Skip to main content

Advertisement

Log in

Alkali-activated aerated blends: interaction effect of slag with low and high calcium fly ash

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Material Cycles in Construction Works
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper reports the influence of the addition of slag in a fly ash-based alkali-activated aerated system, using both Class-F and Class-C fly ash. The factors considered in this study are dosage of aluminium powder as an aerating agent, dosage of slag as co-binder, the molarity of NaOH as an alkaline activator and curing temperature. The incorporation of ground granulated blast furnace slag (GGBS) as secondary binder affects the fresh properties like aeration rate, setting time and flow which can be related to the microstructural development and mechanical properties at later ages. Interestingly, AAM with a binary blend of Class-F fly ash and slag results in higher strength to density ratio., i.e. for a dry density of 1000–1200 kg/m3, a compressive strength value of 20–25 MPa can be achieved with this binary blend combination of aerated concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Song Y, Guo C, Qian J et al (2015) Effect of autoclave curing on hydration of anhydrite in CFBC fly ash. Mag Concr Res 67:1–8. https://doi.org/10.1680/macr.14.00117

    Article  Google Scholar 

  2. Saengsuree P, Phoo-ngernkham T, Vanchai Sata PC (2014) Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater Des 54:269–274. https://doi.org/10.1016/j.matdes.2013.07.018

    Article  Google Scholar 

  3. Jones MR, Zheng L, Ozlutas K (2017) High-volume, ultra-low-density fly ash foamed concrete. Mag Concr Res 69:1146–1156. https://doi.org/10.1680/jmacr.17.00063

    Article  Google Scholar 

  4. Ebead UA, Shrestha KC, Saeed H (2019) Development of high-strength lightweight non-autoclaved aerated concrete. Proc Inst Civ Eng Struct Build. https://doi.org/10.1680/jstbu.18.00078

    Article  Google Scholar 

  5. Papayianni I, Milud IA (2005) Production of foamed concrete with high calcium fly ash. Use of foamed concrete in construction. Thomas Telford Publishing, Scotland, pp 23–27

    Google Scholar 

  6. Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater Charact 113:207–213. https://doi.org/10.1016/j.matchar.2016.01.019

    Article  Google Scholar 

  7. Feng J, Zhang R, Gong L et al (2015) Development of porous fly ash-based geopolymer with low thermal conductivity. Mater Des 65:529–533. https://doi.org/10.1016/j.matdes.2014.09.024

    Article  Google Scholar 

  8. Kumar EM, Ramamurthy K (2017) Influence of production on the strength, density and water absorption of aerated geopolymer paste and mortar using Class F fly ash. Constr Build Mater 156:1137–1149. https://doi.org/10.1016/j.conbuildmat.2017.08.153

    Article  Google Scholar 

  9. Bai C, Colombo P (2018) Processing, properties and applications of highly porous geopolymers: a review. Ceram Int 44:16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  Google Scholar 

  10. Novais RM, Pullar RC, Labrincha JA (2020) Geopolymer foams: an overview of recent advancements. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2019.100621

    Article  Google Scholar 

  11. Luukkonen T, Abdollahnejad Z, Yliniemi J et al (2018) One-part alkali-activated materials: a review. Cem Concr Res 103:21–34. https://doi.org/10.1016/j.cemconres.2017.10.001

    Article  Google Scholar 

  12. Rafeet A, Vinai R, Soutsos M, Sha W (2017) Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr Build Mater 147:130–142. https://doi.org/10.1016/j.conbuildmat.2017.04.036

    Article  Google Scholar 

  13. Soutsos M, Boyle AP, Vinai R et al (2016) Factors influencing the compressive strength of fly ash based geopolymers. Constr Build Mater 110:355–368. https://doi.org/10.1016/j.conbuildmat.2015.11.045

    Article  Google Scholar 

  14. Li G, Zhao X (2003) Properties of concrete incorporating fly ash and ground granulated blast-furnace slag. Cem Concr Compos 25:293–299. https://doi.org/10.1016/S0958-9465(02)00058-6

    Article  Google Scholar 

  15. Zhang P, Gao Z, Wang J et al (2020) Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review. J Clean Prod 270:122389. https://doi.org/10.1016/j.jclepro.2020.122389

    Article  Google Scholar 

  16. Yuan B, Straub C, Segers S et al (2017) Sodium carbonate activated slag as cement replacement in autoclaved aerated concrete. Ceram Int 43:6039–6047. https://doi.org/10.1016/j.ceramint.2017.01.144

    Article  Google Scholar 

  17. Chen K, Lin WT, Liu W (2020) Microstructures and mechanical properties of sodium-silicate-activated slag/co-fired fly ash cementless composites. J Clean Prod 277:124025. https://doi.org/10.1016/j.jclepro.2020.124025

    Article  Google Scholar 

  18. Islam A, Alengaram UJ, Jumaat MZ, Bashar II (2014) The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. J Mater 56:833–841. https://doi.org/10.1016/j.matdes.2013.11.080

    Article  Google Scholar 

  19. Mallikarjuna Rao G, Gunneswara Rao TD (2015) Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arab J Sci Eng 40:3067–3074. https://doi.org/10.1007/s13369-015-1757-z

    Article  Google Scholar 

  20. Ali M, Liebscher M, Hempel S et al (2018) Correlation of microstructural and mechanical properties of geopolymers produced from fly ash and slag at room temperature. Constr Build Mater 191:330–341. https://doi.org/10.1016/j.conbuildmat.2018.10.037

    Article  Google Scholar 

  21. Alanazi H, Hu J, Kim Y (2019) Effect of slag, silica fume, and metakaolin on properties and performance of alkali-activated fly ash cured at ambient temperature. Constr Build Mater 197:747–756. https://doi.org/10.1016/j.conbuildmat.2018.11.172

    Article  Google Scholar 

  22. Cheah CB, Tan LE, Ramli M (2019) The engineering properties and microstructure of sodium carbonate activated fly ash /slag blended mortars with silica fume. Compos Part B 160:558–572. https://doi.org/10.1016/j.compositesb.2018.12.056

    Article  Google Scholar 

  23. Ishwarya G, Singh B, Deshwal S, Bhattacharyya SK (2019) Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cem Concr Compos 97:226–238. https://doi.org/10.1016/j.cemconcomp.2018.12.007

    Article  Google Scholar 

  24. ASTM C618–12a (2010) Standard specification for coal fly ash and raw or calcined natural pozzolan for use. ASTM. https://doi.org/10.1520/C0618

    Article  Google Scholar 

  25. Vargel C (2004) Corrosion of aluminium. Elsevier Science, UK

    Book  Google Scholar 

  26. SAS Release 8.02 (1999) SAS institute Inc, Cary, NC, USA

  27. ASTM (2005) Test method for slump of hydraulic cement concrete. ASTM Int West Conshohocken, PA. https://doi.org/10.1520/C1437-15.2

    Article  Google Scholar 

  28. Jamkar SS, Ghugal YM, Patankar SV (2013) Effect of fly ash fineness on workability and compressive strength of geopolymer concrete. Indian Concr J 87:57–62

    Google Scholar 

  29. Siddique R, Bennacer R (2012) Use of iron and steel industry by-product (GGBS) in cement paste and mortar. Resour Conserv Recycl 69:29–34. https://doi.org/10.1016/j.resconrec.2012.09.002

    Article  Google Scholar 

  30. Collins F, Sanjayan JG (2001) Early age strength and workability of slag pastes activated by sodium silicates. Mag Concr Res 53:321–326. https://doi.org/10.1680/macr.2001.53.5.321

    Article  Google Scholar 

  31. Kanehira S, Kanamori S, Nagashima K et al (2013) Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions. J Asian Ceram Soc 1:296–303. https://doi.org/10.1016/j.jascer.2013.08.001

    Article  Google Scholar 

  32. Rakngan W, Williamson T, Ferron RD et al (2018) Controlling workability in alkali-activated Class C fly ash. Constr Build Mater 183:226–233. https://doi.org/10.1016/j.conbuildmat.2018.06.174

    Article  Google Scholar 

  33. Guo X, Shi H, Dick WA (2010) Compressive strength and microstructural characteristics of Class C fly ash geopolymer. Cem Concr Compos 32:142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  Google Scholar 

  34. Kaminskas R, Cesnauskas V, Kubiliute R (2017) Influence of biomass fly ash additive on blast-furnace cement hydration and hardening. Adv Cem Res 29:313–321. https://doi.org/10.1680/jadcr.16.00190

    Article  Google Scholar 

  35. Perumal P, Hasnain A, Luukkonen T et al (2021) Role of surfactants on the synthesis of impure kaolin-based alkali-activated, low-temperature porous ceramics. Open Ceram 6:100097. https://doi.org/10.1016/j.oceram.2021.100097

    Article  Google Scholar 

  36. Wang S-D (2000) Alkali-activated slag: hydration process and development of microstructure. Adv Cem Res 12:163–172. https://doi.org/10.1680/adcr.2000.12.4.163

    Article  Google Scholar 

  37. Noushini A, Castel A (2016) The effect of heat-curing on transport properties of low-calcium fly ash-based geopolymer concrete. Constr Build Mater 112:464–477. https://doi.org/10.1016/j.conbuildmat.2016.02.210

    Article  Google Scholar 

  38. Ng C, Alengaram UJ, Sing L et al (2018) A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr Build Mater 186:550–576. https://doi.org/10.1016/j.conbuildmat.2018.07.075

    Article  Google Scholar 

  39. Chithiraputhiran S, Neithalath N (2013) Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr Build Mater 45:233–242. https://doi.org/10.1016/j.conbuildmat.2013.03.061

    Article  Google Scholar 

  40. Phoo-Ngernkham T, Chindaprasirt P, Sata V, Sinsiri T (2013) High calcium fly ash geopolymer containing diatomite as additive. Indian J Eng Mater Sci 20:310–318

    Google Scholar 

  41. Al Bakri Abdullah MM, Kamarudin H, Binhussain M, Nizar K, Yahya Z, Razak RA (2012) Fly ash-based geopolymer lightweight concrete using foaming agent. Int J Mol Sci 13(6):7186–7198. https://doi.org/10.3390/ijms13067186

    Article  Google Scholar 

  42. Masi G, Rickard WDA, Vickers L et al (2014) A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram Int 40:13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

    Article  Google Scholar 

  43. Abdollahnejad Z, Pacheco-Torgal F, Félix T et al (2015) Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr Build Mater 80:18–30. https://doi.org/10.1016/j.conbuildmat.2015.01.063

    Article  Google Scholar 

  44. Sanjayan JG, Nazari A, Chen L, Nguyen GH (2015) Physical and mechanical properties of lightweight aerated geopolymer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.01.043

    Article  Google Scholar 

  45. Chi MC, Chang JJ, Huang R (2012) Strength and drying shrinkage of alkali-activated slag paste and mortar. Adv Civ Eng. https://doi.org/10.1155/2012/579732

    Article  Google Scholar 

  46. Wan H, Shui Z, Lin Z (2004) Analysis of geometric characteristics of GGBS particles and their influences on cement properties. Cem Concr Res 34:133–137. https://doi.org/10.1016/S0008-8846(03)00252-7

    Article  Google Scholar 

  47. ASTM C140 ASTM C140/C140M-22a. Standard test methods for sampling and testing concrete masonry units and related units. https://doi.org/10.1520/C0140_C0140M-22A.

Download references

Acknowledgements

The authors acknowledge the support received from Institute of Eminence Research Initiative Project on Technologies for Low-Carbon Lean-Construction (TLC2), IIT Madras. P.P. gratefully acknowledges the Pre-Doctoral Fellowship funding received from IIT Madras.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramamurthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6 and 7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, E.M., Perumal, P. & Ramamurthy, K. Alkali-activated aerated blends: interaction effect of slag with low and high calcium fly ash. J Mater Cycles Waste Manag 24, 1378–1395 (2022). https://doi.org/10.1007/s10163-022-01434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01434-5

Keywords

Navigation