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Abstract
Background  Early risk stratification is necessary to prevent chronic kidney disease progression and complications. This 
systematic review aims to evaluate the association of soluble suppression of tumorigenicity 2 (sST2), a member of the inter-
leukin-1 receptor family, with all-cause mortality, cardiovascular disease and renal function deterioration among chronic 
kidney disease patients.
Methods  PubMed, Scopus, Web of Science, CENTRAL and Google Scholar were systematically searched from inception 
to December 20, 2023. Cohort studies examining the prognostic role of sST2 levels in pre-dialysis and dialysis patients 
were included. In case of 3 or more studies per outcome, conventional and dose–response meta-analyses were conducted.
Results  Overall, 21 studies were included comprising 15,100 patients. In pre-dialysis patients, the qualitative synthesis of 
studies suggested that high sST2 is associated with significantly increased all-cause mortality, while evidence regarding 
cardiovascular events or kidney disease progression was conflicting. In the dialysis population, high sST2 was linked to an 
elevated risk of all-cause (Hazard ratio-HR: 3.00, 95% confidence intervals-CI: 1.95–4.61) and cardiovascular (HR: 2.38, 95% 
CI: 1.69–3.34) mortality. Dose–response meta-analysis suggested a log-linear association of sST2 with both all-cause (χ2: 
34.65, p value < 0.001) and cardiovascular (χ2: 29.14, p value < 0.001) mortality, whereas findings regarding cardiovascular 
events were limited with mixed results.
Conclusions  High sST2 values are associated with an increased risk of all-cause mortality in pre-dialysis and dialysis patients, 
as well as with an elevated risk of cardiovascular mortality in the dialysis population. Further studies are needed to elucidate 
its potential association with cardiovascular events and kidney disease progression.
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Introduction

Chronic kidney disease constitutes a major public health 
concern, associated with high morbidity and mortality 
rates. Its incidence is rising, affecting more than 10% of 
the global population [1]. It represents an important cause 

of death and by 2040 it is estimated to be the 5th leading 
cause of years of life lost worldwide [2]. Cardiovascular 
disease is the main complication of chronic kidney disease 
due to the presence of traditional risk factors, especially 
diabetes mellitus, hypertension and metabolic syndrome 
along with the existence of renal disease-specific factors, 
such as the accumulation of uremic toxins, inflammation 
and vascular calcification [3]. In this context, patients with 
renal impairment are at increased risk of developing ath-
erosclerotic cardiovascular disease, heart failure, valvular 
heart disease, as well as sudden cardiac death [4, 5]. Early 
identification of patients at high risk of complications may 
enable the prompt implementation of targeted interventions 
aiming for cardiovascular protection and prevention of pro-
gression to kidney failure [6]. Several biomarkers, such as 
N-terminal pro b-type natriuretic peptide [7], galectin-3 [8] 
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and growth/differentiation factor-5 [9] have been proposed 
to enhance the risk stratification of chronic kidney disease 
patients, although the optimal screening strategy remains 
still under investigation.

Suppression of tumorigenicity 2 (ST2), a member of the 
interleukin-1 receptor family, has recently gained interest as 
a candidate biomarker of cardiovascular disease outcomes. 
It serves as the receptor of interleukin-33 and is present in a 
transmembrane and a soluble (sST2) isoform [10]. The inter-
play of transmembrane ST2 with interleukin-33 has been 
shown to exert cardioprotective effects through the inhibition 
of myocardial fibrosis, hypertrophy and apoptosis [11]. On 
the other hand, sST2 serves as a decoy receptor which avidly 
binds to interleukin-33 and competes with transmembrane 
ST2, eliminating thus the aforementioned cardioprotection 
[12]. As a result, high sST2 values have been associated with 
hypertension and diabetes mellitus in the general popula-
tion and have been suggested to effectively predict adverse 
outcomes in patients with acute coronary syndrome [13] and 
heart failure [14, 15].

The interleukin-33/ST2 axis has been implicated in the 
development of renal fibrosis [16], being involved in the 
pathogenesis of acute kidney injury, diabetic nephropathy 
and chronic kidney disease [17]. However, the exact prog-
nostic value of sST2 levels in patients with chronic kidney 
disease remains currently unclear. The present systematic 
review and meta-analysis aims to gather the available lit-
erature knowledge in the field and shed more light on the 
potential association of sST2 with the risk of mortality, car-
diovascular disease and renal function deterioration among 
patients with chronic kidney disease.

Materials and methods

Study design

This systematic review was reported following the PRISMA 
(Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses) guidelines [18]. The study protocol has been 
prospectively registered and is publicly available (dx.doi.
org/https://​doi.​org/​10.​17504/​proto​cols.​io.​dm6gp​3m48v​zp/​
v1). No ethical approval was required as already published 
data were used.

Eligibility criteria

The population of the study consisted of adults diagnosed 
with chronic kidney disease. Both pre-dialysis and dialysis 
(hemodialysis or peritoneal dialysis) patients were included. 
Kidney transplant recipients were excluded. The exposure of 

interest was circulating sST2 levels. The primary outcome 
of interest was all-cause mortality. Secondary outcomes 
included kidney disease progression, cardiovascular mor-
tality, major adverse cardiovascular events (MACE) and 
incident heart failure. Both prospective and retrospective 
cohort studies were held potentially eligible. Case–control, 
descriptive, cross-sectional, animal and in vitro studies, as 
well as case reports/series and review articles were excluded. 
Chronic kidney disease stages were defined following the 
KDIGO (Kidney Disease: Improving Global Outcomes) 
guidelines [19].

Literature search

Literature search was performed by systematically searching 
PubMed, Scopus, Web of Science and CENTRAL (Cochrane 
Central Register of Controlled Trials). In addition, Google 
Scholar was screened to provide grey literature coverage, 
while the full reference lists of the included studies were 
inspected to recognize potential missing articles (“snowball” 
method [20]). No date/language restrictions were applied. 
All databases were searched from inception till December 
20,2023. The search was conducted using a combination of 
MeSH (Medical Subject Headings) terms and key-words. 
The main search algorithm was the following: “(Suppression 
of Tumorigenicity OR st2 OR sst2) AND (“Renal Insuffi-
ciency, Chronic” [Mesh] OR “chronic kidney disease” OR 
“CKD” OR “kidney disease” OR “renal disease” OR “kid-
ney failure” OR “renal failure” OR “kidney insufficiency” 
OR “renal insufficiency” OR nephropathy)”.

Study selection

The process of study selection followed three consecutive 
stages. Firstly, the titles and abstracts of all electronical arti-
cles were screened to assess for eligibility. Subsequently, 
all articles that were considered as potentially eligible were 
retrieved in full-text form. Then, the studies that did not 
report the outcomes of interest or met any of the exclusion 
criteria were excluded. The selection of the included studies 
was performed by two researchers independently, resolving 
any discrepancies after discussion with all authors.

Data extraction

The following data were extracted from the included studies 
using pre-piloted forms: year of publication, country, eligi-
bility criteria, sample size, study design, type of population, 
sST2 assay, participants’ age, sex, percentage of hyperten-
sion, diabetes mellitus, estimated glomerular filtration rate, 
body mass index, dialysis vintage, history of cardiovascular 
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disease, as well as the necessary information regarding the 
outcomes of interest. All data were extracted by two authors 
independently and any discrepancies were resolved through 
their consensus.

Quality assessment

The risk of bias of the included studies was evaluated using the 
ROBINS-I tool [21], adjusted for exposure studies, taking into 
consideration the following domains: confounding, selection 
of participants, classification of exposures, departures from 
intended exposures, missing data, measurement of outcomes 
and selection of the reported results. The risk of bias evalua-
tion was performed by two researchers independently, resolv-
ing any disagreements through the consensus of all authors.

Data analysis

All outcomes were initially evaluated qualitatively. Pre-piloted 
forms were used to capture the necessary information regard-
ing the outcomes of interest. Pre-dialysis and dialysis patients 
were separately assessed. Circulating sST2 levels could be 
evaluated as a continuous variable or as a binary one in case 
cut-off values were introduced in the included studies. For 
time-to-event endpoints, hazard ratios (HR) were extracted 
along their 95% confidence intervals (CI). Statistical signifi-
cance was defined by the two-sided p value threshold of 0.05. 
Meta-analysis was performed in case of at least 3 studies per 
outcome were included. In meta-analysis, circulating sST2 was 
treated only as a binary variable, using the cut-offs that were 
introduced by the original studies. Conventional meta-analysis 
was conducted by comparing the highest to the lowest sST2 
category. Random-effects statistical models were fitted due 
to the high expected methodological heterogeneity, using the 
restricted maximum likelihood method. To account for the 
small number of studies, the Knapp-Hartung adjustment [22] 
was applied as a sensitivity analysis. The statistical inter-study 
heterogeneity was quantified by the inconsistency index (I2), 
with values above 50% indicating remarkable statistical hetero-
geneity [23]. The 95% prediction intervals were calculated to 
provide estimates of the effects to be expected by future studies 
in the field [24]. Publication bias was planned to be statisti-
cally tested in case of 10 or more studies per outcome [25]. 
Dose–response meta-analysis was also conducted to define the 
potential exposure–response relationship between sST2 lev-
els and mortality risk. In particular, a non-linear model using 
restricted cubic splines was applied in a one-stage approach 
[26]. Restricted cubic splines were located at the 25th, 50th 
and 75th percentiles of the sST2 level distribution. Statistical 
analysis was conducted in R-4.0.4 (“metafor” [27] and “dos-
resmeta” [28] packages).

Results

Study selection

Figure 1 depicts the process of study selection in a PRISMA 
flowchart. Database search resulted in 601 records. After 
deduplication, 396 articles were screened and a cohort of 29 
studies were retrieved in full text. Of them, 8 studies were 
excluded for the following reasons: no outcome of interest 
(n = 5) [29–33], cross-sectional design (n = 1) [34], partial 
duplicate of a study already included (n = 1) [35] and evalu-
ation of kidney transplant recipients (n = 1) [36]. As a result, 
21 studies [37–57] were finally included, comprising a total 
of 15,100 (12,098 pre-dialysis and 3,002 dialysis) patients.

Included studies

The methodological characteristics of the included studies 
are presented in Table 1. Eight studies were conducted in 
the United States of America, 5 in Europe and 8 in Asia. 
Nineteen studies adopted a prospective design, while 2 stud-
ies were retrospective cohort ones. Dialysis patients were 
evaluated in 9 studies, with hemodialysis patients being 
exclusively included in 8 of them. Four studies presented 
analyses derived from the CRIC (Chronic Renal Insuffi-
ciency Cohort) study [37, 43–45]. The median participants’ 
age was 57 years, while 55.5% of patients were males. In the 
majority of studies, sST2 levels were measured with enzyme 
linked immunosorbent assays (ELISA). The most commonly 
applied ELISA assay was the Presage ST2 assay (Critical 
Diagnostics, New York, N.Y., USA), while a different assay 
was used by Obokata et al. [51] (Medical & Biological Lab-
oratories, Woburn, MA). The risk of bias was judged to be 
low in 7 and moderate in 14 studies (Table 2). Specifically, 
concerns of confounding were raised in 10 studies due to 
potentially inadequate adjustment for important covariates, 
while selection bias could not be safely excluded in 7 stud-
ies due to lack of information regarding the possibility of 
participant selection based on their characteristics. Addition-
ally, a moderate risk of bias was recognized in the domain 
of selection of the reported result in 6 studies due to limited 
available information concerning the analysis plan and the 
reporting of effect estimates.

Pre‑dialysis population

All‑cause mortality

The association of sST2 levels with overall survival of pre-
dialysis chronic kidney disease patients was evaluated in 3 
studies (Table 3). All studies showed that increasing sST2 
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was linked to a significantly higher risk of all-cause mortal-
ity. Specifically, the CRIC study including 3,664 participants 
with mildly to moderately impaired renal function (median 
eGFR: 44.3 ml/min/1.73 m2) suggested that high sST2 val-
ues were associated with a significantly elevated mortality 
risk when sST2 was treated both as continuous and binary 
variable [44]. Similar outcomes were obtained by the pooled 
analysis of the SKS (Seattle Kidney Study) and C-PROBE 
(Clinical Phenotyping and Resource Biobank Study) cohorts 
(883 patients, HR per standard deviation increase: 1.36, 95% 
CI: 1.17 to 1.58) [41], as well as by a prospective cohort of 
534 patients with stage 3–4 chronic kidney disease (HR per 
increase by 10 ng/ml: 1.22, 95% CI: 1.06 to 1.42) [46].

Cardiovascular disease

The endpoint of MACE was assessed in 2 studies with mixed 
results (Table 3). The analysis of the CRIC study (2,560 

participants) showed that higher sST2 levels were linked to 
a significantly increased risk of a 3-point MACE occurrence, 
defined as myocardial infarction, stroke or peripheral artery 
disease (HR per log-standard deviation increase: 1.19, 95% 
CI: 1.04 to 1.36) [43]. On the contrary, no significant asso-
ciation of sST2 with the composite of myocardial infarction 
or stroke (HR: 1.16, 95% CI: 0.75 to 1.78) by Tuegel et al. 
[41] (883 participants). In addition, two studies [38, 40] 
(352 and 238 patients, respectively) proposed that increas-
ing sST2 levels were associated with higher risk of the com-
posite endpoint of death or MACE, although this effect was 
not confirmed by another study including 218 patients [42]. 
The risk of incident heart failure was evaluated by 2 studies; 
although Tuegel et al. [41] showed no significant association 
with sST2, the analysis of the CRIC study [45] suggested a 
significant link between increasing sST2 levels and incident 
heart failure (HR per log-standard deviation: 1.20, 95% CI: 
1.05 to 1.36).

Fig. 1   Search plot PRISMA flowchart
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Kidney disease progression

The association of circulating sST2 with kidney disease 
progression was examined in 5 studies (Table 4), report-
ing conflicting results. An analysis of the Framingham 
Heart Study offspring cohort [39] proposed that increasing 
sST2 is marginally associated with rapid kidney function 
decline (≥ 3 ml/min/1.73 m2 per year – HR: 1.17, 95% CI: 
1.00–1.36, moderate risk of bias). This outcome was corrob-
orated by a cohort of 352 patients [38], indicating that high 
sST2 values are associated with an elevated risk of an eGFR 
reduction more than 50% or requirement of renal replace-
ment therapy (HR per log-unit increase: 1.36, 95% CI: 1.02 
to 1.81, moderate risk of bias). However, no significant 
association between elevated sST2 and subsequent kidney 
disease progression was observed in three large prospective 
cohort studies at low risk of bias (SKS/C-PROBE, CRIC and 
Cardiovascular Health Study) [37, 49, 57] (Fig. 2).

Dialysis population

All‑cause mortality

The association of sST2 with overall survival of dialysis 
patients was assessed in 7 studies (Table 3). All studies 
suggested that elevated sST2 values are associated with a 
significantly higher risk of all-cause mortality when sST2 
was treated either as a continuous or a binary variable. Con-
ventional meta-analysis of studies that introduced thresholds 
proposed that the highest category of sST2 is associated with 
significantly increased mortality risk (5 studies, HR: 3.00, 
95% CI: 1.95 to 4.61). A similar outcome was obtained using 
the Knapp-Hartung adjustment (HR: 3.00, 95% CI: 1.65 to 
5.45) (Fig. 3). The statistical heterogeneity was estimated to 
be moderate (I2: 45.3%), while the 95% prediction intervals 
ranged from 1.40 to 6.41. The dose–response meta-analysis 
included 4 studies and confirmed that increasing sST2 values 
are associated with a significantly higher mortality risk (χ2: 
34.65, p value < 0.001) (Fig. 4). Compared to a reference 
sST2 value of 10 ng/ml, a significantly elevated mortality 
risk was estimated for sST2 levels of 20 ng/ml (HR: 1.51, 
95% CI: 1.22 to 1.86), 40 ng/ml (HR: 3.19, 95% CI: 1.85 to 
5.49), 60 ng/ml (HR: 5.02, 95% CI: 2.82 to 8.94), 80 ng/ml 
(HR: 7.30, 95% CI: 3.75 to 14.19) or 100 ng/ml (HR: 10.61, 
95% CI: 4.50 to 25.01).

Cardiovascular mortality

The association of circulating sST2 with cardiovascular 
mortality of dialysis patients was examined in 4 studies 
(Table 3). Three of them reported a significant association 
between high sST2 and increased cardiovascular mortal-
ity risk. Meta-analysis indicated that sST2 in the highest Ta
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category is associated with a significantly elevated risk of 
cardiovascular mortality (3 studies, HR: 2.38, 95% CI: 1.69 
to 3.34) (Fig. 3). Using the Knapp-Hartung adjustment led 
to a similar estimate (HR: 2.38, 95% CI: 1.94 to 2.92). No 
statistical heterogeneity was observed (I2: 0%) and thus 
the 95% prediction interval was identical to the confidence 
interval. The dose–response meta-analysis also suggested 
that increasing sST2 is significantly associated with higher 
cardiovascular mortality risk (χ2: 29.14, p value < 0.001) 
(Fig. 4). Compared to a reference sST2 value of 10 ng/ml, 
a significantly increased cardiovascular mortality risk was 
estimated for sST2 levels of 20 ng/ml (HR: 1.61, 95% CI: 
1.31 to 1.97), 40 ng/ml (HR: 3.68, 95% CI: 2.16 to 6.28), 
60 ng/ml (HR: 4.97, 95% CI: 2.77 to 8.92), 80 ng/ml (HR: 
5.84, 95% CI: 2.70 to 12.65) or 100 ng/ml (HR: 6.86, 95% 
CI: 2.31 to 20.27).

Cardiovascular disease

Two studies have evaluated the association between sST2 
and MACE (Table 3). In particular, Choi et al. [56] pro-
posed that among 74 peritoneal dialysis patients, high 
sST2 was associated with a significantly increased risk 

of MACE, defined by the presence of acute coronary syn-
drome, stable angina requiring revascularization, con-
gestive heart failure or cerebrovascular accident. On the 
contrary, a prospective cohort study of 296 hemodialysis 
patients supported no significant association between sST2 
and MACE risk (HR per log-unit increase: 0.99, 95% CI: 
0.75 to 1.32) [52]. The composite outcome of death or 
MACE was examined by 2 studies. Specifically, a pro-
spective cohort study including 423 hemodialysis patients 
suggested that high circulating sST2 was associated with 
a significantly increased risk of mortality, myocardial 
infarction, stroke or hospitalization for heart failure (HR 
per log-unit increase: 10.6, 95% CI: 4.98 to 22.5) [51]. In 
addition, Seo et al. [50] showed that among 182 hemodi-
alysis patients, elevated sST2 was linked to a significantly 
higher risk of death or MACE, although the composite 
outcome was mainly driven by all-cause mortality rather 
than cardiovascular events. The endpoint of heart failure 
was assessed by one study (111 participants), indicating 
an elevated risk of incident heart failure in hemodialysis 
patients with high sST2 values (HR: 1.03, 95% CI: 1.01 
to 1.05) [47].

Table 2   Outcomes of the ROBINS-I evaluation

NI no information

Study Bias due to 
confound-
ing

Bias in selec-
tion of partici-
pants into the 
study

Bias in clas-
sification of 
exposures

Bias due to 
deviations 
from intended 
exposures

Bias due 
to missing 
data

Bias in meas-
urement of 
outcomes

Bias in selec-
tion of the 
reported result

Overall bias

2022; Hammer Low Low Low Low Low Low Low Low
2022; Zhou Moderate Moderate NI Low NI Low Low Moderate
2022; Lidgard Low Low Low Low Low Low Low Low
2021; Kim Low Low Low Low Low Low Moderate Moderate
2021; Kim Low Moderate Low Low Low Low Low Moderate
2020; Choi Moderate Moderate Low Low Low Low Low Moderate
2020; Wang Low Low Low Low Low Low Low Low
2019; Feldreich Moderate Low Low Low Low Low Low Moderate
2019b; Bansal Low Low Low Low Low Low Low Low
2019a; Bansal Low Low Low Low Low Low Low Low
2018; Homsak Moderate Moderate Low Low Low Low Moderate Moderate
2018; Seo Moderate Low Low Low Low Low Low Moderate
2018; Tuegel Low Low Low Low Low Low Low Low
2018; Plawecki Moderate Moderate Low Low Low Low Moderate Moderate
2018; Alam Low Low Low Low Low Low Low Low
2017; Zhang Moderate Low Low Low Low Low Low Moderate
2017; Gungor Moderate Low Low Low Low Low Moderate Moderate
2016; Obokata Moderate Low Low Low Low Low Moderate Moderate
2016; Bansal Low Low Low Low Low Low Moderate Moderate
2013; Bayes-

Genis
Moderate Moderate Low Low Low Low Low Moderate

2013; Ho Low Moderate Low Low Low Low Low Moderate



	 Clinical and Experimental Nephrology

Table 3   Association of sST2 with mortality and adverse cardiovascular outcomes

Study Mortality MACE Cardiovascular mortal-
ity

Death or MACE Heart failure

Dialysis
2022; Hammer sST2 20.1–25 ng/ml 

HR: 1.12 (0.87–1.45)
– sST2 20.1–25 ng/ml 

HR: 1.26 (0.83–1.91)
– –

sST2 25.1–32.6 ng/ml 
HR: 1.64 (1.25–
2.16)*

sST2 25.1–32.6 ng/ml 
HR: 1.87 (1.55–
3.39)*

sST2 > 32.6 ng/ml HR: 
2.06 (1.61–2.61)*

sST2 > 32.6 ng/ml HR: 
2.29 (1.55–3.39)*

2022; Zhou – – – – Per 1 sST2 unit HR: 
1.03 (1.01–1.05)*

2021; Kim Per 1 log-sST2 unit 
HR: 1.60 (1.02–
2.48)*

Per 1 log-sST2 unit 
HR: 0.99 (0.75–1.32)

– – –

2020; Choi Per 1 sST2 SD HR: 
1.94 (1.12–3.36)*

Per 1 sST2 SD HR: 
1.63 (1.07–2.48)*

– – –

sST2 ≥ 70.9 ng/ml HR: 
10.14 (2.16–47.73)*

sST2 ≥ 70.9 mg/dl HR: 
3.93 (1.43–10.92)*

2019; Feldreich – – Per 1 sST2 SD HR: 
1.63 (1.13–2.35)*

– –

2018; Homsak Per 1 sST2 unit HR: 
1.02 (1.01–1.02)*

– Per 1 sST2 unit HR: 
1.01 (1.01–1.02)*

– –

sST2 > 48 ng/ml HR: 
3.64 (1.61–8.21)*

sST2 > 44 ng/ml HR: 
2.67 (1.14–7.13)*

2018; Seo sST2 ≥ 59.5 mg/dl HR: 
2.62 (1.11–6.24)*

– sST2 ≥ 59.5 mg/dl HR: 
2.68 (0.96–7.53)

Per 1 sST2 unit HR: 
1.008 (1.003–
1.013)*

–

sST2 ≥ 59.5 mg/dl HR: 
2.33 (1.12–4.87)*

2017; Zhang Per 1 log-sST2 SD: 
1.31 (1.00–1.72)*

– – – –

2016; Obokata Per 1 log-sST2 unit 
HR: 10.6 (4.98–
22.5)*

– – Per 1 log-sST2 unit 
HR: 10.6 (4.98–
22.5)*

–

sST2 0.237–0.299 ng/
ml HR: 1.12 
(0.43–2.91)

sST2 0.237–0.299 ng/
ml HR: 0.93 
(0.46–1.88)

sST2 ≥ 0.299 ng/ml 
HR: 4.15 (1.91–
9.03)*

sST2 ≥ 0.299 ng/ml 
HR: 3.21 (1.82–
5.66)*

Pre-dialysis CKD
2022; Lidgard – Per 1 log-sST2 SD HR: 

1.19 (1.04–1.36)*
– – –

2021; Kim – – – Per 1 log-sST2 unit 
HR: 2.11 (1.19–
3.74)*

–
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Discussion

The present systematic review collected the available evi-
dence coming from 21 cohort studies and 15,100 patients, 
evaluating the prognostic role of sST2 in chronic kidney 
disease. The qualitative synthesis of studies on pre-dialysis 
patients suggested that high circulating sST2 may be asso-
ciated with worse survival rates, while data regarding its 
association with the occurrence of cardiovascular events and 
kidney disease progression are currently conflicting. More 
robust evidence exists on the dialysis population in which 
dose–response meta-analysis indicated that increasing cir-
culating sST2 values are associated with an elevated risk of 
both all-cause and cardiovascular mortality in a log-linear 

fashion. No specific prognostic role could be supported for 
sST2 in regards to cardiovascular events among dialysis 
patients since limited data with mixed results were available.

The findings of this study corroborate prior research 
demonstrating the role of sST2 in the prediction of patient 
survival. A growing body of evidence suggests that high 
sST2 levels are linked to increased mortality in individu-
als with pre-existing cardiovascular disease [58]. The 
pathophysiology of this observation may explained by the 
attenuation of interleukin-33/ST2 cardioprotective proper-
ties, leading to maladaptive myocardial hypertrophy and 
fibrosis [59]. In addition, circulating sST2 has been shown 
to be predictive of mortality in various inflammatory con-
ditions, such as HIV (human immunodeficiency virus) 

HR hazard ratio; SD standard deviation; MACE major adverse cardiovascular events; CKD chronic kidney disease
*p value < 0.05 

Table 3   (continued)

Study Mortality MACE Cardiovascular mortal-
ity

Death or MACE Heart failure

2020; Wang Per 1 log-sST2 unit 
HR: 1.16 (1.07–
1.25)*

– – – –

sST2 10.6–13.6 ng/ml 
HR: 1.07 (0.84–1.41)

sST2 13.7–17.2 ng/ml 
HR: 1.12 (0.88–1.43)

sST2 17.3–22.9 ng/ml 
HR: 1.38 (1.10–
1.74)*

sST2 > 22.6 ng/ml HR: 
1.32 (1.04–1.68)*

2019; Bansal – – – – Per 1 log-sST2 SD HR: 
1.20 (1.05–1.36)*

sST2 10.6–13.6 ng/ml 
HR: 0.97 (0.67–1.41)

sST2 13.7–17.1 ng/ml 
HR: 1.29 (0.91–1.83)

sST2 17.2–22.6 ng/ml 
HR: 1.53 (1.08–
2.16)*

sST2 > 22.6 ng/ml HR: 
1.63 (1.16–2.30)*

2018; Tuegel Per 1 sST2 SD unit 
HR: 1.36 (1.17–
1.58)*

Per 1 sST2 SD unit 
HR: 1.16 (0.75–1.78)

– – Per 1 sST2 unit HR: 
1.22 (0.94–1.60)

2018; Plawecki – – – Per 1 log-sST2 unit 
HR: 2.84 (0.53–
15.13)

–

2017; Gungor – – – Per 1 sST2 unit HR: 
1.002 (1.00–1.003)*

2013; Bayes-Genis Per sST2 increase 
by 10 ng/ml: 1.22 
(1.06–1.42)*



	 Clinical and Experimental Nephrology

infection [60], sepsis [61] and acute pancreatitis [62]. The 
role of sST2 in inflammatory processes is mainly based 
on the regulation of innate and adaptive immunity via the 
inhibition of the interleukin-33-mediated release of Th2 
cytokines, such as interleukin-4, interleukin-5 and inter-
leukin-13 [63]. In this context, circulating sST2 has been 
shown to correlate with serum high-sensitivity C-reactive 
protein in chronic kidney disease patients [40], as well 

as to effectively predict infection-related mortality in the 
dialysis population [54].

Despite the prognostic role of sST2 in regards to overall 
and cardiovascular mortality, current evidence as assessed 
in this systematic review suggests a less clear associa-
tion with cardiovascular events. This finding is in line 
with previous research proposing no clear or significant 
link between circulating sST2 and MACE in the general 

Table 4   Association of sST2 
levels with kidney disease 
progression

HR hazard ratio; SD standard deviation; eGFR estimated glomerular filtration rate; RRT​ renal replacement 
therapy
* p value < 0.05

Study Definition of kidney disease progression Outcome

2021; Kim  ≥ 50% eGFR reduction or RRT​ Per 1 log-sST2 unit HR: 1.36 (1.02–1.81)*
2019; Alam eGFR < 15 ml/min/1.73 m2 or RRT​ Per sST2 doubling HR: 1.02 (0.76–1.38)

sST2 20.52–26 ng/ml HR:1.38 (0.84–2.27)
sST2 26.01–34.14 ng/ml HR: 1.36 (0.81–2.29)
sST2 > 34.14 ng/ml HR: 1.54 (0.92–2.58)

2019; Bansal  ≥ 50% eGFR reduction or RRT​ Per 1 sST2 unit HR: 1.07 (0.99–1.14)
sST2 10.6–13.6 ng/ml HR: 0.97 (0.78–1.21)
sST2 13.7–17.2 ng/ml HR: 0.95 (0.76–1.19)
sST2 17.3–22.9 ng/ml HR: 1.02 (0.82–1.27)
sST2 > 22.9 ng/ml HR: 1.19 (0.95–1.50)

2016; Bansal eGFR decline ≥ 30% Per 1 sST2 SD HR: 1.01 (0.91–1.11)
sST2 18.84–23.62 ng/ml HR: 1.08 (0.86–1.36)
sST2 23.63–29.72 ng/ml HR: 1.03 (0.81–1.30)
sST2 > 29.72 ng/ml HR: 1.00 (0.76–1.30)

2013; Ho eGFR decline ≥ 3 ml/min/1.73 m2 per year Per 1 sST2 unit HR: 1.17 (1.00–1.36)*

Fig. 2   Outcomes of studies evaluating the association of sST2 levels with the risk of kidney disease progression. HR hazard ratio; CI confidence 
intervals
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population [64, 65]. Similarly, the KAROLA study [66] 
has indicated that among patients with stable coronary 
heart disease, sST2 levels were prognostic of all-cause 
and cardiovascular mortality but not of non-fatal cardio-
vascular events. Regarding echocardiographic parameters, 
circulating sST2 has been associated with left ventricular 
relative wall thickness and concentric hypertrophy among 
dialysis patients [29], although this was not confirmed for 
pre-dialysis individuals in the CRIC cohort [33]. It should 
be also noted that the potential link between sST2 and inci-
dent atrial fibrillation has been also examined in the CRIC 
study, proposing a modest but inconsistent association in 
the categorical analyses [30].

The existing evidence regarding the association of sST2 
with renal function is mixed. Early studies have proposed 
that sST2 is not affected by the presence of chronic kid-
ney disease [67, 68]. However, a weak to modest negative 
correlation of sST2 levels with eGFR has been suggested 
by recent studies in the field, especially when patients with 
advanced renal dysfunction were evaluated [34, 46, 52]. 
The findings of this systematic review could not ascertain a 
potential predictive role of sST2 levels in regards to kidney 
disease progression since negative outcomes were derived 
from the outcomes of three large prospective cohort studies 
(SKS/C-PROBE, CRIC and Cardiovascular Health Study) 
[37, 49, 57].

Fig. 3   Forest plots comparing the highest to the lowest circulating sST2 categories in regards to all-cause mortality (a) and cardiovascular mor-
tality (b) among dialysis patients. RE random-effects; HR hazard ratio; CI confidence intervals
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The present study has several strengths. Literature has 
been systematically searched by applying a comprehensive 
algorithm in 5 different databases, without applying any 
date restrictions. The risk of bias was critically assessed, 

allowing a realistic appraisal of study limitations. This sys-
tematic review extends the outcomes of previous ones in 
the field [69, 70] by including a significantly larger number 
of studies of both pre-dialysis and dialysis patients and by 

Fig. 4   Relationship between circulating sST2 levels and risk of all-cause mortality (a) and cardiovascular mortality (b) among dialysis patients. 
Dashed lines represent 95% confidence intervals. HR hazard ratio
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implementing a strict statistical methodology that avoids 
the pooling of studies reporting different effect measures. 
Apart from conventional meta-analysis, dose–response 
meta-analysis was also conducted, allowing the definition 
of the exact relationship between sST2 and mortality risk 
across the whole range of the biomarker levels.

On the other hand, the interpretation of outcomes is lim-
ited by the remarkable inter-study heterogeneity, especially 
concerning MACE and kidney disease progression defini-
tions, as well as outcome reporting. As a result, a quantita-
tive pooling of studies was feasible only for dialysis mortal-
ity and all other endpoints were qualitatively evaluated. In 
addition, the small number of studies per outcome precluded 
the conduct of subgroup analyses, as well as the assessment 
of publication bias. It should be also acknowledged that 
only 1 study included peritoneal dialysis patients and thus 
the generalizability of outcomes in this population remains 
limited. Preliminary evidence has indicated that peritoneal 
dialysis may be linked to lower circulating sST2 levels com-
pared to hemodialysis [71], although the exact prognostic 
efficacy of the biomarker in regards to mortality and cardio-
vascular events warrants further exploration among perito-
neal dialysis patients.

The present study provides evidence supporting the 
promising role of circulating sST2 as a predictor of sur-
vival in patients undergoing maintenance dialysis. Due to is 
large molecular weight (37 kDa), its levels are not affected 
by hemodialysis, even with high-flux dialyzers [72]. The 
potential clinical utility of circulating sST2 as a biomarker is 
also reinforced by its low biological variation, while its low 
index of individuality renders it suitable for serial testing to 
identify changes over time that would potentially indicate 
cardiovascular disease progression and increased mortality 
risk [73]. Future large-scale cohort studies are needed to 
define the exact applicability of sST2 in clinical practice, by 
further exploring its potential association with cardiovascu-
lar events, incident heart failure, as well as infectious com-
plications. Circulating sST2 may be evaluated in conjunction 
with both traditional risk factors and novel biomarkers, such 
as natriuretic peptides, galectin-3 and growth/differentiation 
factor-5, aiming to construct combined models that would 
achieve optimal prognostic efficacy.

In conclusion, the present systematic review and meta-
analysis suggested that sST2 is associated with dialysis 
survival, presenting a log-linear relationship with both all-
cause and cardiovascular mortality risk. Among non-dialysis 
chronic kidney disease patients, limited evidence suggests 
that high circulating sST2 may be also linked to an elevated 
mortality risk. Conflicting data are currently available con-
cerning the association of sST2 with cardiovascular events 
and thus further large-scale studies are needed in order to 

reach firm conclusions about its role in cardiovascular pre-
diction among individuals with chronic kidney disease.
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