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ABSTRACT

Hypothyroidism is a cause of genetic and environ-
mentally induced deafness. The sensitivity of cochlear
development and function to thyroid hormone (TH)
mandates understanding TH action in this sensory
organ. Prop1df and Pou1f1dw mutant mice carry muta-
tions in different pituitary transcription factors, each
resulting in pituitary thyrotropin deficiency. Despite
the same lack of detectable serum TH, these mutants
have very different hearing abilities: Prop1df mutants
are mildly affected, while Pou1f1dw mutants are
completely deaf. Genetic studies show that this
difference is attributable to the genetic backgrounds.
Using embryo transfer, we discovered that factors
intrinsic to the fetus are the major contributor to this
difference, not maternal effects. We analyzed Prop1df

mutants to identify processes in cochlear develop-
ment that are disrupted in other hypothyroid animal
models but protected in Prop1df mutants by the
genetic background. The development of outer hair
cell (OHC) function is delayed, but Prestin and
KCNQ4 immunostaining appear normal in mature
Prop1df mutants. The endocochlear potential and

KCNJ10 immunostaining in the stria vascularis are
indistinguishable from wild type, and no differences
in neurofilament or synaptophysin staining are evident
in Prop1dfmutants. The synaptic vesicle protein otoferlin
normally shifts expression from OHC to IHC as
temporary afferent fibers beneath the OHC regress
postnatally. Prop1dfmutants exhibit persistent, abnormal
expression of otoferlin in apical OHC, suggesting
delayed maturation of synaptic function. Thus, the
genetic background of Prop1df mutants is remarkably
protective for most functions affected in other hypothy-
roid mice. The Prop1df mutant is an attractive model for
identifying the genes that protect against deafness.

Keywords: thyroid hormone, deafness, dwarfism,
otoferlin

INTRODUCTION

Congenital hypothyroidism (CH) occurs in 1/4,000
live births. Thyroid hormone (TH) deficiency can
cause severe cognitive dysfunction and deafness
(Debruyne et al. 1983; Rovet et al. 1996). The extent
of hearing impairment varies among patients with
CH, and the cause is unknown. Hypothyroid animals
have multiple defects in cochlear development (Uziel
et al. 1983, 1985a, b; O'Malley et al. 1995; Li et al.
1999; Knipper et al. 2001; Christ et al. 2004; Mustapha
et al. 2009). Two dwarf mice with recessive, severe,
secondary hypothyroidism Prop1df/df and Pou1f1dw/dw

(Pit1dw/dw) lack pituitary thyroid stimulating hormone
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(TSH) and TH but have very different hearing
abilities (Karolyi et al. 2007). Hearing tests on the
progeny of a small intercross between the two strains
indicated that genetic background, or genomic varia-
tion, accounts for the differences in hearing between
Prop1df/df and Pou1f1dw/dw mutants.

Maternal thyroid function can also affect the
hearing abilities of humans and other animals. In
areas with endemic cretinism, deafness is equally
prevalent in euthyroid and hypothyroid patients,
suggesting the maternal hypothyroidism may cause
low TH levels in utero which results in auditory
dysfunction in the euthyroid children (Boyages and
Halpern 1993; Chan et al. 2009). A thyroid ablation
study in sheep demonstrated that maternal and fetal
hypothyroxinemia combine to cause neurological
damage (McIntosh et al. 1983). Goitrogen treatment
of pregnant and lactating rodents between the onset
of fetal thyroid gland function (E17–18) and the
onset of hearing at postnatal day 12 (P12) can lead to
permanent hearing defects in the offspring (Deol
1973; Knipper et al. 2000). Prenatal thyroxine treat-
ment can significantly improve the hearing of hypo-
thyroid Tshr mutant mice (Sprenkle et al. 2001a).
Elevated maternal thyroid peroxidase (TPO) autoan-
tibodies during the third trimester are also associated
with hearing deficits in children (Wasserman et al.
2008). TPO is essential for production of TH.
Individuals with autoantibodies often have hypothy-
roidism with bouts of hyperthyroidism. Taken togeth-
er, maternal effects, including maternal TH level,
gestation time, and maturity of the fetus at birth,
could affect the sensitivity of genetically predisposed
hypothyroid animals to hearing impairment.

Pleiotropic effects of hypothyroidism on cochlear
development have been demonstrated in Pou1f1dw/dw

mutants. They exhibit immature cochlear morpholo-
gy, tectorial membrane abnormalities, reduced ex-
pression and function of potassium channels, hair cell
loss, and strial cell deterioration (Mustapha et al.
2009). Several of these features have been reported in
hypothyroid rodent models induced by thyroid-toxic
drugs or other genetic lesions (Li et al. 1999; Knipper
et al. 2000; Sprenkle et al. 2001b; Christ et al. 2004),
suggesting that there are common effects of TH
deficiency. Because of the diversity of effects, TH
likely regulates multiple, critical processes of inner ear
development. It still remains to be determined which
processes are most sensitive to TH deficiency and to
what degree the observed effects contribute to the
hearing problems in the hypothyroid animals.

In this study, we report that the genetic back-
ground effects on the hearing abilities of Prop1 and
Pou1f1 mutants are intrinsic to the fetuses rather than
maternal. Also, we demonstrate that many of the
developmental processes that are TH dependent in

other animal models with hypothyroidism are rescued
by the Prop1 mutant background. Thus, Prop1df mice
provide a valuable tool for us to explore the cause of
variation in hearing impairment in hypothyroid mice
and humans and to identify the potential modifiers that
protect against hearing loss due to hypothyroidism.

MATERIALS AND METHODS

Mice

All experiments were approved by the University
Committee on the Use and Care of Animals and
conducted in accord with the principles and proce-
dures outlined in the National Institutes of Health
Guidelines.

DF/B-p/+, Prop1df mice were obtained from Dr.
Andrzej Bartke in 1988 and maintained at the
University of Michigan. This stock is not inbred but
has gone through population constriction. DW/J-
Mlphln/ln, Pou1f1dw mice were obtained from The
Jackson Laboratory (Bar Harbor, ME, USA). The
DW/J stock is inbred (Mouse Phenome Database,
http://phenome.jax.org). The B6/D2 mice used as
surrogate mothers are the F1 hybrids produced by
breeding C57BL/6J and DBA/2J mouse strains.
These hybrids were purchased from The Jackson
Laboratory.

Mice were housed in specific pathogen-free con-
ditions with automatic watering and ventilation.
Previously described procedures for animal care and
genotyping were used, including feeding mice a
higher fat chow designed for breeding (PMI5020),
delaying weaning of mutants until 35 days, and
housing mutants with normal littermates to provide
warmth (Karolyi et al. 2007). Genotyping detects the
loss of function mutations that affect the DNA binding
domains in each protein: T247C mutation in Prop1df

causing Ser83Pro and G783T in Pou1f1dw resulting
Trp261Cys (Gage et al. 1996; Douglas et al. 2001). In
all experiments, at least three animals of each
genotype were analyzed for each age group studied
unless stated otherwise. Embryonic days gestation are
counted from the time of conception with e0.5
denoting the morning after mating. Postnatal day
zero (P0) is designated as the day of birth.

Embryo transfer experiments

Three- to four-week-old Prop1df/+ or Pou1f1dw/+

females were super-ovulated by intraperitoneal injec-
tion of 5 U each of pregnant mare serum gonadotro-
pin (PMSG) followed by human chorionic
gonadotropin (HCG) 46–50 h later. Females were
placed with heterozygous males of the same genotype,
i.e., Prop1df/+ or Pou1f1dw/+, for overnight mating. E0.5
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embryos (one-cell stage) were collected from fallopian
tubes of the plugged females and cultured in M16
medium (Sigma) with penicillin and streptomycin at
37°C incubator overnight. Eight two-cell stage embryos
were put into one oviduct of each pseudo-pregnant B6/
D2 female, which were generated by mating with
vasectomized B6/D2 males. Wild-type two-cell stage
B6/D2 embryos were placed in the oviduct on the
opposite side of the same pseudo-pregnant female. Pups
born and weaned from surrogate mothers were geno-
typed and evaluated for hearing. Wild-type mice with
the same coat color as the mutants were used as
controls: Prop1 mice are pink-eyed fawn and Pou1f1
mice are agouti leaden. For simplicity, “_S” is added to
genotype symbols to represent mice born from surro-
gate mother in this article.

Auditory physiology

Auditory brainstem response (ABR). Animals were
anesthetized (ketamine 65 mg/kg, xylazine 3.5 mg/
kg, and acepromazine 2 mg/kg). Body temperature
was maintained through the use of water circulating
heating pads and heat lamps. Additional anesthetic
(ketamine and xylazine) was administered if needed
to maintain anesthesia depth sufficient to insure
immobilization and relaxation. ABRs were recorded
in an electrically and acoustically shielded chamber
(Acoustic Systems, Austin, TX, USA). Needle electro-
des were placed at vertex (active) and the test ear
(reference) and contralateral ear (ground) pinnae.
Tucker Davis Technologies (TDT) System III hard-
ware and SigGen/BioSig software (TDT, Alachua, FL,
USA) were used to present the stimulus and record
responses. Tones were delivered through an EC1
driver (TDT, aluminum enclosure made in-house),
with the speculum placed just inside the tragus.
Stimulus presentation was 15-ms tone bursts, with 1-
ms rise/fall times, presented 10 per second. Up to
1,024 responses were averaged for each stimulus level.
Responses were collected for stimulus levels in 10-dB
steps at higher stimulus levels, with additional 5-dB
steps near threshold. Thresholds were interpolated
between the lowest stimulus level where a response
was observed, and 5 dB lower, where no response was
observed.

Distortion product otoacoustic emissions (DPOAEs)
and endocochlear potential (EP) were measured as
previously described (Karolyi et al. 2007).

Antibodies and immunofluorescence

The antibodies used to detect prestin (1:200),
KCNJ10 (1:300), KCNJ4 (1:300), synaptophysin
(1:400), TRITC-labeled secondary antibodies
(1:200), and Alexa Fluor 488 conjugated secondary

antibodies (1:200) have been previously described
(Mustapha et al. 2009). The rabbit polyclonal anti-
Neurofilament 200 antibody (1:500, Sigma) are
commercially available. The rabbit polyclonal anti-
otoferlin antibody (1:500) was kindly provided by
Drs. Saaid Safieddine and Christine Petit (Roux et
al. 2006).

Preparation of cochlear cryosections and the
procedures for immunostaining those sections have
been previously described (Mustapha et al. 2009).

Mouse inner ears were rapidly dissected from the
temporal bones in phosphate-buffered saline (PBS).
The temporal bones were immersed in 4% parafor-
maldehyde (PFA) for fixation. Under stereoscopic
magnification, the round and oval windows were
opened, and the bone from the apical tip of the
cochleae was removed to allow fixative to flow
throughout the tissue. One hour later, the stria
vascularis and tectorial membrane were removed
and the organ of Corti was exposed. After two washes
in PBS, the tissue was incubated in 5% normal goat
serum with 0.3% triton for 1 h, and then with the
primary antibody at 4°C overnight. After three washes
in PBS, samples were incubated with the secondary
antibody for 2 h at room temperature, washed again
three times in PBS, and mounted in ProLong Gold
Antifade Reagent (Invitrogen). All fluorescent micros-
copy was performed on a Leica Leitz DMRB com-
pound microscope with Leica Fiber Optic
Illumination. Images were captured using a QImaging
Retiga 2000R Fast 1394 camera and QCapture Pro
5.1.1.14 software. Images were processed using Adobe®
Photoshop® CS2 9.0.

Statistical analysis

All statistical analyses were performed with SPSS 15.0.
The p values reported for ABR were generated by
independent samples t tests or Tukey’s multiple
comparisons following one-way ANOVA. Error bars
represent standard deviation for means.

RESULTS

Prop1df/df mutants have a mild hearing deficit

ABR tests were used to re-assess the hearing profi-
ciency of Prop1df/df mutants and wild-type littermate
controls because previous studies were carried out on
conventionally housed mice in a quieter environment
(Karolyi et al. 2007). At 4 weeks old, the ABR
thresholds of Prop1df/df mutants are elevated relative
to controls by 21 dB SPL and 34 dB SPL at 4 kHz and
20 kHz, respectively (Fig. 1, PG0.05). When the mice
are 6–7 weeks old, mutant hearing has improved but
is still worse than normal, with elevations of 11 and
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14 dB SPL at 4 and 20 kHz, respectively (Fig. 1,
PG0.001). The hearing thresholds of the mutant
mice are the same at 12 weeks as they were at 6–
7 weeks (Fig. 1). This indicates that the cochlear
development of Prop1df/df mutants undergoes matu-
ration between 4 and 7 weeks of age, but it does
not achieve wild-type function even by 12 weeks.
This hearing impairment is consistent with previous
reports that measured different ages of convention-
ally housed mice at different frequencies (Karolyi et al.
2007).

Gestational and neonatal environments do not
account for variant responses to hypothyroidism
in Prop1df/df and Pou1f1dw/dw mutants

To determine the degree to which maternal effects
contribute to the different degrees of hearing impair-
ment in Prop1df/df and Pou1f1dw/dw mutants, fertilized
eggs with all genotypes from both strains were trans-
planted into the uteri of B6/D2 surrogate mothers,
which would provide common gestation and lactation
environments for both mutants. We chose the moth-
ers of the B6/D2 strain as surrogates because they
have hybrid vigor and exhibit good mothering
instincts. The hearing ability of the progeny born to
the surrogates was tested by ABR at 4 weeks of age,

including Prop1df/df_S and Pou1f1dw/dw_S mutants as
well as wild types from each strain. The hearing
deficits of Prop1df/df_S and Pou1f1dw/dw_S mutants are
significantly different from their normal littermates,
also born to surrogate mothers, and from each other,
but they are indistinguishable from the Prop1df/df and
Pou1f1dw/dw mice born to mothers from their own
backgrounds (Fig. 2, PG0.001 for comparison of the
hearing deficits between Prop1df/df_S and Pou1f1dw/
dw_S mutants at both 4 kHz and 20 kHz). Thus, factors
intrinsic to the fetus play the major roles in the
different responses of Prop1df/df and Pou1f1dw/dw mu-
tant cochlea to hypothyroidism, and maternal effects
are minimal in this context.

Mild outer hair cell (OHC) dysfunction
with apparently normal expression of KCNQ4
and prestin in Prop1dfdf mutants

Cochlear OHCs are unique in their electromotility
and work as a cochlear amplifier in sound processing
(Ospeck et al. 2003). DPOAE is used as a standard
audiometric technique to measure OHC function of
amplification. At 4 weeks of age, Prop1df/df mutants
have DPOAE responses (geometric means of the
primary tones) at 12 or 24 kHz that are indistinguish-
able from the noise floor in postmortem mutant or

FIG. 1. Prop1df mutants have a mild hearing deficit. ABR tests were performed on sets of normal mice (white bars) and mutant mice (black bars)
at ages of 4 weeks, 6–7 weeks, and 12 weeks. N=3 per genotype for 4- and 12-week-old mice, n=9 for 6–7-week-old wild type, and n=8 for 6–
7-week-old mutants.
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wild-type mice (Fig. 3A). By 7 weeks old, Prop1df/df

mutants have improved, but only have about half of
the normal DPOAE at 24 kHz (Fig. 3A). At 12 weeks old,
the DPOAE response of Prop1df/df mutants are still
significantly lower than the wild-type mice (data not
shown). The maturation process of DPOAE in mice
normally begins at 11 days old and obtains the adult-like
pattern by 4 weeks (Narui et al. 2009). This demon-
strates that Prop1df/df mutant cochlea have delayed
development of OHC function with persistent deficiency
at 12 wks. ABR measurements improve between 4 and
7 weeks of age (Fig. 1), suggesting that the persistent
OHC dysfunction could be a contributor to the mild
hearing impairment in Prop1df/df mutants.

KCNQ4 is an M-type K+ channel localized exclu-
sively to the basal pole of the hair cells, and it is
responsible for the dominant K+ conductance in
mature OHCs (Marcotti and Kros 1999; Kharkovets
et al. 2000). Mutations in KCNQ4 cause progressive
deafness in both human and mice (Kubisch et al.
1999; Kharkovets et al. 2006). Pou1f1dw/dw mutant
mice have reduced immunohistochemical staining
and function of KCNQ4 in OHCs (Mustapha et al.
2009). We examined KCNQ4 expression in Prop1df/df

mutant cochlea at 4 weeks. KCNQ4 immunoreac-
tivity is similar in Prop1df/df mutants and their wild-
type littermates at this age (Fig. 3B, C) and at
7 weeks (data not shown), despite the hearing
deficit identified by ABR and DPOAE at this age.
Although immunostaining is not quantitative,
KCNQ4 immunoreactivity was indistinguishable in
Prop1df/df mutants and wild types at both ages, while
the staining in Pou1f1dw/dw mutants was clearly
deficient relative to their littermates at both ages.
Thus, the DF/B genetic background supports

apparently normal KCNQ4 immunostaining despite
the severe hypothyroidism.

Prestin (SLC26A5) is one of the anion transporters
in the inner ear (Lohi et al. 2000) that is expressed
along the basolateral membrane of OHCs (Adler et al.
2003; Yu et al. 2006), conferring electromotility to the
OHCs (Zheng et al. 2000). Prestin is transcriptionally
regulated by TH during final differentiation of outer
hair cells (Weber et al. 2002; Winter et al. 2006).
Prestin is also required for normal OHC length
(Liberman et al. 2002). We examined prestin expres-
sion in Prop1df/df mutants by immunohistochemistry.
The prestin immunostaining in OHCs of mutants and
wild types at 4 weeks of age are indistinguishable, and
there are no obvious differences in cell size (Fig. 3D,
E). Prestin localizes at the lateral wall of Prop1df/df

mutant OHCs, which is the expected mature pattern
(Fig. 3D, E). Thus, the DF/B genetic background of
the Prop1 mutants supports the development of
prestin expression and localization much better than
observed in DW/J-Pou1f1 mutants.

Developmentally delayed expression of KCNJ10
in the stria vascularis and normal EP in Prop1df/df

mutants

Endocochlear potential (EP) is the driving force for
the transduction of ions through the channels in hair
cell stereocilia. An EP level of +80 mV is essential for
normal hearing. Since EP affects the amplitude of
DPOAE, EP was also examined in the present study.
The EP of 7-week-old Prop1df/df mutants ranges from
81 to 93 mV (N=3), which is indistinguishable from
the EP levels (88 to 92 mV, N=2) in wild types (Fig. 4).

FIG. 2. Gestational and neonatal envi-
ronments do not account for different
hearing abilities of Prop1df and Pou1f1dw

mutants. Pups born from surrogate moth-
ers (designated as “Genotype_S”) were
tested by ABR. The hearing deficits of
Prop1df/df_S and Pou1f1dw/dw_S are signif-
icantly different (PG0.001). For each
group, four mice were tested (n=4).

FANG ET AL.: Genetic Protection Against Hypothyroidism-Induced Deafness 177



Thus, the abnormal DPOAE in Prop1df/df mutants
likely results from defective OHCs, not abnormal EP.

KCNJ10 (Kir4.1) K+ channels in the intermediate
cells of the stria vascularis are required for generation
of a normal EP (Marcus et al. 2002). Reduction in
KCNJ10 immunostaining was observed in Pou1f1dw/dw

mutants, which could account for the substantially
reduced EP in those mice (Mustapha et al. 2009). We

examined KCNJ10 expression in 4- and 6-week-old
Prop1df/df mutants by immunohistochemical staining.
At 4 weeks of age, the KCNJ10 immunofluorescence is
reduced in mutants relative to wild types (Fig. 4B). By
6 weeks of age, the KCNJ10 immunostaining in the
mutants is indistinguishable from the wild types
(Fig. 4B). The subcellular localization of KCNJ10 is
normal in both the 4- and 6-week-old mutants. This is

FIG. 3. Prop1df mutants exhibit mild OHC dysfunction with normal expression of KCNQ4 and prestin. A DPOAEs were measured in live 4-
week and 7-week-old wild-type and Prop1df mutant mice (black circles and white squares, respectively), and compared with DPOAEs of
postmortem animals (dotted and dashed line). Data are shown for the 12 and 24 kHz frequencies. N=3 for each genotype group of 4-week-old
mice and n=6 for 7-week-old ones. B, C KCNQ4 immunoreactivity is normal in OHCs (arrows) of mutant mice relative to wild type. Frozen
sections obtained from P28 wild-type and mutant mice were stained for KCNQ4 (red). Nuclei were stained with DAPI (blue). D, E Prestin
expression and localization was analyzed by staining frozen sections from wild-type and Prop1df mutants at P28 with prestin-specific antibodies
(red). Nuclei were labeled using DAPI (blue). Arrows identify rows of outer hair cells. Scale bars: 10 μm.
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consistent with the normal EP observed. Thus, the
DF/B-Prop1 genetic background protects against per-
sistently reduced KCNJ10 immunostaining in other
adult hypothyroid mice.

Gross neurite outgrowth and synaptogenesis
of OHCs are unaffected in Prop1df/dfmutant cochlea

The maturation of the nervous system in the
rodent cochlea takes place during the first two
postnatal weeks of life, which overlaps with the
critical time window of TH function (Knipper et al.
2000). TH deprivation causes abnormalities in
cochlear innervation and synaptogenesis in multi-
ple hypothyroid animal models (Uziel et al. 1983;

Brandt et al. 2007; Sendin et al. 2007). Abnormal
efferent fibers have been observed by dye injec-
tions in hypothyroid rats even though the olivoco-
chlear neurons, from which the efferent fibers
arise, are normal in number and distribution
(Cantos et al. 2000, 2003). Neuronal marker
proteins are also frequently used for examination
of the innervation patterns. We used antibodies
that recognize neurofilament protein NF-200,
which stains both afferent and efferent fibers, to
detect neurite outgrowth in Prop1df/df mutant co-
chlea at 4 and 7 weeks. No significant differences
were observed in neuronal fibers between mutants
and wild types at 4 weeks (Fig. 5B) or 7 weeks
(data not shown). Synaptophysin is a presynaptic

FIG. 4. Endocochlear potential (EP) is
normal and KCNJ10 expression is devel-
opmentally delayed in Prop1df mutants. A
EP was measured in P42 wild-type and
age-matched mutant animals. Levels of
EP (mV) for littermate control and Prop1df

mutants are shown. B Frozen sections of
the organ of Corti of wild-type and mutant
mice collected at P28 and P42 were
stained for KCNJ10 (red). Nuclei are
marked by DAPI (blue). KCNJ10 expres-
sion is detected in the intermediate cells
of the stria vascularis.
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marker of efferent fibers, which comprise 95% of
the fibers innervating OHCs. A strong and normally
organized pattern of synaptophysin immunostaining
was observed in Prop1df/df mutants (Fig. 5A). Thus,
neither the gross neurite outgrowth nor the efferent
synaptogenesis of OHCs are apparently affected by low
TH levels in DF/B-Prop1df/df mice.

Prolonged presence of otoferlin in apical OHCs
of Prop1df/df mutants

Otoferlin is thought to be the major calcium sensor
and essential for exocytosis at both inner hair cell
(IHC) and immature OHC ribbon synapses (Roux et
al. 2006; Beurg et al. 2008). Expression of otoferlin
begins prenatally in both IHCs and OHCs and
vanishes from OHCs by P6 (Roux et al. 2006). The
disappearance of otoferlin immunostaining in OHCs
occurs around the same time as the retraction of
afferent fibers from OHCs (Beurg et al. 2008).
Together with myosin VI, otoferlin is involved in
the maintenance of the basolateral synaptic structure
of IHCs (Heidrych et al. 2009; Roux et al. 2009). We
examined the expression of otoferlin by immunos-
taining whole-mount and cryosectioned tissues. Sim-
ilar expression levels of otoferlin were seen in IHCs
of Prop1df/df mutant cochlea as the wild type. Abnor-
mally strong otoferlin immunostaining persists in the
OHCs in the apical coil of 6-week-old Prop1df/df

mutant cochlea (Fig. 6C, D) and none was observed
in the wild-type littermates. Weak otoferlin immu-
nostaining is reported in the OHCs in the apical
region of mature cochlea in wild-type animals (Roux

et al. 2006), but this may represent a strain differ-
ence in maturation or sensitivity of detection.
Nevertheless, the abnormal persistence of otoferlin
expression in apical OHCs of Prop1df/df mutant
cochlea may represent some remaining immaturity
of the cells.

DISCUSSION

Maternal effects are minimal for variation
of hearing deficits between Prop1df/df

and Pou1f1dw/dw mutants

Maternal effects are defined as the causal influence of
the maternal genotype or phenotype on the pheno-
type of the offspring (Wolf and Wade 2009). Based on
this definition, maternal effects may include direct or
indirect consequences of maternal traits, such as
nesting behavior, gene transcription, hormone levels,
antibodies, placental permeability, and the particular
environments in which mothers lay eggs (Rhees et al.
1999; Wolf and Wade 2009). In mammals, the roles of
maternal effects exist at two distinct maternal stages:
prenatal uterine and postnatal nursing and nurturing.
By transferring embryos between two inbred mouse
strains with large body size (C3H) and small body size
(SWR), both uterine and postnatal maternal effects
were proven to contribute to the prenatal and early
postnatal development of offspring, and no obvious
donor genotype effects were observed (Cowley et al.
1989; Pomp et al. 1989; Rhees et al. 1999).

The hearing abilities of progeny are substantially
affected by maternal TH levels in both human and
rodents (Boyages and Halpern 1993; Knipper et al.

FIG. 5. Neurite growth and synapto-
genesis of OHCs are grossly unaffected
in Prop1df mutants. A Synaptophysin, a
presynaptic marker of efferent fibers, is
stained on whole mount preparations of
cochlear epithelia with an anti-synapto-
physin antibody (green). B Neurofilament
protein (NF-200) immunostaining was
used to detect the neurite outgrowth in
cochlea whole mounts of P28 mutants as
well as wild-type controls. Prestin immu-
nostaining was used to indicate the
position of OHCs (red).
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2001). In our breeding scheme, the mothers of Prop1df/df

and Pou1f1dw/dw mutants are heterozygous for the
recessive Prop1 and Pou1f1 mutations, respectively. Thus,
maternal TH levels are in the normal range. We
suspected that strain differences in normal basal TH
levels transferred to the fetus or neonate through the
placenta or milk, respectively, could contribute to the
different levels of hearing impairment characteristic
of Prop1df/df and Pou1f1dw/dw mutant mice. In addition,
it is possible that strain differences in gestation time or
maturity at birth could influence the effects of fetal
hypothyroidism on hearing deficit. For example,
longer gestation time might allow a hypothyroid fetus
to benefit frommaternal TH long enough to protect it
during the critical period for TH-dependent cochlear
development.

Our embryo transfer experiments demonstrated that
a consistent mothering environment does not signifi-
cantly change the hearing deficits in Prop1df/df and
Pou1f1dw/dw mutants from the ones they exhibit when
born from mothers on the original backgrounds. This
contrasts with the changes in hearing abilities observed
for Prop1df/df and Pou1f1dw/dw mutants when the original
backgrounds were mixed (Karolyi et al. 2007). From
these results, we conclude that the strain differences
intrinsic to the fetus play the major role in inducing
different hearing deficits between Prop1df/df and
Pou1f1dw/dw mutants. Other strain combinations might
reveal strong maternal effects, however, because there
are compelling data to support the importance of
maternal thyroid hormone for development (Deol
1973; Knipper et al. 2000). Future genetic studies with
DF/B-Prop1 and DW/J-Pou1f1mutants may identify loci
that enhance or suppress the ability of hypothyroidmice

to develop normal hearing, and the results of the
embryo transfer studies direct the focus to factors
intrinsic to the fetus and/or neonate. A protective locus
on Chr 2 called Modifier of dw hearing, Mdwh, has been
mapped in a cross between DW/J-Pou1f1mice andMus
castaneus (Fang et al. 2011).

The effects of genetic background on hearing
ability in mice are noted in many inbred strains. The
most familiar example is that C57BL/6 J mice carry a
mutation in cadherin 23 (Cdh23) known as Age-related
hearing locus (Ahl) and develop progressive deafness
beginning at about 1 to 2 months at the highest
frequencies. Quantitative trait loci (QTL) analysis has
identified several modifiers of hearing impairment
(Ikeda et al. 1999, 2002; Drayton and Noben-Trauth
2006; Mashimo et al. 2006; Noguchi et al. 2006; Van
Eyken et al. 2006; Ohlemiller et al. 2010). We expect
that QTL analysis of DF/B and/or DW/J strains could
identify genes that confer protection or susceptibility
to hypothyroidism-induced hearing impairment
(Fang et al. 2011). These modifiers could also be
genes involved in Mendelian hearing defects, as
mutations in Cdh23 also account for nonsyndromic
autosomal recessive deafness DFNB12. Alternatively,
they could be genes that regulate the transport and
bioactivity of thyroid hormone within the cochlea.

Delayed maturation may contribute the mild
hearing impairment in Prop1df/df mutants

The Prop1df genetic background protected against
most abnormalities reported in deaf, hypothyroid
mice. Because the persistent hearing impairment in
Prop1df/df mutants represents less than 20 dB threshold

FIG. 6. Prolonged presence of otoferlin
at apical OHCs in Prop1df mutants. A, C
Otoferlin immunostaining (red) was done
on whole mount preparations of sensory
epithelia from the apical turn of Prop1df

mutants and wild type. B, D Frozen
sections of organ of Corti were collected
and stained by anti-Otoferlin antibody
(red). Arrowheads indicate the rows of
OHCs. Arrows point to the IHCs. Nuclei
are blue in all stainings.
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elevation, very subtle differences in maturation that
are not obvious may be contributing factors. The
effects of hypothyroidism on the cochlear nervous
system are expected to be mostly associated with OHC
wiring (Uziel et al. 1983). This may be because the
pattern of synapses at OHC normally undergoes
profound changes within the first two postnatal weeks,
which is also the critical time window of TH function-
ing for normal hearing. We observed an immature
pattern of otoferlin expression in apical regions of
Prop1df/df mutant cochlea. During normal cochlear
development, otoferlin initially is expressed in IHCs
and OHCs. By P6, the disappearance of otoferlin from
OHCs parallels the retraction of afferent dendrites
and formation of efferent synapses (Roux et al. 2006).
Thus, abnormal persistence of otoferlin in Prop1df/df

mutant OHCs implies an immature innervation
pattern at the level of OHCs. In Prop1df/df mutant
cochlea, the prolonged persistence of otoferlin stain-
ing in OHCs was only observed at apical turn, tuned
for low frequencies. Although the delayed maturation
of otoferlin staining in the apical OHCs may contrib-
ute to the mild degree of hearing impairment in
Prop1df/df mutants, it is not consistent with high
frequency OHC dysfunction, for which the underlying
factor(s) remains to be uncovered.

Usually, IHC dysfunction corresponds to severe
hearing loss because IHCs are the primary sensory
receptors within the cochlea. The maturation of
ribbon synapses in IHCs is affected by hypothyroidism
in rodents (Brandt et al. 2007; Sendin et al. 2007). In
those studies, the expression of otoferlin in IHCs was
completely absent or substantially reduced in drug-
treated rats and Pax8 knockout mice, respectively.
This is quite different from the Prop1df/df mutants,
which preserved almost normal otoferlin expression
level in IHCs. The Prop1df/df genetic background is
remarkably protective of otoferlin expression in IHCs.

Gene regulation by TH may be substantially
affected by genetic background

We examined expression of several cochlear genes
that are affected in other hypothyroid animal models.
In Pou1f1dw/dw mutants, prestin expression and local-
ization are developmentally delayed, but they become
indistinguishable from normal littermates by 6 weeks
(Mustapha et al. 2009). The capacitance levels in
mutants this age are compatible with levels in young
hearing mice, consistent with adequate prestin func-
tion for hearing. In Prop1df/df mutants, however, both
expression and localization of prestin are not obvi-
ously affected by the absence of TH, suggesting
prestin function is not strictly TH dependent. TH
response elements (TREs) exist within the Prestin
gene and are regulated by binding of TH receptor

(TR), retinoid X receptor (RXR) heterodimers (We-
ber et al. 2002). The Prop1df genetic background may
support either RXR or an as yet uncharacterized
heterodimer partner of TRs interacting with TREs to
compensate the absence of TH to activate prestin
gene. We cannot rule out the possibility that there is a
biologically significant level of TH produced in Prop1df/df

mice, even though it is not detectable in serum, that
contributes to the protective effect (Gage et al. 1996).
Alternatively, completely independent transcriptional
control elements or factors may compensate.

KCNQ4 expression is significantly reduced in
Pou1f1dw/dw mutants from weaning to adulthood
(Mustapha et al. 2009), but Prop1df/df mutants, in
contrast, have apparently normal KCNQ4 immunos-
taining. Unliganded TRalpha1 receptors exert a
repressive influence on KCNQ4 expression during
final differentiation of OHCs (Winter et al. 2006).
TRalpha1 knockout mice, however, do not exhibit
hearing impairment, which implies that the activation
of KCNQ4 gene cannot solely depend on TH/TR
pathway (Rusch et al. 1998). A novel TH-signaling
pathway can bypass TRs to mediate TH regulation
(Shibusawa et al. 2003). Genetic studies may reveal
the strain-specific modifier genes that lead to differ-
ential expression of KCNQ4 in hypothyroid mice.

Reduction of KCNJ10 expression in the stria
vascularis likely contributes to the reduction of EP
level in Pou1f1dw/dw mutants (Mustapha et al. 2009). In
contrast, the EP level of Prop1df/df mutants is normal at
6 weeks, and expression of KCNJ10 is developmentally
delayed but reaches apparently normal levels by
6 weeks. The mechanism whereby TH regulates
Kcnj10 gene expression in susceptible strains is not
known. It could be a direct or indirect transcriptional
regulator, or influence the stability of the RNA or
protein. In fact, differences in scaffolding protein
expression can have profound, pleiotropic effects on
protein stability (Heydemann and McNally 2007).

The roles of the TH, TR complex in gene regulation
have been widely documented in many physiological
fields including development, homeostasis, cell
proliferation and differentiation, etc. The downstream
effects of TH/TRs on gene expression can be either
activation or repression. A comparison of the cochlea
gene expression profiles from Pou1f1dw/dw mutants and
wild types revealed that half of the genes are up-
regulated and half are down-regulated in Pou1f1dw/dw

mutants (Tzy-wenGong, unpublished data). This proves
the complexity of gene regulation by TH. It is intriguing
that the genetic background of Prop1 mice can rescue
expression of so many genes despite the existence of
profound hypothyroidism. We favor a model involving
genetic variation in a TH responsive transcription factor
in the cochlea or alteration that boosts the effective level
of thyroid hormone in the cochlea (van der Deure et al.
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2010). This could account for improvement in many
TH-dependent processes in the presence of the DF/B
background. Alternatively, there could be a complex set
of genes that contribute to the protective effects. Sorting
out this difference could be very important for us to
identify the genes and pathways that are the most
sensitive to TH regulation in inner ear development.

In conclusion, the Prop1df/df mutant mice lack TH,
yet they exhibit only a mild hearing deficit. The
genetic background of Prop1 mice can compensate for
many cochlear developmental processes that are
apparently dependent on TH in other strains. Iden-
tification of the protective factor(s) for hypothyroid-
ism-induced hearing loss by genetic mapping would
help us understand the mechanism of gene regulation
by TH in the inner ear and potentially identify novel
genes involved in the normal auditory function.
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