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ABSTRACT

The question of whether or not forward- and back-
ward-traveling waves occur within the cochlea cons-
titutes a long-standing controversy in cochlear
mechanics recently brought to the fore by the prob-
lem of understanding otoacoustic emissions. Nobili
and colleagues articulate the opposition to the trav-
eling-wave viewpoint by arguing that wave-equation
formulations of cochlear mechanics fundamentally
misrepresent the hydrodynamics of the cochlea [e.g.,
Nobili et al. (2003) J. Assoc. Res. Otolaryngol. 4:478–
494]. To correct the perceived deficiencies of the
wave-equation formulation, Nobili et al. advocate
an apparently altogether different approach to
cochlear modeling—the so-called ‘‘hydrodynamic’’
or ‘‘Green’s function’’ approach—in which cochlear
responses are represented not as forward- and back-
ward-traveling waves but as weighted sums of the
motions of individual basilar membrane oscillators,
each interacting with the others via forces commu-
nicated instantaneously through the cochlear fluids.
In this article, we examine Nobili and colleagues’
arguments and conclusions while attempting to clar-
ify the broader issues at stake. We demonstrate that
the one-dimensional wave-equation formulation of
cochlear hydrodynamics does not misrepresent long-

range fluid coupling in the cochlea, as claimed. In-
deed, we show that the long-range component of
Nobili et al.’s three-dimensional force propagator is
identical to the hydrodynamic Green’s function rep-
resenting a one-dimensional tapered transmission
line. Furthermore, simulations that Nobili et al. use to
discredit wave-equation formulations of cochlear
mechanics (i.e., cochlear responses to excitation at a
point along the basilar membrane) are readily
reproduced and interpreted using a simple super-
position of forward- and backward-traveling waves.
Nobili and coworkers’ critique of wave-equation for-
mulations of cochlear mechanics thus appears to be
without compelling foundation. Although the travel-
ing-wave and hydrodynamic formulations impose
strikingly disparate conceptual and computational
frameworks, the two approaches ultimately describe
the same underlying physics.

Keywords: inner ear, middle ear, otoacoustic emissions,

cochlear mechanics

INTRODUCTION

Since before von Békésy first visualized the wavelike
motion of the cochlear partition, the mechanical re-
sponses of the cochlea have been understood using
concepts borrowed from the description of wave
propagation in electrical transmission lines (e.g.,
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Wegel and Lane 1924; Zwislocki–Mościcki 1948; Pet-
erson and Bogert 1950; de Boer 1980; Lighthill 1981).
In recent years, however, Nobili and colleagues have
criticized wave-equation formulations of cochlear
mechanics on the grounds that they fundamentally
misrepresent the hydrodynamics of the cochlea
(Nobili 2000; Nobili et al. 1998, 2003a,b). They write,
for example, that ‘‘the solutions of the BM [basilar-
membrane] motion equation are not of the bi-direc-
tional wave-propagation type’’ and can ‘‘in no way ...
be represented as the superposition of progressive
and regressive wave components.’’

To remedy the putative deficiencies of the wave-
equation formulation, Nobili et al. advocate the so-
called ‘‘hydrodynamic’’ approach to cochlear mod-
eling. In this approach, exemplified by Nobili et al.’s
‘‘BM integrodifferential equation’’ (Mammano and
Nobili 1993), cochlear responses are represented not
as forward- and backward-traveling waves but as the
summed activity of the individual BM oscillators, each
of which interacts with every other via hydrodynamic
forces communicated nearly instantaneously through
the cochlear fluids. Nobili explains that in contrast to
a transmission line and its manifest support for for-
ward- and backward-traveling waves, ‘‘the hydrody-
namic model of the cochlea is based on an integral
differential equation... [that captures] the hydrody-
namic coupling between oscillating elements. The
solutions to this equation are not similar to the types
that describe sound- or light-wave propagation’’
(quoted in Allen 2003, p. 586).

As a corollary of their critique, Nobili et al. (2000,
2003a, 2003b) condemn existing models of otoacou-
stic emissions (OAEs), especially those that incorpo-
rate the language of wave propagation and reflection
(e.g., Shera and Zweig 1993; Zweig and Shera) 1995;
Talmadge et al. 1998, 2000). They write, for example,
that although wave-reflection models of OAEs may
seem ‘‘conceptually appealing’’ on the surface, their
underlying tenets are, ‘‘in reality, ... difficult to rec-
oncile ... with the physics of the cochlea.’’ Indeed,
Nobili et al. contend that ‘‘no wave reflection takes
place within the cochlea’’ so that ‘‘talking about wave
‘reflection’ ... is physically inappropriate and even
conceptually misleading.’’

Nobili et al.’s critique clearly cuts a wide swath
through cochlear mechanics, and their analysis
nourishes a perennial controversy (e.g., Allen 2003, p.
583ff). Assessing the validity of Nobili et al.’s argu-
ments therefore has broad implications, not only for
interpreting otoacoustic emissions, where the issues
appear especially salient, but also for understanding
the most basic operation of the cochlea. In this article
we therefore address the question: Does Nobili et al.’s
analysis of cochlear hydrodynamics invalidate wave-
equation formulations of cochlear mechanics? In a

nutshell, we find that Nobili et al.’s characterization
of the wave-equation formulation is incorrect.

We emphasize, however, that our findings do not
negate Nobili et al.’s critique by demonstrating that
the hydrodynamic approach is itself invalid. Rather,
we resolve and synthesize the two approaches, argu-
ing that the wave-equation and hydrodynamic for-
mulations of cochlear mechanics are but different
mathematical representations of the same underlying
physics—a full understanding necessarily subsumes
both. What appears invalid, then, is neither the trav-
eling-wave nor the hydrodynamic view of cochlear
mechanics, but Nobili et al.’s false dichotomy that
distinguishes the two on physical grounds. Although
both formulations provide valid representations of
the physics of the cochlea, the two approaches are
attended by strikingly different conceptual and com-
putational frameworks. Since any choice between the
two depends on the nature of the questions to be
addressed, we argue that the wave-equation formula-
tion provides compelling advantages, at least in the
context of modeling OAEs.

ARE WAVE-EQUATION FORMULATIONS
UNPHYSICAL?

Nature of the fluid coupling

Nobili et al. (2003a) launch their critique of wave-
equation formulations of cochlear mechanics by
arguing that transmission-line models fundamentally
misrepresent the hydrodynamics of the cochlea. In
particular, they claim that transmission-line models
‘‘reduce fluid coupling to a sort of local interaction,
thus failing to represent adequately its long-range
character.’’ This same criticism also surfaces in a re-
cent review (Nobili et al. 1998), in which the authors
remark that ‘‘instantaneous hydrodynamic coupling
among different basilar membrane portions has a
long-range character that is only approximately rep-
resented by nearest-neighbour transmission-line
interactions.’’ As we explain below, these statements
misrepresent the nature of the fluid coupling in the
one-dimensional model.

Throughout their work, Nobili et al. characterize
the fluid coupling between different cochlear loca-
tions with the ‘‘hydrodynamic Green’s function,’’
G(x, �x), whose value represents the strength of the
fluid-mediated interaction between locations x and x
along the BM. The function G(x, �x) in their model
generally consists of a small ‘‘spike,’’ centered at
x = �x, superimposed on a prominent ‘‘hump’’ that
extends throughout most of the cochlea (e.g., Nobili
et al. 2003a, Fig. 2d; see also Mammano and Nobili
1993, Fig. A3). This hump characterizes the near-
instantaneous long-range fluid coupling—a conse-
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quence of the near-incompressibility of the cochlear
fluids—between points widely separated along the
partition. Since Nobili et al. describe fluid coupling
in the long-wave model as ‘‘a sort of local interac-
tion,’’ their readers might reasonably expect the
corresponding one-dimensional Green’s function to
lack the important long-range component, to be, in
effect, ‘‘all spike and no hump.’’ The truth, however,
is just the opposite: As we demonstrate in the
Appendix, the one-dimensional hydrodynamic
Green’s function differs from its higher-dimensional
counterparts not in its characterization of long-range
fluid forces, but in its description of the local, short-
range coupling. Nobili et al. implicitly acknowledge
this fact when they concede that a ‘‘rough equiva-
lence between transmission line and hydrodynamic
models of the cochlea can be established ... for the
simplified geometry of the box model.’’

Validity in realistic geometries

As the previous quotation suggests, Nobili et al.’s
basic objection to the transmission-line model ulti-
mately seems to arise from its putative restriction to
the idealized geometry of the box model. Indeed,
Nobili et al.’s model was first developed precisely to
overcome perceived hydrodynamic ‘‘deficiencies
affecting previous ‘box’ models of the cochlea’’
(Mammano and Nobili 1993). In a nutshell, their
argument against the transmission line appears to be
that no matter how well the model may represent
long-range fluid coupling in an imagined rectangular
box, the transmission-line model must necessarily fail
to capture the hydrodynamics operating in the more
complex, tapered geometry of the real cochlea. Thus,
Nobili et al. argue that although the concepts of wave
propagation and reflection may apply in idealized
hypothetical situations, transmission-line models
cannot describe anything resembling the physics of
an actual ear (e.g., Nobili et al. 2003a,b).

To emphasize the impossibility of converting their
‘‘BM integrodifferential equation’’ into a partial dif-
ferential equation representing a transmission line,
Mammano and Nobili (1993) assert that in models
with realistic cochlear geometry ‘‘the long-range ac-
tion of the Green’s function ... cannot be canceled by
multiple differentiation and the full integral-equation
technique must be applied.’’ In other words, Nobili et
al. argue that no approximate equivalence with a
transmission line exists for models with realistic
geometry. But as we demonstrate in the Appendix,
this argument is incorrect. In the Appendix we use
the one-dimensional transmission-line model to de-
rive the Green’s function for a tapered cochlea with
asymmetric scalae areas. The resulting Green’s func-
tion is identical to the long-range component of the

Green’s function (or ‘‘force propagator’’) obtained
by Mammano and Nobili (1993) for their three-
dimensional model. Nobili et al.’s model therefore
shares with the much maligned box model a key
attribute: With respect to long-range fluid coupling,
both models are equivalent to one-dimensional
transmission lines.

We reemphasize that the approximation involved
in reducing two- and three-dimensional models to
one-dimensional transmission lines has nothing to
do with long-range fluid coupling, which is always
effectively one dimensional, even in realistic tapered
geometries. Instead, the approximation involves the
nature of the short-range coupling represented by
the spike in the Green’s function at x = �x (Allen
1977). The nature of this spike is determined by the
effective dimensionality of the fluid motion in the
vicinity of the cochlear partition. The spike is absent
in one dimension and appears as a logarithmic
singularity in two dimensions (Allen 1977). In three
dimensions, the Green’s function G(x, �x) that No-
bili et al. employ does not really exist as such. When
the pressure varies in the radial (or y) direction
across the partition, the Green’s function has the
form G(x, y; �x, y). An ‘‘effective’’ Green’s function
with the reduced form G(x, �x) can, however, be
defined by appropriate averaging along the radial
direction. Although the nature of the resulting
singularity may depend on precisely how this aver-
aging is accomplished, we generally expect a sin-
gularity similar to that of the two-dimensional case.
None of these local interactions appreciably affect
the long-range fluid coupling.

Interpretation of forces applied to the basilar
membrane

Finally, Nobili et al. (2003a; see also Allen 2003, p.
586) round out their case against wave reflection with
a comparative analysis of the ‘‘BM integrodifferential
motion equation ... and the hyperbolic [wave] equa-
tion that governs sound, light, and surface wave
propagation.’’ In Figure 6 of Nobili et al. (2003a),
they show their cochlear model’s response to a sinu-
soidal force applied directly to the BM. Aside from a
few prominent amplitude notches and corresponding
distortions in the phase, the resulting response gen-
erally resembles that obtained when the stimulus is
applied at the stapes. ‘‘In particular,’’ they write,
‘‘both [response] profiles affect, with appreciable
amplitude, the same limited region of the cochlear
partition’’; in other words, the effects of the applied
force ‘‘remain confined to the neighborhood of the
CF site.’’

Nobili et al. contrast this behavior with the long-
range propagation effects found in systems governed
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by wave equations, such as the voltage in an electrical
transmission line, ripples on the surface of a pond, or
the displacements of a vibrating guitar string. In these
cases, a local force (e.g., a pluck to the guitar string)
generates both forward- and backward-traveling waves
that ‘‘proceed towards the ends of the integration
domain, where reflection can occur.’’ Thus, Nobili et
al. argue that the localized cochlear response pre-
dicted by their ‘‘BM integrodifferential equation’’
differs profoundly from the long-range propagation
effects characteristic of systems described by wave
equations. Indeed, ‘‘the solutions of the BM motion
equation are not of the bi-directional wave-propaga-
tion type’’ and can ‘‘in no way ... be represented as
the superposition of progressive and regressive wave
components.’’ Since the mechanical perturbations

needed to produce OAEs can be modeled using an
appropriate distribution of forces acting on the BM,
Nobili et al. conclude from their analysis that
‘‘internal TW [traveling-wave] reflections could
hardly be invoked to explain the generation of
OAEs.’’

Although intended to refute the wave-equation
formulation and thereby ‘‘clarify the rationale
underlying [their hydrodynamic] ... approach,’’ No-
bili et al.’s simulations actually provide a compelling
illustration of the wave formulation’s explanatory
power. Nobili et al. rest their case on the implication
that their analysis of forces applied to the BM con-
tradicts all wave-equation formulations of cochlear
mechanics (‘‘our model disclosed a different [i.e.,
non-wave-like] behavior’’). But our Figure 1 demon-
strates that their findings are easily reproduced using
a simple transmission-line model. Furthermore, the
analytic tractability of the transmission-line model
provides a straightforward interpretation of the re-
sults in terms of wave propagation and reflection,
an interpretation almost entirely obscured by Nobili
et al.’s computational Green’s function approach.

To understand Nobili et al.’s results, consider
approximating the cochlea as a one-dimensional
hydromechanical transmission line (e.g., Zwislocki-
Mościcki 1948; Peterson and Bogert 1950; de Boer
1980, 1984; Zweig 1991). An oscillating point source
introduced at location �x generates waves that propa-
gate away from the source in both directions. If the
source frequency is less than the local CF, the for-
ward-traveling wave propagates apically toward its
characteristic place, beyond which it is strongly
attenuated. (For simplicity, we assume that the
mechanics vary smoothly with position so that no
wave scattering occurs about the peak of the re-
sponse.) The wave leaving the source in the backward
direction travels toward the base of the cochlea.
When it reaches the stapes, the wave is partially re-
flected by the impedance mismatch with the middle
ear. This reflection generates a new forward-traveling
wave that propagates back toward �x, whereupon it
combines with the forward-traveling wave emanating
directly from the source.

Whereas the cochlear region apical to the source
at �x contains only a single, forward-traveling wave, the
basal region between the stapes and �x generally
contains a wave traveling in each direction. The
complex amplitude of the pressure difference across
the partition therefore has the form

PðxÞ ¼ aþWþðxÞ
b�W�ðxÞ þ bþWþðxÞ

for x > �x
for x

�
ð1Þ

where the functions W±(x) represent the forward- and
backward-traveling-wave solutions to the transmission-

FIG. 1. Response elicited by a stimulus applied to the basilar
membrane in a transmission line model of the cochlea. As in Figure
6 of Nobili et al. (2003a), the solid lines show the amplitude and
phase of the response to a sinusoidal stimulus (�2 kHz) applied at
the BM location �x indicated by the labeled vertical line spanning the
top and bottom panels. In this case, the impedance mismatch at the
cochlear boundary with the middle ear results in a stapes reflection
coefficient with the value Rstapes = –0.8. Although the precise depths
and locations of the amplitude notches and phase distortions depend
on the value of Rstapes, other nonzero values give qualitatively similar
results. For comparison, the dashed lines show the response to the
same stimulus when the middle-ear impedance is changed to sim-
ulate a perfectly reflectionless boundary (Rstapes = 0). The dotted
lines show the forward-traveling wave elicited when the stimulus is
applied at the stapes. As in Nobili et al. (2003a), the amplitudes
represented by the solid and dotted lines were normalized to similar
peak values and then offset slightly for clarity. BM velocity responses
were computed using the model of Zweig (1991), with parameter
values modified to roughly approximate the responses seen in Nobili
et al.’s simulations.
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line equations [i.e., the pressure ‘‘basis waves’’ (Shera
and Zweig 1991a; Talmadge et al. 1998)] and the
three complex constants a+ and b± are determined by
requiring that P(x) satisfy both the basal boundary
condition at the stapes and continuity of pressure and
conservation of volume velocity at �x. For example, the
basal boundary condition implies that b+ = b–Rstapes,
where Rstapes is the stapes reflection coefficient for
backward-traveling waves [the basis waves are nor-
malized so that W±(0) = 1]. The BM velocity is
everywhere proportional to the product of the driving
pressure P(x) and the local admittance of the cochl-
ear partition.

In the cochlear region apical to the source (x > �x),
the response to the applied stimulus is a simple for-
ward-traveling wave, a+W+(x). The envelope of this
wave varies with position in the familiar way, increasing
up to the wave’s characteristic place and declining
steeply beyond. The peak in the response envelope
results from the combined effects of cochlear amplifi-
cation and damping, as well as the spatial variation in
the impedance of the partition. Thus, in contradiction
to Nobili et al.’s analysis, the observation that the re-
sponse peaks in a region straddling the CF site—just as
it does when the stimulus is delivered at the sta-
pes—provides no evidence against the underlying wave
equation; it simply reflects the well-established fact that
traveling-wave amplitudes vary strongly with position.

In the region basal to the source (x < �x), the re-
sponse is more complicated, with its qualitative form
dependent on the middle-ear boundary condition. In
the simplest case, the backward-traveling wave
b–W–(x) incident upon the stapes remains unreflected
(Rstapes = 0). As a result, b+ = 0 and the response
consists of a wave propagating away from the source
at �x toward the stapes (Fig. 1 dashed line). When
Rstapes is nonzero, however, the backward-traveling
wave is reflected back into the cochlea, and the
pressure between the stapes and source at x acquires a
standing-wave component (Fig. 1, solid line). The two
wave components, b+W+(x) and b)W)(x), then beat
against each other as their respective phases rotate
along the cochlea. This interference creates the ob-
served amplitude notches and corresponding phase
distortions, which are spaced at intervals determined
by the spatial variation of the wavelength.

In summary, the relevant features of the responses
shown in Figure 1—a normal-looking traveling wave
in the region apical to the stimulus location at �x and
the amplitude notches and phase distortions basal to
�x—are all readily understood in terms of forward- and
backward-traveling waves. Although Nobili et al. pro-
vide no account of the origin of these features, our
analysis demonstrates that they result from the same
wave propagation, reflection, and interference effects
whose existence Nobili et al. sought to deny.

DISCUSSION

The striking similarities between Nobili et al.’s com-
putations and the wave pattern predicted by a simple
transmission-line model are no coincidence (com-
pare Fig. 6 of Nobili et al. 2003a with our Fig. 1). Our
results establish that the long-range fluid coupling
underlying Nobili et al.’s integrodifferential equation
is identical to that in a one-dimensional, tapered
transmission line (see the Appendix). The wave-
equation and Green’s function formulations are not,
as Nobili et al. imply, two fundamentally different
models based on disparate descriptions of cochlear
hydrodynamics but two different mathematical repre-
sentations of a single model based on Newton’s laws.
Since both formulations represent the same physics,
both must ultimately yield the same solutions.

Although the wave-equation and Green’s function
formulations provide physically equivalent descrip-
tions of long-range fluid coupling in the cochlea, the
conceptual and computational frameworks that
accompany them are remarkably disparate. Indeed,
the two viewpoints are so dissimilar that Nobili et al.
see no contradiction in embracing one while denying
the validity of the other. Nobili et al. (2003a) con-
demn the transmission-line view (in which ‘‘delays
between input and output in the ear canal are inter-
preted as travel time of back-propagating waves’’) by
arguing that these delays are actually ‘‘due to the
interplay of BM elasticity and the kinetic energy of
the hydrodynamic field.’’ But Nobili et al. perceive
sharp distinctions where none exist; their hydrody-
namic explanation merely reiterates the physics of
the transmission line without using the word ‘‘wave.’’
Nobili et al.’s arguments reveal less about cochlear
mechanics than they do about the seductive power of
alternative conceptual frameworks that allow an
underlying physical equivalence to go unrecognized.

Although both wave-equation and hydrodynamic
approaches might profitably be explored, any ra-
tional choice between the two hinges on the ques-
tions to be addressed. As discussed above, Nobili et
al.’s work in cochlear modeling began with an elegant
treatment of cochlear hydrodynamics that embraced
the full three-dimensional tapered geometry of the
cochlear scalae (Mammano and Nobili 1993). For this
original application, the computational Green’s
function approach may have certain advantages. In
the present context, however, Nobili et al.’s convic-
tion that the transmission-line model distorts the
physics of the cochlea fosters a methodology evi-
dently far from optimal for investigating OAEs:
‘‘[O]ur model,’’ they write, ‘‘uses a realistic repre-
sentation of human cochlear geometry, leaving us no
option but to use the full integrodifferential form of
the BM motion equation.’’
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By carrying over a computational framework orig-
inally adopted to address an altogether different
problem, Nobili et al. unnecessarily limit their con-
ceptual horizons. When one represents the solution
to the cochlear mechanics equations as the instanta-
neous sum of a large number of oscillating point
sources, it is neither easy to visualize nor even natural
to talk about the organized, collective patterns (e.g.,
the forward- and backward-traveling waves) that
emerge when all the individual oscillations have been
appropriately combined and allowed to interfere with
one another. Although not prohibitive in principle,
the Green’s function approach inevitably diverts
precious intellectual and computational resources to
the task of calculating a vast array of oscillatory re-
sponses, most of which ultimately cancel one another
out. In this way, the Green’s function representation
appears fundamentally mismatched to the problem at
hand; as such it may do more to hinder the under-
standing than to advance it, at least in the context of
modeling OAEs. The simple picture of oscillating
point sources that attends the Green’s function ap-
proach doubtless serves the intuition well when the
number of participating sources remains small; but
visualizing the collective response of the extended,
irregular array of asynchronous oscillators responsi-
ble for OAEs quickly transcends the intuitive grasp.

By contrast, the basic conceptual and computa-
tional atoms of the wave-equation formulation are
not the myriad individual oscillators, each interacting
with the others instantaneously through the fluids,
but the traveling waves that emerge as their collective
response (e.g., Békésy 1960; Ren 2002). As a result,
the wave-equation framework for modeling OAEs has
the invaluable heuristic advantage that the otoacou-
stic phenomena of primary interest—all of which in-
volve energy going in, interacting in some way, and
then coming out again—are immediately and trans-
parently represented in the mathematics. Nobili et al.
assert that ‘‘talking about wave ‘reflection’ ... in the
cochlea is physically inappropriate and even concep-
tually misleading,’’ but by adopting the wave-equa-
tion framework we merely embrace the basic
principle of epistemology so vividly elucidated by the
American labor leader Walter Reuther: ‘‘If it looks
like a duck, walks like a duck, and quacks like a duck,
then it just may be a duck.’’

Although no less physically appropriate than the
Green’s function alternative, the wave-equation for-
mulation often provides considerably more aid to the
intuition. Contrast, for example, the representations
of the middle-ear boundary condition in the two ap-
proaches. In the Green’s function formulation, this
boundary condition is incorporated into the equa-
tions in a manner that not only requires extensive
numerical computation to implement but also masks

its functional significance [see Nobili et al. (2003a)
and the Appendix]. In the wave-equation approach,
however, the boundary condition is incorporated by
means of the reflection coefficient Rstapes as described
above. The conceptual clarity of this formulation
greatly facilitates the interpretation of model re-
sponses (e.g., Nobili et al.’s simulations of the BM
response to point excitation along the partition).
Furthermore, the formulation encourages systematic
manipulation of the stapes boundary condition for
the purposes of investigating its effects on the solu-
tion (e.g., the case Rstapes = 0 shown in Fig. 1). Again,
nothing about the Green’s function approach is
physically incorrect, but regarding it as the one true
path to cochlear mechanics necessarily means that
insights afforded by the complementary view go
unappreciated.

Nobili et al.’s discussion of spontaneous otoacou-
stic emissions (SOAEs) could have benefited from
just this sort of alternative perspective. By failing to
recognize that the phase distortions evident in Figure
6 of their 2003a paper reflect the presence of in-
tracochlear standing waves (see our Fig. 1), Nobili et
al. mischaracterize the origin of the SOAEs produced
by their model (see their Appendix). Overlooking the
fundamental role played by the middle-ear boundary
condition in the generation of these sounds (e.g.,
Kemp 1979; Talmadge and Tubis 1993; Shera 2003),
Nobili et al. attribute SOAEs not to global standing-
wave resonances but to a local ‘‘unbalancing’’ of
undamping caused by lateral rebound forces trans-
mitted via fluid coupling from adjoining oscillators.
Had Nobili et al. been able to modify their middle-ear
boundary condition in a convenient and functionally
interpretable way—indeed, had their conceptual
viewpoint not implicitly discouraged any consider-
ation of collective, wave-interference effects—their
account of spontaneous emissions might have been
considerably enriched.

Although the equivalence of long-range fluid
coupling in cochleae of realistic geometry and in
simple, tapered transmission lines may have gone
previously unrecognized, the conclusion that trans-
mission-line models do not distort the physics of long-
range fluid coupling should come as no surprise.
Indeed, the result can be guessed immediately by
considering the cochlear mechanical equivalent of a
spherical cow, namely, a symmetric box model in
which the BM impedance is both stiffness-dominated
and in dependent of position, so that transpartition
pressure waves travel without dispersion. If the box is
sufficiently squat (or the BM sufficiently stiff), the
constant wavelength of the pressure-difference wave
will be long compared to the heights of the scalae.
In other words, the long-wavelength approximation
applies, and the hydrodynamics of the system are
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captured almost exactly by the one-dimensional
transmission-line equations. When we imagine slowly
relaxing these simplifying assumptions to more
faithfully represent the mechanics of the cochlea, we
find that the long-wavelength approximation begins
to break down, but only in the region about the peak
of the traveling wave. Although equations that were
exact in the squat box model become approximate in
more realistic geometries, no violations of the laws of
physics are surreptitiously introduced and the char-
acter of long-range fluid coupling remains un-
changed.

What about the short-range fluid coupling? As
discussed above, one-dimensional models clearly
simplify cochlear hydrodynamics in the ‘‘short-wave’’
region about the peak of the traveling-wave envelope.
Readers may wonder about the implications of this
simplification for the generation of reflection-source
OAEs as described by the theory of coherent reflec-
tion filtering (Shera and Zweig 1993; Zweig and Shera
1995; Talmadge et al. 1998). For ease of analysis, the
theory was first developed by applying the framework
of the one-dimensional, long-wave model in the short-
wave region near the traveling-wave peak, where most
of the wave reflection due to coherent scattering from
cochlear inhomogeneities occurs. This apparent
inconsistency can be remedied by generalizing the
perturbative theory of coherent scattering to the case
of two-and three-dimensional cochlear models, while
still retaining the physical picture of traveling waves
(Talmadge et al. 2001; Shera et al. 2004). Although a
single differential equation for the transpartition
pressure cannot generally be obtained in higher-
dimensional models, approximate (e.g., WKB type)
solutions can nevertheless be derived with traveling-
wave attributes similar to those in the one-dimen-
sional case. Reassuringly, the basic predictions of the
one-dimensional theory survive intact. The funda-
mental reason for this is simple: The theory indicates
that although the mechanisms of coherent scattering
depend strongly on functional characteristics of the
traveling-wave peak such as its height, width, and
wavelength, they remain relatively insensitive to de-
tails of the biophysical and hydromechanical pro-
cesses that determine how that peak originates (Zweig
and Shera 1995). To paraphrase Zweig (1991), when
modeling OAEs it appears more important, in the
hierarchy of approximations, to accurately approxi-
mate the form of the traveling wave than to work with
the correct number of spatial dimensions.

In the introduction to his book on the mathe-
matics of wave motion, G.B. Whitham (1974) wrote

There appears to be no single precise definition
of what exactly constitutes a wave. Various
restrictive definitions can be given, but to cover

the whole range of wave phenomena it seems
preferable to be guided by the intuitive view that
a wave is any recognizable signal that is trans-
ferred from one part of the medium to another
with a recognizable velocity of propagation.

Nobili et al. may disagree, preferring to reserve the
language of wave propagation and reflection for
some hypothetical cochlea in which the transmission-
line equations provide an exact description of the
mechanics rather than simply an approximate one.
But all useful models are necessarily approximate,
and an artificial semantic restriction does nothing to
negate the demonstrated, quantitative success of the
concepts of wave propagation and reflection for
understanding cochlear mechanics.

SUMMARY

We have shown that transmission-line models suc-
cessfully capture long-range fluid coupling in the
cochlea, contrary to the claims of Nobili et al. (1998,
2000, 2003a, 2003b). Indeed, we have established that
the long-range component of Nobili et al.’s three-
dimensional force propagator is functionally equiva-
lent to the hydrodynamic Green’s function of a one-
dimensional tapered transmission line (see the
Appendix). Furthermore, we have demonstrated that
simulations Nobili et al. use to discredit wave-propa-
gation models (i.e., BM responses to point excitation
along the cochlear partition) are most readily ob-
tained and interpreted using the ideas of wave
propagation and reflection in a simple transmission
line. Nobili et al.’s critique of wave-equation formu-
lations of cochlear mechanics thus appears to be
without compelling foundation. Although both
‘‘hydrodynamic’’ and wave-equation formulations
can provide valid representations of the physics of the
cochlea, the two formulations impose strikingly dif-
ferent conceptual and computational frameworks.
We argue that the wave-equation formulation pro-
vides compelling advantages in the context of mod-
eling OAEs.
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APPENDIX A: FLUID COUPLING IN THE
TRANSMISSION-LINE MODEL

In this Appendix we use the long-wavelength
approximation to derive the equations describing a
tapered cochlea with asymmetric scalae areas. We
briefly sketch out how these equations can equiva-
lently be represented using either a wave-equation or
a hydrodynamic Green’s function formulation. Al-
though both approaches capture the same underly-
ing physics, the mathematical representations they
employ are very different. Finally, we establish that
the long-range component of Nobili et al.’s three-
dimensional force propagator is functionally equiva-
lent to the Green’s function of a one-dimensional,
tapered transmission line.

We begin by generalizing Eq. (1) of Talmadge et
al. (1998) describing the symmetric box model to the
case where the scalae areas vary with position (e.g.,
Shera and Zweig 1991b). The pressure difference
p(x, t) across the cochlear partition (scala vestibuli
minus scala tympani) satisfies the equation

1

S

@

@x
S
@p

@x

� �
¼ q0b _vbm=S ðA1Þ

, where x is the distance from the stapes; t is the time
and the dot represents a time derivative; vbm(x, t) is
the BM velocity (positive into the scala tympani); q0 is
the cochlear fluid density; b(x) is the effective BM
width; and S(x) is the effective scala cross-sectional
area (Zwislocki 1965; Dallos 1973), given by

S ¼ SvSt

Sv þ St
ðA2Þ

, where Sv(x) and St(x) are the areas of the scala ves-
tibuli and tympani, respectively.

Equation (A1) follows from Newton’s laws applied
to fluid flow in tapered tubes (e.g., Peterson and
Bogert 1950; Shera and Zweig 1991b). In the long-
wavelength approximation, the pressures in the sca-
lae depend on the single spatial coordinate, x. Since
the cochlea is surrounded by rigid bone and no net
fluid flows into or out of the system at acoustic fre-
quencies, the fluid volume velocities in the two scalae
are constrained to be equal in magnitude but oppo-
site in direction at all locations x. Although Eq. (A1)
bears a strong resemblance to Webster’s horn equa-
tion (e.g., Eisner 1967; Pierce 1981; Blackstock 2000),
it differs from several previous treatments of the ta-
pered cochlea in the literature (e.g., Fletcher 1953;
de Boer 1980; Koshigoe et al. 1983). These treat-

ments, however, violate energy conservation by
implying that scalae tapering induces fluid flow in the
absence of an applied pressure gradient.

We supplement Eq. (A1) with standard boundary
conditions at the helicotrema (x = L) and oval win-
dow (x = 0). At the helicotrema we assume that the
pressure difference across the partition is zero [p(L,
t) = 0]; at the stapes we apply conservation of vol-
ume velocity in the scala vestibuli to obtain the
condition

@p

@x
jx¼0 ¼ �q0Sow _vow=S0 ðA3Þ

, where S0 = S(0) and Sow and vow(t) are, respectively,
the oval-window area and velocity (positive into the
scala vestibuli).

Equation (A1) can be simplified by introducing
the change of variables x fi v defined by

vðxÞ ¼ S0

Z x

0

dx 0

Sðx 0Þ ðA4Þ

, where v varies between 0 and Lv ” v(L). The spatial
variable v represents the effective ‘‘acoustic distance’’
from the stapes; it increases more rapidly with x when
the scalae areas are small than when they are large
and reduces to the conventional distance x when the
scalae areas are constant. All dependent variables are
now regarded as functions of v. Equation (A1) be-
comes

@2p

@v2
¼ q0bS _vbm=S2

0 ðA5Þ

, with boundary conditions p(Lv, t) = 0 and

@p

@v
jv¼0 ¼ �q0Sow _vow=S0 ðA6Þ

Wave-equation formulation

By eliminating terms in Eq. (A1) proportional to the
first spatial derivative of the pressure, the change of
variables allows the equation to be put in the form of
a standard wave equation (e.g., Zweig et al. 1976;
Shera and Zweig 1991b). For example, if we assume
harmonic time dependence and write p(v, t) = Re
{P(v, x)eixt} and vbm(v, t) = Re {Vbm(v, x) eixt}, then
Eq. (A5) assumes the form

P 00ðv;xÞ þ k2
v ðv;xÞPðv;xÞ ¼ 0 ðA7Þ

, where the prime denotes a derivative with respect to
v [cf. Eq. (18) of Talmadge et al. 1998]. The ‘‘wave-
number’’ (in v space) is defined by

k2
v ðv;xÞ ¼ �Zðv;xÞY ðv;xÞ ðA8Þ
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where equation Z(v, x) = ixq0 S/S0
2 is the longitu-

dinal impedance of the fluids and Y(v, x) is the
admittance of the organ of Corti, defined so that
Vbm = YP/b.

The general solution has the form [cf. Eq. (1)]

Pðv;xÞ ¼ aþðxÞWþðv;xÞ þ a�ðxÞW�ðv;xÞ ðA9Þ

where the wave amplitudes a± are determined by
boundary conditions and the pressure basis waves
W±(v, x) can be obtained by solving Eq. (A7)
numerically or semianalytically using the WKB
approximation (e.g., Shera and Zweig 1991a; Tal-
madge et al. 1998).

Green’s function formulation

The hydrodynamic Green’s function, G(v, �v), is de-
fined as the solution to Eq. (A5) when the quantity on
the right-hand side of the equality is a point source at
location �v. In other words, G(v, �v) satisfies the equation

@2Gðv; �vÞ
@v2

¼ @2Gðv; �vÞ
@�v2

¼ �dðv � �vÞ ðA10Þ

subject to the boundary conditions G(v, Lv) = 0 at the
helicotrema and at �v = 0. The function satisfying these
constraints is easily seen to be

Gðv; �vÞ ¼ Lv � maxðv; �vÞ ðA11Þ

where max(v, �v) is the greater of its two arguments.
G(v, �v) thus consists of two straight-line segments
intersecting at v = �v with a unit discontinuity in their
slopes. Equations (A5) and (A6) for the pressure can
now be written as an integral equation using the
Green’s function (e.g., Friedman 1956):

pðv; tÞ ¼ q0

S2
0

"
Gðv; 0ÞS0Sow _vowðtÞ

�
Z Lv

0
bð�vÞSð�vÞGðv; �vÞ _vbmð�v; tÞd�v

# ðA12Þ

When rewritten using the conventional spatial vari-
able x, Eq. (A12) becomes

pðx; tÞ ¼ q0

S0

"
Gðx; 0ÞSow _vowðtÞ

�
Z Lbð�xÞGðx;�xÞ _vbmð�x;tÞd�x

0

# ðA13Þ

where

Gðx; �xÞ 	 G ½vðxÞ; �vð�xÞ� ¼ S0

Z L

maxðx;�xÞ

dx 0

Sðx 0Þ ðA14Þ

Equation (A13) is the one-dimensional version of
Nobili et al.’s ‘‘BM integrodifferential equation’’ [cf.

Nobili et al. 2003a, Eq. (1)]. The solution at angular
frequency x is equivalent to the wave-equation for-
mulation [Eq. (A9)] evaluated with appropriate
choice of wave amplitudes a±.

Green’s functions for the guinea pig cochlea. Figure A1
shows plots of the Green’s function G(x, �x) at various
locations �x computed for the guinea pig cochlea
using anatomical measurements of scalae areas (Fer-
nández 1952). In the box model, G(x, �x) is a straight,
downward-sloping line for x > �x; the curvature evident
in the figure arises as the result of scalae tapering. [In
the tapered cochlea, it is G(v, �v), not G(x, �x), that
consists of intersecting straight lines.] Except for
small values of |x ) �x|, the Green’s function G(x, �x)
for the one-dimensional box model [obtained by
setting S(x) = S0 in Eq. (A14)] has essentially the
same form as the Green’s function derived by Allen
(1977) for the two-dimensional box model (cf. Al-
len’s Fig. 4).

In their work, Nobili et al. (e.g., Mammano and
Nobili 1993; Nobili et al. 2003a) adopt a slightly dif-
ferent definition of the Green’s function based on
the hydrodynamic force pushing on the BM rather
than on the pressure difference across its surface [cf.
Eq. (1) of Nobili et al. 2003a]. The differing defini-
tions imply that

GNðx; �xÞ ¼ q0bðxÞbð�xÞGðx; �xÞ=S0 ðA15Þ

where GN(x, �x) is the long-range component of Nobili
et al.’s Green’s function (or ‘‘force propagator’’).
Figure A2 shows plots of GN(x, �x) computed for the
guinea pig from Eq. (A15) using Fernández’s mea-
surements of BM width. Except for the absence of a
‘‘spike’’ at x = �x arising from higher-dimensional ef-
fects (and a minor but unexplained difference in
overall normalization), the results bear a strong

FIG. A1. One-dimensional hydrodynamic Green’s functions for the
guinea pig cochlea. The figure shows plots of G (x, �xi ) at the 20
locations �xi identified by the black triangles (m). The Green’s func-
tions were computed from Eq. (A14) using anatomical measurements
of scalae areas from Fernández (1952).
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resemblance to Figure A3 of Mammano and Nobili
(1993). Indeed, close inspection of their formulae
[i.e., their Eq. (A5) with the substitutions given in the
succeeding paragraphs] indicates that the two are
functionally identical.

In this Appendix we have illustrated the connec-
tion between cochlear geometry and the nature of
the long-range part of the Green’s function G(x, �x)
appearing in Eq. (A13). The fact that the long-range
fluid coupling described by G(x, �x) varies nonlinearly
with x (and thus ‘‘cannot be canceled by multiple
differentiation’’) does not imply the absence of an
underlying wave equation, as asserted by Nobili et al.
(e.g., Mammano and Nobili 1993). After the BM
acceleration is related to p(x, t) via cochlear dynam-
ics, the underlying wave equation in the tapered co-
chlea [i.e., Eq. (A1) or its equivalent, Eq. (A5)] is a
variant of Webster’s horn equation, rather than the
simpler wave equation that results in the box model,
where S(x) is constant.
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