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ABSTRACT

Lesions of spiral ganglion cells, representing a restrict-
ed sector of the auditory nerve array, produce immedi-
ate changes in the frequency tuning of inferior
colliculus (IC) neurons. There is a loss of excitation at
the lesion frequencies, yet responses to adjacent
frequencies remain intact and new regions of activity
appear. This leads to immediate changes in tuning and
in tonotopic progression. Similar effects are seen after
different methods of peripheral damage and in audito-
ry neurons in other nuclei. The mechanisms that
underlie these postlesion changes are unknown, but
the acute effects seen in IC strongly suggest the
“unmasking” of latent inputs by the removal of
inhibition. In this study, we explore computational
models of single neurons with a convergence of
excitatory and inhibitory inputs from a range of
characteristic frequencies (CFs), which can simulate
the narrow prelesion tuning of IC neurons, and
account for the changes in CF tuning after a lesion.
The models can reproduce the data if inputs are
aligned relative to one another in a precise order along
the dendrites of model IC neurons. Frequency tuning
in these neurons approximates that seen physiological-
ly. Removal of inputs representing a narrow range of
frequencies leads to unmasking of previously subthresh-
old excitatory inputs, which causes changes in CF.
Conversely, if all of the inputs converge at the same
point on the cell body, receptive fields are broad and
unmasking rarely results in CF changes. However, if the

inhibition is tonic with no stimulus-driven component,
then unmasking can still produce changes in CF.
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INTRODUCTION

Receptive field (RF) changes in central nervous system
(CNS) neurons that follow partial losses of sensory
input have been widely used asmodels of CNS plasticity.
In the first demonstration of plasticity as a result of
damage to the cochlea (Robertson and Irvine 1989), a
basal (high frequency) sector of the organ of Corti was
ablated mechanically, resulting in a high-frequency
hearing loss over a narrow range of frequencies. Some
months after the lesion, it was observed that neurons
in the high-frequency region of the auditory cortex
now responded to lower frequencies. The new char-
acteristic frequencies (CFs) corresponded to the high-
frequency edge of the remaining cochlea inputs, and
their CF thresholds averaged only 12.5 dB above the
prelesion thresholds of neurons tuned to the same low
frequencies. These responses did not simply reflect
residual activity that was “left over” from the prelesion
RFs. There was new activity in responses to stimuli
outside the range which had produced responses prior
to the lesion. Thus, Robertson and Irvine observed an
expansion of the central representation of these lower
frequencies, which radically altered the cortical fre-
quency organization.

Subsequent studies using the same chronic lesion
method have confirmed and extended these results in
the auditory cortex (Rajan et al. 1993; Irvine et al. 2003;
Kamke et al. 2003) and down to the level of the
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inferior colliculus (IC; Irvine et al. 2003; Kamke et al.
2003). Studies in which damage was induced acousti-
cally, whether chronic (Rajan 1998, 2001) or acute
(Calford et al. 1993; Wang et al. 1996; Norena et al.
2003), in either IC (Wang et al. 1996) or cortex
(Calford et al. 1993, Norena et al. 2003) also showed
changes in tuning and expansion of RFs. However,
with one exception (Norena et al. 2003), the changes
in CF were accompanied by significant increases in
thresholds and did not result from activity at new
frequency/level combinations. In the cochlear nucleus,
all changes in RFs and CFs are explainable as the
“residue” of prelesion tuning, whether lesions are acute
and acoustically induced or are chronic mechanical
ablations (Kaltenbach et al. 1992; Rajan and Irvine
1998). Tonotopic remapping that does reflect new
activity was observed in IC immediately after focal
lesions of spiral ganglion cells (Snyder and Sinex 1998;
Snyder and Sinex 2002; Snyder et al. 2008). Moreover,
rapid RF changes have been seen in other sensory
modalities (for review, see Calford 2002). Interestingly,
immediately following mechanical lesions involving
the organ of Corti and basilar membrane, there are
only high-threshold residual changes in CF (Robertson
and Irvine 1989). However, trauma may obscure any
immediate changes in these experiments. It is clear
that the method of damage to the cochlea, the time
since the damage, and the location in the neural
pathway are all important factors in determining the
changes seen to neural response properties and that
they interact in quite complex ways.

There are several possible mechanisms that could
explain postlesion changes in tuning and tonotopy.
Anatomical “rewiring” requires a time course ofmonths
after damage (Darian-Smith and Gilbert 1994; Tailby
et al. 2005) and so cannot explain acute changes.
Another more rapid mechanism is an increase in the
strength of individual synaptic inputs (Jenison 1997).
A third possibility is that the removal of some afferent
inputs might alter the balance between excitatory and
inhibitory input in an afferent population. Reduction
in the number of inhibitory inputs, for example, might
“unmask” or release previously suppressed or sub-
threshold excitatory inputs, allowing them to evoke
excitatory responses at frequency–sound level combi-
nations outside the prelesion excitatory response area.
RF changes in the auditory system (Rajan 1998, 2001)
have been associated with a loss of surround inhibi-
tion, and a wide variety of changes across different
sensory modalities can be interpreted as having un-
masking as their underlying mechanism (see Calford
2002). This explanation of plasticity implies something
about the way sensory systems are hardwired. Specif-
ically, neurons are receiving a far wider range of inputs
than is normally measured under acoustic stimulation.
It has been suggested that tonic inhibition might be

necessary (Calford and Tweedale 1991a) to account for
unmasking. Indeed, there is experimental support for
this in the somatosensory cortex (Calford and Tweedale
1991b). Yet, there has been no quantitative theoretical
demonstration of unmasking and how it can lead
directly to changes in RF organization without eleva-
tions in threshold.

As a first step in establishing such a quantitative
theoretical account in the auditory system, we have
explored neural mechanisms in twomodel neurons that
could underlie the immediate changes in frequency
tuning seen in IC neurons following spiral ganglion
lesions (Snyder et al. 2000; Snyder and Sinex 2002).
These cannot be attributed to slow, plastic processes.
There are a variety of such immediate changes, but we
will focus on those in which new, low-threshold re-
sponses are observed, since they result in changes in
CFs and frequency organization that cannot be ex-
plained by residual responses (pseudoplasticity). The
models consist of populations of single neurons receiv-
ing convergent afferent excitatory and inhibitory inputs,
and they compute only steady-state firing rates. The
models ignore any temporal processing and any pro-
cessing that occurs between the auditory nerve and the
IC. They do not, therefore, reproduce the wide range of
complex response patterns seen in IC. Nevertheless,
these models show that there are at least two mecha-
nisms by which unmasking of latent inputs could
account for the immediate shifts in CF observed in IC
neurons. Moreover, they indicate some of the con-
straints on the mechanisms producing these changes.

METHODS

Two stage models were used to simulate the steady-state
RF properties (firing rate as a function of tone
frequency and level) of neurons in the IC. Figure 1A
shows the overall architecture of one of the models.
The first stage was the simulated responses of an array
of auditory nerve (AN) fibers across the length of the
cochlea (Sumner et al. 2003b). The outputs from this
array formed both the excitatory and inhibitory inputs
to stage 2, a steady-state solution of the membrane
potential in a single neuron. There are two different
kinds of neuron model. The first and most complex is
shown in Figure 1A.

Stage 1: the model of the auditory periphery

The AN was simulated with a model of the guinea pig
cochlea (Sumner et al. 2003b), which consisted of five
substages: a middle ear filter stage, a nonlinear mech-
anical filter bank stage, an inner hair cell (IHC) trans-
duction stage, a spike generation stage, and a channel
output stage. The stimulus waveform was input to a linear
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bandpass filter (refer to Fig. 1A), reflecting the frequency
response of the middle ear. The middle ear stage in
turn provided the input to a dual-resonance nonlinear
(DRNL; Fig. 1B) filter bank. This simulated the
nonlinear mechanical filtering in the ear (Meddis et
al. 2001). Each channel of the filter bank represented a
single position in the cochlea and consisted of two
parallel bandpass branches whose outputs were summed
(refer to Fig. 1B). One branch was linear, while the
other had a broken stick compression function. The
nonlinear pathway contributed the narrow tip of
the tuning curves (example tuning curves are shown

in Fig. 1A). Since this pathway was compressive, its
output grew little with sound level, unlike the broadly
tuned linear pathway. So at high intensities, the linear
pathway dominated the output. Longitudinal variation
in tuning and compression arose from variation in the
parameters with characteristic frequency (CF: the
frequency at which the threshold of the AN fiber is
lowest). This architecture can reproduce many of the
characteristics of basilar membrane (BM) measure-
ments (Meddis et al. 2001).

Each channel from the DRNL filter bank drove an
IHC stage (Sumner et al. 2002; Sumner et al. 2003b).

FIG. 1. A Schematic of a compartmental model of an IC neuron. A
model of the auditory periphery (bottom) to the neuron is based on a
previously published model. Its inputs are pure tones, filtered by a
bandpass model of the middle ear. The mechanical filtering at fixed
points along the basilar membrane is modeled by DRNL filters, which
drive a model of transduction by the IHC, which in turn drives 20
Poisson spike generators. The discharge rates of the 20 generators,
simulating 20 HSR auditory nerve fibers, are summed to represent a
single input channel to the IC model neuron, in spikes per second.
Representative FTCs for five (of the 60) input channels from the
peripheral model are shown. The CF of each channel is separated by
1/12 of an octave and CFs extend from 1 to 30 kHz. Each channel acts
as the input to one neural cell compartment at the top. IC neurons were
simulated using an electrical circuit analog equivalent of the membrane
potential at different points (compartments) on the cell body and
dendrites. The output of each compartment is simulated by its

membrane potential (Vj) at discrete points across the cell. Each
compartment has a resting (Grj), excitatory (Gej), and inhibitory (Gij)
input conductance. The soma is the central compartment of the model
and Vj at this point drives spike generation. Both excitatory and
inhibitory input conductances are derived from the auditory nerve
model with different CFs forming synapses tonotopically onto different
electrical compartments. The strength of input conductance falls off with
distance from the soma as in C. B A single DRNL filter. C Input
weighting functions determining the strength of the conductances are
Gaussian functions centered on the somatic compartment. Parameters
determine the width (We, Wi) and overall scaling factors (Fe, Fi) of the
weighting functions. The black bar indicates the CF extent of the
simulated lesion. The figure illustrates the parameters for the model
output shown in Figure 3 (We = 10 semitones, Wi = 8 semitones), for a
CF of 5 kHz (N11).

SUMNER ET AL.: Modeling Retuning in IC 113



The IHC stage incorporated fluid–cilia coupling, a
simple passive equivalent electrical circuit of the IHC
receptor potential, and calcium-controlled release of
neurotransmitter into the synaptic cleft. Neurotrans-
mitter was recycled via the cleft at a limited rate
resulting in a reduction of the amount available for
release. This produced adaptation in firing rate much
like that seen in auditory nerve responses. In the
previously published model, a key feature was that
neurotransmitter was released stochastically. However,
for computational efficiency in this study, the synapse
output was a continuously varying probability of neuro-
transmitter release. The output of each IHC was input
to 20 Poisson spike generators, modified to have
absolute and relative refractoriness (Carney 1993).
These generators simulated the responses of 20 AN
fibers with the same CF. The complete auditory peri-
pheral model can reproduce many of the effects ob-
served in the AN and their variation with fiber type,
including realistic RF shapes with the correct tuning
asymmetry, compression, adaptation, and phase-lock-
ing (Sumner et al. 2002, 2003a, b; Holmes et al. 2004).

The responses of the peripheral model were calcu-
lated for high spontaneous rate (HSR) AN fibers with 60
different CFs varying from 1 to 30 kHz in 12th octave
(i.e., one semitone) steps. The stimuli were pure tones
which varied from 1 to 30 kHz in 12th octave frequency
steps and 5 dB steps in level from 0 to 100 dB sound
pressure level (SPL). From this, the mean spike rate
was calculated from the 20 AN fibers at each CF and
stimulus condition. All fibers had a spontaneous firing
rate of approximately 100s−1. Some neuron models
presented were also tested with peripheral inputs that
were not spontaneously active. A value of 125s−1 was
subtracted to ensure there was no spontaneous
activity, since actual values are variable owing to the
stochastic nature of firing. The remainder were then
rescaled to produce the original maximum firing rate.
Examples of frequency threshold tuning curves
(FTCs) are shown in Figure 1A. Channel 30 has a
CF of 5 kHz, and each of the illustrated FTCs differs
in CF by ten semitones.

Stage 2: the compartmental model of a central
auditory neuron

The first neural model presented in this study
considered the convergence of excitatory and inhib-
itory inputs onto a central auditory neuron when the
inputs were distributed tonotopically across the cell
body and dendrites. All the inputs, excitatory and
inhibitory, were taken directly from the peripheral
model in which the only variations were CF-related.
Figure 1A stage 2 shows the architecture of this model
and how it was connected to stage 1, the model AN
inputs.

We simulated neurons using an electrical circuit
analog equivalent of the membrane potential at differ-
ent points on the cell body and dendrites (e.g., Banks
and Sachs 1991). The top of stage 1 shows the electrical
circuit, divided into coupled “compartments” (divided
by dashed vertical lines) representing different points
along the neuron’s dendritic surface. One central
compartment was labeled the “soma” and its mem-
brane potential drove action potential generation in
the cell axon. Two dendrites stretched out from the
soma in opposite directions. Each compartment re-
ceived different excitatory and inhibitory inputs.

We were interested in the possibilities for static
processing in such a neuron. Therefore, we analytically
solved the steady-state solution for the neuron, i.e., as if
the inputs were constant and themembrane potential at
the various points in the neuron had settled to a steady
state. This was much faster than simulating the evolu-
tion of the membrane potential in time and allowed us
to explore a large parameter space. For a compartment
at a single location, j, in our neuron (see Fig. 1A), we
applied Kirchoff’s current law, giving a steady-state
solution of the form:

GejEe þ GijEi þ GrjEr ¼ �Gdj�1Vj�1

þ Gej þ Gij þ Grj þ Gdj þ Gdj�1
� �

Vj

�GdjVjþ1

ð1Þ

where Vj represented the membrane potential at a
single location along the dendrite or cell body with Vj−1
and Vj+1 being the membrane potential at the neigh-
boring locations. Gej and Ee were the excitatory conduc-
tance and excitatory reversal potential, respectively; Gij

and Ei were the inhibitory conductance and inhibitory
reversal potential; Er and Grj were the resting potential
and resting (or leakage) conductance of the membrane;
and Gdj, was the coupling conductance between com-
partment j and j + 1. None of the conductances in the
model were dependent on membrane potential. For all
models presented in this study, Ee was set to 0mV and Ei
was set to −80mV, which are both physiologically com-
mon values (Johnston and Wu 1995). Er was set to
−60 mV, determining the resting potential of the cell
with no inputs. Gdj was a parameter in the model, but in
most instances, it was set to 36 × 10−3S and it was the
same for all j within a single model. For n compart-
ments, we thus derived n equations linking each
compartment with its two neighbors. This produced n
simultaneous equations with n unknowns (the mem-
brane potential at each point) which were solved using
Gaussian elimination.

The inputs to the neuron were the weighted outputs
from stage 1. Each input channel had a different CF and
provided the input to a different compartment in the
neuron model in tonotopic order. Thus each adjacent
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compartment received an input differing in CF by one
semitone (1/12 octave) relative to the neighboring
compartments with filter bank channel j forming the
input to compartment j in the model neuron. Al-
though every neuron had 60 compartments, it was pos-
sible for many of these compartments to receive no
input. The CF range and strength of the excitatory and
inhibitory inputs to a neuron were determined by
Gaussian weighting functions. Multiplying the firing
rate for the peripheral input by the excitatory weight for
a given channel gave the excitatory conductance at the
corresponding compartment. For the excitatory inputs:

Gej ¼ xjFe e
� j�cð Þ2
2W 2

e ð2Þ
where Gej was the excitatory input to compartment j, xj
was the total firing rate of the 20 AN model fibers from
filter bank channel j, and c was the compartment num-
ber which was defined as the soma. We determined the
range of stage 1 channel CFs which provided input
onto the stage 2 neuron, Fe was the maximum synaptic
strength (which was at the soma), and c was the input
channel which provided the input to the soma. In
order to produce a finite range of inputs, if the weight
applied to xj was less than 0.1, Gej was set to 0. Notice
that because c is both the center of the Gaussian
weighting function and the somatic compartment, the
strongest input to the neuron is always at the soma and
will define the CF of the neuron. The inhibitory inputs
were subject to a similar weighting function with
different parameters (Wi and Fi). There was no
inhibitory input to the soma (i.e., Gij = 0 when j = c).
This was necessary because inhibition at this compart-
ment was often strong enough to suppress all excitato-
ry inputs and completely suppressed any excitatory
responses (examination of which was the purpose of
the model). There is some experimental support that
such an arrangement exists in the avian forebrain
(Muller and Scheich 1988). We would like to stress that
this does not rule out the existence of other weaker,
differently tuned, or higher threshold inhibition at the
soma. For simplicity, such inhibition was not consid-
ered in this model.

Figure 1 illustrates how, for an example model
neuron (the responses of which are shown in Fig. 3),
the model parameters determine the inputs to the
neuron. The Gaussian weighting function in Figure 1C
is centered on j = 30 (i.e., c = 30) with We = 10 and Wi =
8. This produced nonzero excitatory input weights for
41 channels of the filter bank with the maximum
weight at j = 30, for which the CF of the input is 5 kHz.
Figure 1A shows the FTCs for five of the CF channels
of the AN inputs to the neuron (j = 10, 20, 30, 40, 50)
and Figure 1C indicates the input weights (colored
points) for each of these channels. The weighting
functions meant that when j = c ± We input strengths

dropped to 0.6Fe. At 20 semitones away from the
center of the function, only the excitatory input was
nonzero.

The firing rate of the neuron was modeled as an
exponential function of the steady-state membrane
potential at the soma:

R ¼ Rmax 1� exp � Vc � Vthrj j=1ð Þ½ � ð3Þ
where Rmax is the maximum firing rate, Vc is mem-
brane voltage at the soma, Vthr is the threshold mem-
brane voltage for the neuron to discharge, and λ is a
constant. We set the neurons’ firing threshold Vthr to
−50 mV, the maximum firing rate Rmax to 300s−1, and λ
to 15. This produced a threshold effect and a realistic
saturating firing rate.

Stage 2: the point neuron model of a central
auditory neuron

The second kind of model we considered was slightly
different to that shown in Figure 1A, in that it had
only one compartment at the soma and no dendrites
at all. This allowed us to investigate the necessity of
the dendrites. The membrane potential of the cell was
given by:

Vm ¼ GeEe þ GiEi þ GrErð Þ= Ge þ Gi þ Grð Þ ð4Þ

where Vm was the membrane potential for the com-
partment, Ge and Ee were the excitatory conductance
and reversal potential, respectively, Gi and Ei were the
inhibitory conductance and reversal potential, respec-
tively, and Gr and Er were the resting conductance and
reversal potential, respectively. Effectively, this was a
simplified version of Eq. 1 with Gdj = 0. All the reversal
potentials and the resting conductance took the same
values as for the compartmental model.

All the peripheral inputs were summed to form a
single excitatory and a single inhibitory input. The same
form of Gaussian weighting function was applied to
these inputs. Thus, the total excitatory input conduc-
tance was:

Ge ¼
XN

j¼1

xjFe e
� j�cð Þ2
2W 2

e ð5Þ

where j was the peripheral input channel, N was the
number of input CFs (i.e., 60), xj was the input firing
rate from peripheral channel j, c was the peripheral
channel where the weighting function was maximum
and thus determined the CF of the model neuron, and
Fe and We were the maximum synaptic strength and
width of the weighting function, respectively. The
inhibitory conductance was determined similarly to
the excitatory input. The firing rate of the neuron was
determined from Vm by Eq. 3.
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In one set of point neuron model simulations, we
employed a tonic inhibition which was active for each
channel providing the input was intact (i.e., not le-
sioned). Each tonic inhibitory input (xj) had a constant
firing rate of 100s−1 (to make it roughly equivalent to
the spontaneous rate in the other inputs used), and
these were scaled by the input weighting function (Eq. 5)
in the same way as any other inputs.

The simulation process and analysis

For a given neuron model (compartmental or point)
and a given set of parameters to describe the weights of
the inputs, the center of the input weighting functions, c
(Eqs. 2, 3, and 5), was shifted from 20 to 40 across the
peripheral inputs, yielding an array of 21 different
model neurons with CFs from ∼3 to 9 kHz. Except for
the CFs, this array of model neurons had the same
parameters and thus similar response properties.

In a given model neuron, the evoked firing rate for
each pure tone frequency and level combination was
calculated to yield a RF. FTCs were derived from the RF
using an algorithm which at each stimulus frequency
looked for the level at which firing rate increased by
20% of the difference between spontaneous and
maximum driven rate (Moshitch et al. 2006). From
the FTC, CF, threshold at CF, and filter Q (center
frequency/bandwidth) at 10 dB above threshold were
found. Two CFs were recorded if there was an increase
in threshold between the FTC minima of more than
20 dB above two thresholds (as used by Moshitch et al.
2006). Some parameter sets produced arrays of
neurons with weak and patchy responses or neurons
with tuning that was very wide, producing an array that
was not tonotopically ordered. All the model neurons
associated with a parameter set were rejected if the
prelesion CF of any neuron in the tonotopic array
differed by more than 20% from the CF of that
neuron’s somatic input (i.e., input channel), c. The

parameter set was also rejected if one or more neurons
did not produce any suprathreshold activity.

To simulate a lesion in the model, we set the firing
rates in the peripheral ANmodel to zero for all stimulus
conditions in channels tuned to a specific range of CFs.
This procedure removed all spontaneous as well as all
stimulus-driven activity for channels tuned to that range.
In most cases, the simulated lesion was seven semitones
(7/12 octave) wide centered on the AN input having a
CF of 5 kHz (channel 30). The width of this lesion is
shown as a black bar in Figure 1C, for comparison with
an example weighting function. We looked for changes
in stimulus-driven activity between prelesion and post-
lesion RFs, FTCs, CFs, and thresholds.

The responses of models before and after a simulated
lesion were explored for a very wide range of parameters
and for the different model configurations. Sometimes
this was done manually, running a single-parameter set
for an array of neurons before and after the simulated
lesions. In other instances, the effects of parameters were
explored by generating large populations of models run
across a range of values for the four parameters (We, Fe,
Wi, and Fi) and for all combinations of those parame-
ters. Each model neuron was then assessed for different
kinds of response changes as a result of the simulated
lesion. A neuron was counted as having “new” unmasked
activity, if there was more than a 10% increase in the area
of suprathreshold activity. A CF was judged to have been
changed following a lesion, if the shift was more than one
semitone (1/12 octave). We judged unmasking leading
to CF changes to have occurred if there was new
suprathreshold activity at the frequency of the new CF.
Other changes in CF were judged to be residual as they
did not arise from unmasking of new activity. For a given
“family” ofmodel neurons, we examined both the overall
frequency of occurrence of different kinds of change and
also how those changes varied with the parameter values.
The parameter values used and the frequency of changes
are given in Table 1.

TABLE 1

The incidence of different types of RF changes across models

Model parameter (range of values) Type of change after lesion

We (st) Fe (μS) Wi (st) Fi (μS) Offi 1 (%) 2 (%) 3 (%) 4 (%)

Multicompartment neuron models
Basic model 0.5–10 10–140 0.5–9 50–800 0 33 9 11 18
No SR on inputs 0.5–10 10–140 0.5–9 50–800 0 30 7 13 46
Point neuron models
Basic model 0.5–4 0.25–2 0.5–4 0–7 0 25 1.5 0.7 0.03
We 9 Wi 1–2 0.5–0.9 0.1–1 1.5–3 0 21 0.7 0 2
Wi 9 We 1.2–4 2–3.5 3.2–6.4 1.75–3 0 35 17 20 2
Side band inhibition 2–4 0.7 0.1–3 0–4 0–4 33 3 2 0.6
Tonic inhibition 0.25–10 0.1–1.9 0.5–9 0–3 0 37 5 1 6
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A SUMMARY OF OBSERVED LESION EFFECTS
ON RECEPTIVE FIELDS

Figure 2 illustrates the principal changes observed in
IC RFs following restricted spiral ganglion lesions. In
Figure 2A, the six panels in the top and middle rows
illustrate an example of a set of RFs (firing rates as a
function of pure tone frequency and level) recorded in
the IC before and after a small spiral ganglion lesion.
The prelesion CFs were from left to right 13.5, 14.7,
16.0, 17.5, 17.5, and 20.8 kHz; prelesion thresholds
were 30, 30, 30, 35, 40, and 55 dB SPL. The lesion was
centered at about 19 kHz, thus the prelesion CFs for
these neurons span the lesion center frequency. The
postlesion responses (middle row) at the three middle
sites (sites 10, 11, and 12) had double response tips
and are assigned two CFs. Postlesion CFs were 11.3,
13.5 [24.7], 13.5 [26.9], 13.5 [26.9], 29.3, and 26.9 with
the second CF indicated in brackets. Postlesion thresh-
olds were 55, 60, 60, 60, 50, and 45 dB SPL. All but the
lowest and highest frequency neurons had a notch in
their postlesion RF, corresponding to the lesion
frequencies, and all had a shift in their CF. Difference
response areas (normalized postlesion minus normal-
ized prelesion firing rates) for each pair of responses
recorded at each site are illustrated in the bottom row.
In these difference RFs, there is a consistent loss in
excitation (blue regions) corresponding to the lesion
center frequencies and a consistent gain of excitation at
frequencies on the high-frequency edge of the lesion
(red regions). The effect of the lesion on the compound
action potential (measured at the round window) is
superimposed as white lines on the RFs and as black
lines on the difference plots.

Figure 2B summarizes four different categories of
changes that can be observed in RFs of experimental
data of the type shown above. Solid lines indicate
prelesion RFs and dashed lines show the RF shapes
following a lesion. Type 1 illustrates a “residual” RF in
which suprathreshold activity is completely contained
within the prelesion response area. A type 1 change can
also be seen at the lowest CF site in Figure 2A. Changes
in CF result from a loss of responsiveness at the
prelesion CF. They can be readily explained as a loss
in sensitivity, such as that seen in auditory nerve fibers
after noise damage (Liberman and Mulroy 1982), or
the result of a partial removal of excitatory inputs. Such
changes have been reported throughout the auditory
pathway: in the cochlear nucleus (Rajan and Irvine
1998; Kaltenbach et al. 1992) and IC (Irvine et al. 2003)
following long-term recovery from basal cochlear
lesions and immediately after basal cochlea lesions in
the auditory cortex (Robertson and Irvine 1989).

In type 2 changes, there is an increase in activity
within the boundaries of the prelesion RF. A loss of
excitatory input cannot explain the increase in activity

(indicated by the cross-hatched area in Fig. 2B),
although no previously hidden activity is revealed.
Type 2 changes are seen in IC following spiral ganglion
lesions (Snyder and Sinex 2002, see lowest CF site, #9,
in Fig. 2A) and are widely reported following tone and
noise exposure in cochlear nucleus (Boettcher and
Salvi 1993), IC (Willott and Lu 1982; Wang et al. 1996),
and auditory cortex (Calford et al. 1993; Norena et al.
2003; although this was not reported in Rajan 1998 or
Rajan and Irvine 1998). These may or may not be
accompanied by other types of changes elsewhere in
the RF (as in Fig. 2A).

We define unmasking in this study as the appearance
of activity where there was none before. Type 3 changes
are characterized by unmasking. It may or may not lead
to a change in CF. Unmasking is evident in all except the
leftmost panel of Figure 2A. Unmasking has been ob-
served in the IC (Snyder et al. 2000; Snyder and Sinex
2002) and auditory cortex (Snyder and Sinex 1998)
immediately following spiral ganglion lesions. It has
been observed immediately after tone-induced thresh-
old shifts in the IC (Wang et al. 1996) and the auditory
cortex (Calford et al. 1993) and also in the auditory
cortex following mild, but permanent, cochlea damage
from noise exposure (Rajan 1998).

If unmasking occurs near to the prelesion threshold,
it can produce a shift in CF (see Fig. 2A, all except the
lowest CF site). We will refer to it as a type 4 change. It
is also possible that a V-shaped tuning curve can
become W-shaped (Snyder et al. 2000; Fig. 2A), making
CF ambiguous. Type 4 changes have been most clearly
demonstrated in the IC and cortex following spiral
ganglion lesions, when prelesion and postlesion RFs
from single recording sites have been compared
directly (Snyder and Sinex 2002, Snyder et al. 2000).
The changes in tonotopy previously reported by Irvine
and colleagues in the thalamus (Kamke et al. 2003),
cortex (Robertson and Irvine 1989), and to a lesser
extent, in IC (Irvine et al. 2003) after long-term reco-
very from basal cochlear lesions can only be explained
if there is new suprathreshold activity at frequencies
near to threshold that were not present in normal
animals.

A corollary of changes in CF is that tonotopic
progression across the neural tissue, which is usually
defined by CF, will also change. Figure 2C shows
diagrammatically the progression of CF across a
tonotopic axis of the IC of a normal animal (dotted
line) and following a large lesion to the basal region of
the cochlea (dashed line). From the point along the
tonotopic axis corresponding to the edge of the lesion,
the CF does not change. The representation of the
intact lower lesion edge frequencies expands to
replace the representation of higher frequencies lost
as a result of the lesion. The figure also illustrates the
tonotopic progression of CF (solid line) observed in
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FIG. 2. A RFs recorded in the IC before (top row) and after (middle
row) a restricted spiral ganglion lesion. Response amplitude differences
between the prelesion and postlesion recordings are in the bottom row.
Firing rates are normalized relative to the maximum prelesion response
at each site and are color-coded according to the scales on the right.
These RFs were recorded at six consecutive sites (#9–14) of a 16-site
silicon electrode array inserted into the central nucleus of the IC and
fixed in place in a normal-hearing cat. The sites were separated by
100 μ and distributed along the tonotopic axis of the IC. In each panel,
the abscissa is stimulus frequency; the left ordinate is stimulus level. In
the middle and bottom rows, compound action potential (CAP)
threshold differences (postlesion minus prelesion) are plotted as a
white or black curve, respectively; the horizontal line indicates the
zero change level for these differences. The axis on the right indicates
the magnitude of the postlesion CAP threshold change. The frequen-
cies with more elevated postlesion thresholds (large positive values)

define the lesion frequencies. B Changes to RF. Solid lines indicate the
threshold of prelesion RF and dashed lines show postlesion RF. Type 1
postlesion activity is contained within prelesion RF. CF changes are the
residue of prelesion RF. Type 2 increases in activity within the
prelesion RF. This is shown as the patterned area (dashed lines
indicating postlesion RF are offset slightly from the prelesion RF for
clarity). Type 3 unmasking of new driven responses that do not result in
CF changes. Type 4 unmasking of new driven activity which results in
CF changes. C Changes to tonotopic maps seen in the auditory system
following damage to the cochlea. Measured CF is plotted against the
physical position of an electrode along a tonotopic axis. The dotted
line shows smooth progression in normal-hearing animals. The solid
line shows the tonotopic progression seen in IC following acute spiral
ganglion lesions. The dashed line shows a typical progression seen in
various nuclei following a lesion at the basal end of the cochlea (e.g.,
Robertson and Irvine 1989).
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the IC following a more restricted lesion of the spiral
ganglion (Snyder et al. 2000; Snyder and Sinex 2002;
Fig. 2A). This more focal lesion produced a step change
in CF with two CF plateaus for short ranges above and
below the position in the tonotopic array corresponding
to the lesion frequency.

As shown in Figure 2A, spiral ganglion lesions lead to
all of the above types (1–4) of changes in IC (Snyder et
al. 2000; Snyder and Sinex 2002). The most intriguing
of the changes are those (type 4 changes) leading to
CF shifts, since they cannot be explained as a residue
of the prelesion RF. The immediacy of these changes is
consistent with a passive, experience-independent shift
in the balance of excitatory and inhibitory inputs,
providing an ideal set of data against which to compare
models of unmasking. Successfully reproducing type 4
changes in a computational model was the main focus
of this study.

MODEL RESULTS

Simulating spiral ganglion lesions in single inferior
colliculus neurons with dendritic processing

Figure 1A shows the architecture for a model of an IC
neuron. This model was, in our simulations, the most
successful at producing CF changes that arose from
unmasking of new responses (type 4 changes). Its
fundamental feature is that excitatory and inhibitory
inputs with the same CF formed synapses at matched
locations across the cell. These inputs are spread across
the cell body and dendrites in a tonotopically orga-
nized manner. The discharge rate of the model was
dependent on the membrane potential at the soma,
but this in turn was a product of local inhibitory–
excitatory interactions all along the dendrites. Four
parameters determine the CF range and synaptic
“strength” of the inputs: We and Fe are parameters of
a Gaussian function which determines the CF range
(We) and strength (Fe) of all of the excitatory inputs
(see the “Methods” section for details). The inhibitory
inputs were determined in the same way by the
parameters Wi and Fi, except that the inhibitory input
to the soma was omitted. We do not mean to imply that
there can be no inhibition on the soma of IC neurons,
only that there was no strong, low-threshold inhibition.
Such inhibition suppressed all driven activity and
would not have allowed the modeling to proceed.

Figure 3 shows the outputs from a set of model
neurons, simulating the RF from a tonotopic array of
IC neurons and the effects of a spiral ganglion lesion.
The top row (Fig. 3A) shows the RF prior to any lesion.
Tuning is as narrow as in the auditory nerve model and
is tonotopically organized (also shown in Fig. 3D; open
circles). All the models in the array had the same

parameters, but each was aligned differently relative to
the input filter bank, and so varied systematically in CF
(the input weights are shown for N11, superimposed
on the RF). Figure 3B shows the result of simulating a
seven semitone wide spiral ganglion lesion, centered
on the peripheral input having a lesion center frequen-
cy of 5 kHz (the CF of N11), and Figure 3C shows the
changes in firing rate as a result of the lesion. Some
model neurons show a shift in their CFs to frequencies
above and below the range of lesion frequencies (N8
and N14), while other model neurons having CFs
within the range of lesion frequencies have W-shaped
tuning curves (N10–N12). The changes in tuning ob-
served in Figure 3B and C are reflected in the tono-
topic gradient (Fig. 3D) and occur with shifts in
threshold of 10 dB or less (Fig. 3E). This set of model
neurons produced three of the four types of changes
we outlined in the “A summary of observed lesion
effects on receptive fields” section: an increase in
activity within the RF (type 2; see N8 and N14),
unmasking of new activity (type 3; see N9–N14), and
unmasking leading to changes in CF (type 4; see N9–
N14). Note, however, that some model neurons (N7
and N15) become almost silent after the lesion. This is
rarely seen in the IC, but silent postlesion sites have
been observed in other central auditory areas, espe-
cially the auditory cortex (e.g., Rajan et al. 1993).

A detailed comparison of Figure 3 with the data
shown in Figure 2 reveals some discrepancies in the
shapes of RFs both before and after a lesion. This is
partly because this is a single-parameter set that pro-
duces robust effects across a range of CFs. Real neurons
are not nearly so homogenous in their characteristics. It
also reflects the fact that the model does not attempt to
simulate many of the complexities of real neurons such
as tuning curves shaped differently to auditory nerve
fiber tuning, suprathreshold “best” frequencies, and
other significant nonmonotonicities. The features in-
cluded in this model would be expected to form only
part of the many features of real neurons: those
sufficient for reproducing the main effects described
in the “A summary of observed lesion effects on
receptive fields” section.

Examples of more models using the same basic
architecture but with different parameter sets are shown
in Figure 4A, B, and C. In this figure, each row of panels
is a different set of model parameters. Each panel
shows, for model neurons with a range of CFs, the
prelesion FTC (blue line), postlesion FTC (black line),
and any increases in firing rate between the two (graded
red shading). If a model neuron received excitatory
inputs from a fairly wide frequency range (in Fig. 4A)
but no inhibitory inputs, it displayed quite broad
prelesion FTCs and only residual (type 1) changes in
CF. This is understandable as there is a simple partial
removal of excitatory inputs. The presence of inhibitory
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inputs from a wide CF range and a moderate degree of
convergence of excitatory inputs (Fig. 4B) tended to
produce a mix of effects. Neurons at the center of the
lesion became silent following the lesion. Neurons with
CFs nearer the edge of the lesion, which suffered only
partial removal of excitatory inputs, displayed residual
(type 1) changes. Outside of the lesion frequencies,
removal of side band inhibition resulted in increases in
firing rate (type 2 changes). When the range of
inhibitory inputs was wide and excitatory RFs were
narrow (Fig. 4B and C), neurons with CFs around the
lesion frequencies became silent, whereas neurons
near the lesion edge showed increases (type 2

changes) in firing rate, again due to the removal of
off-CF inhibition.

To investigate these models quantitatively, we system-
atically varied the model parameters (parameters: We,
Fe, Wi, Fi; ranges are given in Table 1). For all
combinations of all parameter values, we determined
how many of the neurons in each array showed each
type of RF change (see the “Methods” section). In
total, 51% of neurons showed some kind of CF shift
(type 1 or type 4 changes), 9% of neurons showed
increases in firing rate within their RFs (type 2
changes), 11% of neurons showed unmasking of new
activity (type 3), and 18% of these neurons showed CF

FIG. 3. RF changes and tonotopic remapping in the model
following simulated spiral ganglion lesions. Model parameters: We

=10, Wi=8, Fe=80 nS, Fi=300 ns, Gd=36 mS. A RF from an array of
neurons differing only in CF with complete auditory nerve inputs.
The position in the array is indicated above each plot. The input
weight functions for the excitatory (red line) and inhibitory (white
line) inputs are superimposed on N11. B RF from the same neurons
following a simulated spiral ganglion lesion covering CFs across

seven semitones, centered on a 5-kHz CF. C The difference in RF
between A and B. D The tonotopic map across an array of model
neurons with CFs from ∼3 to 9 kHz. The open circles represent the
tonotopic map prior to the lesion and the solid blue line shows the
CFs from the same neurons following the lesion. Where two CFs are
measurable, the second CF is indicated by a green line. E The
thresholds of the model neurons across the neural array before and
after the lesion.
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changes resulting directly from unmasking (type 4
changes). These values are summarized in Table 1.

Figure 4D shows the distribution of type 1 and type 4
changes across the range of the four model parame-
ters. Each pixel represents a different set of model
parameters. The color shows what types of changes
were seen following a lesion and the shade indicates
the number of CFs at which they occurred. Parameter

sets which produce poor tonotopy before a lesion (see
the “Methods” section) have no color. In most para-
meter sets for which excitatory convergence was small
(We = 0.5), CFs did not change following a lesion (gray
squares in Fig. 4D). When excitatory convergence was
modest (We = 2.5), there was a mix of residual CF
changes (type 1; blue in Fig. 4D, see also Fig. 4A) and
unmasked CF changes (red squares). Type 4 changes

FIG. 4. A–C Examples of outputs from the compartmental neuron
model for different parameter sets, which reveal the different types of
changes which occur following a lesion. The leftmost panel shows
the weighting function for excitatory (solid line) and inhibitory
(dashed line) inputs. Remaining panels in each row show, for a
range of different CFs across the neural array, the FTCs before (blue
line) and after (black line) a simulated lesion (blue bar shows the CF
extent). Red shading indicates the magnitude of any increases in
firing rates as a result of the lesion. A Model showing residual
changes (We=5, Fe=5 μS, no inhibition). B Model showing residual
CF changes and increases in spontaneous activity (We=2.5, Fe=

40 μS, Wi=7, Fe=50 μS). C Model showing within RF increases (We=
0.5, Fe=80 μS, Wi=5, Fi=50 μS). D Range of parameters across
which residual CF (type 1; in blue) changes and CF changes from
unmasking (type 4; in red) occur. Gray squares indicate no change in
CF following a lesion, and open squares are those models with
poorly defined tonotopy. E Range of parameters over which there are
criterion increases in the firing rate within an RF (type 2; in blue) and
unmasking of new activity (type 3; in red). In D and E, the greater the
number of RFs showing a given change, the brighter the color is. The
range of parameters is given in Table 1.
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tend to occur across more neurons in the array (bright
red) when We 9 Wi. This is a reasonable constraint,
since the lesion should shift the relative strengths of the
remaining inputs in favor of excitatory inputs in order
for there to be any postlesion activity. The mean pre-
lesion Q10 for neurons showing type 4 changes was 4.6
(SD = 0.3). If inhibition does not effectively suppress
excitatory inputs, type 1 changes are more likely, as
convergent excitatory inputs are not suppressed by inhi-
bition prior to the lesion. Figure 4E shows how within
RF increases (type 2; blue shading) and unmasking
(type 3; green shading; red shading indicates both
types) occur across the range of parameters. Compar-
ing with Figure 4D, it can be seen that both increases
and unmasking commonly accompany type 4 changes.

The effects in IC modeled thus far are also reminis-
cent of experiments (e.g., Robertson and Irvine 1989) in
which a fairly large basal region of the cochlear was
destroyed. Figure 5A shows the outputs from a set of
model neurons for a very large basal lesion which
extended from inputs with CFs of 5 kHz. The model
showed increases, unmasking, and type 4 CF changes.
Most postlesion CFs were near to the lesion edge (N11–
N18; shaded blue bar indicates the extent of the lesion)
and thresholds remained low. However, there was
considerable variation in the change in firing rate across
neurons which was not reported in the data (Robertson
and Irvine 1989; Kamke et al. 2003; Rajan et al. 1993).

A component of the inhibition in the models shown
in Figures 3, 4, and 5A was tonic (i.e., continuous and
spontaneously occurring) because the inputs were
spontaneously active. To see if the models would work
when inhibition arose from driven activity only, we
removed the spontaneous component of the input as
described in the “Methods” section. Figure 5B shows
an example of the output of a set of model neurons.
These neurons showed robust type 4 changes. To deter-
mine the robustness of these effects, we ran simulations
across the same range of parameters that were used with
the spontaneously active inputs. These models showed
type 4 changes (46%; the proportions of type 1–3
changes are given in Table 1). However, a proportion of
the parameter sets, those with considerably less con-
vergence for inhibitory than for excitatory inputs (i.e.,
Wi G We), showed spurious excitatory activity. An
example of such a model is shown in Figure 5C. Thus,
the tonic component of the inhibition was not
essential, but it did mean that convergent inputs were
more effectively inhibited, producing more physiolog-
ically realistic responses.

The role of dendritic processing

The presented model neuron shows robust unmasking
and CF changes following simulated lesions. What is not
clear is how the model produced these effects. Figure 6

FIG. 5. A A set of compartmental model neurons showing type 4
changes following a large basal (high CF) lesion (We=8, Fe=80 μS,
Wi=3, Fi=300 μS). B A set of compartmental model neurons showing
type 4 changes, but that have inputs which are not spontaneously
active (We=10, Fe=80 μS, Wi=8, Fi=200 μS). C Another set of
compartmental model neurons showing type 4 changes, but that

have inputs which are not spontaneously active (We=10, Fe=80 μS,
Wi=2, Fi=200 μS). This example has multipeaked tuning curves prior
to the lesion, as a result of inhibition not being effective in
suppressing the convergent excitatory inputs. The format of these
figures is similar to that in Figure 4A, B, and C.

122 SUMNER ET AL.: Modeling Retuning in IC



shows a model with only three compartments. Each
compartment has an excitatory input with a different
CF, and these innervate the cell tonotopically. Addi-
tionally, the more proximal dendritic location receives
an inhibitory input having exactly the same properties
as its excitatory component. Figure 6B shows the RFs of
the membrane potential (Vm) as measured at the soma
(rightmost panel) and at the two dendritic locations.
Vm at the proximal dendritic location (Fig. 6B, middle
panel) is held down by the inhibitory input. The pro-

ximal inhibition does not suppress the excitatory in-
puts at either distal dendrite or at the soma, which
show depolarization to their respective inputs, but it
prevents either input reaching other compartments.
Figure 6C shows the membrane potentials after
removal (lesioning) of the inputs to the soma and the
more proximal dendrite (a vertical dashed line on the
filter bank indicates this lower boundary in Fig. 6A).
Now all three locations are depolarized by the remain-
ing distal input and the tuning matches that input (c.f.
dashed line showing prelesion CF at the soma). Thus,
following the lesion, the input to the distal dendrite
causes depolarization at the soma.

Using this simplified model, we can also demonstrate
how some of the parameters determine the performance
of the more elaborate model. Figure 7A shows a model
in which inhibition is extended on to the most distal
dendrite. Figure 7B and C shows the membrane
potential at the soma before and after the lesion, re-
spectively. This time there is no “unmasking” of the
distal excitatory inputs because distal inhibition remains.
This demonstrates why the model works better when
excitatory inputs are more convergent than inhibitory
inputs. It also demonstrates how in somemodel neurons
which have CFs close to the edge of a lesion, the firing
rate can drop dramatically following a lesion. The
somatic and proximal inputs of these neurons are
removed by the lesion and the distal inhibition remains
strong and largely suppresses the remaining excitatory
inputs.

The effects of a slightly differentmodel configuration
are shown in Figure 7D–F. In these panels, inhibitory
input with a given CF provides the input to a location
that was more distal than that of its corresponding
excitatory input. Following the simulated lesion, there
is an unmasking of the distal input, as in Figure 6.
Figure 7G–I shows the reverse situation, i.e., when
inhibition at a given CF is located proximal to its
excitatory counterpart. In this case, there is virtually no
response to sound following the lesion because the
inhibition to the middle compartment is still intact.
Thus, the relative positions of excitatory and inhibitory
inputs tuned to the same frequency have profound
effects on processing. In real neurons, one would rea-
sonably expect some degree of variation, which might
be another source of diversity not seen in the models.

Simulating spiral ganglion lesions in single IC
neurons without any dendritic processing

In the “The role of dendritic processing” section, we
demonstrated how dendritic processing produced the
model results shown thus far. To investigate whether a
model without any local dendritic processing can
reproduce the RF changes observed experimentally,
we considered the behavior of a point neuron model.

FIG. 6. A Schematic of a simplified model which has only three
compartments: one somatic compartment, which drives spike
generation; one proximal; and one distal dendritic compartment.
All compartments receive tonotopically aligned excitatory inputs, but
only the proximal dendrite receives inhibition. The vertical dashed
line in between filters shows the lower limit of the lesion. B
Membrane potential RF of each compartment before the lesion. RFs
are directly below their respective compartment in A. C Membrane
potential RF in each compartment, following the removal of all
inputs from the somatic and proximal dendritic compartments to the
right of the vertical dashed line in A. The vertical dashed line shows
the prelesion CF. Inputs to each compartment have CFs 12% different
(one tone) to each neighbor. Gi for middle compartment was 0.75×
10−4 S; Ge for the three compartments was 0.5, 0.6, and 0.7×10−5 S
from left to right, respectively; Gd=6×10

−3 S.
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This model had one compartment at the soma onto
which all excitatory and inhibitory inputs converged.
The same Gaussian weighting functions were applied
to the AN inputs, but the sum of the weighted
excitatory inputs formed a single excitatory conduc-
tance. Inhibitory input was derived in the same way
(see the “Methods” section).

We again ran several sets of simulations across wide
ranges of input parameters (see Table 1 for range).

These simulations revealed widespread residual CF
changes (type 1; see Table 1), but few other changes.
Figure 8A shows an example of a set of parameters that
produced type 1 changes. Prelesion tuning is broad
(Q10s are around 2 in this example; Q10s for the same
CF range in the AN model are 4–5), and the postlesion
behavior is very similar to the compartmental example
(Fig. 4A). Figure 8E shows the incidence of type 1 and 4
changes across a wide range of parameters (see Table 1).
Type 1 changes occurred for a range of values ofWe, Wi,
and Fe when Fi was low. This figure shows only two
incidences of models showing any type 4 changes (in
red). Subsequent simulations did reveal two small
ranges of parameters that consistently produced type 4
changes (shown in Table 1). Figure 8B shows the tuning
curve changes for an example set of model parameters
that was typical of those models when We 9 Wi. In
channels 8 and 14, there is unmasking that leads to CF
changes. In other channels, the only change is a loss of
activity following the lesion. Figure 8C shows an
example parameter set when Wi 9 We. These models
showed circumscribed prelesion RFs with considerable
unmasking of activity at frequencies above and below
the lesion. Occasionally (N4, N18), this unmasking led
to subtle CF changes (i.e., type 4). Figure 8F shows the
distribution of type 1 (upper panel) and type 4 (lower
panel) changes across the neural arrays for all of the
models across the three-point neuron parameter sets in
Table 1. Type 1 changes can occur across most of the
neural array, while type 4 changes tend to occur only
beyond the edges of the lesion. Type 2 (within RF
increases) and 3 (unmasking) changes occurred for
Wi 9 We (not shown).

In order to explore further the possibility for unmask-
ing of (type 4) CF changes in point neuron models, we
also explored the effect of inhibition which was restricted
to two side bands placed symmetrically about CF. This
model was implemented using two separate and very
narrow Gaussian functions (see the “Methods” section)
with the distance in semitones between the functions
being a model parameter. With a gap of zero, the model
was identical to the previous point neuron model with

RFIG. 7. A Schematic of a model like Figure 7, except that the most
distal compartment also receives an inhibitory input. B RF showing
membrane potential at the soma. C The membrane potentials at the
soma following the removal of all inputs from the somatic and
proximal dendritic compartments. The vertical dashed line shows the
prelesion CF. Model parameters as in Figure 9, except Gi is 4×10

−5

for the leftmost and middle compartments. D Schematic of a model
like A, except that the inputs driving inhibition are offset so that
inhibition synapses distal to the excitatory input of the same CF. Only
the origin of the inhibition differs from A. E RF showing membrane
potential at the soma. F The membrane potentials at the soma
following the removal of all inputs from the somatic and proximal
dendritic compartments. G–I As above except that the model has
inhibition which synapses proximal to the excitatory input with the
same CF.
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FIG. 8. A–D Examples of outputs from the point neuron model for
different parameter sets. A Model showing residual changes (We=3,
Fe=0.6 μS, Wi=3, Fi=0.2 μS). B Model with WiGWe showing type 4
changes (We=1.8, Fe=0.7 μS, Wi=0.6, Fe=2.1 μS). C Model with
Wi9We showing type 4 changes (We=3.6, Fe=2.5 μS, Wi=6.4, Fi=
2.5 μS). D Model with side band inhibition showing type 4 changes

(We=3.25, Fe=0.7 μS, Wi=0.1, Fi=3 μS). E Range of parameters
across which residual CF (type 1; in blue) changes and CF changes
from unmasking (type 4; in red) occur. F The distribution of type 1
(upper panel) and type 4 (lower panel) CF changes across the array of
neurons, for the three-point neuron models in Table 1.
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the same parameters. Figure 8D shows an example of a
point neuron model which was amongst the most
successful at producing type 4 changes. Notably, these
models were able to reproduce the W-shaped RF at the
center of the lesion. Type 4 changes occurred for a
range of parameters, when Wi ≤ 1, Offi 9 2 (in
semitones) and was most common for We G 3.5. In the
population of parameters tested (see the “Methods”
section and Table 1), these changes were more common
than the simple point neuron model, but still compar-
atively rare (0.6%), and never resembled the results of
the compartmental model.

Calford (2002) argued that, conceptually, stimulus-
driven inhibition was not likely to result in unmasking.
The point neuron model results support this argument.
His point was that for one input to inhibit another
input, the first input had to be suppressing the second,
even if a stimulus was driving the second input more
strongly. Tonic (spontaneous) inhibition driven from
the first input, on the other hand, would be present
even without an effective stimulus. Yet it would be
removed if the first input was destroyed. In somatosen-
sory cortex, it was demonstrated experimentally that
eliminating C fiber tonic inhibition allowed reorganiza-

tion (Calford and Tweedale 1991a, b). To explore this in
the point neuron model, we modified it so that the
inhibitory inputs were entirely tonic. As long as there was
an intact AN fiber at a givenCF, that input would produce
a constant inhibition, equivalent to a discharge rate of
100s−1. Note that these inputs were still subject to the
Gaussian weighting function and summed to make
the inhibitory conductance. This meant that the
strength and degree of convergence of the inhibition
could still be controlled parametrically. This time,
parametric exploration revealed a considerable per-
centage of models (6%) which showed type 4
changes. Figure 9A shows an example model set, which
changes following a lesion in a similar way to that of the
compartmental model. Figure 9B shows how type 1 and
type 4 changes depend on the model parameters. It
shows that type 1 changes are common in the range
1.5 G We G 4, while type 4 changes are most common
when Wi 9 1. The mean Q10 for those models showing
type 4 changes was 2.6 (SD = 0.9). Figure 9C shows how
the type 2 and type 3 changes depend on the choice of
model parameters. This suggests that increases can oc-
cur for a range of parameters when We ≠ Wi, while un-
masking is restricted mostly to conditions when We 9 Wi.

FIG. 9. A A point neuron model showing robust type 4 changes
which receives only tonic inhibition (We=3, Fe=0.6 μS, Wi=3, Fi=
0.2 μS). B Range of parameters across which residual CF (type 1; in
blue) changes and CF changes from unmasking (type 4; in red) occur

for point neuron models with tonic inhibition. C Range of parameters
across which increases (type 2; in blue) and unmasking (type 3; in
green; red squares indicate both together) occurs for point neuron
models with tonic inhibition.
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DISCUSSION

We have shown that models of single neurons can
exhibit the physiologically observed “unmasking” of
low-threshold hidden inputs that lead to “type 4”
changes in IC. Since physiologically, it seems clear that
inhibition can be responsible formodifying tuning (e.g.,
(Suga 1995; LeBeau et al. 2001; Xie et al. 2005), it is
surprising that robust type 4 changes were restricted to
such specific arrangements of model inputs. Currently,
we cannot be precise about the exact requirements for
these changes to occur.

Type 4 changes may depend on the size of a shift in
dominance from inhibitory inputs to excitatory ones
and the range of CFs and stimulus conditions across
which it occurs. In the basic point neuron models, the
total strengths of the excitatory and inhibitory input are
both simple linear (Gaussian) weighted sums of the
same auditory nerve inputs and are centered on the
same input CF. Unless the widths of the two functions
differ greatly, the effect of a lesion will tend to be quite
similar for excitation and inhibition, and so any shift
toward the excitatory inputs will often be small. When
the functions are quite different, there are either no
excitatory inputs to conceal or there is insufficient
inhibition with which to conceal them. In models where
the inhibitory inputs form two side bands, shifts in the
balance following a lesion can be larger, but still this
does not appear to be enough to produce type 4
changes across a range of CFs. The relative effects of
lesioning on stimulus-driven excitatory inputs and tonic
inhibitory inputs can be quite different and this is
enough to produce robust type 4 changes. This is
consistent with an argument made by Calford (2002)
in favor of tonic inhibition. Finally, in the compartmen-
tal model described in this study, one strong proximal
inhibitory input can easily suppress more distal excit-
atory inputs and its removal by a lesion will reveal them.

Residual CF (type 1) changes occurred in all models
if a lesion left sufficient excitatory inputs and these were
not inhibited. Postlesion increases in activity (type 2)
and unmasking (type 3) also occurred in all types of
models tested. The incidence varied considerably
among different populations, but a given population
of models tended to show similar proportions of both
type 2 and 3 changes. However, type 3 changes, by
definition, occur at suprathreshold stimulus levels. The
auditory nerve model inputs in this study all had
uniformly low thresholds and narrow dynamic ranges.
Inputs with higher thresholds would have expanded the
range of effects seen at higher stimulus levels. Interest-
ingly, however, the proportions of the changes seen in
the compartmental models are similar to those found in
IC (Synder et al. 2008).

The physiological data (cf. Fig. 2) is diverse both in
the prelesion responses and the effects of peripheral

lesions. In contrast, individual arrays of model neurons
showed stereotypical responses across the CF range.
Models showed greater diversity across different pa-
rameter values and still more variety across the
different types of models. More realistic simulation of
the physiological data would be achievable, therefore,
with a mix of parameters and even model variants.
Also, the IC is a point of integration for ascending
afferent pathways bilaterally (Cant 2005; Schofield
2005). As a result, neurons can vary in their tuning
(Le Beau et al. 1996; Wang et al. 1996; Ramachandran
et al. 2000), rate–level functions (Ehret and Merzenich
1988; Rees and Palmer 1988), temporal coding (Rees
and Moller 1983, 1987; Schreiner and Langner 1988),
binaural properties (Palmer and Kuwada 2005), and
intrinsic currents (Wu 2005). Simulation of these
would have made for more diverse and realistic models
and might have affected the simulation results.

The models that show CF changes (type 1 or type 4)
require a convergence of inputs from a wide range of
CFs. The central IC is thought to be divided into discrete
laminae (G200 μm wide) within which afferent and
neuronal CFs vary by approximately 0.3 octaves (Oliver
2005). Only a minority of cells, stellate type cells, have
dendrites (and axons) extending across these laminae.
Nevertheless, blocking inhibition reveals excitatory
activity beyond the normal excitatory RF (LeBeau et
al. 2001; Xie et al. 2005) and intracellular recordings
reveal subthreshold tuning of much broader extracel-
lular excitatory RF (Yang et al. 1992; Suga et al. 1997;
LeBeau et al. 2001; Xie et al. 2007). Thus, it appears
that our current knowledge of anatomy within the IC
cannot explain a range of physiological data, including
the data that was the focus of this study.

The compartmental models make specific predic-
tions about the relative degree of convergence of
excitatory and inhibitory inputs. The most robust type
4 changes occurred when the excitatory inputs had a
wider range of CFs than inhibitory inputs. Neurons
receiving excitatory inputs from a wider range of CFs
than inhibitory inputs would seem unlikely to display
lateral inhibitory side bands, and side bands are
impossible with tonic inhibition. This is at apparent
odds with a role for side band inhibition in unmasking
and also in the ubiquity of side band inhibition in IC
(and elsewhere). Admittedly, the creation of inhibitory
side bands on the flanks of the excitatory response
areas was not one of our goals. It is possible that
different inhibitory inputs might be responsible for
mediating unmasking and inhibitory side bands, and
this might be the case if there were a mix of stimulus-
driven wideband inhibition and, as proposed by
Calford, tonic inhibition. This would be consistent
with the effects of mild hearing loss on cortical tuning,
which produces a loss of side band inhibition but is
insufficient to produce tonotopic reorganization
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(Rajan 1998). Also, local bicuculline application does
not block inhibitory side bands in IC (LeBeau et al.
2001), suggesting that they are created by subcollicu-
lar nuclei. Of course, none of these considerations
rules out the possibility that some other configuration
of inhibition which produces inhibitory side bands
might also produce robust type 4 changes.

We have focused comparisons of our model results
with the effects of spiral ganglion lesions on responses in
IC. This data set was convenient as it was limited to acute
CF changes resulting from unmasked responses, and
spiral ganglion lesions were straightforward to simulate.
However, the same mechanisms may contribute to the
effects seen in other experiments. Nonresidual type 4
changes were seen in aminority of IC neurons following
large chronic lesions to basal regions of the cochlea
(Irvine et al. 2003). These lesions were very different to
the spiral ganglion lesions. The compartmental model
was able to show type 4 changes following large basal
lesions, albeit with a wide variation in firing rates which
was not reported for the data. Interestingly, Irvine et al.
(2003) also observed an increase in the incidence of
excitatory ipsilateral responses. Our model did not in-
clude any ipsilateral inputs. We suspect that for the
removal of contralateral inhibition to affect ipsilateral
responses, the inhibition would need to have a tonic
component. Furthermore, it would have to innervate
either the cell body or the same dendrites as the
ipsilateral excitatory inputs in order to affect ipsilateral
excitatory responses. The models may also be relevant
to the acute effects of pure tone trauma in the IC
(Wang et al. 1996). Type 4 changes do not follow pure
tone trauma, but it is possible that the mechanisms
modeled in this study, perhaps acting on higher
threshold inputs, are responsible for some of the type
3 unmasking seen. However, although these experi-
ments using acoustic trauma rule out slower plastic
changes, the effects on auditory nerve responses can
be complex and different to both spiral ganglion
lesions and larger chronic lesions.

The models may also be of relevance to numerous
cortical lesion studies (e.g., Robertson and Irvine 1989;
Rajan et al. 1993). Studies of A1 responses following
cochlear lesions (e.g., Rajan et al. 1993) report cortical
locations that no longer respond to sound. This is seen
in our compartmental models, but has not been
observed in IC following spiral ganglion lesions. In
the thalamus and cortex, tonotopic reorganization is
restricted to the side of the lesion (Kamke et al. 2003;
Rajan et al. 1993), unlike in the IC where excitatory
ipsilateral responses are more common. We believe this
would be the case in the model if the constraints for
reproducing ipsilateral effects in IC, outlined above,
were not met. Unmasking of latent inputs to cortical
neurons has also been shown in various experiments
(Rajan 1998, 2001; Calford et al. 1993; Norena et al.

2003) using acoustic trauma and has been associated
with a loss of side band inhibition (Rajan 1998). As in
the IC (e.g., Wang et al. 1996), the models may be
broadly consistent with these results. Interestingly,
however, chronic mild hearing loss does not result in
the within RF (type 2) increases which are seen in the
models (Rajan 1998; Rajan and Irvine 1998). Clearly,
no one model is likely to account for the range of
results seen across many experiments and numerous
auditory nuclei.

We have demonstrated that rapid RF changes can be
modeled by “unmasking”: the removal of inhibitory
inputs to reveal previously subthreshold excitatory
inputs. Acute changes in RF might also be explained
by other forms of synaptic plasticity. Hebbian synaptic
plasticity (Hebb 1949) has been proposed as a mech-
anism for the maintenance of cortical RFs in several
modalities (Pearson et al. 1987; Armentrout et al. 1994;
Benuskova et al. 1994; Jenison 1997; Benuskova et al.
1999) and models of it can reproduce (Jenison 1997)
the normal development of tonotopy (Reale et al.
1987) and the changes following lesions reported by
Robertson and Irvine (1989). Another possibility is that
multineuron circuitry could result in processing that is
functionally similar to that which we see in dendrites in
this model. Most IC cells have extensive local projec-
tions. Across frequency integration may be a local,
multisynaptic process arising from a network of
neurons with overlapping arborizations and interac-
tions. It remains an empirical question what mecha-
nisms are at work and how much different mechanisms
contribute to the changes seen in the responsiveness of
IC neurons and elsewhere.
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