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ABSTRACT

We applied the dopaminergic (DA) neurotoxin 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
to the guinea pig cochlear perilymph. Immunolab-
eling of lateral olivocochlear (LOC) neurons using
antibodies against synaptophysin was reduced after
the MPTP treatment. In contrast, labeling of the
medial olivocochlear innervation remained intact.
As after brainstem lesions of the lateral superior
olive (LSO), the site of origin of the LOC neurons,
the main effect of disrupting LOC innervation of
the cochlea via MPTP was a depression of the
amplitude of the compound action potential
(CAP). CAP amplitude depression was similar to
that produced by LSO lesions. Latency of the NI
component of the CAP, and distortion product
otoacoustic emission amplitude and adaptation were
unchanged by the MPTP treatment. This technique
for selectively lesioning descending LOC efferents
provides a new opportunity for examining LOC
modulation of afferent activity and behavioral meas-
ures of perception.
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INTRODUCTION

The lateral olivocochlear (LOC) pathway originates
in, or near, the lateral superior olive (LSO) and
terminates in the ipsilateral cochlea at chemically
complex synapses on dendrites of the auditory nerve
(AN), and, sometimes, inner hair cells (IHCs) (for
reviews, see Warr 1992; Warr et al. 1986; Eybalin
1993; Puel 1995; Le Prell et al. 2001). Given the
difficulties in selectively disrupting or stimulating the
LOC pathway (for review, see Le Prell et al. 2003a),
little was known about LOC function until recently.
One early hypothesis was that LOC efferents adjust
spontaneous and sound-driven AN fiber (ANF) ac-
tivity (Liberman 1990; Walsh et al. 1998; Zheng et al.
1999). Confidence in putative LOC effects was limited
by simultaneous disruption of medial olivocochlear
(MOC) neurons during the knife cuts to disrupt LOC
neurons however. Recently, we directly demonstrated
LOC modulation of AN activity by disrupting LOC
neurons using LSO lesions (Le Prell et al. 2003b).
Other evidence that LOC neurons modulate AN ac-
tivity comes from Groff and Liberman (2003), who
report electrical current at some locations within the
LSO (or the ventrolateral inferior colliculus) modu-
lates AN response amplitude. Finally, the data of
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McMahon et al. (2004), who cooled the cochlear
nucleus, suggest LOC modulation of ANFs. The LOC
modulation of AN activity may also be involved in the
protective phenomena termed “conditioning” (see
Niu and Canlon 2002; Niu et al. 2004).

Immunocytochemical evidence indicates LOC
neurons contain acetylcholine (ACh), y-aminobutyric
acid (GABA), dopamine (DA), dynorphin (dyn),
enkephalin (enk), and calcitonin-gene-related pep-
tide (CGRP). Various neurotransmitters have been
colocalized in cell bodies in the LSO (Altschuler et al.
1983, 1984, 1986; Abou-Madi et al. 1987; Altschuler
et al. 1988; Safieddine et al. 1997) and LOC termi-
nals (Altschuler et al. 1985; Safieddine and Eybalin
1992). While some suggest chemically distinct LOC
subpopulations (Satake and Liberman 1996), others
believe most LOC efferents contain all six putative
LOC neurotransmitters (Safieddine et al. 1997).
Consistent with broad transmitter colocalization,
dopaminergic LOC neurons originate from the
medial limb of the LSO (Safieddine et al. 1997,
Mulders and Robertson 2004) as do neurons that
show glutamate decarboxylase, CGRP, and choline
acetyltransferase immunoreactivity (Safieddine et al.
1997). The medial limb of the LSO projects to the
hook region and basal and second turns of the
cochlea (following Robertson et al. 1987).

A neurotoxin that damages neurons containing
any single LOC transmitter might produce a virtually
complete LOC degeneration if LOC transmitters are
colocalized. Infusing the cholinotoxin ethylcholine
mustard aziridinium ion (AF64A) into the chinchilla
middle ear widely disrupted LOC neurons (Smith etal.
1989; Morley et al. 1991; Smith and Mount 1993). A
cholinotoxin does not selectively disrupt LOC effer-
ents, however, as ACh is the primary MOC neuro-
transmitter. To disrupt LOC innervation without
damaging MOC neurons, the neurotoxin should
target a transmitter not contained by the MOC
neurons; one such substance is DA.

The two most commonly used DA neurotoxins are
6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP). 6-OHDA damages
catecholamine-producing neurons in the guinea pig
cochlea (Eybalin et al. 1993; d’Aldin et al. 1995a; Niu
and Canlon 2002). MPTP is similarly toxic to DA
neurons (see Mikkelsen et al. 1999; Da Cunha et al.
2001; Petroske et al. 2001; Sedelis et al. 2001). We
disrupted LOC innervation by applying MPTP to the
cochlear perilymph. Synaptophysin immunolabeling
revealed a reduction in LOC innervation with no
disruption of MOC innervation. The functional effect
of this selective loss of LOC efferents was depressed
amplitude of the sound-evoked whole-nerve com-
pound action potential (CAP). Functional measures
that reflect the status of outer hair cells (OHCs) and
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the strength of the MOC reflex were not disrupted by
MPTP.

METHODS
Subjects

Male and female guinea pigs (Elm Hill Breeding Labs,
Chelmsford, MA) were used in these experiments.
Functional measures included CAP and distortion pro-
duct otoacoustic emissions (DPOAE; amplitude and
adaptation). Tissues were harvested from a subset of
these animals, as well as a small number of additional
animals that did not undergo functional testing. All
tissues were harvested 45 min post-MPTP. Animals
were maintained with free access to food (Guinea Pig
Chow, PMI Nutrition International Inc., Brentwood,
MO) and water. The animal care program was
AALAC-accredited. Husbandry met or exceeded all
applicable standards, including the Guide for the Use
and Care of Laboratory Animals, prepared by the
National Research Council (1996). The University
Committee on Use and Care of Animals at the Uni-
versity of Michigan approved all animal care and
testing protocols.

Apparatus and procedures

CAP. CAP was recorded in anesthetized (108 mg/kg
ketamine, 14 mg/kg xylazine) animals (N= 6) as des-
cribed in Le Prell et al. (2003b). During the experi-
ments, the tympanic membranes were examined, a
tracheal tube inserted, and a platinum-iridium wire
ball electrode (diameter = 0.2-0.25 mm) was placed
through the wall of the cochlea into scala tympani
from a postauricular surgical approach. A ball of
silastic 0.5 mm distal to the end of the electrode
prevented overinsertion of the electrode and loss of
cochlear perilymph (as in Le Prell et al. 2004b). CAP
was assessed immediately after securing the electrode
in place, 30 min after round window application of
an artificial perilymph solution (145 mM NaCl, 2.7
mM KCl, 2.0 mM MgSOy, 1.2 mM CaCly, 5.0 mM
HEPES; pH = 7.40, osmolality = 280285 mosM), and
30 min after applying 50 mM MPTP (dissolved in
artificial perilymph, pH adjusted to 7.4 + 0.02) to the
round window membrane. A subset of the animals
was tested at additional longer post-MPTP time points
in 30-min intervals (60 min: N= 2; 180 min: N=1) to
verify that the effects of MPTP treatment do not
change within this temporal window. All round win-
dow applications were approximately 6 pl, and the
middle ear was carefully dried prior to each CAP test.
Acoustic stimuli were generated using Tucker—
Davis Technology (TDT; Alachua, FL) System II/
System III hardware and SigGen 3.2 software. Signals
were converted to analog (DALI), filtered (FT6-2, F, =
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40 kHz), attenuated (PA5), and presented using a
200-Q transducer (Beyer Dynamic, Farmingdale, NY)
coupled to the animals’ ear canal via vinyl tubing.
CAP input-output functions were determined for
brief pure-tone stimuli (2-18 kHz; 2-kHz increments)
presented at levels ranging from 0 to 100 dB SPL
in 5-dB increments (5-ms duration, 0.5-ms rise—fall;
10/s). Evoked potentials were filtered (300-3,000 Hz)
and amplified (1,000x) using in-house constructed
equipment. BioSig 3.2 (TDT) was used to average 25
presentations within each frequency/level combina-
tion. CAP threshold was defined using linear interpo-
lation to determine the sound level needed to
produce a 10-uV response.

DPOAE adaptation. Animals (N = 4) were anesthe-
tized using 1.5 g/kg urethane, then paralyzed (1.25
mg/kg tubocurarine, i.m., redosed at 2-h intervals)
and artificially respirated while body temperature was
maintained at 38 + 1°C. To verify that a surgical
depth of anesthesia was maintained, heart rate and
blood pressure were continually monitored through-
out the experiment using a digital pulse oximeter
(SurgiVet Inc., Waukesha, WI).

A constant microphone position was maintained
throughout drug delivery experiments. In a single
animal, we compared pretreatment baseline adapta-
tion to measures obtained after artificial perilymph
application to verify that artificial perilymph applied
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to the round window membrane does not influence
DPOAE adaptation. For all other subjects, baseline
DPOAE adaptation was assessed after applying artifi-
cial perilymph to the round window membrane. In
one animal, we applied three repeated treatments of
artificial perilymph to verify that repeated delivery of
fluids to the round window membrane did not
influence DPOAE adaptation. All subjects had strong
(>20 dB) baseline adaptation. We then applied 50
mM MPTP to the round window membrane (one
application per animal) and reassessed DPOAE
adaptation immediately as well as 30 min post-MPTP
application. After confirming that MPTP did not
disrupt DPOAE adaptation, we cut the OCB using a
lateral brainstem cut in one animal (as in Rajan 1995;
see also Liberman et al. 1996). In a second animal,
MOC function was disrupted, as in Brown et al.
(1969), by slow injection of strychnine hydrochloride
(0.15 mg/kg, in 2.0 ml artificial perilymph solution)
into the jugular vein. Strychnine is a potent antago-
nist of MOC function (Desmedt and Monaco 1961;
Brown et al. 1969; Bobbin and Konishi 1974;
Desmedt and Robertson 1975; Rajan 1988; Kujawa
et al. 1992, 1993, 1994; Sridhar et al. 1995; Dolan
et al. 1999; Ota and Dolan 2000).

Onset adaptation of the cubic distortion product
was measured, as in Halsey et al. (2004), by using
procedures modified from those of Kujawa and

FIG. 1. Cochlear tissues had less
dense immunolabeling of lateral
olivocochlear (LOC) efferents after
MPTP. Tissues were

immunolabeled with
antisynaptophysin, and are from
base (A, B), second (C, D) and
third (E, F) turns, and apex (G, H).
Control tissues are depicted in the
left panels (A, C, E, G). MPTP-
treated tissues are depicted in the
right panels (B, D, F, H). Arrows

indicate normal LOC
immunolabeling below the inner
hair cells in the region of the inner
spiral bundle (arrow a) and sparse
LOC immunolabeling after MPTP
treatment (arrow b). Scale bar =
50 um.
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Liberman (2001). Our primary tone frequencies (FI,
F2) were fixed at 8 kHz (F1) and 9.6 kHz (F2); the
cubic distortion product (2F1 — F2) was 6.4 kHz. F1
and F2 levels (L1, L2) were initially set to approxi-
mately 92 dB SPL; L2 was then systematically
decreased over a 12-dB range in 1-dB steps. This
procedure was repeated for at least six levels of FI,
with F1 decreasing in 1-dB steps, until the levels
producing maximum DPOAE adaptation were deter-
mined for both positive and negative deflections. To
more finely resolve changes in DPOAE adaptation as
a consequence of F1 and F2 levels, additional
DPOAE tests were conducted with L1 and L2 level
increments changing in 0.4-dB increments over at
least six levels of F1, with 12 F2 levels presented for
each level of F1. A MatlLab program was used to
control stimulus generation (TDT hardware) and
presentation (Beyer sound drivers), as well as data
collection.

Asin Le Prell et al. (2003b), primary tones were 1 s
in duration, with a 1.5-s pause between presentations.
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Sound pressure levels for F1, F2, and the DPOAE were
determined during each level series using Fourier
transform of the microphone input (Etymotic Re-
search, ER-10B+ Low Noise Microphone). For each
level combination, responses to four stimulus presen-
tations were collected and averaged. DPOAE ampli-
tude was sampled at 50-ms intervals during the 1-s
primary tone duration. If standard deviations ex-
ceeded 2 dB at any time point, the data were excluded
and the level combination was repeated. Adaptation
of the DPOAE response was defined as the difference
between DPOAE amplitude at the onset of the
primary tones and the steady-state amplitude of the
DPOAE (defined as the average DPOAE amplitude
during the final four time points).

DPOAE, amplitude. Animals (N = 4) were anesthe-
tized (40 mg/kg ketamine, 10 mg/kg xylazine), and
the amplitude of the cubic distortion product was
measured as in Le Prell et al. (2004b). The primary
tones were centered at 8, 12, and 16 kHz and spaced
such that F2 = 1.2 x Fl. The frequency of the

FIG. 2. Medial olivocochlear
(MOC) immunolabeling was not
affected by MPTP. Tissues were
immunolabeled with
antisynaptophysin, and are from
base (A, B), second (C, D) and
third (E, F) turns, lower apex (G,
H) and upper apex (I, J). Control
tissues are depicted in the left
panels (A, C, E, G, H). MPTP-
treated tissues are depicted in the

right panels (B, D, F, H, J). Arrows
indicate normal MOC
immunolabeling below the outer
hair cells (arrow a), and
unchanged immunolabeling of
MOC puncta after MPTP
treatment (arrow b). Scale bar =
50 pum.
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distortion product was equal to 2F1 — F2. Thus when
the primary tones were centered at 16 kHz, F1 was
14.6 kHz, F2 was 17.4 kHz, and the DPOAE was 11.7
kHz. Initially, the level of F1 was fixed at 80 dB SPL
and the level of F2 was adjusted to be 10 dB quieter.
The 10-dB difference in F1 and F2 sound levels was
maintained as the level of F1 was decreased in 5-dB
steps, to 2 minimum of 25 dB SPL. DPOAE ampli-
tude and noise floor amplitude were measured
relative to FI1.

Histology. At the conclusion of the electrophysio-
logical testing, i.e., 45 min following the delivery of
MPTP to the round window membrane, animals were
deeply anesthetized with an overdose of sodium
pentobarbital and decapitated. The temporal bones
were quickly removed, dissected open at the round
window and the apex, and gently perfused with 4%
paraformaldehyde in phosphate buffer. Immunolab-
eling with antisynaptophysin mouse monoclonal
antibody (1:10 dilution; IGN Pharmaceuticals, Inc.)
was conducted using procedures modeled after those
of Burgess et al. (1997; as in Le Prell et al. 2003b).
The tissues were carefully dissected for surface
preparations and mounted on glass slides. Some
tissues were lost due to trauma associated with the
initial gross dissection; immunolabeling was quanti-
fied in all available tissues.

For each animal, we photographed three to six
regions from each available cochlear turn at two
different focal planes. First, we imaged the focal
plane in which LOC innervation was the densest. We
then imaged MOC immunolabeling by adjusting the
focal plane until MOC puncta at the bases of the
OHCGs were in focus. In general, within the single
focal plane selected, the puncta corresponding to
OHC rows 1 and 2 were the most sharply focused and
the sparser MOC innervation corresponding to OHC
row 3 was less sharply focused but nonetheless clearly
discernable. We quantified LOC and MOC innerva-
tion using Metamorph image analysis software (ver-
sion 4.6r9, Universal Imaging Corporation) as in Le
Prell et al. (2003b). The LOC surface area was
assessed within a 48.83 x 16.56-um segment (total
area = 800.723 um®) from each digitized image. The
MOC immunolabeled area was assessed within a
larger 76.71 x 38.83-um segment (total area =
2,978.96 um?) in order to capture all three rows of
MOC puncta. For both LOC and MOC puncta, we
used a variable color/intensity exclusion criterion
within Metamorph to measure labeling within each
of the three to six sections imaged for each cochlear
turn in each animal. To obtain final estimates of LOC
and MOC labeling, we averaged the results from all
sampled LOC or MOC regions for each animal from
each cochlear turn, prior to averaging across animal
data.
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RESULTS
Immunocytochemistry

MPTP treatment resulted in a striking reduction in
LOC terminals (38% decrease) with little or no effect
on MOC terminals (10% increase). Examples of
synaptophysin immunolabeling of LOC and MOC
terminals in control and MPTP-treated cochleae are
depicted in Figures 1 and 2. Quantitative evaluation
of cochlear tissue immunolabeling is presented in
Figure 3.

Statistical comparisons were conducted separately
for the LOC and MOC synaptophysin quantification.
Comparisons were conducted using analysis of vari-
ance (ANOVA) with between- and within-subject
measures. Group means were substituted for the
small number of missing data points, and the Green-
house-Geisser correction for sphericity was applied.
The within-subject measure was cochlear turn (base,
turn 2, turn 3, and apex) and the between-subject
variable was group (control or MPTP).

Statistical comparisons revealed LOC immunolabel-
ing (Fig. 3A) was significantly decreased in MPTP-
treated ears (p=0.005); there were no reliable changes
in the amount of immunolabeling as a function of
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FIG. 3. A. Surface area of synaptophysin immunolabeling of the
lateral olivocochlear (LOC) neurons was reduced in MPTP-treated
cochlear tissues. B. Surface area of synaptophysin immunolabeling
of medial olivocochlear (MOC) neurons was not reliably changed.
Asterisks indicate statistically reliable differences between control
and MPTP-treated ears. The amount of tissue from apical turns was
not sufficient for the conduct of statistical comparisons, and all hook
region tissues were excluded from analysis as the majority of hook
region tissues from both the control and MPTP groups were
damaged during dissection. For all other tissues, labeled area was
measured in three to six regions of each cochlear turn for each
animal. Labeling was first averaged within each animal; average
labeling across animals is depicted.
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turn (p = 0.134) and we failed to find a groups x turn
interaction (p = 0.932). In contrast, MOC immunolab-
eling (Fig. 3B) was not reliably affected by MPTP
treatment (p = 0.170); MOC immunolabeling signifi-
cantly decreased as a function of turn (p < 0.001) but
there was no groups x turn interaction (p = 0.380).
Taken together, LOC immunolabeled area decreased
as a function of MPTP treatment but did not reliably
change from base to apex, whereas MOC immunola-
beled area decreased from base to apex for both
groups, but there was no difference between the
control and MPTP-treated groups.

Electrophysiology

MPTP depressed CAP amplitude over the entire
range of frequencies tested (see Fig. 4). The statistical
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reliability of drug-induced differences in CAP ampli-
tude was evaluated using three-way repeated-measures
ANOVAs. The three repeated-measures factors con-
sisted of condition (baseline, artificial perilymph, and
MPTP), stimulus frequency (2, 4, 6, 8, 10, 12, 14, 16,
and 18 kHz), and stimulus intensity (0, 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95,
and 100 dB SPL). Pairwise comparisons were con-
ducted using Bonferroni corrections.

The overall analysis of CAP amplitude revealed a
significant interaction of condition with frequency
and intensity (I = 3.53; df = 320,1280; p < 0.001).
When the interaction was broken down by condition,
it was observed that baseline and artificial perilymph
conditions were not significantly different from each
other and did not interact with frequency or
intensity (p > 0.60). Hence baseline and artificial
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FIG. 4. Amplitude of the compound action
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80 100 potential (CAP) amplitude, defined as the
amplitude of the N1-P1 component, was
depressed after MPTP treatment. CAP amplitude
was determined from O- to 100-dB SPL at
frequencies extending from 2 to 18 kHz. Mean
CAP amplitude (+SE) is depicted immediately after
cementing the recording electrode in place, 30
min after applying artificial perilymph to the
round window membrane, and 30 min after
applying 50 mM MPTP to the round window
membrane.
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perilymph conditions were combined and compared
with the MPTP condition at each level of stimulus
frequency. The contrasts of MPTP and combined
control conditions interacted with intensity at all
frequencies (p < 0.01 after applying Bonferroni
correction). Thus CAP amplitude was depressed at
higher intensities for the entire frequency range
tested. The magnitude of the effect was smaller at
the lower frequencies.

In contrast to depressions in CAP amplitude,
which were observed across frequencies, MPTP
induced significant elevations in CAP threshold only
at higher frequencies (see Fig. 5). The frequency x
condition interaction was significant (/"= 4.22; df =
16,80; p < 0.001). After applying the Bonferroni
correction, statistically reliable threshold elevations
were limited to 16 and 18 kHz (p < 0.05).

Because threshold differences were observed at
the highest test frequencies, we normalized the data
to threshold by expressing CAP amplitude in decibel
sensation level (SL), where 0 dB SL is the lowest
signal that elicits a 10-uv neural response. The same
basic effect was seen when using sensation level
measures as with sound pressure level measures
(not depicted). After normalizing to threshold, CAP
amplitude was still depressed by MPTP at higher
intensities (F= 1.67; df = 40,200; p =0.012); however,
this effect no longer significantly varied as a function
of frequency (FF<1).

MPTP did not affect N1 latency (not depicted).
Analysis of the latency data only revealed a significant
frequency X intensity interaction (/" = 26.38; df =
160,800; p < 0.001) that did not interact with
condition.
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Threshold (dB SPL)

20+ | —m— Baseline
—A— Artificial Perilymph
10F | —0— 50-mM MPTP

1 10

Frequency (kHz)
FIG. 5. Threshold (+SE) of the compound action potential (CAP)
was elevated by MPTP treatment only at the highest frequencies
tested. Asterisks indicate statistically reliable differences between
control and MPTP-treated ears. CAP threshold was determined
immediately after cementing the recording electrode in place, 30
min after applying artificial perilymph to the round window
membrane, and 30 min after applying 50 mM MPTP to the round
window membrane.
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DPOAE adaptation

Baseline testing with the bulla opened and artificial
perilymph applied to the round window membrane
indicated strong (=20 dB) DPOAE adaptation (as
described by Kujawa and Liberman 2001). DPOAE
adaptation, a measure of the strength of the MOC
reflex (see Liberman et al. 1996; Maison and
Liberman 2000; Kujawa and Liberman 2001), was
essentially the same after artificial perilymph, or
MPTP (see Fig. 6). Across three applications of
artificial perilymph in a single animal, we observed
a 2.3-dB variation in DPOAE adaptation (see Fig.
6A, B, and C). Across the four animals tested,
changes in DPOAE adaptation after MPTP ranged
from an increase of 4.2 dB to a decrease of 7.3 dB
(mean + SD = —2.1 + 4.8; Fig. 6D illustrates a 3.1-dB
decrease in adaptation 30 min after MPTP). In
contrast to the lack of reliable changes induced by
MPTP, i.v. strychnine caused a profound depression
of DPOAE adaptation in the one animal tested
(a 20.4-dB decrease in response amplitude; see
Fig. 6E), as did OCB transection in a second ani-
mal (19.1 dB decrease in response amplitude; not
illustrated).

DPOAE amplitude

DPOAE amplitude, a measure of the functional
integrity of the OHC population, was not affected by
MPTP (see Fig. 7). The lack of effect of MPTP on
DPOAE amplitude indicates that OHC function was
not disrupted by MPTP applied to the round window
membrane. In contrast, euthanasia with an overdose
of sodium pentobarbital profoundly depressed
DPOAE steady state amplitude. The DPOAE ampli-
tudes assessed in postmortem ears are consistent with
postmortem data from rabbits (Whitehead et al. 1992)
and guinea pigs (Frolenkov et al. 1998). Similar data
are available from mutant (hyt/hyt) mice with OHC
abnormalities (Li et al. 1999), rats treated with
kanamycin (Mills et al. 1999), and guinea pigs treated
with neomycin (Le Prell et al. 2004b).

DISCUSSION

These results demonstrate that MPTP, a dopaminer-
gic neurotoxin, selectively damages LOC neurons.
This is a significant technical achievement as other
LOC manipulations are accompanied by simulta-
neous disruption of MOC neurons (i.e., Liberman
1990; Zheng et al. 1999) or auditory pathways
ascending from the LSO (i.e., Le Prell et al. 2003a,
b). The unmyelinated LOC neurons traveling in the
OCB do not respond well to electrical stimulation
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FIG. 6. Onset adaptation of distortion product otoacoustic emis-
sions (DPOAEs) was not reliably changed by MPTP treatment.
DPOAEs show a rapid level-dependant adaptation shortly after
signal onset when the medial olivocochlear (MOC) pathway is

(e.g., Guinan and Gifford 1988), and a recent effort
to electrically stimulate LOC neurons via electrodes
placed into the inferior colliculus or LSO yielded
mixed results (Groff and Liberman 2003) with some
stimulation sites producing fast MOC-like effects and
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intact. DPOAE adaptation is depicted 30 min after sequential
applications of artificial perilymph (panels A, B, C), 30 min after
applying 50 mM MPTP to the round window membrane (D), and
after i.v. strychnine (0.15 mg/kg, see panel E).

others producing putative LOC effects that included
site-dependent slow suppression or enhancement of
CAP amplitude.

To further our understanding of LOC function,
we evaluated AN activity before and after MPTP-
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FIG. 7. Steady-state amplitude of distortion product otoacoustic
emissions (DPOAE) was unchanged by MPTP treatment. Steady-state
DPOAE amplitude is a measure of the integrity of the outer hair cell
population. DPOAE steady-state amplitude is depicted after opening
the bulla (“Pre”), 30 min after applying artificial perilymph to the
round window membrane, and 30 min after applying 50 mM MPTP
to the round window membrane. The levels of F1 and F2 were
systematically varied such that F2 was always 10 dB quieter than F1.
DPOAE frequencies were 5.8 kHz (A), 8.7 kHz (B), and 11.7 kHz
(©.

induced LOC disruption. Consistent with the report
that LSO lesions depressed CAP amplitude (Le Prell
et al. 2003b), we report that LOC disruption induced
by intracochlear MPTP depressed CAP amplitude.
We extend our earlier data by now reporting that
selective LOC disruption is not accompanied by
changes in DPOAE onset adaptation or steady-state
amplitude. Together, these data provide direct evi-
dence that the LOC neurons normally modulate AN
activity.
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MPTP selectively disrupts LOC efferents:
anatomical evidence

Anatomical evidence that MPTP selectively damages
LOC neurons included a significant reduction in
synaptophysin immunolabeling of LOC neurons,
with no reduction in MOC labeling. Decreased LOC
immunolabeling at the 45-min post-MPTP time point
is not surprising as decreases in metabolic activity
(Palacios and Wiederhold 1984) and mitochondrial
function (Mizuno et al. 1988) as well as behavioral
changes (Chiueh et al. 1984; for review, see Sedelis
et al. 2001) are frequently reported within 5-30 min
of MPTP injection. High-performance liquid chro-
matography showed MPTP to be quickly metabolized
to its active form (Shinka et al. 1987), and micro-
dialysis revealed MPTP-induced changes in DA efflux
within 10 min (Wu et al. 2000). Rapid and pro-
nounced disruption to metabolic energy presumably
reduces the ability of LOC neurons to package new
LOC transmitter stores, resulting in the observed
decrease in immunolabeling of the protein synapto-
physin (which is found in the walls of synaptic
vesicles).

Lateral olivocochlear immunolabeling remaining
after MPTP might indicate a small population of
functionally intact LOC neurons that did not
contain DA. Alternatively, MPTP treatment may
have induced a functional disruption of all LOC
innervation and the remaining LOC immunolabel-
ing might be a population of neurons with intact
puncta but degraded function as a consequence of
the MPTP-induced mitochondrial dysfunction and
oxidative stress that precede neuronal death (for
reviews, see Sayre 1989; Tipton and Singer 1993;
Przedborski and Jackson-Lewis 1998). Another possi-
bility is that the remaining LOC population was
preserved by one or more of the many trophic factors
that reduce death of DA neurons after treatment with
a DA neurotoxin. The protective effects of neuro-
trophic factors on AN survival (e.g., Staecker et al.
1996a, b; Miller et al. 1997; Ylikoski et al. 1998;
Shinohara et al. 2002) and the presence of neuro-
trophic factors in the mature guinea pig cochlea
(Malgrange et al. 1998; Qun et al. 1999; Stover et al.
2000, 2001; Stankovic and Corfas 2003) are well
known. Glial cell-derived neurotrophic factor
(GDNF) is one of the most potent trophic factors in
preserving cellular function post-MPTP in the stria-
tum and substantia nigra (for review, see Eberhardt
and Schulz 2003), and GDNF is also potent in the
cochlea (for review, see Altschuler et al. 1999).
Resolving the chemical distribution of the intact
puncta in the remaining LOC neurons, as well as
overall functional status, presents an interesting
direction for future investigations.
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The finding that changes in LOC innervation were
greatest in the lower turns is consistent with reports
by other groups. For example, Mulders and Robertson
(2004) report that TH-labeled neurons in the LSO
were primarily limited to the medial limb of the LSO,
which projects to the hook, basal (first) turn, and
second turn of the cochlea. Thus they predict that an
absence of dopaminergic LOC effects would be
visible only on fibers well below 6 kHz. Our electro-
physiological data are clearly consistent with this
prediction; we report that the greatest effects were
observed at and above 6 kHz. Although Mulders and
Robertson (2004) report little to no TH labeling in
the third turn and the apex of the cochlea, other
investigations describe TH labeling in these higher
turns (i.e., Jones etal. 1987; Usami et al. 1988; d’Aldin
et al. 1995a; Niu and Canlon 2002). Niu and Canlon
(2002) more precisely quantified TH immunolabel-
ing in the cochlea. They reported very sparse TH
immunoreactivity in the most apical turn and very
dense TH immunoreactivity in the regions
corresponding to 8 kHz and above (i.e., 10-11 mm
from the apex). In the intermediate midcochlear
regions corresponding to 1-6 kHz (i.e., 4-9 mm from
the apex), TH immunoreactivity was obvious, al-
though less dense than those regions corresponding
to 8 kHz and above.

The substantial reduction in immunolabeled LOC
neurons we observed, while consistent with the broad
TH immunolabeling previously described in the
cochlea (i.e., Jones et al. 1987; Usami et al. 1988;
Niu and Canlon 2002), is seemingly contradictory to
reports that the number of TH-positive neurons in
the LSO is small (i.e., Mulders and Robertson 2004;
Niu et al. 2004). Although the number of TH-positive
neurons in the LSO is small, it is well known that at
least one class of LSO neurons (termed shell
neurons, in the rat) travel long distances within the
cochlea, project with numerous bifurcations, and end
with many terminal boutons. These neurons have
been well described in the guinea pig (Brown 1987),
rat (Vetter and Mugnaini 1992; Warr et al. 1997; Warr
and Boche 2003), chinchilla (Azeredo et al. 1999),
and hamster (Sanchez-Gonzalez et al. 2003), and may
exist in the cat as well (Warr et al. 2002). Although it
has not been definitively shown that TH-positive
neurons in the cochlea fall within this bifurcating
class of neurons, Niu et al. (2004) argue that the
dense TH staining they previously observed in the
cochlea (Niu and Canlon 2002) is clearly consistent
with bifurcating distribution given the small number
of TH-positive neurons in the LSO. Taken together,
the anatomical evidence suggests the dense network
of TH-positive LOC neurons in the cochlea origi-
nates from a smaller population of neurons in the
LSO. Although many LOC transmitters are known to
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be colocalized at their site of origin (Altschuler et al.
1983, 1984, 1986; Abou-Madi et al. 1987; Altschuler
et al. 1988; Safieddine et al. 1997) or their site of ter-
mination within the cochlea (Altschuler et al. 1985;
Safieddine and Eybalin 1992), the precise chemical
distribution within the LOC population remains to
be definitively identified.

MPTP selectively disrupts LOC efferents:
physiological evidence

DPOAE adaptation and amplitude were used to show
MOC neurons and OHCs were functionally intact
after MPTP treatment. In three of the four animals
tested, we observed a small reduction in DPOAE
adaptation post-MPTP, an effect that was within the
variability observed across repeat applications of
artificial perilymph. Although the small reductions
in MOC reflex strength are within the “noise” of the
repeated artificial perilymph tests, this small reduc-
tion in the MOC reflex could be predicted based on
the observed reduction in CAP amplitude (i.e., Fig. 4).
Depressed CAP amplitude decreases the ascending
neural input that drives the descending MOC reflex
loop. There were no consistent changes in OHC
function, as shown in DPOAE steady-state amplitude.
We previously reported no effect of MPTP on endoco-
chlear potential (EP), indicating that the stria vascu-
laris, which contains DA receptors (Jones et al. 1987;
Usami et al. 1988; Kanoh 1995), is functionally intact
(Le Prell and Bledsoe 2003).

Functional consequences of LOC disruption:
MPTP vs. LSO lesion

Similar to LSO lesions (Le Prell et al. 2003b),
threshold changes with MPTP were limited to a small
subset of frequencies. One important difference is
that LSO lesions, which consistently disrupted the
lateral (low frequency) limb of the LSO, elevated
thresholds at 2 kHz, whereas MPTP (applied to the
round window membrane in the high frequency
region, from which it diffused to lower frequency
regions) elevated thresholds at 16 and 18 kHz.
Threshold elevations after selective LOC disruption
are an important finding. The functional status of
the OHCs and the MOC neurons (which innervate
the OHGCs) are typically believed to set cochlear
sensitivity as electrical stimulation of the crossed
OCB depresses cochlear sensitivity (Galambos 1956;
Wiederhold 1970; Gifford and Guinan 1987; Mur-
ugasu and Russell 1996; for reviews, see Ulfendahl
1997; Robles and Ruggero 2001). We hypothesize
that LOC efferents further maintain threshold sensi-
tivity by modulating ANF spontaneous rate. Support
for this hypothesis comes from the small but statisti-
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cally significant ANF threshold elevations, at a subset
of test frequencies, induced by cutting both the MOC
and LOC pathways (see Liberman 1990; Walsh et al.
1998; Zheng et al. 1999).

After disrupting LOC innervation, CAP ampli-
tude was depressed. Depressed CAP amplitude was
evident after normalizing the data to remove any
effects of threshold changes. To directly compare
the effects of LOC disruption induced by MPTP
and LSO lesions, we normalized CAP amplitude
for the data set shown in Figure 4 and the data
reported by Le Prell et al. (2003b). The functional
consequences of these manipulations were similar,
particularly from 12 to 18 kHz (see Fig. 8). That the
effects of MPTP were reduced at lower frequencies is
not unexpected. Zheng et al. (1996) reported a
similar basal-to-apical gradient of functional effects
after applying kainic acid to the round window
membrane in chinchillas. Similar to LSO lesions,

Le PreLL T AL.: Effects of LOC Disruption

MPTP applied to the round window did not affect N1
latency.

Pharmacology of LOC disruption: excitatory and
inhibitory transmitter substances

The population of LOC neurons contains a combi-
nation of excitatory and inhibitory substances. We
have proposed a model in which LOC neurons
set the sensitivity of the ANFs via manipulation of
a “set point,” a task accomplished by balancing the
release of the excitatory and inhibitory transmitter
substances (see Le Prell et al. 2003a). Specifically, we
proposed that delivering putative LOC transmitter
substances such as ACh and/or dyn selectively lowers
the cochlear set point, thereby enhancing neural
activity. In contrast, release of substances such as DA
and enk selectively raises the set point of the cochlea,
thereby decreasing cochlear activity. Our prediction is
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that this tonic input from the LOC neurons maintains
the distribution of spontaneous activity and sensitivity
of the ANFs in conditions of quiet and noise.

The finding that LOC disruption depresses CAP
amplitude is consistent with suggestions that the net
effect of LOC innervation in the cochlea is excitatory,
and is consistent with the first part of the above
model. Specifically, the results indicate intact LOC
neurons enhance neural activity, and loss of the LOC
innervation has the effect of a net depression of
activity. Several LOC transmitters are candidates for
enhancing AN output. ACh excites ANFs when
ejected by microiontophoresis into the dendritic
region beneath the IHCs (Felix and Ehrenberger
1992). We speculated that dyn may play an important
excitatory role in cochlear afferent transmission
(e.g., Le Prell et al. 2001, 2003a, b) based on
reports that i.v. administration of the kappa agonist
(—)pentazocine enhanced CAP amplitude and im-
proved threshold sensitivity (Sahley et al. 1991;
Sahley and Nodar 1994). In contrast to these earlier
reports, we recently presented data showing several
kappa opioid receptor agonists depress AN activity
when delivered directly to the cochlea (Le Prell et al.
2004a). Thus we consider the effects of dyn in the
cochlea to be unresolved, as are the effects of
intracochlear CGRP. In the amphibian lateral line,
CGRP increases spontaneous activity (Adams et al.
1987; Sewell and Starr 1991; Bailey and Sewell 2000a,
b) and suppresses driven activity (Bailey and Sewell
2000a). There are no published reports on the
functional consequences of CGRP agonists in the
cochlea, although Maison et al. (2003) recently
reported ABR amplitude was depressed by 20-25% in
0 CGRP-null mice. Depression of the ABR is consistent
with an excitatory effect of CGRP on AN activity.

There is also evidence consistent with the second
part of the above model. Dopamine and DA ago-
nists inhibit AN activity (d’Aldin et al. 1995a, b;
Oestreicher et al. 1997; Ruel et al. 2001; Sun and
Salvi 2001). Both GABA (Felix and Ehrenberger
1992; Malgrange et al. 1997; Arnold et al. 1998) and
enkephalin (Burki et al. 1993) similarly inhibit AN
activity. Many hypothesize that one (or more) of these
inhibitory substances are upregulated during periods
of excessive (traumatic) stimulation, and LOC neu-
rons thus protect ANFs from trauma (Pujol et al. 1993;
Pujol 1994; d’Aldin et al. 1995a, b; Gil-Loyzaga 1995;
Puel 1995; Gaborjan et al. 1999; Gaborjan and Vizi
1999; Halmosa et al. 2000). In fact, the DA agonist
piribedil protects against hearing loss induced by
exposure to loud sounds (d’Aldin et al. 1995a). In
addition, limited evidence indicates that sound-
evoked trauma is more pronounced in animals with
LSO lesions (Le Prell et al. 2003a). In that investiga-
tion, acoustic overstimulation depressed CAP ampli-
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tude to a greater extent in lesioned animals than
intact controls, an effect that was primarily limited to
test frequencies lower than the sound exposure
frequency.

Future directions

There is now a substantial body of evidence that the
net effect of LOC innervation of the mammalian
cochlea is excitatory. The pharmacological basis of
this overall effect remains unclear, although several
candidate transmitters have been identified. In addi-
tion, interactions among the excitatory and inhibitory
substances remain to be determined. Identifying
specific mechanisms through which LOC transmitters
interact remains a significant challenge for future
research. Our prediction is that tonic input from the
LOC neurons provides a mix of excitatory and
inhibitory influences that maintain the distribution
of spontaneous activity and sensitivity of the ANFs. If
the LOC neurons adjust the level of AN activity under
varying conditions of acoustic stimulation (e.g., quiet
and noise), they may provide a mechanism for the
AN to maintain and accurately convey dynamic range
information to the central auditory system thus
maintaining an optimal set point for MOC modula-
tion of basilar membrane mechanics.
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