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Scientifi c basis for the effi cacy of combined use of antirheumatic drugs 
against bone destruction in rheumatoid arthritis

Abstract Finding a means to ameliorate and prevent bone 
destruction is one of the urgent issues in the treatment 
of rheumatoid arthritis. Recent studies revealed bone-
resorbing osteoclasts to be essential for arthritic bone de-
struction, but to date there has been scarce experimental 
evidence for the underlying mechanism of the bone-
protective effect of antirheumatic drugs. Here we examined 
the effects of one or a combination of disease-modifying 
antirheumatic drugs (DMARDs) on osteoclast differentia-
tion to provide a cellular and molecular basis for their effi -
cacy against bone destruction. The effects on osteoclast 
precursor cells and osteoclastogenesis-supporting cells were 
distinguished by two in vitro osteoclast culture systems. 
Methotrexate (MTX), bucillamine (Buc) and salazosulpha-
pyridine (SASP) inhibited osteoclastogenesis by acting on 
osteoclast precursor cells and interfering with receptor ac-
tivator of NF-κB ligand (RANKL)-mediated induction of 
the nuclear factor of activated T cells (NFAT) c1. MTX and 
SASP also suppressed RANKL expression on osteoclasto-
genesis-supporting mesenchymal cells. Interestingly, the 
combination of three antirheumatic drugs exerted a marked 
inhibitory effect on osteoclastogenesis even at a low dose 
at which there was much less of an effect when administered 
individually. These results are consistent with the reported 
effi cacy of combined DMARDs therapy in humans and 

suggest that osteoclast culture systems are useful tools to 
provide an experimental basis for the bone-protective ef-
fects of antirheumatic drugs.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease char-
acterized by the chronic infl ammation of synovial joints 
which results in severe bone destruction.1,2 A number of 
anti-infl ammatory and antirheumatic drugs have been clini-
cally utilized in the treatment of RA, but there is no method 
to prevent bone destruction completely.3,4 This is partly be-
cause all the antirheumatic drugs were originally developed 
to suppress the activation of the immune system.5 However, 
a combined use of disease-modifying antirheumatic drugs 
(DMARDs) has considerably contributed to the ameliora-
tion of both infl ammation and bone destruction, although 
the effects are still not fully satisfactory.6–8 It is poorly un-
derstood how the antirheumatic drugs exert their bone-
protective effects, and it has thus been extremely diffi cult 
to predict the effi cacy of antirheumatic drugs against bone 
destruction based on in vitro experiments.

Osteoclasts are multinucleated cells of monocyte/
macrophage lineage that resorb bone matrix.9,10 The gen-
eration of osteoclasts is supported by mesenchymal cells 
such as osteoblasts, which provide signals essential for dif-
ferentiation.11 These signals are mediated by macrophage 
colony-stimulating factor (M-CSF), receptor activator of 
NF-κB ligand (RANKL), and costimulatory signals for 
RANKL.12–16 For the evaluation of osteoclast formation, 
two types of in vitro osteoclast differentiation systems have 
been developed: osteoclast precursor cells, bone marrow-
derived monocyte/macrophage lineage cells (BMMs), which 
are stimulated with recombinant RANKL and M-CSF (the 
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RANKL/M-CSF system, Fig. 1a), or are cocultured with 
osteoblasts in the presence of 1,25-(OH)2 vitamin D3 (VitD3) 
and prostaglandin E2 (PGE2) (the coculture system, Fig. 
2a). The RANKL/M-CSF system is suitable for looking at 
the direct effect of drugs on the osteoclast precursor cells 
and RANKL-induced signaling events.17,18 The coculture 
system is useful in the investigation of the effect of drugs 
on the osteoclastogenesis-supporting cells and the expres-
sion of osteoclastogenic factors such as RANKL.19

Osteoclasts are abundantly observed at the bone/synovi-
um interface in the joints of RA patients.2,20,21 RANKL is 
highly expressed by synovial fi broblasts in arthritic joints 
and is responsible for the abnormal activation of osteo-
clasts.22,23 Importantly, arthritic bone destruction is greatly 
reduced in RANKL−/− mice or Fos−/− mice, both of which 
lack osteoclasts, even though there is no signifi cant differ-
ence in the level of infl ammation between the wild type and 
these genetically modifi ed mice.24,25 Consistent with this, 
anti-osteoclast therapy has successfully ameliorated bone 
damage in models of infl ammatory bone destruction.26–28 
Thus, accumulating evidence indicates that bone destruc-
tion in RA is attributable to the abnormal activation of 
osteoclasts and that inhibition of RANKL-mediated osteo-
clastogenesis may be an ideal method to control arthritic 
bone destruction.1,3,12

Methotrexate (MTX), a folate antagonist, is an antirheu-
matic drug widely used in the world, often in combination 
with other drugs such as salazosulphapyridine (SASP).6,7,29 
Bucillamine (Buc), N-(2-mercapto-2-methylpropionyl)-l-
cysteine, is used clinically in Japan and Korea to treat 
patients with RA.30–32 Buc has structural similarities to 
d-penicillamine, but contains two free sulfhydryl groups, 
resulting in molecular and therapeutic effects signifi cantly 
different from d-penicillamine.32 Here we examined the ef-
fect of MTX, Buc and SASP on the osteoclast differentia-
tion using two mouse in vitro osteoclast formation systems 
and found that the three drugs exerted inhibitory effects on 
osteoclastogenesis by differentially acting on osteoclast pre-
cursor and osteoclastogenesis-supporting cells. Even though 
the effect of a low dose of the drugs administered individu-
ally was small, in combination they had a marked inhibitory 
effect on osteoclastogenesis through a downregulation of 
nuclear factor of activated T cells (NFAT) c1 induction. 
Thus, the analysis of the effect of antirheumatic drugs on in 
vitro osteoclast differentiation may provide a crucial clue 
on their capacity to protect against bone destruction.

Fig. 1. Effects of methotrexate (MTX), bucillamine (Buc) and salazo-
sulphapyridine (SASP) on receptor activator of NF-κB ligand 
(RANKL)-induced osteoclastogenesis. a A schematic of the osteoclast 
formation system induced by RANKL and macrophage-colony stimu-
lating factor (M-CSF) (the RANKL/M-CSF system). b Effects of 
MTX, Buc, and SASP on the cell number of osteoclast precursor cells. 
Bone marrow-derived monocyte/macrophage lineage cells (BMMs) 
were treated with MTX, Buc, or SASP in the presence of M-CSF. Four 
days later, the number of osteoclast precursor cells was estimated micro-
scopically. c Effect of MTX, Buc, or SASP on osteoclastogenesis in the 
RANKL/M-CSF system. d Microscopic photographs of RANKL-
induced osteoclastogenesis in the presence of MTX, Buc or SASP 
(TRAP staining). e Expression of NFATc1 protein in RANKL-
stimulated BMMs treated with MTX (10 nM), Buc (100 µM) or SASP 
(60 µM)
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Materials and methods

The RANKL/M-CSF system for in vitro osteoclast 
formation

The method of the RANKL/M-CSF system for osteoclas-
togenesis was described previously,17,33 and is here utilized 
with modifi cations (see Fig. 1a). Nonadherent bone marrow 
cells (BMCs) were obtained from C57BL/6 mice (6- to 8-
week-old) (CLEA Japan, Tokyo, Japan) maintained under 
specifi c pathogen-free conditions. All animal experiments 
were performed with the approval of the Animal Study 
Committee of Tokyo Medical and Dental University, and 
conformed to recognized guidelines and laws. BMCs were 
seeded (2 × 105 per well in a 24-well plate), and cultured in 
α-MEM (Gibco, Paisly, UK) containing 10% fetal bovine 
serum (FBS; Sigma, St. Louis, MO, USA), 0.1 µg/ml ampi-
cillin, 0.1 mg/ml kanamycin (Meiji Seika, Tokyo, Japan) and 
10 ng/ml recombinant M-CSF (R&D Systems, Minneapolis, 
MN, USA) for 2 days. Adherent cells were used as BMMs 
after washing out the nonadherent cells including lympho-
cytes. These BMMs were stimulated with 50 ng/ml recom-
binant RANKL (PeproTech, Rocky Hill, NJ, USA) in the 
presence of 10 ng/ml M-CSF for additional 3 days. The 
treatment of BMMs with MTX, Buc or SASP (Santen Phar-
maceutical, Tokyo, Japan) started 1 day before RANKL 
treatment and continued until the end of the culture. The 
medium was replaced completely every 2 days. Tartrate-
resistant acid phosphatase-positive multinucleated cells 
(TRAP+ MNCs) (>3 nuclei unless otherwise indicated) were 
counted.

The coculture system for in vitro osteoclast formation

The method of coculture system for osteoclastogenesis was 
described previously,14,34 and utilized with modifi cations 
(see Fig. 2a). Primary osteoblasts were isolated from the 
calvaria of newborn (1–2 days old) mice by enzymatic diges-
tion in α-MEM medium with 0.1% collagenase (Wako, 
Osaka, Japan) and 0.2% dispase (Sanko Junyaku, Tokyo, 
Japan) and cultured in α-MEM with 10% FBS. One day 
after these osteoblasts were reseeded (1 × 104 per well in a 
24-well plate), BMCs (1 × 105 per well in a 24-well plate) 
were added to the culture of osteoblasts and cocultured in 
α-MEM with 10% FBS containing 1 × 10−8 M VitD3 and 1 
× 10−6 M PGE2 (Wako) for 7 days. One day after BMCs were 
added, MTX, Buc or SASP was added to the coculture. 
TRAP+ MNCs (>3 nuclei) were counted 7 days after addi-
tion of BMC.

Immunofl uorescence staining

Cells were fi xed in 4% paraformaldehyde/phosphate buff-
ered saline (PBS) for 20 min, and treated with 0.2% Triton 
X-100 for 5 min. The cells were sequentially incubated in 
5% bovine serum albumin/PBS for 30 min, 2 µg/ml anti-
NFATc1 monoclonal antibody (7A6, Santa Cruz Biotech-

Fig. 2. Effect of methotrexate (MTX), bucillamine (Buc) and salazo-
sulphapyridine (SASP) on osteoclastogenesis in the coculture system. 
a A schematic of the coculture system for osteoclastogenesis. BMCs, 
bone marrow cells; VitD3, 1,25-(OH)2 vitamin D3; PGE2, prostaglandin 
E2. b Effects of MTX, Buc or SASP on osteoclastogenesis in the cocul-
ture system. c Microscopic photographs of osteoclastogenesis in the 
coculture in the presence of MTX, Buc, or SASP (TRAP staining). d 
Expression of RANKL mRNA in osteoblasts stimulated with Buc or 
SASP evaluated by reverse transcriptase-polymerase chain reaction 
(RT-PCR). Mouse primary osteoblasts were stimulated with VitD3 in 
the presence of Buc or SASP for 4 days. RT-PCR analysis was repeated 
several times and yielded similar results; a representative set of data is 
shown
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nology, Santa Cruz, CA, USA) for 60 min and then in Alexa 
Fluor 488-labeled secondary antibody (Molecular Probes, 
Eugene, OR, USA) for 60 min. The relative expression of 
NFATc1 was calculated by computational densitometry 
using NIH Image software.

RNA extraction and reverse transcriptase-polymerase 
chain reaction analysis

Osteoblasts isolated from mouse calvaria were reseeded (1 
× 107 per well in a 10-cm dish), and cultured in α-MEM with 
10% FBS containing 1 × 10−8 M VitD3 in the presence of Buc 
(0–130 µM) or SASP (0–75 µM) for 4 days. Total RNA was 
extracted using ISOGEN (Nippon Gene, Tokyo, Japan) 
and fi rst-strand complementary DNA (cDNA) was synthe-
sized from total RNA using the One-Step RNA PCR kit 
(Takara Bio, Shiga, Japan) according to the manufacturer’s 
protocol. The primers used for the mouse RANKL were 
the following: 5′-TCAGAAGACAGCACTCAGTG-3′ 
(sense) and 5′-TCTTCACCAGCTCGGAGCTT-3′ (anti-
sense). The amplifi cation protocol consisted of an initial 
denaturation at 94°C for 2 min, followed by 40 cycles of 
denaturation at 94°C for 30 s, annealing at 55°C for 30 s, and 
extension at 72°C for 90 s. The level of mRNA expression 
was normalized with that of GAPDH expression. The PCR 
products were subjected to electrophoresis on 1.5% agarose 
gels and stained with ethidium bromide, and the bands were 
measured by computational densitometry using NIH Image 
software.

Statistical analysis

All data are expressed as mean ± s.e.m (n = 5). Statistical 
analysis was performed using Student’s t-test or ANOVA 
followed by the Bonferroni test, if applicable (*P < 0.05, 
**P < 0.01, ***P < 0.001, unless otherwise indicated). Re-
sults are representative examples of three or more indepen-
dent experiments.

Results

The effect of antirheumatic drugs such as MTX and SASP 
on osteoclast formation have been described in previous 
reports.35 However, these drugs have cell toxicity at high 
doses and it has been unclear whether the effects of these 
drugs have been investigated properly at concentrations 
that do not induce cell toxicity. Therefore, we fi rst exam-
ined the effect of MTX, Buc, and SASP on the survival of 
osteoclast precursor cells, BMMs. BMMs were obtained by 
stimulating mouse BMCs with M-CSF, and the cell number 
of BMMs was counted after 4-day culture in the presence 
of various concentrations of MTX, Buc and SASP. All of 
these drugs had no effect on the cell number of BMMs at 
low concentrations, suggesting that they did not affect cell 
survival or proliferation. In contrast, they had severe toxic 
effects at high concentrations (Fig. 1b). Therefore, we used 

concentrations of the drugs (MTX: 0.1–10 nM, Buc: 1–
100 µM, SASP: 3–60 µM) at which they exerted minimal ef-
fects on the cell number of BMMs. When these drugs were 
added to the RANKL/M-CSF system at these concentra-
tions (Fig. 1a), all three drugs had statistically signifi cant but 
mild suppressive effects on osteoclast differentiation in a 
dose-dependent manner, as revealed by the decreased for-
mation of TRAP+ MNCs (Fig. 1c, d).

NFATc1 is the essential transcription factor for osteo-
clastogenesis.17,36 It has been shown that RANKL dramati-
cally induces the expression of NFATc1 through an 
autoamplifi cation mechanism and the level of NFATc1 de-
termines the fate of cells of the osteoclast lineage.36 Certain 
antirheumatic drugs that have bone-protective effects in-
hibit osteoclastogenesis by suppressing RANKL-induced 
NFATc1 expression.17,20 To analyze the effects of the three 
antirheumatic drugs on the expression of NFATc1, we 
quantitated the protein level of NFATc1 in the RANKL-
stimulated BMMs after immunostaining with a specifi c 
antibody against NFATc1. All three drugs had similar in-
hibitory effects on NFATc1 induction, although the effects 
were only partial (Fig. 1e). These results suggest that the 
drugs inhibited osteoclast differentiation by interfering with 
RANKL singling pathways upstream of NFATc1 
induction.

We next examined the effects of MTX, Buc, and SASP 
on osteoclast differentiation in the coculture system with 
osteoblasts. In the coculture system, VitD3 and PGE2 are 
used to induce RANKL expression on the osteoblasts, and 
this system is useful in analyzing the effects of drugs on 
mesenchymal cells such as osteoblasts and synovial fi bro-
blasts in addition to osteoclast precursor cells.22,35 The same 
concentrations of MTX, Buc and SASP as in Fig. 1c were 
added to the coculture system (Fig. 2a). At these concentra-
tions, there were no toxic effects of these drugs on the os-
teoblasts (data not shown). MTX and SASP exhibited 
greater inhibitory effects on the formation of TRAP+ MNCs 
than in the RANLK/M-CSF system (Fig. 2b), suggesting 
that MTX and SASP exert anti-osteoclastogenic effects ad-
ditionally through their effects on mesenchymal cells. In 
contrast, the inhibitory effects of Buc on the formation of 
TRAP+ MNCs in the coculture system is similar to those in 
the RANKL/M-CSF system (Fig. 2b), suggesting that Buc 
mainly acts on osteoclast precursor cells to inhibit osteoclas-
togenesis. The photographs of TRAP+ MNCs cultured in 
the presence of these drugs indicate that the size of the 
TRAP+ MNCs was smaller than the non-treated cells and 
the number of nuclei per multinucleated cell was decreased 
in cells treated with the three drugs (Fig. 2c).

Consistent with the additional inhibitory effects of SASP 
and MTX on the coculture system in comparison with the 
RANKL/M-CSF system, it has been reported that both 
SASP and MTX have an inhibitory effect on RANKL 
expression in synovial cells.35 However, it remains un-
known how Buc acts on the expression of RANKL on the 
osteoclastogenesis-supporting cells. Therefore, we evaluat-
ed mRNA expression of RANKL in the osteoblasts stimu-
lated with VitD3 and PGE2 in the presence of Buc in 
comparison with SASP. As expected, SASP strongly inhib-
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ited the mRNA expression of RANKL on osteoblasts, but 
Buc had only minimal effects on RANKL expression (Fig. 
2d). This result further supports the notion that Buc mainly 
targets osteoclast precursor cells in terms of its inhibitory 
effect on osteoclastogenesis. Thus, antirheumatic drugs af-
fect osteoclastogenesis through different target cells.

To gain mechanistic insight into the effi cacy obtained 
with the combined use of antirheumatic drugs in the treat-
ment of RA, we evaluated the effects of a combination of 
MTX, Buc and SASP on osteoclast differentiation in the 
RANKL/M-CSF system. The addition of a low dose of 
MTX alone had a limited suppressive effect on osteoclasto-
genesis, but a combined addition with Buc or SASP in-
creased the inhibitory effects (Fig. 3a, b). The combined 
use of all three drugs had a marked inhibitory effect on 
osteoclastogenesis, even though the addition of individual 
drugs at the same concentration had only a slight effect (Fig. 
3a, b).

In addition, we quantitated the protein level of NFATc1 
in the RANKL-stimulated BMMs after immunostaining, 
and this revealed that RANKL-induced NFATc1 expres-
sion was signifi cantly inhibited by treatment with a combi-
nation of the three drugs (Fig. 3c), although treatment with 
individual drugs at the same concentration had only a small 
effect on NFATc1 expression (Fig. 1e). Interestingly, the 
photograph of TRAP+ MNCs showed that the multinucle-
ation was severely impaired in the cells treated with a 
combination of the three drugs (Fig. 3b). Therefore, we in-
vestigated the number of TRAP+ MNCs containing more 
than 20 nuclei. We found that the number of such large os-
teoclasts was dramatically suppressed by the combined ad-
dition of the three antirheumatic drugs (Fig. 3d). It is worth 
noting that even a very low dose of MTX (0.1 nM) in com-
bination with Buc and SASP exerted a much more suppres-
sive effect than an addition of the same concentration of 
MTX alone (Fig. 3d). These results suggest that the com-
bination with other antirheumatic drugs contributes 
to the enhancement of the inhibitory effect of MTX in 
terms of differentiation into large osteoclasts with numer-
ous nuclei.

Discussion

It has long been a challenging question as to how abnor-
malities of the immune system induce bone damage in 
RA.1,2,37 Although the observation of giant cells at the bone 
destruction site dates back to about two decades ago,38 os-
teoclasts have not been placed at the center of the patho-
genesis of RA. After RANKL was cloned and the high 
RANKL expression in the synovium was brought to light, 
the importance of bone-resorbing osteoclasts gained gen-
eral acceptance.3,12 RANKL is abundantly expressed by RA 
synovial fi broblasts, possibly due to stimulation with proin-
fl ammatory cytokines.18,22,39 In addition, RANKL is ex-
pressed in activated T cells,27 although the effects of T cells 
on osteoclastogenesis are counterbalanced by negative fac-
tors such as IFN-γ.33

Fig. 3. Effects of methotrexate (MTX) alone or with the combined 
addition of bucillamine (Buc) and/or salazosulphapyridine (SASP) on 
osteoclastogenesis in the RANKL/M-CSF system. a Effects of MTX 
alone or MTX plus Buc (10 µM) and/or SASP (30 µM) on RANKL-
induced osteoclastogenesis. §§P < 0.05, §§§P < 0.001 versus untreated 
BMMs. *P < 0.05, **P < 0.01, ***P < 0.001 versus MTX-treated BMMs. 
#P < 0.01 versus MTX/Buc-treated BMMs. †P < 0.05 versus MTX/
SASP-treated BMMs. b Microscopic photographs of RANKL-induced 
osteoclastogenesis in cells treated with MTX alone or MTX plus Buc 
and/or SASP (TRAP staining). c Expression of NFATc1 protein in 
RANKL-stimulated BMMs treated with a combination of MTX 
(10 nM), Buc (10 µM) and SASP (30 µM). d Effect of the combined 
addition of MTX, Buc, and SASP on the formation of TRAP+ MNCs 
containing more than 20 nuclei. Statistical analysis was performed in 
comparison with MTX-treated cells

How is T cell activation linked to the enhanced expres-
sion of RANKL in RA? A recent study in our laboratory 
revealed that interleukin (IL)-17-producing helper T (Th) 
17 cells play a distinct role in the pathogenesis of auto-
immune arthritis and promote osteoclastogenesis, mostly 
through the production of IL-17.37 As summarized in Fig. 4, 
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IL-17 induces RANKL on mesenchymal cells (synovial fi -
broblasts/osteoblasts) and also stimulates local infl amma-
tion by inducing proinfl ammatory cytokines such as IL-1 
and TNF-α, which in turn induces RANKL expression on 
mesenchymal cells.3,40 RANKL then acts on osteoclast pre-
cursor cells of monocyte/macrophage lineage and stimu-
lates osteoclast differentiation via the induction of 
NFATc1.17,36

This study demonstrates the mechanisms underlying the 
bone-protective effects of antirheumatic drugs (summa-
rized in Fig. 4): MTX, Buc, and SASP had a suppressive 
effect on osteoclast differentiation by acting on osteoclast 
precursor cells and inhibiting RANKL-mediated expres-
sion of NFATc1 on the one hand. On the other hand, MTX 
and SASP had inhibitory effects on the RANKL expression 
in mesenchymal cells. It has been reported that MTX, Buc, 
and SASP inhibit the activation of T cells and infl ammatory 
responses of synovial cells (which is also indicated in Fig. 
4).29,41–43 This may explain the anti-infl ammatory effects of 
these drugs, but does not provide insight into how these 
drugs are related to the regulation of bone cells, which ques-
tion we addressed experimentally in this study.

In keeping with the observation that the administration 
of these drugs individually has only limited clinical effi cacy 
against bone destruction,3,44 they have only a small inhibi-
tory effect on osteoclast differentiation. However, such in 
vitro inhibitory effects is enhanced if the drugs are admin-
istered in combination. This is consistent with the effi cacy 
of combined DMARDs therapy in comparison with the 
treatment with a single DMARD.6,7,31 It was recently re-
ported that the combination of MTX and Buc has more 
benefi cial effects than MTX alone in treating RA patients.45 

It is likely that a combination of antirheumatic drugs that 
inhibit osteoclastogenesis through different mechanisms 
will be helpful in ameliorating or preventing bone destruc-
tion in RA.

There are a number of drugs available for the treatment 
for RA, but most of them were developed to modulate im-
mune reactions.1,5 Therefore, antirheumatic drugs, effective 
in treating pain and infl ammation, do not always have bone-
protective effects: patients still fairly frequently have to 
undergo joint replacement surgery because of the progres-
sive bone damage that develops despite treatment with an-
tirheumatic drugs.3,46 This study provides a benefi cial method 
to screen antirheumatic drugs for their effi cacy against bone 
destruction. Despite the remarkable impact of anti-
cytokine therapies on the treatment of RA,47 it scarcely 
needs saying that antirheumatic drugs will continue to oc-
cupy a substantially important position in the foreseeable 
future.5,8 The mechanism of action of antirheumatic drugs 
in the context of bone destruction has been poorly under-
stood, but the identifi cation of an effective set of existing 
antirheumatic drugs by means of in vitro osteoclast culture 
systems is a promising strategy for improving the future 
treatment of RA.
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