logarith-
mic price level relative between region t and the base region. By definition, these 
estimated price levels satisfy the requirement of transitivity (e.g. Rao and Baner-
jee 1986,  pp.  304–306). Alternatively, we could avoid perfect multicollinearity in 
(6) by setting 

∑R

t=1
�t = 0 . Consequently, �̂t would express the logarithmic price 

level of region t relative to the unweighted average price level of all regions. Diew-
ert (2004, pp. 6–8) describes an elegant way of estimating the parameters �t in this 
setting.

Country–Dummy method Alternatively to the approach outlined above, one can 
set in Eq. (2) region s as a fix reference for product i’s price ratios:

where R∗
s
= {r ∈ ℕ

+ | r ≤ R, r ≠ s} . Equation (8) represents the Country–Dummy 
method. It assumes that any product-specific price ratio between two regions r and s 
can be explained by the overall price level relative of these regions. The disturbances 
usr
i

 remain a normally distributed random variable with expected value 0 and vari-
ance �2 . However, as pointed out by Summers (1973, pp. 6 and 10), usr

i
 is not mutu-

ally independent. Instead, usr
i
= usv

i
− urv

i
 applies. From this it follows that 

cov
(
usr
i
, usv

i

)
=

1

2
�2 for regions r ≠ v . If cov

(
usr
i
, usr

j

)
= cov

(
usr
i
, usv

j

)
= 0 for 

products i ≠ j is additionally  assumed, then the disturbances are autocorrelated 
block-wise (see also Online Appendix A.2).

In addition to the dummy variable regiont in (5), we need to define a second 
dummy variable that refers to the price of region s in the price ratio ln

(
pr
i
∕ps

i

)
 . For 

that purpose, we introduce for each region t (t = 1,… ,R) the dummy variable

The two dummy variables, regiont and r̃egiont , are complemented by the additional 
parameter of region t’s logarithmic price level, �t . Defining �t = ln

(
Pt∕P1

)
 , the 

regression model of the CD method can be expressed by

Since �1 = ln
(
P1∕P1

)
= 0 , it follows that �1

(
region1 − r̃egion1

)
 is not included in 

(10). Due to the known autocorrelation structure, the remaining parameters 
�2,… , �R are estimated by generalised least squares (GLS). They indicate the price 
level difference compared to base region t = 1 . Moreover, they are transitive in a 
multilateral context. In comparison to (7), it is worthwhile to note that the lower 

(7)

ln pr
i
=

R∑
t=2

�tregiont +

N∑
j=1

�j productj + ur
i

∀ r = 1,… ,R and i = 1,… ,N.

(8)ln
(
pr
i
∕ps

i

)
= ln (Pr∕Ps) + usr

i
∀ r ∈ R∗

s
and i = 1,… ,N

(9)r̃egiont =

{
1 if s = t

0 if s ≠ t
.

(10)ln
(
pr
i
∕ps

i

)
=

R∑
t=2

�t
(
regiont − r̃egiont

)
+ usr

i
∀ r ∈ R∗

s
and i = 1,… ,N.
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number of model parameters is exactly compensated by a lower number of observa-
tions. As a result, the degrees of freedom in models (7) and (10) are identical.

Subtracting the definition of product i’s price in region r = 1 , 
ln p1

i
= lnP1 + ln�i + u1

i
 , from Equation (4) and rearranging yields the CPD’s 

regional price level with

From (4), it is known that ur
i
=

1

R

∑R

s=1
usr
i

 and u1
i
=

1

R

∑R

s=1
us1
i

 . Consequently, 
ur
i
− u1

i
 can be written as 1

R

∑R

s=1

�
usr
i
− us1

i

�
 . Because usr

i
− us1

i
= u1r

i
 applies, the pre-

vious equation can be rewritten as (8), which defines the CD method’s price level for 
region s = 1 , ln

(
Pr∕P1

)
 . This suggests that the CPD and CD methods are equivalent 

approaches and, therefore, should give equal price level estimates.
In the case of a complete price matrix, the CPD and CD method’s price level esti-

mator, exp
(
�̂t
)
 , is defined as a geometric average of the price ratios between region t 

and the base region (see, for example, Rao and Hajargasht 2016,  pp.  418–419 and 
Online Appendix A for the derivation of this result).8 Consequently, the estimated 
price levels coincide with the Jevons index in (1). Furthermore, it follows that the CPD 
estimator for product j’s general value, �̂j , is defined by 1

R

∑R

t=1
ln
�
pt
j
∕ exp

�
�̂t
��

.9 
This expression is already known from (3). It reveals that the prices of product j are 
deflated by the respective regional price levels.

2.3  GEKS‑Jevons method

Following Hill (2008, p. 3), the general GEKS method is not a price index in the 
proper sense. Strictly speaking, it is a two-stage technique to convert a set of bilat-
eral price index numbers into a multilateral system of transitive index numbers. 
The first stage encompasses the calculation of the bilateral index numbers, Ṗsr , for 
each regional pair r and s. If each Ṗsr is calculated, for example, by (1), it would be 
more precise to speak of the GEKS-Jevons method.10 The bilateral index numbers, 
however, may lack transitivity, with the result that they differ from the multilateral 
index numbers, Psr . For that reason, the second stage incorporates an adjustment 
of the characteristic bilateral into transitive multilateral index numbers. Drechsler 
(1973, p. 28) points out that the GEKS method is designed with the aim of keep-
ing this adjustment as small as possible with respect to the trade-off between char-
acteristicity and transitivity. A mathematical formulation of this optimisation prob-
lem can be found in Hill and Timmer (2006,  pp.  368–369) and Rao and Timmer 
(2003, pp. 497–500).

ln
(
Pr∕P1

)
= ln

(
pr
i
∕p1

i

)
−
(
ur
i
− u1

i

)
.

10 Instead of the Jevons index, other bilateral price index formulas could be used as well. In its origin, 
the GEKS method was constructed based on Fisher indices. Caves et al. (1982, p. 78) propose the use of 
the Törnqvist index. Both indices require quantity information.

8 Kennedy (1981,  p. 801) recommends calculating Pt by exp
(
�̂t − 0.5v̂ar

(
�̂t
))

 instead of exp
(
�̂t
)
 in 

order to reduce the upward bias that would arise from the convex transformation exp
(
�̂t
)
.

9 If the restriction 
∑R

t=1
�t = 0 applies, then �̂j =

1

R

∑R

t=1
ln pt

j
 follows (e.g. Diewert 2004, p. 7).
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In the following, we demonstrate that the multilateral GEKS-Jevons method, like 
the CPD method, can be derived from the stochastic model defined in (2). Taking 
the sum over all products i = 1,… ,N in (2) and rearranging yields

The term on the left-hand side of the equation is the logarithmic form of the 
Jevons index in (1).11 Therefore, we denote it by ln Ṗsr

J
 . In addition, we define 

1

N

∑N

i=1
usr
i
= usr . Consequently, (11) can be rewritten as

This model specification of the GEKS-Jevons method is widely documented (e.g. 
Hill 2016, p. 408). It states that the bilateral Jevons index numbers, ln Ṗsr

J
 , and the 

corresponding transitive index numbers, ln (Pr∕Ps) , differ only with respect to the 
disturbances usr . Since the disturbances usr are a linear combination of usr

i
 in (2), 

they follow a normal distribution with expected value 0. Their variance is assumed 
to be identical.

In order to transform (12) into a standard regression model, we introduce for each 
region t ( t = 1,… ,R ) the two dummy variables regiont and r̃egiont . Their definitions 
can be found in (5) and (9). Defining �t = ln

(
Pt∕P1

)
 , Eq. (12) can be written as

Regression model (13) draws on non-redundant bilateral price index numbers only. 
Because �1 = ln

(
P1∕P1

)
= 0 , it follows that �1

(
region1 − r̃egion1

)
 is not included 

in (13). The remaining parameters �2,… , �R are estimated using OLS. In Online 
Appendix A.3, it is shown that the corresponding estimator, exp

(
�̂t
)
 , is defined by

which is the typical presentation of the GEKS-Jevons method (e.g. ILO et  al. 
2020, p. 446). Moreover, when we insert the definitions of Ṗ1r

J
 and Ṗrt

J
 into (14), it 

simplifies to

(11)1

N

N∑
i=1

ln
(
pr
i
∕ps

i

)
= ln (Pr∕Ps) +

1

N

N∑
i=1

usr
i
.

(12)ln Ṗsr
J
= ln (Pr∕Ps) + usr.

(13)

ln Ṗsr
J
=

R∑
t=2

𝛼t
(
regiont − �regiont

)
+ usr ∀ s = 1,… ,R − 1 and r = s + 1,… ,R.

(14)exp
(
�𝛼t
)
=

R∏
r=1

(
Ṗ1r
J
⋅ Ṗrt

J

) 1

R

exp
(
�𝛼t
)
=

N∏
i=1

(
pt
i
∕p1

i

) 1

N = Ṗ1t
J

11 Rao and Banerjee (1986, p. 306) underline the importance that the bilateral index numbers satisfy the 
country-reversal test. The Jevons index exhibits that property.
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in the case of a complete price matrix. Thus, the estimated price levels of the 
GEKS-Jevons method, exp

(
�̂t
)
 , are defined as ordinary Jevons indices (e.g. Hill 

2016, p. 408). This is due to the fact that the bilateral Jevons index numbers are tran-
sitive when no product prices are missing. As a consequence, no adjustment of the 
bilateral index numbers is necessary.

3  Discussion on the error term specification

In the previous section, it was shown that the stochastic approach to index numbers 
provides point estimates for the price level of some region. The reliability of these 
estimates depends to a high degree on the quality of the collected price data. In par-
ticular, differences in the quality of products, missing prices across regions or selec-
tion bias may lead to distortions in the regional price levels and a loss in representa-
tivity. These “non-stochastic” sources of error are widely discussed in the literature 
(e.g. Balk and Kersten 1986; Kokoski et al. 1999; Silver 2009).

As one of its main advantages over the economic and the test approach, the 
stochastic approach to index numbers provides measures of precision for the esti-
mated price levels (e.g. standard errors, confidence intervals). Even if price level 
estimates are unbiased, the interpretation of these measures relies highly on the 
choice of model specification and the assumptions on the error term.12 Model (2), 
for example, postulates that the price ratio of regions r and s for product i solely 
deviates from the general relative price level by a random error term. This is a sim-
ple but plausible assumption. The assumption that the error term’s variance is iden-
tical among the regions and products, however, is rather restrictive (e.g. Summers 
1973, p. 6). In particular, it is not only restrictive but might be false when it does 
not fit to the underlying empirical data. As a consequence, the measures of precision 
would be biased and, thus, meaningless. In the following, we address the importance 
of appropriate error term specifications in light of empirical studies on spatial price 
comparisons.

Variance of the disturbances The error term in (2) is assumed to be homoskedas-
tic. This assumption, however, might be inappropriate when the price ratios behave 
systematically different among the regions and/or products (e.g. due to pricing poli-
cies that differ among the products). For example, suppose that some basic heading 
consists of two products i and j. Product i is uniformly priced in the regions, while 
product j is not. Following (2), the error terms would be realised by

exp
(
usr
i

)
= Ps∕Pr and exp

(
usr
j

)
= (Ps∕Pr) ⋅

(
pr
j
∕ps

j

)
,

12 Hajargasht and Rao (2010,  pp.  S38–S44) show that the CPD model under different distributional 
assumptions on the error term leads to various multilateral index number methods (e.g. Iklé index, Rao 
system).
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suggesting a higher dispersion of product j’s error term. The assumption of homo-
skedastic rather than heteroskedastic disturbances would be difficult to defend in this 
case.13

Moreover, from a statistical viewpoint, some of the price ratios might be more 
reliable than others. Several researchers have stressed this issue by incorporating 
more plausible specifications on the error term into the CPD and GEKS methods.14 
Rao (2001, pp. 4–8) introduced a weighting concept into the GEKS method where 
the variance of the error term, var(usr) , depends on individual weights, wsr , for the 
underlying bilateral price index numbers. Consequently, with var(usr) = �2∕wsr , it 
is possible to discriminate between different pairs of regions. Within this frame-
work, Rao and Timmer (2003, pp. 498–500) developed and tested various weight-
ing schemes (e.g. weights based on the number of product matches or the economic 
distance of regions) while Hill and Timmer (2006, pp. 370–371) derived standard 
errors as a weighting factor that “penalizes bilateral comparisons where the overlap 
of products is small”. Similarly, Rao (2001, pp. 15–16), Rao (2005, pp. 574–575) 
and Diewert (2005) incorporated weights into the CPD method that reflect the 
importance of a single price observation. In the absence of expenditure share data 
within a basic heading, the ICP uses “importance weights” that distinguish between 
important (weight of 3) and unimportant (weight of 1) price observations (see World 
Bank 2013,  p.  110). In this scenario, the price levels are estimated by weighted 
rather than ordinary least squares.

Covariance of the disturbances among regions The covariance of differ-
ent regions (CPD method) or different pairs of regions (GEKS method) is usu-
ally assumed to be zero, meaning that the error terms are spatially uncorrelated. 
Empirical studies, however, have shown that spatial autocorrelation can be found 
in prices as well as price levels. Aten (1997, 1996) was the first to explore the 
spatial nature in price levels. Using household consumption data for 64 countries 
in 1985, Aten (1996, pp. 160–162) reported for 15 out of 23 product categories 
“significantly spatially autocorrelated residuals”. Rao (2001, pp. 18–20) found for 
seven out of eight highly aggregated product categories, such as food and fur-
niture, significant spatial autocorrelation. These findings have been confirmed 
in more recent studies that used the price data underlying the official CPI. Big-
geri et  al. (2017,  pp.  109–111) computed sub-national price levels on the basis 
of official CPI data for seven basic headings that were collected in Italy in 2014. 
They reported that “an autocorrelation among disturbances was observed for all 
the BHs [basic headings] under analysis even if Moran’s I is quite low in some 
cases.” Similarly, Weinand and Auer (2020,  pp.  428–432) computed a regional 

13 In the context of intertemporal price comparisons, Crompton (2000) and Selvanathan (2003) recom-
mend the use of White’s (1980) heteroskedasticity-consistent covariance matrix. Following Crompton, 
“the exact nature of the error variance is of no concern, and can remain unidentified.”
14 We do not consider the GEKS method proposed by Eurostat-OECD (2012, pp. 243–244) at this point 
because it takes into account additional information on the representativity of some product rather than 
incorporating new specifications on the error term. For the same reason, we omit the CPRD method 
(the “R” stands for the additional representativity dummy variables in the CPD model; see Cuthbert and 
Cuthbert 1988, pp. 55–58) from our discussion.
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price index with price data underlying the German CPI in 2016. They found posi-
tive spatial autocorrelation in the regional price levels which is mainly driven by 
housing and, to a much lesser degree, by services and goods.

The empirical studies show that spatial autocorrelation plays an important 
role in spatial price comparisons. More specifically, from a statistical viewpoint, 
ordinary least squares would no longer provide efficient estimates when the dis-
turbances are spatially autocorrelated. Therefore, various concepts have been 
proposed to address this issue. Rao (2004,  pp.  8–11) reformulated the original 
CPD model into a spatial error model (e.g. Anselin 2003, p. 316). In this mod-
ified version, the disturbances are assumed to be spatially autocorrelated, with 
cov

(
ur
i
, us

i

)
≠ 0 for regions r ≠ s . In contrast, Montero et al. (2020, pp. 519–521) 

propose a spatially-penalised version of the CPD method where a penalty for the 
differences in the price levels of neighbouring regions is included in the CPD 
model. For the GEKS method, Cuthbert (2003, pp. 77–78) recommended on the 
basis of an OECD data set the use of an “idealised“ variance–covariance–matrix 
with constant variances and covariances that are defined by cov(usr, ust) > 0 and 
cov(usr, uut) = 0 for different regions r, s, t and u.

Covariance of the disturbances among products A relatively new field in price 
statistics is the collection of online price data using web scraping techniques. 
Empirical studies show that many online retailers are characterised by uniform 
pricing policies, meaning that the prices on their website do not depend on the 
buyers’ location (e.g. Cavallo 2018,  pp.  15–21). Thus, spatial autocorrelation 
might not play a dominant role in online price data. However, with web scraped 
price data, new issues might arise that affect the error term specification in mul-
tilateral index number methods. More specifically, online prices that are adjusted 
by algorithms in response to competitors’ price changes for the same product or 
for a substitute might lead to correlated disturbances among the products. A sur-
vey of the European Commission (2017, pp. 175–177) on e-commerce strength-
ens this assumption. It revealed that “53% of the respondent retailers track the 
online prices of competitors [...]” while the “majority of those retailers that use 
software to track prices subsequently adjust their own prices to those of their 
competitors (78%)”. Moreover, Chen et  al. (2016,  pp.  1344–1346) found evi-
dence of dynamic pricing in the online marketplaces of Amazon while Calvano 
et al. (2020) and Klein (2018) studied experimentally Q-learning algorithms and 
showed, broadly speaking, that these are able to coordinate on price setting.

The issue of correlated product prices is likely to be of more concern for the CPD 
method rather than for the GEKS method. From (12), it is obvious that the latter 
does not rely on individual product prices. Consequently, possible correlations 
among the prices of products vanish in the calculation of the bilateral index num-
bers. In contrast, for the CPD method, it would imply that cov

(
ur
i
, ur

j

)
≠ 0 for prod-

ucts i ≠ j . Furthermore, taking into account the findings on regionally uniform pric-
ing of online retailers by Cavallo (2018), this might be extended to cov

(
ur
i
, us

j

)
≠ 0 

for products i ≠ j and regions r ≠ s . Lastly, it is worthwhile noting that correlated 
product prices are likely to have more relevance in temporal price comparisons as 
the algorithmic adjustment of prices to those of competitors is more of a temporal 
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rather than a spatial issue. Nevertheless, the considerations may give rise to future 
research in this field.

4  Price level estimates when prices are missing

In Sect. 2, it is shown that the CPD, CD and GEKS-Jevons methods yield identi-
cal price level estimates under suitable assumptions on the error terms and in the 
case of complete price data. Strictly speaking, the price levels are defined by Eq. 
(1) as a Jevons index. It is well known that this equivalence no longer applies when 
prices are missing (e.g. World Bank 2013, p. 108), although there is little knowl-
edge about how price level estimates change. One exception is the work of Ferrari 
et al. (1996). They consider the case where prices for exactly the same products are 
missing in some regions, while prices are fully available in the remaining regions. It 
turns out that the CPD and GEKS-Jevons price level estimators are still defined as 
a geometric average of those price ratios that are commonly available in the regions 
to be compared, though multiplied with a correction term. The correction term is 
weighted differently in both methods.

4.1  Some insights from a specific case of missing prices

In the following, we expand the case considered by Ferrari et  al. (1996). For that 
purpose, we randomly divide the regions into the nonempty and disjoint subsets Rk 
and the products into the disjoint subsets Nk (henceforth, we will refer to region and 
product groups).15 We suppose that our price data consist of two groups of regions 
and products, respectively, that is, k ∈ {1, 2} . Furthermore, we assume that the 
prices of products i ∈ Nk are only available in regions r ∈ Rk . Thus, we have two 
complete, but non-connected blocks of prices (e.g. World Bank 2013, p. 98). Using 
graph-theoretic concepts, Rao (2004, pp. 11–17) shows that the computation of price 
levels with the CPD method, however, requires a connected price data graph.16 This 
is a remarkable result that also applies to the stochastic GEKS approach (e.g. Ferrari 
and Riani 1998, pp. 102–105). Therefore, we introduce an additional, nonempty set 
of products, N0 , whose prices are fully available in all regions. As a consequence, 
our price data are said to be connected since all regions are linked either through 
direct or indirect comparisons of product prices.17 In total, the price data encom-
pass 

∑2

k=1
�Rk� = R regions and 

∑2

k=0
�Nk� = N products, where |Rk| is the number of 

regions and |Nk| the number of products in group k, respectively. The corresponding 

15 The concept of product groups in this context is only a theoretical one and should not be mixed up 
with the classification of similar products into product groups as is the usual practice in official price 
statistics.
16 Using graph-theoretic concepts, Hajargasht and Rao (2019) derive necessary and sufficient conditions 
for the existence and uniqueness of various index number methods.
17 The general form of the price data is the same as in Hajargasht et al. (2019, pp. 105–106, panel e of 
Figure 1), where the authors derive the formula for the estimated variance of the CPD price levels.
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price incidence matrix is sketched in Table 1. For illustration purposes, its entries 
are ordered column-wise by the product group and row-wise by the region group.

We denote the price level estimator of region t compared to some arbitrary base 
region s by P̂st

m
 . The subscript m indicates if the price level stems from the CPD 

or the GEKS-Jevons method. In Online Appendix B, it is shown that the formula 
underlying the price level estimator is given by

where the correction term of product group Nk for regions r and t, �rt
k
 , as well as its 

weighting factor, �m,k , are defined by

for k ∈ {1, 2}.18 The correction term �sr
1

 for regions s and r is defined in the same 
way.

The basic structure of the correction term is obviously the same for the CPD and 
GEKS-Jevons methods. Consequently, the price levels P̂st

CPD
 and P̂st

GEKS-J
 differ only 

(15)

P̂st
m
=

�
i∈N0

�
pt
i

ps
i

� 1

�N0 �
⋅

��
r∈R1

�sr
1

� 1

�m,1

⋅

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
∏
r∈R1

�rt
1

� 1

�m,1

if s, t ∈ R1

�
∏
r∈R2

�rt
2

� 1

�m,2

if s ∈ R1 ∧ t ∈ R2

�rt
k
=

∏
i∈N0∪Nk

(
pt
i
∕pr

i

) 1

|N0 |+|Nk |

∏
i∈N0

(
pt
i
∕pr

i

) 1

|N0 |
and �m,k =

{ |Rk| if m = CPD

R if m = GEKS-J

Table 1  Price incidence matrix of blockwise missing prices, indicating whether a specific price is avail-
able in the data ( = 1 ) or not ( = 0)

18 It is worthwhile to note that we can replicate the results in Ferrari et al. (1996) by setting |Nk| = 0 for 
k = 1 . Technically speaking, we drop products i ∈ N1 from our price data but keep regions r ∈ R1 . Conse-
quently, the prices in regions r ∈ R2 are fully available for all products.
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due to a different weighting of the two correction terms. Since |Rk| < R for all k, the 
CPD method assigns greater weights to the correction terms than the GEKS-Jevons 
method. One could say that the CPD method’s weights are somewhat plutocratic 
(Diewert 1986,  pp.  18–19) because they differ with respect to the regional group 
sizes. In contrast, the correction terms of the GEKS-Jevons method are weighted 
independently of the regional group sizes and, thus, more or less “democratic”.

Equation (15) reveals that the calculation of P̂st
m
 distinguishes between a price 

comparison involving two regions of the same (intragroup comparisons) or of a dif-
ferent regional group (intergroup comparisons). For intragroup comparisons, it actu-
ally simplifies to

The price level solely relies on the prices of the two regions under consideration.19 
Therefore, it is fully characteristic. In contrast, the price levels of intergroup com-
parisons, P̂st

m
 (with s ∈ R1 ∧ t ∈ R2 ), are defined in (15) by a geometric average of 

those prices that are commonly available in regions s and t (first term), multiplied 
with two regional sequences of the correction terms, �sr

1
 and �rt

2
 (second and third 

term). The latter two put the prices of regions s and t in relation to those of other 
regions r in the same regional group. As a result, intragroup comparisons generate 
characteristic price levels, while intergroup comparisons do not.

The GEKS-Jevons price levels are generated such that the overall quadratic devi-
ation to the initial Jevons price levels, Ṗst

J
 , is kept at a minimum (e.g. Rao and Tim-

mer 2003, p. 499; Laureti and Rao 2018, p. 126). Therefore, it would be the natural 
choice to use the GEKS-Jevons method in every situation in order to approximate 
Ṗst
J
 on average as close as possible. Equation (15) shows that this might be appropri-

ate when intergroup comparisons are of relevance, due to the smoother weighting 
of the correction terms, �sr

1
 and �rt

2
 , by the GEKS-Jevons method.20 For intragroup 

comparisons, however, this is not the case. With �CPD,1 = |R1| , the CPD price level 
estimator, P̂st

CPD
 , in (16) simplifies to

and, thus, corresponds to the bilateral Jevons price level of regions s and t, Ṗst
J
 . In 

contrast, the GEKS-Jevons price level estimator, P̂st
GEKS-J

 , equals Ṗst
J
 only if pt

i
= ps

i
 

(16)P̂st
m
=

∏
i∈N0

(
pt
i

ps
i

) 1

|N0 |
⋅

(
�st

1

) |R1 |
�m,1 if s, t ∈ R1.

�Pst
CPD

=
∏

i∈N0∪N1

(
pt
i
∕ps

i

) 1

|N0 |+|N1 | = Ṗst
J

if s, t ∈ R1

20 For intergroup comparisons, the bilateral Jevons price level is defined by Ṗst
J
=
∏

i∈N0

�
pt
i
∕ps

i

� 1

�N0 � . 
When 

∏
r∈R1

𝛬sr
1
≷ 1 and 

∏
r∈R2

𝛬rt
2
≶ 1 , it is technically possible that the CPD price levels approximate 

Ṗst
J
 closer. In Online Appendix C, however, it is shown that the GEKS-Jevons price level estimates are in 

most cases closer to Ṗst
J
 than the corresponding CPD price levels.

19 Similarly, the price level of regions s, t ∈ R2 is obtained by replacing 
(
�st

1

)|R1|∕�m,1 with 
(
�st

2

)|R2|∕�m,2 in 
(16).
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for all products i ∈ N0 ∪ N1 . As a result, it seems that the CPD method assigns a 
higher priority on the “accuracy” of intragroup price levels, while the GEKS-Jevons 
method treats intragroup and intergroup price levels as equally important. This leads 
to the question of how the CPD and GEKS-Jevons price level estimators behave 
in a generalised setting, namely when prices are randomly rather than group-wise 
missing.

4.2  A generalised setting: simulation of artificial price data

In Sect. 2, it was shown that the CPD method as well as the GEKS-Jevons method 
can be derived from the same data generating process (DGP) in Equation (2). In 
the following, we exploit the DGP to create artificial price data that can be used for 
a deeper comparison between the CPD and the GEKS-Jevons price level estima-
tors. Kackar and Harville (1984, p. 860) recommend including a relatively simple 
estimator into the comparison of the error metrics. In our case, the logarithm of the 
Jevons index, �̇�t

J
= ln Ṗ1t

J
 , would be a natural choice that serves as our baseline in the 

following.
We conduct a Monte Carlo analysis with L = 2000 iterations ( l = 1,… , L).21 

We set the number of regions in each iteration to R = 30 in order to receive a con-
stant amount of price level estimates. In each region, there are the same N = 50 
products (i = 1,… ,N) available. The price levels, Pt (t = 2,… ,R) , are drawn 
independently for each region and iteration from a log-normal distribution with 
Pt ∼ LN

(
� = 0, �2 = 0.02

)
 . In addition, we exogenously fix the price level of the 

base region to one, i.e. P1 = 1 . This setting ensures a sufficient fluctuation around 
the base region’s price level, while the maximum price level spread between the 
most expensive and the cheapest region is roughly four. Furthermore, we assume 
that the error term is iid with usr

i
= ln �sr

i
∼ N

(
� = 0, �2 = 0.04

)
 . As a result, we 

obtain L = 2000 data sets with regional price ratios at the product level.
We apply the GEKS-Jevons method to each of these simulated data sets and 

obtain a set of transitive price levels, �̂t
GEKS-J

 . The CPD method, however, requires 
absolute prices rather than price ratios. Therefore, we additionally assume to know 
the price for each product in at least one region. This enables us to compute all of 
the remaining absolute prices, to transform these into a full price matrix and, con-
sequently, to apply the CPD method as well. As a result, we receive the logarith-
mic price level estimators, �̂t

CPD
 and �̂t

GEKS-J
 ( t = 2,… ,R ), that were computed from 

exactly the same price data. Moreover, from the DGP, we also know the “true” loga-
rithmic price levels, �t = ln

(
Pt∕P1

)
 , that were used within the simulation of each 

data set. Thus, we are able to evaluate the performance of the estimators in terms of 
bias and root mean squared error (RMSE):

21 A justification for the simulation setup can be found in Online Appendix D.
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where L = 2000 is the number of simulation runs and m ∈ {CPD, GEKS-J, Jevons}.

We know from Sect. 2 that the CPD and GEKS-Jevons price level estimators, �̂t
CPD

 
and �̂t

GEKS-J
 , coincide when no prices are missing. Moreover, we know that they also 

coincide with the logarithm of the Jevons index, �̇�t
J
 . Consequently, regardless of how 

many simulations we would run, the estimated bias as well as the estimated RMSE 
is the same for these three estimators. However, when prices are missing, it is well 
known that the simple Jevons index no longer generates transitive price levels (e.g. 
ILO et al. 2020, p. 446). In addition, it is shown in Sect. 4.1 that the transitive price 
levels produced by the CPD and GEKS-Jevons methods differ. Therefore, in order to 
evaluate the performance of the price level estimators under these circumstances, we 
incorporate gaps into our simulated price data by dropping prices for certain products 
and regions. The selection of the prices that are removed happens randomly, but is 
restricted to three conditions. First, no matter how many prices are removed, the price 
data must stay connected in order to ensure the feasibility of price level computations. 
Second, for each product, prices are always available in at least two different regions. 
Third, the deletion of prices is path-dependent for a single price data set.22

Table 2 contains the simulation results in terms of bias and RMSE for the three 
estimators. It further illustrates how the two error metrics change when the gaps 
in our artificial price data gradually increase from 0% (no missing prices) to 80% 
(highly fragmented). As can be seen, the estimated bias is roughly zero and, thus, 
indicates that the estimators are unbiased. The estimated RMSE, on the other hand, 
increases for each estimator in reaction to an increased share of gaps in our price 
data. Not surprisingly, it is the highest for the simple Jevons index. The CPD and 
GEKS-Jevons estimators clearly outperform the Jevons index in terms of efficiency.

The simulation setting leading to the results in Table 2 represents the case when 
all regions may exhibit gaps in the price data (including the base region s and the 
comparison region t of some estimated price level, �̂t

m
= ln P̂st

m
 ). Nevertheless, it 

neglects scenarios where either the base region, the comparison region or both of 
them provide full price information, while the other regions do not. Therefore, the 
simulation study is extended to these scenarios.23

As expected, it turns out that the estimated bias is still roughly zero in all scenar-
ios. The simulation results for the RMSE, in contrast, reveal differences between the 
scenarios. These are shown in Fig. 1. The first panel depicts the RMSE that arises 
when both, the base as well as the comparison region, provide full price information, 
while all other regions in the data set may exhibit gaps (scenario I). As can be seen, 
the RMSE of the CPD method and the simple Jevons index coincide.24 Moreover, it 

Bias
(
�̂t
m

)
=

1

L
⋅

L∑
l=1

(
�̂t
m,l

− �t
l

)
and RMSE

(
�̂t
m

)
=

√√√√1

L
⋅

L∑
l=1

(
�̂t
m,l

− �t
l

)2

,

23 The overall simulation results can be found in Online Appendix D.
24 This result traces back to identical price level estimates and, thus, indicates that the CPD price level 
estimator of two regions that provide full price information is defined as a Jevons index.

22 Path dependency in this context means that prices that are already missing remain missing in the 
updated price data when we further increase the number of gaps. Specifically, it ensures that the impact 
of a gradual increase in the number of gaps can be properly evaluated.
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does not change when prices are missing in other regions (represented by the hori-
zontal line). This, in contrast, is not true for the RMSE of the GEKS-Jevons method. 
The second and third panels highlight the case when either the comparison (sce-
nario II) or the base region (scenario III) is the only region that provides full price 
information. Interestingly, both the CPD and GEKS-Jevons estimators perform far 
better when the prices are fully available in the comparison region rather than in the 
base region. Lastly, the fourth panel captures the RMSE values of Table 2 where all 
regions may exhibit gaps (scenario IV).

Overall, Fig. 1 shows that the baseline RMSE of the Jevons index vastly increases 
as soon as prices are missing in at least one of the two regions under consideration 
(see dotted line in panels two to four). Moreover, the RMSE of the CPD price level 
estimator lies slightly below that of the GEKS-Jevons estimator in all four scenarios. 
The change associated with an increased share of missing prices, however, is fairly 
similar. This result is not surprising for two reasons. First, from Equation (15), we 
know that the CPD and GEKS-Jevons price level estimates differ only due to a dif-
ferent weighting of the correction terms. Now, even in this more general setting, the 
estimators �̂t

CPD
 and �̂t

GEKS-J
 are almost perfectly correlated.25 Second, and perhaps 

more importantly, the deletion of prices within the simulation happened randomly, 
with the result that the gaps in our price data are uniformly distributed among the 
regions and products. In practice, however, this is a rather unrealistic situation as 
regions provide price information at varying frequencies. Similarly, specific prod-
ucts are less frequently available across regions than others. Therefore, we adapt our 
simulation study in the next section to a more realistic setting.

4.3  A more realistic setting with official micro price data

The official CPI in Germany is constructed as a stratified, non-random sample.26 
The prices of narrowly defined products are collected on a monthly basis in different 

Table 2  Estimated bias and RMSE by percentage of missing prices for the CPD, GEKS-Jevons and 
Jevons price level estimators, respectively. Calculations on the basis of L = 2000 simulated price data 
sets with R = 30 regions and N = 50 products

Gaps Bias RMSE

CPD GEKS-J Jevons CPD GEKS-J Jevons

0% 0.00025 0.00025 0.00025 0.01942 0.01942 0.01942
25% − 0.00009 −  0.00007 −  0.00022 0.02304 0.02306 0.02608
50% 0.00005 0.00002 −  0.00058 0.02911 0.02948 0.04067
60% 0.00043 0.00051 −  0.00011 0.03315 0.03409 0.05272
70% −  0.00011 −  0.00017 0.00016 0.03954 0.04163 0.07503
80% −  0.00048 −  0.00108 −  0.00601 0.05282 0.05726 0.10775

25 Their correlation does not fall below 0.99, even in cases when 80% of the prices are missing. In con-
trast, the correlation of 

(
�𝛼t
CPD

, �̇�t
J

)
 and 

(
�𝛼t
GEKS-J

, �̇�t
J

)
 drops to nearly 0.84 in each case.

26 Rents are a subcategory of the CPI. In contrast to the prices for goods and services, however, they are 
collected from a stratified random sample since 2016 (Goldhammer 2016, pp. 93–95).
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regions, outlet types (e.g. supermarkets, discount stores) and basic headings (e.g. 
rice, milk). The actual collection of the price data is mainly carried out by the Sta-
tistical Offices of the Federal States (Statistische Landesämter) in selected regions 
of Germany. These data are supplemented by the Federal Statistical Office (Statis-
tisches Bundesamt) which gathers the prices of products that are known to be 
regionally identical (e.g. books and cigarettes) or affected by particularly complex 
pricing policies (e.g. package holidays).

We have the privilege to work with a subset of these CPI data that was provided 
to us by the Research Data Centre (RDC) of the Federal Statistical Office and Sta-
tistical Offices of the Federal States. The price data were collected in R = 19 Bavar-
ian regions in May 2011 (see left panel of Fig. 2). They contain 23,642 consumer 
prices for goods, services and rents that are divided at the lowest classification level 
into 607 basic headings. The basic headings’ expenditure weights add up to 71.79% 
of the German consumption basket.27 Moreover, the data set contains information 
about the region where a price was collected. A unique identifier of the product 
for which that price was observed, however, is missing. Instead, semi-structured 
product descriptions are available (e.g. Behrmann et  al. 2009,  pp.  5–6; Zimmer 
2016, pp. 44–45). These include information about the product’s amount (e.g. the 
weight or quantity), the respective unit of measurement (e.g. litre) and, subject to 
the basic heading, a number of supplementary characteristics like the brand or the 
packaging. In addition, special offer prices and the outlet type where the price was 
observed are indicated.

The collected rents for flats and single-family houses in the data set are accom-
panied by much richer “product descriptions” compared to those for goods and 
services. Therefore, one would typically draw on more sophisticated methods for 

Fig. 1  RMSE (vertical axis) by percentage of missing prices (in %, horizontal axis), index method and 
scenario (four panels). Calculations on the basis of L = 2000 simulated price data sets with R = 30 
regions and N = 50 products

27 The prices collected by the Federal Statistical Office are not included in the data set. They add up, 
together with a small fraction of seasonal products, to the remaining expenditure weight.
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the computation of regional price levels than the simple CPD and GEKS-Jevons 
methods (e.g. more complex hedonic regressions). However, since our simulation 
analysis concentrates on the latter two, we omit the rent data from that analysis. As 
a result, 21,783 price observations in B = 601 basic headings (expenditure weight: 
51.05%) remain. For those basic headings, we rely on the product descriptions to 
define directly comparable products as precisely as possible. The choice of how nar-
rowly we define such a product, however, is left to us and is thus more or less sub-
jective. Therefore, we distinguish the following evaluation of the estimators’ per-
formances by the level of product definition. For price comparisons at the product 
level (a product is defined as narrowly as possible by all available characteristics), 
we identify 1291 unique products that are priced in at least two different regions. 
In contrast, this number reduces to 652 at the outlet level (a product is defined only 
by the outlet type within a basic heading) and to 371 at the basic heading level (no 
product definition; all prices within a basic heading are assumed to be directly com-
parable). Weinand and Auer (2020, pp. 432–433) speak in this context of “simplified 
compilation procedures”, since a definition at the outlet or at the basic heading level 
does not require any prior processing of the product descriptions.

As in the previous section, we perform a Monte Carlo analysis with L = 2000 
iterations ( l = 1, 2,… , L ). This time, however, we do not randomly introduce gaps 
into our price data. Instead, we mimic the underlying structure of the CPI data set, 
i.e., we create artificial basic headings that adopt the observed basic headings’ struc-
ture. In this way, we take into account that the number of collected prices varies by 
region (see right panel of Fig. 2). More specifically, it is positively correlated with 
the population density. Those regions with a relatively low population density do not 
provide prices for each basic heading. As a result, most of the basic headings in the 
data set are incomplete.

Fig. 2  Bavarian regions where prices were collected in 2011 (left panel, grey shaded areas) and relation-
ship between population density and number of collected prices across those regions (right panel, loga-
rithmic scale). Source RDC of the Federal Statistical Office and Statistical Offices of the Federal States, 
Consumer Price Index, May 2011, own calculations
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Our simulation strategy is as follows. First, we randomly choose one of Euro-
stat’s main HICP special aggregates.28 Second, within the aggregate, we randomly 
select N = 10 specific products from the original CPI data set without replacement. 
This setting ensures that unprocessed food, say, is not mixed up with services. Third, 
we add to these products the corresponding regions that originally collected prices. 
Consequently, we receive a new composition of products and regions. The regional 
distribution of available product prices, however, is adopted from the original price 
data. Lastly, we add artificial prices. For this purpose, we sample independently for 
each iteration the true regional price levels, Pt (t = 1,… ,R) , and error terms, usr

i
 , in 

line with the DGP in (2):

In this way, we generate L = 2000 data sets. On average, 66.7% of the prices are 
missing within these data sets. The distribution of available prices across the regions 
is highly correlated with that of the original CPI data (� = 0.78) . We apply the CPD, 
the GEKS-Jevons and the simple Jevons estimators to each of these data sets. Their 
performance in terms of bias and RMSE is documented in Table 3.

The simulation results show how the regional price level estimators perform on 
“real world data”. Moreover, they demonstrate the relevance of the product defini-
tion level for the estimation efficiency. As can be seen, the estimated bias and RMSE 
are the same for the three estimators when there is no product differentiation within 
a basic heading (see line “Basic heading level”). Otherwise, with a product differen-
tiation, the RMSEs differ. Strictly speaking, they slightly decrease for product defi-
nitions at the outlet level and considerably at the much narrower product level. In 
both cases, the RMSE is the lowest for the CPD method.

Lastly, it is worthwhile to note that the RMSE comparison between the different 
levels of product definition also depends on the regional volatility of prices, that 
is, how much the prices of some product fluctuate across the regions. Unsurpris-
ingly, when we lowered the regional volatility of the prices in our simulation study, 
the RMSE values dropped to roughly 0.22, including for product definitions at the 
outlet and basic heading level.29 As a consequence, in future work with official CPI 
data, one could rely on product definitions at the outlet level for those basic headings 
with low regional price fluctuations. In contrast, for those basic headings with high 
regional price fluctuations, the estimation efficiency clearly benefits from a narrow 
product definition. This mixed strategy would heavily reduce the costly data pre-
processing reported by Weinand and Auer (2020, pp. 420–421).

Pt ∼ LN
(
� = 0, �2 = 0.02

)
and usr

i
= ln �sr

i
∼ N

(
� = 0, �2 = 0.04

)
.

28 The likelihood of choosing either (1) processed food, alcohol and tobacco, (2) unprocessed food, (3) 
energy, (4) non-energy industrial goods or (5) services depends on the relative frequency of these aggre-
gates in the underlying CPI data.
29 One could imagine a basic heading with identical product prices in all regions. Independent of the 
level of product definition, the regional price level estimates would be the same.
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5  Concluding remarks

The main goal of this paper was to extend the theoretical foundations of the stochas-
tic approach to index numbers in light of spatial price comparisons. To this end, we 
examined the most prominent representatives of the stochastic approach: the CPD 
method and the GEKS(-Jevons) method. In particular, we analysed the impact of 
missing prices below the basic heading on the estimation of regional price levels. 
For a specific case of missing prices, we derived the formula underlying the price 
level estimates and showed that differences between the CPD and GEKS-Jevons 
methods stem solely from the assignment of a different weighting pattern. Moreo-
ver, using simulation techniques, we studied the statistical properties of the CPD 
and GEKS-Jevons price level estimators in terms of bias and RMSE. Our results 
reveal lower RMSE values for the CPD method in four tested scenarios. For spatial 
price comparisons, it is worthwhile keeping in mind that the estimation efficiency 
improves, especially in cases where the comparison region provides complete prices.

Notwithstanding these differences, our results demonstrate that the regional price 
level estimates of the CPD and the GEKS-Jevons methods are closely related. There-
fore, we do not want to speak generally in favour of one of the two methods. How-
ever, two thoughts are worth mentioning. First, from a practical point of view, sta-
tistical offices collect absolute prices rather than price ratios or price index numbers. 
These price data form the building blocks for CPI measurement purposes and would 
be a unique data source for the calculation of regional price levels as well. The appli-
cation of standard regression techniques to these raw data (CPD method), therefore, 
seems more straightforward than first converting prices into bilateral index numbers 
(general GEKS approach). In addition, the regression approach underlying the CPD 
method allows for extensions in the sense of more careful quality adjustments, for 
example, by including additional product characteristics (e.g. Balk 2008,  p.  258). 
Second, from a statistical point of view, we showed in Sect. 4 that the estimation 
efficiency of the CPD method outperforms that of the GEKS-Jevons method, espe-
cially in the case of substantial gaps in the price data. This result strengthens the 
application of the CPD method below the basic heading level where data gaps are 
frequently an issue.

In our second simulation study, we used a subset of the price data underlying Ger-
many’s CPI. These price data come with precise but relatively unstructured product 
descriptions. The importance of these product descriptions for spatial price com-
parisons is widely documented in the literature (e.g. ILO et al. 2020, p. 68; World 
Bank 2013, p. 590), as they enable price statisticians to identify directly compara-
ble products as precisely as possible. Utilising the product descriptions would be 
a natural choice for statistical offices to compare only like with like across regions 
and thereby avoid any distortions in their estimates of regional price levels. How-
ever, one drawback that statistical offices would face is the extensive preprocessing 
of the product descriptions. Our findings have practical relevance for two reasons as 
they address both issues and may therefore serve as guidance for statistical offices 
carrying out spatial price comparisons. First, our simulation results underline the 
importance of the product definition for the estimation efficiency. In particular, they 
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show an improvement in the estimation efficiency owing to more narrowly defined 
products, though this is usually accompanied by more gaps in the price data. Sec-
ond, our simulation results reveal that statistical offices may reduce the workload 
associated with preprocessing the product descriptions by following a mixed strat-
egy that takes into account the regional price volatilities of the basic headings.30 For 
those basic headings with a low regional price volatility, statistical offices could rely 
on looser product definitions, such as the outlet level, which do not require any data 
preprocessing.

We conclude with two points that are worth mentioning but beyond the focus of 
this paper. First of all, Hajargasht and Rao (2019) recently examined the theory on 
multilateral index numbers in light of graph theory. Although they do not explic-
itly mention the CPD and GEKS-Jevons methods, their derivations might be rel-
evant to our setting as well. Basically, not only does the percentage of missing prices 
directly influence the efficiency of the price level estimates, the manner in which 
the prices and thus the gaps within the collected data are distributed among the 
regions (“degree of connectedness”) is also relevant. This consideration may give 
rise to future research. Second, with respect to simulation studies, greater attention 
in future work could be focused towards different patterns in the price data (e.g. 
spatially correlated prices). Also, the adoption of various extensions of multilat-
eral index number methods into the simulation framework would be valuable. This 
particularly applies to the weighted CPD and GEKS-Jevons methods as well as the 
variants used in the last ICP rounds in 2011 and 2017 at the basic heading level.31

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10182- 021- 00409-5.

Table 3  Simulation results in terms of bias and RMSE for the CPD, GEKS-Jevons and Jevons price level 
estimators, respectively. Calculations on the basis of L = 2000 incomplete price data sets with N = 10 
products

Product definition Bias RMSE

CPD GEKS-J Jevons CPD GEKS-J Jevons

Product level 0.00044 0.00115 −  0.00049 0.22680 0.23971 0.24453
Outlet level −  0.00395 −  0.00239 −  0.00271 0.28745 0.29268 0.29479
Basic head. level −  0.00387 −  0.00387 −  0.00387 0.29566 0.29566 0.29566

30 Expert judgement of price statisticians on specific basic headings could be used as well.
31 As mentioned earlier, the ICP’s CPD variant requires importance weights, while the GEKS-Jevons 
variant uses information on the representativity of a product. Importance and representativity are similar 
but not identical concepts. A straightforward comparison to the GEKS-Jevons variant, for example, could 
be achieved by considering the CPRD method (Cuthbert and Cuthbert 1988, pp. 55–58) which also relies 
on representativity but is not in use since the 2005 ICP round. As both information were not available 
to us, we focused our analyses in the present paper on the unweighted CPD and GEKS-Jevons methods.

https://doi.org/10.1007/s10182-021-00409-5
https://doi.org/10.1007/s10182-021-00409-5
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