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ABSTRACT

Estimates of the spontaneous discharge rate (SR) of
auditory-nerve (AN) fibers are often based on mea-
surements of the average rate over a long (e.g., 30 s)
interval. These measurements are important because
SR is apparently correlated with other AN properties,
such as threshold to acoustic stimuli, shape of rate-
level function, recovery from prior stimulation, and
certain anatomical characteristics. Furthermore, his-
tograms of SR estimates from large numbers of fibers
suggest that they can be divided into two (i.e., low
and high) or three (i.e., low, medium, and high) SR
classes. Yet, even “simple” statistical estimates, such
as average rate, can behave surprisingly poorly for
processes with long-range dependence (LRD), which
has been found in the spontaneous activity of AN
fibers. In particular, LRD greatly increases the
variability of estimates of mean discharge rate. We
investigated the implications of this effect of LRD for
our understanding of the SRs of AN fibers. The
fractional-Gaussian-noise-driven Poisson process
(fGnDP) was originally developed to model the
LRD action-potential trains of AN fibers. Using rate
estimates computed from this model, we were able to
reproduce the shape of published histograms of SR
using only three fixed SR values. Moreover, by using a
Poisson-equivalent integrate-and-fire (IF) model in
place of the inhomogeneous Poisson process in the
fGnDP model, we were able to reproduce SR histo-
grams using only two fixed SR values. These results
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suggest that AN fibers may have only two or three
possible values for their long-term average spontane-
ous discharge rates. In other words, all “high-SR”
neurons may actually have the same underlying SR.
Furthermore, both “low-SR” and “medium-SR” neu-
rons may have a single “true” SR value, or these two
classes may have two different “true” SR values.
Furthermore, the Poisson-equivalent IF model may
prove useful in other applications involving the
modeling of trains of action potentials.

Keywords: long-range dependence, auditory
nerve, spontaneous rate, average firing rate

INTRODUCTION

In this study we ask the question: How well does a
histogram of estimates of spontaneous discharge
rates (SRs) (e.g., Fig. 1) represent the distribution
of the “true” SRs of auditory-nerve (AN) fibers? This
histogram does not directly represent the distribu-
tion of the actual SRs but instead represents the
distribution of estimated SRs. By “actual (or true)” SR,
we denote the mean discharge rate that one would,
theoretically, calculate from an infinitely long record-
ing. This is the “population mean” discharge rate
that is solely dependent on the properties of the
neuron itself and is not the “sample mean” discharge
rate that depends on when and how it is measured.
The estimates of SR illustrated in Figure 1 are based
on average discharge rates measured over 30-s
intervals (Liberman 1978). If the variance of these
average discharge rates is relatively small, then the
histogram provides a good representation of the
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FIG. 1. Histogram of spontaneous rate estimates from 30-s record-
ings from 738 fibers in the auditory nerves of cats. The width of the
bins is 1 spike/s. Reproduced with permission from Liberman (1978).

distribution of actual SRs. However, if the variance of
the average discharge rates is large, then the histo-
gram of the SR estimates may differ significantly from
the actual distribution.

The question of how well the estimated SR
histogram represents the actual distribution is not
trivial because of the presence of long-range tempo-
ral dependence (LRD) in the trains of action
potentials in AN fibers (Teich 1989; Teich and
Lowen 1994; Lowen and Teich 1996a). The autocor-
relations of an LRD process decay very slowly with
increasing temporal lag. For a short-range-dependent
process the infinite sum of these autocorrelations
converges to a finite value. However, this infinite sum
diverges for an LRD process. Essentially, this means
that, for an LRD process, an infinite amount of the
influence of the past on the present will necessarily
be neglected when only a finite history of the process
is known, regardless of the length of this finite history
(see Beran 1994; Jackson 2003, 2004). It also means
that statistical estimates from nearby time intervals
will tend to be similar, because the influence of the
history of the process will be very similar for these two
intervals. Hence, errors in statistical estimates from
one time interval will largely be reproduced in
statistical estimates from other nearby intervals.
Furthermore, for an LRD process, this effect decays
very slowly as the distance between the two intervals is
increased.

In previous studies (Jackson 2003), we found that
LRD dramatically increases the variability of estimates
of mean action-potential count. This study explores
the implications of that finding for the interpretation
of AN SR histograms. The broadness of these histo-
grams suggests that AN fibers may have a broad range
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of SRs. However, the broadness of these histograms
could also be due, at least in part, to variability in the
action-potential counts used to estimate the SRs.

METHODS

The results presented below are based on simulations
of spontaneous AN discharges. This section describes
two procedures that were used to simulate discharge
trains with appropriate LRD. The choices of model
parameter values and the strategy for comparing
simulation results to published SR histograms are
also described here.

An LRD process has autocorrelations that decay so
slowly that their infinite-time integral (or sum)
diverges to infinity (see Beran 1994; Jackson 2003,
2004 for more details about the definition of LRD).
In order to investigate the behavior of empirical
average discharge rate calculations in LRD discharge
trains, such as those in the AN, we would need to
compare independent, or, at least, nearly indepen-
dent, estimates from the same neuron. Due to the
LRD, it is impossible to obtain such nearly indepen-
dent estimates from biological neurons (i.e., it would
require recording from the same neuron over time
intervals that were infinitely separated). Thus, we
used a model which could be restarted in such a way
as to obtain independent estimates from the same
“neuron” (i.e.,keepingall of the parameters the same).

For our purposes, the model must be a point
process in order to represent the times-of-occurrence
of action potentials, and it must include the LRD
observed in auditory-nerve activity. We used the
fractional-Gaussian-noise-driven Poisson process
(fGnDP) to model the long-range-dependent action-
potential trains found in AN fibers. This process was
originally developed to model LRD action-potential
trains in the AN (Teich 1989; Teich et al. 1990a, b;
Teich 1992; Lowen and Teich 1993, 1995, 1996b,
1997; Kumar and Johnson 1993; Teich and Lowen
1994; Thurner et al. 1997; some of whom referred to
this process as the “fractal-Gaussian-noise-driven
Poisson process”) and is arguably the simplest and
most general model of LRD action-potential trains.

The fGnDP consists of a doubly stochastic Poisson
process in which the initial stochastic process (i.e.,
the process determining the rate of the Poisson
process) is fractional Gaussian noise (fGn). In other
words, the fGnDP is an inhomogeneous Poisson
process with samples of f{Gn specifying the time-varying
rate. fGn is a generalization of the common white
Gaussian noise that can be LRD (Mandelbrot 1965;
Mandelbrot and van Ness 1968; Mandelbrot and
Wallis 1968, 1969a, b, c¢; Beran 1994; Samorodnitsky
and Taqqu 1994). It is a stochastic process (a sequence
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of random variables) in which the random variables
have a particular correlation structure. This correla-
tion structure is parameterized by the Hurst index H,
which can vary from 0.0 to 1.0. When H < 0.5, fGn is
statistically unstable and rarely useful for modeling
natural processes. If H = 0.5, then fGn is just white
Gaussian noise. Hence, in this case, it has no temporal
correlation and is not LRD. When H> 0.5, fGn is LRD
and the value of H determines the strength of this
LRD. As H increases from 0.5 to 1.0, the strength of
the LRD increases. Thus, when H > 0.5, the {fGn
imparts LRD to the fGnDP.

Standard fGn, which we denote by Gy(f), has a
mean of 0 and a standard deviation of 1. In our
fGnDP models, the initial stochastic process, A(t),
determining the rate of the Poisson process was
approximately a translated and scaled version of
standard fGn, i.e.

A(D) = A1) = A0+ Ga(0), (1)

where A\ determines the mean of A(f) and o
determines the variance (or “noisiness”) of A(t).
One problem arises, however, if the A(t) is used as
the actual rate process. This process can have
negative values, and the rate of a Poisson process
cannot be negative. The typical method for handling
this situation is to rectify the translated and scaled
fGn, so that the actual rate process A(¢) is formed by
replacing all of the negative values that occur in ]\(t)
with zero. The resulting point process is what is
commonly referred to as an fGnDP in the literature;
we will use this same nomenclature. Because of the
rectification procedure, A and o do not exactly
specify the mean and variance, respectively, of A(7)
nor of the output discharge rate. The differences
between the parameters and their corresponding
statistics will increase with the number of negative
values in the sample of A(t).

We also used another model that is very similar to
the fGnDP model described above, but which does
not require rectification of the fGn driving noise. In
order to make clear the relationship between the two
models that we used, we will first briefly describe the
method that we used to simulate the (inhomoge-
neous) Poisson process portion of the fGnDP. It is
well known that a homogeneous Poisson process of
unit rate can be converted to an inhomogeneous
Poisson process with rate A(f) > 0 by performing a
time transformation based on A(#) (e.g., Cox and
Lewis 1966; Cinlar 1975; Snyder 1975; Cox and Isham
1980; Taylor and Karlin 1994; Daley and Vere-Jones
2003; see the Appendix for mathematical details).
Therefore, we first simulated a unitrate homoge-
neous Poisson process using the fact that the
interpoint intervals of this process are independent,
identically distributed exponential random variables
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with a mean of one. We were then able to simulate
the inhomogeneous Poisson process as a series of
interpoint intervals using the following iterative
procedure. Suppose that ¢ is either the starting time
of the simulation or the time of occurrence of the last
point produced by the simulation and that ¢ is a
value drawn from a unitmean exponential distribu-
tion. Then the time of occurrence of the next point
in the simulation of an inhomogeneous Poisson
process is the minimum time ¢,; > ¢ for which
fi“ A(u)du > ¢;. Thus, the interpoint interval of
length ¢; in the homogeneous Poisson process is trans-
formed to the interpoint interval of length (¢, — ¢) in
the inhomogeneous process. As long as the ¢/s are all
independent of one another, this procedure can be
repeated indefinitely to produce an inhomogeneous
Poisson process of rate A(t).

Now this procedure is reminiscent of a model that
is very common in neuroscience: the integrate-and-
fire (IF) neuron. In the IF neuron, after a discharge
occurs, the subsequent input is integrated until the
value of the integral reaches a predetermined thresh-
old, at which time the next discharge occurs and the
process repeats itself. Hence, if the input to an IF
neuron is the nonnegative function A(?), the thresh-
old of the IF neuron changes after every discharge,
and these thresholds are independently generated
from an exponential distribution with unity mean,
then the output of the IF neuron is an inhomoge-
neous Poisson process of rate A(t). We call this type
of IF neuron a Poisson-equivalent IF model. There-
fore, any inhomogeneous or doubly stochastic Pois-
son process may be conceptualized as the gray
pathway in the block diagram of Figure 2A. (Of
course, the rectification block is unnecessary if the
rate function or stochastic rate process is nonnega-
tive.) So, for instance, if the upper block in Figure 2A
is the process A(7) given in Eq. 1, a scaled and
translated version of fGn, then the gray pathway
would be an fGnDP.

The Poisson-equivalent IF model can meaningfully
operate on negative inputs, unlike the classical
inhomogeneous Poisson process and other popular
methods for simulating it. Thus, if we remove the
rectification step, as in the black pathway in the block
diagram of Figure 2A, we obtain a process that is
identical to an inhomogeneous or doubly stochastic
Poisson process for nonnegative inputs, but for which
negative input values have a negative effect on the
output. The negative input values reduce the value of
the running integral that is accumulating toward the
threshold ¢;, and thus they extend the interval to the
next spike ¢, 1. Figures 2B and C illustrate the effect
of negative input values on the Poisson-equivalent IF
model. Suppose the upper block in Figure 2A
generates the waveform shown in the upper graph
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FIG. 2. lllustration of the difference between the two models used (black, solid curves) of the identical driving functions shown in the

to simulate auditory-nerve discharge trains. A. Block diagram
depicting a standard inhomogeneous or doubly stochastic Poisson
process (gray pathway), in which the input must be rectified, and a
Poisson-like process (black pathway), which can operate meaning-
fully on negative input values. If the output of the driving process
(top block) does not contain negative values, then the two processes
produce the same result, and both are inhomogeneous or doubly
stochastic Poisson processes. B. Graphs describing the effect on the
Poisson process (gray, dashed curves) and Poisson-like process

of Figure 2B. Then the curves in the middle graph
are the inputs to the Poisson-equivalent IF block in
Figure 2A for the rectifying model (gray pathway of
Fig. 2A, gray, dashed curves in Fig. 2B) and the
nonrectifying model (black pathway of Fig. 2A, black,
solid curves in Fig. 2B), and the curves in the lower
graph are the discharge rates that it would produce.
These curves are identical prior to time % because
the driving function is nonnegative for that entire
time, and they are both equal to zero from time { to
{; because the driving function is negative during that
period. However, during the latter time period, the
value of the integration mechanism decreases for the
nonrectifying model, while it remains constant for
the rectifying model (see lower graph of Fig. 2C).
Thus, after time ¢, the output rate of the rectifying
model is again identical to the driving function,
which is nonnegative during this time. However, the
integration mechanism of the nonrectifying model
must first “recover” from its reduction during the
previous time period. Because the two hatched
regions shown in the upper graph of Figure 2B have
the same area, the value of the integration mechanism

upper graph. The two hatched regions in the upper graph have equal
area. C. A sample discharge train and the corresponding integra-
tor-value curve from each model (gray “spikes” and dashed, gray
curve for the Poisson process and black “spikes” and black, solid
curve for the Poisson-like process) using the driving functions from B
and identical sequences of randomly chosen threshold values in the
Poisson-equivalent integrate-and-fire block. The “spikes” are differ-
ently sized to aid in visualization. See text for further description.

at time & will be equal to its value at #. Thus, the
output rate of the nonrectifying model is zero from
time ¢ to &, a period during which the value of the
integrator is less than its value at time { (which was
below threshold), but identical to the driving func-
tion (and the output rate of the rectifying model)
after time fo.

Figure 2C illustrates the difference between the
rectifying (gray “spikes” and gray, dashed curve) and
nonrectifying (black “spikes” and black, solid curve)
models for a single sample discharge train resulting
from the driving function of Figure 2B. The upper
graph depicts the discharge train for each model as a
set of “spikes,” and the lower graph shows the value of
the integrator for each model. For both models, the
same sequence of threshold values was used in the
Poisson-equivalent IF mechanism. Thus, because there
are no negative values in the driving function before
time {, both models discharge at the exact same times
during this period. However, as a result of the
decrease in the value of the integrator for the
nonrectifying model between times # and ¢, after
time ¢; it will discharge later than the rectifying model.
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As mentioned above, if the upper block in Figure
2A is an fGn generator that outputs the process A(t)
given in Eq. 1, then the gray pathway, or rectifying
model, would be an fGnDP. In this case, the black
pathway, or nonrectifying model, would be an
fGnDP-like process in which negative values in A(t)
have a negative effect on the output. We call this
model the fractional-Gaussian-noise-driven Poisson-
equivalent-integrate-and-fire (fGnDP-IF) model. As is
apparent from Figure 2A, the only real difference
between the fGnDP and fGnDP-IF models is the
presence or absence, respectively, of the rectification
operation. Furthermore, although the IF mechanism
in the fGnDP-IF seems to suggest a biological
mechanism, this figure and the preceding discussion
linking these two models demonstrate that this is not
necessarily the case. Instead, the Poisson-equivalent
IF mechanism is simply a mathematical construct for
generating a Poisson process, which we were able to
adapt for a more general class of inputs and which is
not inherently any more suggestive than the Poisson
process in the fGnDP.

Throughout this study, we compare the results
from our models to the SR histogram of Liberman
(1978) (Fig. 1), which is similar to other such histo-
grams (e.g., Kiang et al. 1965; Joris and Yin 1992).
Liberman’s SR histogram was composed of estimates
of the average SR from 738 individual AN fibers. In
each fiber, the SR estimate was computed from the
number of action potentials in a 30-s window. Liber-
man divided these measurements into three classes,
low, medium, and high SR, corresponding approxi-
mately to the mass in the zero-to-one bin, the remainder
of the lower mode, and the upper mode of the SR
histogram, respectively. (Liberman actually used a
boundary value of 0.5 spikes/s between the low-SR class
and the medium-SR class, but, because his bins are 1
spike/s wide, this boundary is not apparent in the
histogram.) In his study, 16% of the estimates were in
the low-SR category, 23% were in the medium-SR
category, and 61% were in the high-SR category.

Each of our model histograms is composed of
the average discharge rates in 738 independent simu-
lations, which matches the number of fibers in
Liberman’s SR histogram. The duration of each sim-
ulation was 30 s. When three different SR categories
(low, medium, and high) were simulated for a histo-
gram, the percentages of these simulations in each
category matched those found by Liberman. When
only two SR categories (low and high) were simulated,
the percentage in the high category was unchanged,
and the percentage in the low category was 39%, the
total percentage (low SR + medium SR =16% + 23%)
in the lower mode of the SR histogram.

All of the simulations in a single category for a
single histogram had identical parameter values. The
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parameters of the model are A, o, and H. X is
approximately the mean discharge rate of the model
and was the only parameter that varied between
different SR categories within the same histogram. o
is related to the variance of the (instantaneous)
discharge rate and was usually set to be 25.1 spikes/s.
In a previous study (unpublished), we found that the
formula ¢ = VA+9 worked well for matching the
LRD statistics for simulations to those for AN fibers
when A was large. When A = 70, the value that we
used for the high-SR category, this formula yields a
value for o of 25.1. H is the Hurst index, which spe-
cifies the strength of the LRD in the model. For LRD
simulations, H was set to 0.9. The Hurst indices
estimated from AN fibers are typically in the range
from 0.75 to 0.95 (Teich 1989, 1992; Teich et al.
1990a, b; Kelly et al. 1996; Lowen and Teich 1996a;
note that some of these studies estimated the fractal
dimension D instead of the Hurst index H; however,
these two measures are related by the expression
D = 2H — 1). Estimates of H are known to be
negatively biased (e.g., Lowen and Teich 1993), so we
chose a value in the upper portion of the range
reported for H. As a control, we also ran non-LRD
simulations with H = 0.5. In this case, the variance of
the driving process (i.e., the fGn) at a single point in
time was identical to that in the LRD simulations, but
there were no temporal correlations. This is a better
control model than the Poisson process because the
fGn, whether LRD or not, adds some variability to the
discharge rate of the model.

RESULTS

The most common stochastic point-process model of
neural action-potential trains, including those in the
AN, is the Poisson process. The Poisson process is to
stochastic point processes what white Gaussian noise
is to the more common “time-series” stochastic
processes, having a simple statistical structure with
no temporal correlations. Figure 3 contains a histo-
gram of discharge-rate estimates calculated from 738
independent, 30-s-long simulations of Poisson pro-
cesses. Approximately the same number of simula-
tions had each of eight different rates: 0, 5, 10, 20, 40,
60, 80, and 100 spikes/s. The width of the bins in this
and the remainder of the histograms in this study is 1
spike/s to match that in Liberman’s SR histogram
(Fig. 1). Each mode of the histogram in Figure 3 is very
narrow compared to the closest (in terms of rate) mode
in the SR histogram of Figure 1. Hence, in order for
this histogram to resemble the SR histogram, the
distribution of the discharge rates of the Poisson
processes would have to be fairly similar to the SR
histogram. Therefore, if AN action-potential trains
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FIG. 3. Histogram of discharge rate estimates calculated from 738
independent, 30-s-long simulations of Poisson processes. Eight
different rates, 0, 5, 10, 20, 40, 60, 80, and 100 spikes/s, were used
for the Poisson processes, and either 92 or 93 (~738/8) simulations
were run at each of these rates. The width of the bins is 1 spike/s.

were approximately Poisson, the SR histograms
would correspond fairly well to the real distribution
of SRs. Refractoriness would only narrow the modes
of the histogram in Figure 3 and not significantly
change this argument.

AN action-potential trains, however, are different
than Poisson processes (with or without refractoriness)

Poisson Process

Non-LRD fGnDP (H = 0.5)
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in that they are LRD. While temporal averaging can
quickly reduce the variability of mean-rate estimates
for short-range-dependent point processes (including
processes with no temporal dependence, such as
Poisson processes), the rate of increase in estimation
reliability due to temporal averaging is exceptionally
slow for LRD processes. Figure 4 illustrates this effect
using simulations of a Poisson process and two versions
of the f{GnDP. One of the f{GnDPs has a Hurst index of
H = 0.5 and does not, therefore, contain any
temporal correlations, while the other has a Hurst
index of H = 0.9 and is, therefore, LRD. Both,
however, have the same “instantaneous” variance,
because the individual values of the fGn driving
processes have the same variance in both cases. Thus,
any statistical differences between these two fGnDPs
are solely the result of LRD. Although the widths of
the distributions of mean-rate estimates for the
Poisson process and the non-LRD fGnDP are signif-
icant for a 1l-s counting interval, with standard
deviations of 8.4 and 11.4 spikes/s, respectively, they
are considerably narrower for a 30-s counting inter-
val, with standard deviations of 1.5 and 2.1 spikes/s,
respectively. And once the counting interval is 3,600 s
(one hour) in length, the estimates only extend into
the two (1 spike/s) bins on either side of the actual

LRD fGnDP (H = 0.9)
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mean rate, with standard deviations of 0.14 and 0.19
spikes/s for the Poisson process and non-LRD
fGnDP, respectively. Thus, the instantaneous variabil-
ity of the fGn driving process in the fGnDP only
moderately increases the variability of the mean-rate
estimates and does not substantially alter the benefit
gained by elongating the counting interval. However,
the LRD in the other fGnDP model dramatically
reduces the benefit of longer counting intervals,
resulting in standard deviations of 21.5, 14.2, and
8.8 spikes/s for the 1-, 30-, and 3,600-s counting
intervals, respectively. Thus, for this LRD point
process, the variability of mean-rate estimates
remains considerable even when the averaging time
is one hour long!

Figure 4 illustrates that the variability of the mean-
rate estimates from a single-mean-rate model of
auditory-nerve action-potential trains that incorpo-
rates LRD is comparable to the variability in the
modes of SR histograms from auditory-nerve record-
ings, such as that shown in Figure 1. We were,
therefore, interested in ascertaining how well a
histogram of mean-rate estimates from simulations
of this LRD model, using a minimal number of actual
mean rates, would resemble auditory-nerve SR histo-
grams, using Liberman’s (1978) histogram (Fig. 1) as
an archetype of these histograms. Because the SR
histogram in Figure 1 has two modes, we first tried to
model it using two types of model neurons, low-SR
and high-SR, where all low-SR model neurons have
the same mean discharge rate with A = 1 spike/s and
all high-SR model neurons have the same mean
discharge rate with A = 70 spikes/s. Figure 5 contains
histograms for f{GnDP model neurons with two mean
discharge rates. The general shape of the histogram

Non-LRD Simulations
(H=0.5)
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FIG. 5. Histograms of discharge rate estimates calculated from 30-
s-long simulations of fGnDPs (i.e., with rectified fGns) using two
different mean rates. Each histogram is the result of 738 independent
simulations: 288 (~39%) simulations with an fGn mean of X = 1
spike/s (low SR) and 450 (~61%) simulations with A = 70 spikes/s
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for the LRD model neurons is very similar to the SR
histogram in Figure 1, except that the mass in the
zero-to-one bin is missing. The histogram for the
non-LRD model neurons, however, is quite different.
In fact, the width of the modes in the non-LRD
histogram is not significantly larger than that for the
Poisson processes in Figure 3. This shows that the
broadening of the modes in the right-hand (LRD)
model histogram of Figure 5 is caused by the LRD
and not by the extra “instantaneous” variance from
the driving noise.

The most obvious method for producing the mass
in the zero-to-one bin, which is missing in Figure 5, is
to use three, instead of only two, types of model
neurons. Figure 6 contains histograms for the f{GnDP
model with three types of model neurons: low-SR,
medium-SR, and high-SR. The high-SR type is
identical to the high-SR type in Figure 5, and the
medium-SR type is identical to the low-SR type in
Figure 5. However, the histograms in Figure 6
contain a third type, the low-SR model neurons that
have A = —30 spikes/s. Having a negative value for A
may seem odd at first because the action-potential
train cannot have a negative rate. Nevertheless, upon
further consideration, it should seem reasonable.
Such a model simply represents a spiking system
where the mean of the (noisy) process driving the
action-potential generator is well below the threshold
of the generator, so that only strong positive devia-
tions from the mean of the driving process actually
cause action potentials to be generated. In this case,
the mean of the driving process is nonlinearly related
to, and only partially determinative of, the mean at
the output, because of the threshold of the action-
potential generator. A similar effect on the histogram

LRD Simulations
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(high SR). The left histogram is the result from simulations of f{GnDPs
with Hurst index H = 0.5 (not LRD), and the right histogram is the
result from simulations of fGnDPs with H = 0.9 (LRD). All
simulations had an fGn standard deviation of o = 25.1 spikes/s.
The width of the bins is 1 spike/s.
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FIG. 6. Histograms of discharge rate estimates calculated from 30-
s-long simulations of f{GnDPs (i.e., with rectified fGns) using three
different mean rates. Each histogram is the result of 738 independent
simulations: 118 (~16%) simulations with an fGn mean of A = =30
spike/s (low SR), 170 (~23%) simulations with A = 1 spike/s
(medium SR), and 450 (~61%) simulations with A = 70 spikes/s

can be produced by setting A between zero and one,
and setting the parameter o to a very low value (e.g.,
1 instead of 25.1) so that the discharge rate estimates
at the output remain mostly within the zero-to-one
bin. Except for the improvement of adding the “zero
mass,” the histograms in Figure 6 show essentially the
same results as in Figure 5.

The striking resemblance between the LRD histo-
gram in Figure 6 and Liberman’s SR histogram in
Figure 1 is particularly satisfying in that the param-
eters of the model were not fine-tuned in order to
produce this result. In particular, the parameters af-
fecting the width of the modes in the LRD histogram
were chosen entirely a priori based on physiological
considerations (see Methods).
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FIG. 7. Histograms of discharge rate estimates calculated from 30-
s-long simulations of f{GnDP-IFs (i.e., with unrectified fGns) using
two different mean rates. Each histogram is the result of 738
independent simulations: 288 (~39%) simulations with an fGn
mean of A = 1 spike/s (low SR) and 450 (~61%) simulations with X =

120
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(high SR). The left histogram is the result from simulations of f{GnDPs
with Hurst index H = 0.5 (not LRD), and the right histogram is the
result from simulations of fGnDPs with H = 0.9 (LRD). All
simulations had an fGn standard deviation of o = 25.1 spikes/s.
The width of the bins is 1 spike/s.

The reason that the “zero mass” does not appear
in the LRD model histogram in Figure 5 is that
negative values in the fGn driving noise do not have a
negative effect on the discharge rate. Because they
are simply set equal to zero by the rectification,
their influence on the overall mean discharge
rate—drawing it toward zero—is substantially weak-
ened. In order to obtain more measurements in
the “zero” bin of the histogram produced with only
two types of model neurons, negative values of the
fGn driving noise must have a negative effect on
the rate of the Poisson process instead of being
ignored. The negative effect of negative inputs is
produced in the Poisson-equivalent IF process
described in the Methods section, which is equiva-
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70 spikes/s (high SR). The left histogram is the result from
simulations of fGnDP-IFs with Hurst index H = 0.5 (not LRD), and
the right histogram is the result from simulations of {GnDP-IFs with
H = 0.9 (LRD). All simulations had an fGn standard deviation of ¢ =
25.1 spikes/s. The width of the bins is 1 spike/s.
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lent to the (inhomogeneous or doubly stochastic)
Poisson process for nonnegative inputs but also
operates on negative inputs.

Figure 7 contains the histograms for the fractional-
Gaussian-noise-driven Poisson-equivalent-integrate-
and-fire (fGnDP-IF) model with only two types of
model neurons, where all low-SR model neurons
have the same mean discharge rate with A = 1 spike/s
and all high-SR model neurons have the same mean
rate with A = 70 spikes/s. These simulations were the
same as those in Figure 5, except that the fGn driving
noise was not rectified (i.e., the black pathway in
Fig. 2A was used for these simulations, while the gray
pathway was used for those in Fig. 5). As expected,
this model created a mass in the zero-to-one bin, even
when only two different discharge rates were used in
the simulations. As in Figure 6, the histogram for
the LRD model neurons is remarkably similar to
Liberman’s SR histogram (Fig. 1), while the histo-
gram for the non-LRD model neurons is not at all
similar to the SR histogram. Again, the parameters
affecting the width of the modes in the LRD
histogram were chosen entirely a priori based on
physiological considerations.

DISCUSSION

Typical SR histograms for AN fibers, such as that
shown in Figure 1, seem to suggest that there are two
or three classes of AN fibers and that, at least in two
of these classes, the spontaneous rates are widely
distributed. This would indeed be the case if AN
action-potential trains were statistically similar to
Poisson processes, but, on the contrary, AN action-
potential trains are known to be long-range depen-
dent (LRD). Our simulations of simple LRD models
for AN action-potential trains show that the broad
modes in SR histograms can be produced by the
variability in average discharge rate estimates caused
by LRD and are not necessarily indicative of broad
distributions of SRs themselves. In fact, presupposing
the presence of LRD comparable to that found by
other researchers, our results prove that SR histo-
grams similar to that in Figure 1 would be produced
even if all of the neurons within a single SR class have
identical mean SRs. Moreover, our results demon-
strate not only the possibility that there is a minimal
number of different mean SRs in the AN, but also the
likelihood that this is the case. Otherwise, the SR
histograms from the AN would be much broader
than they actually are, because the variability of SR
estimates is necessarily a combination of the variabil-
ity of the actual SRs and the additional variability in
the estimates, most of which in this case is due to the
LRD. Therefore, we conclude that the broadness of
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the modes in experimentally derived SR histograms
from AN fibers is an artifact of measurement
variability produced by LRD and is not indicative of
a broad distribution of actual mean spontaneous
discharge rates.

Unfortunately, there is no way to circumvent the
effects of LRD in order to better ascertain the “true”
spontaneous rate of an AN fiber from a finite-length
sample of its action-potential train. As Figure 4
suggests, an extremely long averaging time would be
required in order to obtain a reliable estimate of the
“true” spontaneous rate from an LRD action-poten-
tial train. Moreover, using the formula for the
variance of counts of an fGnDP that was derived in
Jackson (2003), we are able to compute confidence
intervals for the sample mean for unusually long
averaging times, and the results are not very encour-
aging. For an fGnDP with an approximate mean of
A =70 spikes/s, an approximate standard deviation of
o = 25.1 spikes/s, and a Hurst index of H = 0.9, the
95% confidence intervals of the sample mean rate for
averaging times of an hour, a day, a week, and a
month are, in spikes/s, (49.4, 90.6), (55.0, 85.0),
(57.7, 82.3), and (61.2, 78.8), respectively. For a
similar non-LRD fGnDP with H = 0.5, the widths of
these confidence intervals are all less than 1 spike/s
wide, with the width of the smallest being less than
0.01 spikes/s.

Spontaneous rate is apparently correlated with
many other properties of AN fibers, such as thresh-
old, input-output function shape, morphology, spa-
tial location, and projection sites (e.g., Kiang et al.
1965, 1970, 1976; Sachs and Abbas 1974; Liberman
1978, 1980, 1982, 1991, 1993; Rhode and Smith 1985;
Ryugo and Rouiller 1988; Kawase and Liberman
1992; Ryugo and May 1993; Leake et al. 1993). Thus,
our results suggest that many of these properties may
be fairly uniform within each SR class. Measurements
of electrophysiological properties, such as threshold
and input-output function shape, however, typically
have significant variability within a single SR class.
Undoubtedly, some of this variability is attributable
to differences in cochlear mechanics between differ-
ent locations on the basilar membrane and between
different individuals. Nevertheless, there is likely to
be additional variability in these measurements
associated with LRD. The estimates of any property
measured using absolute action-potential counts,
such as saturation rate or the rate of response to
any particular stimulus, are probably going to be
affected by LRD in the same way that estimates of
spontaneous rate are, greatly decreasing the mean-
ingfulness of the precise values calculated.

On the other hand, measurements based on the
difference between the counts in nearby time inter-
vals, such as many typical methods for measuring



JacksoN aND CArRNEY: AN Spontaneous Rate Histograms

threshold or the shape of input-output functions,
should not be directly affected by LRD in the process.
Yet, there may be causal connections between these
properties and the action-potential counts that would
suggest that these properties are inherently LRD.
The estimates of these properties would thus neces-
sarily be affected by LRD. For instance, the thresh-
olds of AN fibers may vary over time and be LRD, and
this may be the cause of the LRD in AN spontaneous
activity. In this situation, much of the variability in
the threshold estimates from a single SR class of AN
fibers would be attributable to the LRD and would not
indicate inherent differences between these AN fibers.

The study of anatomical properties may be a more
promising way to further support, or challenge, our
results. These properties would need to be ones that
are fairly stable within single AN neurons. Otherwise,
they may vary over time in relation to the spontane-
ous rate, and, thus, measurements of such properties
at instants in time would be highly variable just like
estimates of spontaneous rate. A number of studies
(e.g., Liberman 1980, 1982, 1991, 1993; Ryugo and
Rouiller 1988; Kawase and Liberman 1992; Ryugo
and May 1993; Leake et al. 1993) have found
anatomical and morphological characteristics that
differ between AN fibers in different SR classes and,
therefore, are evidence for different SR classes. For
the most part, however, the results from these studies
do not help to clarify whether or not SR is widely
distributed within each class. The one exception is
Figure 2 in Liberman (1982), which contains plots of
both AN fiber diameter and position versus SR.
Although this figure clearly supports the conclusion
that these two properties of AN fibers differ between
the SR classes, there do not appear to be any trends
with SR within each individual SR class. This lends
some, albeit weak, support that SR is narrowly
distributed within each SR class. Additional findings
of discrete anatomical classes of AN fibers with
homogeneity of stable anatomical properties within
these classes would further strengthen our argument
for the limited variability of spontaneous rate within
each class. However, strong anatomical support of, or
opposition to, this argument would require experi-
mental investigation of the distribution of anatomical
properties that are directly related to the “true”
spontaneous rate of AN fibers, something that would
be very difficult to determine.

Our models and analysis are incapable of deter-
mining whether there are two or three different
spontaneous rates in the AN. The primary issue is
what causes the large mass in the zero-to-one-spikes-
per-second bin of AN SR histograms (see Fig. 1). We
found that this mass could be created by either
adding a third SR class or by altering the Poisson-
process model slightly so that it could operate
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meaningfully on negative-valued inputs. The latter
seems to be the more parsimonious explanation,
especially because the Poisson process is a mathemat-
ical construct that is only associated to neural action-
potential trains through the statistics of the output
and not the mechanism itself. The mechanism of the
Poisson-equivalent IF process that we have intro-
duced is a more satisfying explanation of AN action-
potential generation because it relies on the inte-
grate-and-fire neuron model, a common model of
action-potential generation in many systems. Further-
more, it contains the minimal rectification necessary
for an action-potential generation model, that which
is inherent to the production of discharges itself, and
does not require rectification of the driving process.
The economy and physiologically realistic mecha-
nism of this model support the hypothesis of only two
SR classes. Another argument for the two-class
hypothesis is that the data from which Liberman
(1978, see Figs. 10 and 12) originally concluded that
there is a separate SR class below 0.5 spikes/s can be
well explained in another way. This data exhibited a
sharp increase in the variability of threshold measure-
ments in AN fibers with SR measurements that were
nearly zero spikes/s. Assume that threshold measure-
ments are (negatively) correlated with short-term SR
measurements, whether or not they are good esti-
mates of the “true” SR. Yet, as the threshold increases
beyond the point that is associated with zero spikes/s,
the SR measurements will no longer decrease due to
rectification, whether implicit in the action-potential
generation or explicit elsewhere in the system. Thus,
all of the would-be “negative SRs” become near-zero
SRs, which are therefore associated with a wide range
of thresholds. In this case, the AN fibers with near-
zero SR measurements (Liberman’s low-SR units) do
not form a class distinct from the AN fibers with
higher SR measurements up to about 18 spikes/s
(Liberman’s medium-SR units), but the large vari-
ability in threshold measurements from AN fibers
with near-zero SR measurements is produced.

Our Poisson-equivalent IF model may also be a use-
ful alternative to the inhomogeneous Poisson process
in other studies of spiking systems where the driving
function is capable of assuming negative values. This
model introduces more opportunity for extension
and refinement as they become necessary. It can be
readily extended, when necessary, by drawing on the
long history of neural models that have been formed
through modification of the basic IF mechanism. Fur-
thermore, the more intuitive structure of this model
lends itself well to refinement. For instance, the
LRD could be incorporated into the firing mecha-
nism itself by making the thresholds LRD, and this
may ultimately provide a better representation of
the actual physiological mechanism.



158

ACKNOWLEDGMENT

This research was supported by NIH grant RO1 DC01641.

APPENDIX

As mentioned in the Methods section, a homoge-
neous Poisson process of unit rate can be converted
to an inhomogeneous Poisson process of rate A(7) >0
by means of a time transformation. More specifically,
if M(¢) is a unitrate homogeneous Poisson process,
A(?) is nonnegative, and the function 7 is defined as
7(t) = [y Mu)du, then N(¢)= M(r(¢)) is an inhomo-
geneous Poisson process of rate A(¢f) (e.g., Cox and
Lewis 1966; Cinlar 1975; Snyder 1975; Cox and Isham
1980; Taylor and Karlin 1994; Daley and Vere-Jones
2003). Thus, a unit-rate homogeneous Poisson pro-
cess is converted to an inhomogeneous Poisson
process of rate A(#) by making the time transforma-
tion ¢ — 7 '(#), where at each time ¢ the value of
1 (?), the inverse function of 7, is the smallest value
of s for which 7(s) > &
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