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Abstract
The Philippines produce some 2.1–3.2 million t phosphogypsum (PG) per year. PG can contain elevated concentrations of 
rare earth elements (REEs). In this work, the leaching efficiency of the REEs from Philippine PG with H2SO4 was for the first 
time studied. A total of 18 experimental setups (repeated 3 times each) were conducted to optimize the acid concentration 
(1–10%), leaching temperature (40–80 °C), leaching time (5–120 min), and solid-to-liquid ratio (1:10–1:2) with the overall 
goal of maximizing the REE leaching efficiency. Applying different optimizations (Taguchi method, regression analysis 
and artificial neural network (ANN) analysis), a total REEs leaching efficiency of 71% (La 75%, Ce 72%, Nd 71% and Y 
63%) was realized. Our results show the importance of the explanatory variables in the order of acid concentration > tem-
perature > time > solid-to-liquid ratio. Based on the regression models, the REE leaching efficiencies are directly related to 
the linear combination of acid concentration, temperature, and time. Meanwhile, the ANN recognized the relevance of the 
solid-to-liquid ratio in the leaching process with an overall R of 0.97379. The proposed ANN model can be used to predict 
REE leaching efficiencies from PG with reasonable accuracy.
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Introduction

The Philippines is one of the largest phosphate fertilizer 
producers in the Southeast Asia, processing phosphate ore 
imported from different locations to wet phosphoric acid, an 
intermediate product in fertilizer production, and phospho-
gypsum (PG). PG is a powdery byproduct of which roughly 
40% are presently used in the cement industry and as soil 
conditioners in the Philippines. The Mines and Geosciences 
Bureau of the Philippines is leaving no stone unturned in its 

quest to locate rare earth elements (REEs) that could sup-
port the country’s production sector while reducing metal 
imports from China [1, 2]. Ramirez et al. [3] recently pointed 
to the approximately 10.1 million t PG that are dry-stacked 
and accessible in the Philippines as a potential secondary 
resource of REEs.

Phosphate ore, the main raw material in phosphate fer-
tilizer production is known for its elevated content of valu-
able trace elements, most notably REEs [4–11] and uranium 
[12–16]. During wet phosphoric acid production with sul-
furic acid as it is done at most phosphate fertilizer plants 
worldwide, the majority of REEs (> 80%) transfers to the 
solid PG while most of the uranium (> 80%) transfers to the 
liquid phosphoric acid [17–20]. There is increased research 
activity to fully utilize PG stacks worldwide instead of just 
managing them [21–30]. Not processing PG but stacking the 
material could result in potential present and future environ-
mental risks [31–37]. Recovering REEs that occur in rele-
vant concentrations in PG [38–43] and ideally also removing 
actinides from the PG before using the remaining gypsum 
matrix as an inexpensive raw material in construction seems 
to be an attractive option [23, 44–47]. Although there have 
been considerable efforts to determine the concentrations 
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and quantities of REEs in Philippine PG [3, 48] no work ever 
attempted to recover these resources. The present study aims 
at filling this gap by providing a simple as well as potentially 
economic process and optimization for REE leaching from 
Philippine PG that can be upscaled and applied in a next 
step.

Materials and methods

PG samples and elemental composition

PG samples were collected from 2-m-deep trenches in the 
tailing ponds of the main fertilizer plant in the Philippines as 
described in a previous work [3]. Although, the Philippines 
is one of the largest producers of fertilizer in Southeast Asia 
it has no domestic source of phosphate rock (PR). The PG in 
the Philippines is produced from a combination of sedimen-
tary PR imported from China, Egypt, Israel, Jordan, Peru, 
Tunisia, the USA and Vietnam and igneous PR from Russia 
and South Africa [49, 50]. There are around 10.1 million t 
PG in the tailings ponds in the Philippines that have been 
accumulated since 1984 [48].

Five (5) of the samples with the highest total REE 
(TREE) concentrations from a previous study of the tail-
ings ponds [3] were pulverized using mortar and pestle, and 
subsequently mixed to form a composite. To ensure homo-
geneity, the composite, weighing approximately 10 kg, was 
mixed in a Thermo Scientific bottle/tube roller for 24 h at 
80 rpm. Samples were then sent to a third-party testing labo-
ratory (Intertek Testing Services Philippines, Muntinlupa 
City, Philippines) for analysis. The laboratory is accredited 
by the Philippine Accreditation Bureau and also ISO/IEC 
17025:2017-certified. Approximately 1 g of the composite 
was digested using a combination of analytical grade 37% 
HCl, 70% HNO3, 50% HF and 69–72% HClO4 and then ana-
lyzed for REEs using a combination of Inductively Coupled 
Plasma Mass Spectrometry (ICP-MS Agilent 7700x) and 
inductively coupled plasma optical emission spectrometry 
(ICP-OES Agilent 5100). Blank solutions and certified 
reference materials (i.e., OREAS 501c, 600, 623 90, and 
44P) were used to ensure the accuracy of the results. The 
detection limits ranged from 0.05 to 0.1 mg kg−1. The REE 
composition of the PG composite is presented in Table 1.

REE leaching procedure

The leaching experiments were conducted following the 
patterns proposed by Al-Thyabat and Zhang [51, 52], Cáno-
vas et al. [41], Lütke et al. [53], Rychkov et al. [54], and 
Walawalkar et al. [55] for other than Philippine PG. It is 
well known that PG from different locations shows different 
trace-element concentrations, so that leaching experiments 

successfully conducted at one PG location may lead to dif-
ferent results when a different PG stack is considered. The 
differences can be attributed to the different phosphate ore 
processed, the different processing conditions, as well as dif-
ferent qualities of the sulfuric acid used for wet-phosphoric 
acid processing [56]. The REE leaching optimization fol-
lowed four succeeding steps: (1) optimizing acid concen-
tration (C), (2) optimizing temperature (T), (3) optimizing 
time (t), and (4) optimizing solid-to-liquid ratio (S/L ratio) 
as summarized in Table 2.

Table 1   REE composition of 
the PG composite analyzed by 
ICP-MS

REE Concentra-
tion (mg 
kg−1)

La 82.7
Ce 132.7
Pr 18.20
Nd 75.5
Sm 15
Eu 3.5
Gd 15
Tb 2.06
Dy 12.3
Ho 2.4
Er 6.9
Tm 0.8
Yb 4.4
Lu 0.50
Y 91.3
TREE 463.26

Table 2   Experimental matrix of the leaching experiment

Leaching steps Leaching conditions

Step 1
Varying H2SO4 concentra-

tion, % vol/vol

1
2.5
5
10

2 h leaching time
Ambient temperature
1:5  S/L  ratio

Step 2
Varying temperature, °C

40
50
60
70

Optimum acid Concentration
2 h Leaching time
1:5  S/L  ratio

Step 3
Varying time, min

5
15
30
45
60

Optimum acid Concentration
Optimum temperature
1:5 S/L ratio

Step 4
Varying  S/L  ratio

1:2
1:3
1:4
1:5
1:10

Optimum concentration
Optimum time
Optimum temperature
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There are a number of acids that are technically promis-
ing for leaching of REEs from PG [57–72]. In this work, 
H2SO4 (< 10% vol/vol) was chosen for its comparable leach-
ing efficiency with HCl and HNO3, low solubility of PG in 
H2SO4 (i.e., resulting PG residue from leaching will enable 
secondary applications), and most importantly for onsite 
availability and economic reasons which could be beneficial 
for large scale extraction of REEs from PG in the Philip-
pines [54].

Step 1: determination of optimum acid concentration
10 g PG was added to 50 mL (1:5 S/L ratio) of acid of 

varying concentrations in a 250 mL beaker. The mixture was 
leached at 380 rpm for 2 h at ambient temperature using 1% 
to 10% H2SO4. This concentration range was used to avoid 
common ion effect and formation of less soluble bisulfates 
that could inhibit the leaching of REEs from PG [73].

Step 2: determination of optimum temperature
10 g PG was added to 50 mL (1:5 S/L ratio) of the opti-

mum acid concentration obtained in Step 1 in a 250 mL 
beaker. The mixture was leached at 380 rpm for 2 h at tem-
peratures 40 to 80 °C.

Step 3: determination of optimum time
10 g PG was added to 50 mL (1:5 S/L ratio) of optimum 

acid concentration in a 250 mL beaker. The mixture was 
leached at 380 rpm at optimum temperatures obtained in 
Step 2 and at varying leaching times from 5 to 60 min.

Step 4: determination of optimum S/L ratio
10 g PG was added to varying volumes of optimum acid 

concentrations in 250 mL beaker to form 1:2, 1:3, 1:4, 1:5, 

and 1:10 S/L ratios. The mixture was leached for 30 min at 
380 rpm at optimum temperatures.

The leaching experiment was performed in a hot bath 
(Fig. 1a). The temperature of the acid was stabilized prior 
to the addition of the PG. The acid-PG mixture was cov-
ered with a watch glass to prevent acid evaporation. After 
each leaching experiment, the PG and acid mixture was 
filtered using 125 mm Whatman ™ filter papers (Cat No 
1440 125) and washed with 100 mL of distilled water 
(Fig. 1b). The collected residue was then dried in an oven 
at 105 °C for 24 h. Each experimental setup was repeated 
three (3) times which resulted in a total of 54 experiments. 
Due to the complexity of analyzing metals dissolved in 
sulfuric acid matrix [74], the dried residues were instead 
analyzed for REEs by the four-acid digestion method using 
ICP-MS and ICP-OES.

REE leaching efficiency

The efficiency of the leaching procedure was determined 
using the following formula:

where Ci and Cf are the REE concentrations in PG composite 
and PG residue, respectively.

(1)Leaching Efficiency (%) =
Ci − Cf

Ci

× 100

Fig. 1   Experimental setup of 
the leaching procedure showing 
the A hot bath with the PG and 
acid mixture, and B filtering of 
the mixture after the leaching 
experiment
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Taguchi method

Taguchi method is an engineering technique used for pro-
cess optimization which involves system design, parameter 
design, and tolerance design procedures [75, 76]. The signal/
noise (S/N) ratio is used to examine the response in each 
experiment and the corresponding variance in the Taguchi 
method. The S/N ratio is a measure of deviation of quality 
characteristics from the ideal values [77]. There are usually 
three types of S/N ratios:

where m is the desired nominal value, n is the number of 
experiments, and y is the experimental result [78].

Multiple linear regression

A simple linear regression evaluates the relationship 
between the explanatory variable x and the response vari-
able y. If there are multiple explanatory variables, Multiple 
linear regression (MLR) is utilized [79, 80]. Regression 
is normally used to make predictions. MLR assumes that 
the explanatory and response variables have a linear rela-
tionship, that the data has a normal distribution, that there 
are no extreme values, and that there are no multiple ties 
between the explanatory variables. MLR also synchronically 
accounts for the variance of the explanatory variable in the 
response variables [81].

Stepwise regression

Stepwise regression is also a multivariate modelling tech-
nique in which an explanatory variable is added or removed 
from the linear model at each step. In each step, the vari-
able that increases the R2 coefficient the most is added to 
the model [82, 83]. In contrast to MLR, stepwise regression 
does not incorporate all the explanatory variables into the 
model but instead evaluates their statistical significance one 
at a time. It is typically used when investigating numerous 
explanatory variables. In this work, the regression models 
were performed in IBM SPSS Statistics version 25.

(2)Nominal value is better:
S
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= −10 log
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Artificial neural network (ANN)

Artificial neural network (ANN) is a machine learning tech-
nique that is now extensively used in mineral processing 
to identify complex relationships between input and output 
data using a series of nonlinear functions [84–86]. Unlike 
regression, ANN can be trained to learn and recognize pat-
terns between the inputs and outputs [87]. One of the many 
benefits of using ANN is that it tolerates data noise [88]. 
ANN has been employed for optimization of leaching and 
extraction processes of precious metals (i.e., Cu, REEs, etc.) 
in several studies [75, 86, 88, 89].

ANN is essentially a computer model that simulates the 
brains learning mechanism. ANN consists of nodes or neu-
rons which are processors that operate in a parallel way. The 
neurons are arranged in layers including an input layer, one 
or more hidden layers, and an output layer. The neurons are 
interconnected to one another through connection links car-
rying specific weights.

In this work, the feed-forward ANN using back-propaga-
tion algorithm was used to model the relationship between 
the explanatory variables and the REE leaching efficiency 
using MATLAB R2021b. Back-propagation algorithm is a 
method of reducing the error between output and input data 
by altering the weighted connections between neurons [90]. 
The architecture of the 4-9-5 neural network used in this 
work is shown in Fig. 2.

Results and discussion

Experimental leaching output

Acid concentration, temperature, time, and S/L ratio were opti-
mized to maximize the efficiency of REE leaching from PG. 
The variables used in this work are based on previous experi-
mental works [41, 51–53, 55]. Strong inorganic acids (i.e., HCl, 
HNO3, and H2SO4) were extensively used for the investiga-
tion of REE leaching from other than Philippine PG [91, 92]. 
H2SO4 was also used for leaching experiments from Florida 
PG by Gaetjens et al. [93] and Liang et al. [94], Russian PG by 
Lokshin et al. [95, 96], and Brazilian PG by Lütke et al. [53].

We performed a total of 18 leaching setups, repeated 3 
times each to guarantee high accuracy of the results. The 

Fig. 2   ANN structure for the optimization of REE leaching from PG 
in the 4-9-5 form
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total experimental design matrix and the obtained REE 
leaching efficiencies are presented in Table 3. The leaching 
efficiencies for La, Ce, Nd, Y, and TREE ranged from 17 to 
75%, 12 to 72%, 13 to 71%, 14 to 68%, and 14 to 71%. The 
setup with the highest TREE leaching efficiency was test 
number 6 which used 10% H2SO4, at 50 °C, a leaching time 
of 120 min, and a 1:5 S/L ratio.

For all the REEs, the leaching efficiencies followed 
the same trend in each of the leaching steps as shown in 
Figs. 3A–D. The efficiency of REE leaching increased with 
higher acid concentrations (Fig. 3A). This can be attributed 
to bisulfate formation that causes an increase in Ca2+ con-
centration after the reaction between H+ with SO4

2− as a 
result of increased gypsum solubility that controls the REE 
leaching efficiency since the gypsum hosts the REEs [32]. 
The temperature has a catalytic effect so that the leach-
ing efficiency increased as the temperature increased from 
40 °C to 50 °C (p < 0.05) as shown in Fig. 3B. The results 
for 50 °C to 80 °C are not significantly different (p > 0.05), 
although 50 °C leached the most REEs in the experiment. 
Generally, leaching efficiencies decrease at higher tempera-
tures due to dissolution of fluoride precipitates which then 
reacts with the REEs and forms an insoluble precipitate 
[92]. The majority of the REEs leached from the PG after 
15 min (Fig. 3C) although the setup with leaching time of 
120 min leached the most REEs. Considering the econom-
ics in an industrial scale, we used 30 min for the final step 
of the optimization procedure. Leaching kinetic studies also 
show that the maximum REEs were leached from the PG 

after 20 min [53, 55]. Lastly, the most diluted mixture (1:10 
S/L ratio) leached most of the REEs although the results 
of 1:3, 1:4, and 1:5 were not very different (Fig. 3D). The 
slight decrease in leaching efficiency observed for 1:5 is not 
significantly different (p > 0.05) with the results of 1:3 and 
1:4. In some cases studied, a decrease in leaching efficiency 
could be explained with reaching the gypsum solubility limit 
[55]. In general, it is not desirable to have increased Ca2+ 
concentration in the solution because it can compete with 
REEs for available binding sites on the leaching agents. This 
means that if there is an excess of Ca2+ ions in the solution, 
they may bind to the leaching agents instead, which reduces 
the efficiency of the REE leaching process.

The Pearson correlation coefficients r between the inde-
pendent variables (C H2SO4, T, t, and S/L ratio) and the 
dependent variables (La, Ce, Nd, Y, and TREE) is shown 
in Table 4. Among the explanatory variables, C H2SO4 has 
the highest r 0.918 to 0.956 (p < 0.01), followed by T with r 
0.681–0.739 (p < 0.01). It is noteworthy that t has a negative 
r while the S/L ratio has a small positive r. Both were not 
significant (p > 0.05). Although the variables that should be 
used in regression models are for r > 0.3, we still used t and 
the S/L ratio in the regression models.

Determining the optimum leaching conditions 
using Taguchi method

Although the design of the experiment is not based on the 
orthogonal array suggested by Taguchi, we still used the 

Table 3   Experimental matrix and the resulting La, Ce, Nd, Y, and TREE leaching efficiencies (%)

Te st number C (%) T (°C ) t (mins) S/L ratio (g 
mL−1)

La (%) Ce (%) Nd (%) Y (%) TREE (%)

1 1 28 120 1:5 16.5 ± 1.1 11.9 ± 1.2 12.9 ± 1.4 13.7 ± 0.6 13.7 ± 0.9
2 2.5 28 120 1:5 30.8 ± 0.7 26.1 ± 0.9 26.5 ± 0.8 30.4 ± 0.8 28.4 ± 0.6
3 5 28 120 1:5 39.7 ± 2.1 35.8 ± 2.3 35.2 ± 2.0 40.3 ± 1.6 37.7 ± 1.9
4 10 28 120 1:5 58.7 ± 4.8 57.6 ± 5.0 52.7 ± 4.2 56.4 ± 3.7 55.9 ± 4.3
5 10 40 120 1:5 62.4 ± 0.7 61.3 ± 0.8 55.9 ± 0.8 58.5 ± 0.8 58.8 ± 0.8
6 10 50 120 1:5 74.6 ± 2.9 72.4 ± 2.5 70.6 ± 3.6 68.2 ± 2.5 71.0 ± 2.9
7 10 60 120 1:5 69.5 ± 5.5 67.6 ± 4.8 64.4 ± 7.1 63.2 ± 4.2 65.6 ± 5.5
8 10 70 120 1:5 64.8 ± 2.7 63.6 ± 2.3 58.4 ± 3.6 59.0 ± 1.9 60.8 ± 2.6
9 10 80 120 1:5 73.3 ± 5.9 70.9 ± 5.5 68.9 ± 7.0 66.1 ± 5.3 69.2 ± 6.0
10 10 50 5 1:5 57.7 ± 2.1 53.8 ± 2.3 49.5 ± 2.2 52.4 ± 1.4 52.9 ± 1.9
11 10 50 15 1:5 62.6 ± 0.2 58.7 ± 0.2 53.6 ± 1.0 56.2 ± 0.8 57.1 ± 0.5
12 10 50 30 1:5 63.0 ± 0.2 59.2 ± 0.5 53.9 ± 0.3 57.1 ± 0.8 57.6 ± 0.5
13 10 50 45 1:5 64.1 ± 0.3 60.4 ± 0.1 55.4 ± 0.3 58.5 ± 0.7 59.0 ± 0.3
14 10 50 60 1:5 63.9 ± 0.9 60.4 ± 0.7 55.3 ± 1.3 57.6 ± 0.8 58.7 ± 0.8
15 10 50 30 1:2 61.4 ± 0.8 59.4 ± 0.8 52.5 ± 0.9 57.5 ± 0.5 57.2 ± 0.7
16 10 50 30 1:3 63.9 ± 0.8 61.7 ± 0.9 55.1 ± 0.6 59.9 ± 1.1 59.6 ± 0.8
17 10 50 30 1:4 64.0 ± 0.2 62.0 ± 0.2 55.5 ± 0.3 59.8 ± 0.6 59.7 ± 0.1
18 10 50 30 1:10 65.5 ± 0.5 63.4 ± 0.4 57.0 ± 0.4 60.8 ± 0.7 61.1 ± 0.5
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Taguchi method to determine the optimum combination of 
variables. The result of the REE leaching efficiency was 
converted to signal-to-noise (S/N) ratios. The S/N ratio is 
a measure of deviation of quality characteristics from the 
ideal values [77]. There are three different types of S/N ratios 
(i.e., nominal value is better, smaller is better, and larger is 
better) depending on the data characteristics [78]. In this 
work, the larger is better type was used building on the work 
of Brest Kasongo and Mwanat [75]. Thus, the levels of the 
explanatory variables with the highest average S/N ratios are 

considered optimal. The result of this method can therefore 
determine the optimum levels and combination of the vari-
ables to maximize REEs leaching from PG. The square of 
responses, inverse of the square of responses, and S/N for the 
REE yield for each of the experiments is shown in Table 5.

The average S/N ratios of the explanatory variables at dif-
ferent levels for specific REE leaching is shown in Table 6. 
For all the REEs, the highest average S/N ratios corre-
sponded to level 4 (10% H2SO4) for the acid concentration, 
level 6 (80 °C) for the temperature, level 3 (30 min—Y and 
TREE) to level 4 (45 min—La, Ce, and Nd) for the time, and 
level 1 (1:10) for the S/L ratio. Therefore, the optimum com-
bination of the variables for the maximum leaching of REEs 
in PG is 10% H2SO4, 80 °C, 30–45 min, and 1:10 for the acid 
concentration, temperature, time, and S/L ratio, respectively.

Aside from finding the optimum combination of the vari-
ables, the Taguchi method also ranks the variables according 
to their overall importance to REE leaching efficiency. Also 
shown in Table 6 are the deltas and ranks of the explana-
tory variables which compare the relative magnitude of 
their effects. The delta is the difference between the high-
est and lowest average S/N ratio of each variable. And for 
this work, the higher the delta, the greater is the influence 

Fig. 3   Effects of A acid concentration, B temperature, C time, and D solid-to-liquid ratio on the leaching efficiency of REEs in H2SO4

Table 4   Pearson correlation coefficient between the explanatory vari-
ables and specific REE leaching efficiency

*p < 0.01 to denote that the correlation is significant at the 99% con-
fidence interval

C T t SL ratio

La 0.955* 0.730* − 0.269 0.053
Ce 0.956* 0.722* − 0.240 0.063
Nd 0.918* 0.739* − 0.151 0.014
Y 0.952* 0.681* − 0.252 0.074
TREE 0.946* 0.720* − 0.226 0.052
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of the variable which assigns their rankings. Based on the 
delta, the ranking of the variables according to their overall 
importance to REE leaching in PG is as follows: acid con-
centration > temperature > time > S/L ratio.

Modelling of REE leaching efficiency using MLR

Multiple linear regression (MLR) models the linear associa-
tion between the independent/explanatory variables (i.e., C, 
T, t, S/L ratio) and the dependent/response (i.e., Laeff, Ceeff, 
Ndeff, Yeff, and TREEeff) variables. We used the first order 
MLR to model the leaching efficiencies of REEs in PG using 
the explanatory variables. The MLR model used in this work 
follows the form proposed by Uyanık and Güler [81]:

where �0 is the coefficient of the intercept or the constant 
and �i is the slope or the coefficient of the explanatory vari-
able Xi [89]. The significance of the explanatory variable for 
inclusion in the linear model was validated using p values 
(p ≤ 0.05) or Sig. For all the REEs, the regression statistics 
show an R2 of 0.938–0.961, adjusted R2 of 0.919–0.949, 
standard error of 3.534–4.025, and an overall p value of 
0.000. The coefficients, p values, and the 95% confidence 
intervals of the explanatory variables are shown in Table 7.

(5)y = �0 +

k
∑

i=1

�i ⋅ Xi

Based on these values, the forms of the MLR models for 
the leaching efficiencies of the specific REEs are:

The regression models confirmed the results of the Pear-
son correlation and Taguchi method that the S/L ratio is not 
a particularly important variable in determining the leaching 
efficiency of REEs. T is significant for Laeff, Ceeff, and Ndeff 
whereas t is significant for all except for Laeff. For all the 
REEs, C H2SO4 is the most significant variable.

We validated the models using the experimental 
parameters in Table 3. Using the models, we found very 
good correspondence between the experimental and pre-
dicted values (Fig.  4A) with rExpt-Predicted (p < 0.01) of 
0.983, 0.989, 0.990, 0.977, and 0.966 for Laeff, Ceeff, 
Ndeff, Yeff, and TREEeff models, respectively. We also 
computed the deviation of the predicted values from the 
experimental values using the % error. The performance 

(6)Laeff(%) = 5.889 + 4.701CH2SO4 + 0.194T

(7)
Ceeff(%) = −1.943 + 5.119CH2SO4 + 0.181 T + 0.058 t

(8)
Ndeff(%) = −1.873 + 4.434CH2SO4 + 0.216 T + 0.074 t

(9)Yeff(%) = 6.183 + 4.518CH2SO4 + 0.048 t

(10)TREEeff(%) = 2.138 + 4.630CH2SO4 + 0.056 t

Table 5   Square of responses, inverse square of responses and S/N ratios of the REEs for each experimental setup

Test number Square of responses Inverse of the square of responses S/N ratios

La Ce Nd Y TREE La Ce Nd Y TREE La Ce Nd Y TREE

1 273 141 166 189 188 0.0037 0.0071 0.0060 0.0053 0.0053 24.36 21.48 22.21 22.75 22.75
2 948 681 702 926 807 0.0011 0.0015 0.0014 0.0011 0.0012 29.77 28.33 28.46 29.67 29.07
3 1579 1279 1238 1622 1419 0.0006 0.0008 0.0008 0.0006 0.0007 31.99 31.07 30.93 32.10 31.52
4 3449 3315 2774 3180 3123 0.0003 0.0003 0.0004 0.0003 0.0003 35.38 35.20 34.43 35.02 34.95
5 3888 3763 3124 3420 3457 0.0003 0.0003 0.0003 0.0003 0.0003 35.90 35.76 34.95 35.34 35.39
6 5560 5245 4990 4647 5037 0.0002 0.0002 0.0002 0.0002 0.0002 37.45 37.20 36.98 36.67 37.02
7 4834 4569 4149 3992 4297 0.0002 0.0002 0.0002 0.0003 0.0002 36.84 36.60 36.18 36.01 36.33
8 4195 4039 3412 3480 3692 0.0002 0.0002 0.0003 0.0003 0.0003 36.23 36.06 35.33 35.42 35.67
9 5370 5028 4744 4366 4790 0.0002 0.0002 0.0002 0.0002 0.0002 37.30 37.01 36.76 36.40 36.80
10 3331 2895 2454 2744 2796 0.0003 0.0003 0.0004 0.0004 0.0004 35.23 34.62 33.90 34.38 34.46
11 3923 3446 2878 3159 3263 0.0003 0.0003 0.0003 0.0003 0.0003 35.94 35.37 34.59 35.00 35.14
12 3969 3508 2901 3263 3316 0.0003 0.0003 0.0003 0.0003 0.0003 35.99 35.45 34.63 35.14 35.21
13 4112 3647 3065 3424 3477 0.0002 0.0003 0.0003 0.0003 0.0003 36.14 35.62 34.86 35.35 35.41
14 4081 3647 3055 3322 3440 0.0002 0.0003 0.0003 0.0003 0.0003 36.11 35.62 34.85 35.21 35.37
15 3773 3523 2756 3301 3271 0.0003 0.0003 0.0004 0.0003 0.0003 35.77 35.47 34.40 35.19 35.15
16 4081 3812 3036 3594 3553 0.0002 0.0003 0.0003 0.0003 0.0003 36.11 35.81 34.82 35.56 35.51
17 4102 3843 3075 3581 3567 0.0002 0.0003 0.0003 0.0003 0.0003 36.13 35.85 34.88 35.54 35.52
18 4285 4013 3254 3691 3732 0.0002 0.0002 0.0003 0.0003 0.0003 36.32 36.04 35.12 35.67 35.72
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of each model based on the average % error computed 
from the 18 experimental tests (Fig. 4B) is in the order of 
7.08 ± 3.59% (Laeff) < 7.38 ± 9.66% (Ndeff) < 8.17 ± 8.90% 
(Ceeff) < 11.02 ± 8.48% (Yeff) < 13.53 ± 6.72 (TREEeff).

Modelling of REE leaching efficiency using stepwise 
regression

Leaching efficiency of TREEs can also be affected by an 
interaction among the different parameters. To determine 
such effects, we developed a first order multiple linear 
regression model with interaction effects between the 
explanatory variables using stepwise regression. The model 
follows the general form of:

where k is the number of explanatory variables [89]. A 
total of 18 interactions were analyzed including C H2SO4, 
T, t, S/L, C H2SO4·C H2SO4, C H2SO4·T, C H2SO4·t, C 
H2SO4·S/L, T·T, T·t, T·S/L, t∙t, t·S/L, S/L·S/LI, C H2SO4·T·t, 
C H2SO4·T·S/L, C H2SO4·t·S/L, and T·t∙S/L. The stepping 
method criteria used for inclusion in the model is the prob-
ability of F (entry ≤ 0.05 and removal ≥ 0.10). The coeffi-
cients, p values, 95% confidence interval, and other relevant 
statistics of the stepwise regression models of the possible 
interactions between the explanatory variables are presented 
in Table 8. For each of the REEs, two regression models 
were produced but the second model was selected for its 
non-multicollinearity such that Tolerance > 0.1 and VIF < 10 
[89].

Among these possible interactions, we found that only C 
H2SO4 is significant for modelling the leaching efficiencies 
of all the REEs. The stepwise regression verifies the previ-
ous result of the MLR that the S/L ratio and its possible 
interaction with the other explanatory variables is not sig-
nificant for the REE leaching efficiency from PG. And like 
the previous MLR models, there were very high accuracies 
in the regression models with R2 = 0.936–0.960, adjusted 
R2 = 0.928–0.955, a standard error of 3.3121–3.7875, and 
an overall p value of 0.000–0.011.

The analytical forms of the leaching models based on the 
interaction between the explanatory variables are therefore:

(11)

y = �
0
+

k
∑

i=1

�i ⋅ Xi +

k−1
∑

i=1

k
∑

j=i+1

�ij ⋅ Xi ⋅ Xj

+

k−2
∑

i=1

k−1
∑

j=k+1

k
∑

l=j+1

�ijl ⋅ Xi ⋅ Xj ⋅ Xk

(12)Laeff(%) = 14.686 + 4.613CH2SO4

Table 6   Response for signal/noise ratio of the explanatory variables 
and their corresponding levels

Level C T t S/L ratio

La
 1 24.36 30.37 35.23 36.32
 2 29.77 35.90 35.94 34.62
 3 31.99 36.12 36.06 36.13
 4 36.19 36.84 36.14 36.11
 5 36.23 36.11 35.77
 6 37.30 33.91
 Delta 11.82 6.93 2.23 1.70
 Rank 1 2 3 4

Ce
 1 21.48 29.02 34.62 36.04
 2 28.33 35.76 35.37 33.96
 3 31.07 35.70 35.72 35.85
 4 35.84 36.60 35.62 35.81
 5 36.06 35.62 35.47
 6 37.01 33.19
 Delta 14.37 7.99 2.53 2.08
 Rank 1 2 3 4

Nd
 1 22.21 29.01 33.90 35.12
 2 28.46 34.95 34.59 33.50
 3 30.93 34.90 34.77 34.88
 4 35.11 36.18 34.86 34.82
 5 35.33 34.85 34.40
 6 36.76 32.91
 Delta 12.91 7.75 1.95 1.62
 Rank 1 2 3 4

Y
 1 22.75 29.89 34.38 35.67
 2 29.67 35.34 35.00 33.89
 3 32.10 35.37 35.42 35.54
 4 35.46 36.01 35.35 35.56
 5 35.42 35.21 35.19
 6 36.40 33.27
 Delta 12.71 6.52 2.15 1.78
 Rank 1 2 3 4

TREE
 1 22.75 29.57 34.46 35.72
 2 29.07 35.39 35.14 33.93
 3 31.52 35.45 35.42 35.52
 4 35.58 36.33 35.41 35.51
 5 35.67 35.37 35.15
 6 36.80 33.28
 Delta 12.83 7.23 2.14 1.78
 Rank 1 2 3 4
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Validation of the model showed a very high correlation 
between the experimental and predicted values (Fig. 5A) 
with rExpt-Predicted (p < 0.01) = 0.914, 0.915, 0.918, 0.970, 
and 0.946 for La, Ce, Nd, Y, and TREE, respectively. 
Meanwhile, the average % error of the models is in the fol-
lowing order: Y (6.54 ± 9.24%) < L (7.58 ± 5.61%) < Ce 
(8.81 ± 6.63%) < TREE (8.89 ± 7.23%) < Nd (10.75 ± 8.03) 
as shown in Fig. 5B.

The regression models consistently eliminate the signifi-
cance of the S/L ratio. This makes sense since the leaching 
efficiency only increased by 3–5% as the mixture became 
more diluted in Step 4 of the experimental procedure 
(Fig. 2D). Unlike the previous regression model, the step-
wise regression of possible interaction between the param-
eters eliminated the significance of T and t in the leaching of 
REEs. To validate the role of the S/L ratio that may probably 
not observe linear patterns, the ANN was used to find hidden 
patterns that the regression models were not able to identify.

Modelling of REE leaching efficiency using ANN

The modelling was carried out using a 4-9-5 architecture 
based on the recommendation by the improved version of the 
Kolmogorov theorem called the Kolmogorov Mapping Neu-
ral Network Existence Theorem. This theorem recommends 
a three-layer neural network composing of n inputs, 2n + 1 

(13)Ceeff(%) = 9.517 + 4.820CH2SO4

(14)Ndeff(%) = 11.703 + 3.989CH2SO4

(15)Yeff(%) = 14.785 + 4.157CH2SO4

(16)TREEeff(%) = 12.804 + 4.324CH2SO4

hidden layers, and m outputs [97]. Thus, the 4-9-5 ANN 
architecture corresponds to 4 neurons in the input layer, 9 
neurons in one hidden layer, and 5 neurons in the output 
layer. The nntool was used to perform the computation in 
MATLAB R2021b. By default, this tool uses 70% of the 
data for training, 15% for validation, and 15% for testing.

The Levenberg–Marquardt backpropagation algorithm 
that updates the values of weights according to the Lev-
enberg–Marquardt optimization was used to train a feed-
forward ANN. In a backpropagation algorithm, the network 
continues until convergence or a maximum number of itera-
tions is reached [98]. The pureline function was used as the 
activation function in the ANN structure. The number of 
epochs was set at an initial of 100 but the training process 
stopped after 3 iterations. The training stops when the model 
with the lowest root mean squared error on single test points 
is found. The correlation coefficient R for the training of the 
final model was 0.98073. The R values for the testing and the 
overall model were 0.98039 and 0.97379, respectively. The 
results are shown in Figs. 6A–C. The leaching efficiencies of 
REEs from PG can be predicted at very high accuracy using 
ANN. In contrast to the results of the regression models, the 
ANN was able to accurately predict REE leaching efficiency 
with very high R values even after considering the S/L ratio.

Conclusions

This work investigated for the first time, the leaching effi-
ciency of the REEs from Philippine PG with H2SO4 and 
optimized the relevant parameters: acid concentration > tem-
perature > time > solid-to-liquid ratio using Taguchi method, 
regression, and ANN analysis. A TREEs leaching efficiency 
of 71% (La 75%, Ce 72%, Nd 71% and Y 63%) was real-
ized and it could be shown that the modelling approaches 

Fig. 4   A Comparison of the experimental REE leaching efficiencies and predicted REE leaching efficiencies using the MLR model, and the 
B the deviation of the predicted values from the experimental values using the % error
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are powerful tools to predict and optimize the leaching 
efficiencies of REEs from Philippine PG. The experiments 
described here, though very successful, were all conducted 
at laboratory scale, and it is recommended to conduct larger 
pilot plant scale experiments next, to better understand the 
potential of REE recovery from Philippine PG on larger 
scale.
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